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Abstract. We present a methodology for constructing abstractions and
refining them by analyzing counter-examples. We also present a uniform
verification method that combines abstraction, model-checking and de-
ductive verification. In particular, it shows how to use the abstract sys-
tem in a deductive proof even when the abstract model does not satisfy
the specification and when it simulates the concrete system with respect
to a weaker notion of simulation than Milner’s.

1 Introduction

Verification can always been expressed in terms of fixed point computation over
a domain that corresponds to the properties of interest. The properties can
be described as sets of states, sets of traces (sequences of states) or sets of
trees. A key issue is then the tractability of the computation of these fixed
points. In general, in order to be able to compute such fixed points one either
has to restrict to finite systems or to be satisfied with approximations of fixed
points. Even in the case of finite systems, however, where the effectiveness of the
computation of the fixed points is given, one has to rely upon approximations
for efficiency reasons. The main issue is that the applied approximations allow
to safely deduce properties of the concrete fixed points. One is usually interested
in stating whether the concrete fixed point is contained or contains a given
property. This is the question of the correctness of the applied abstraction.
There exist two closely related frameworks for developing abstractions and
proving their correctness. The framework of simulation [Par81,Mil71] is about
structural relation between abstract and concrete transition systems, represent-
ing the step relation of programs by means of an abstraction relation between
abstract and concrete sets of states, where each concrete (set of transitions)
transition must be simulatable by an abstract transition. Thus, non-reachability
properties, in particular invariants, of the abstract transition system, hold also
on the concrete system. In order to make verification of properties automatically
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verifiable, the abstract transition system is in general chosen finite, even if the
concrete transition system is not.

Abstract interpretation [CC77,CC79] replaces the relation between concrete
and abstract states by an abstraction function « from concrete sets of states
(called properties) to the smallest element of some abstract property lattice,
which represents all the elements of the concrete sets. With « is associated a
concretisation function 7, which associates with each abstract element the set
of all concrete states represented by it, in such a way that the pair (o, ) forms
a Galois connection. With any function f operating on concrete properties is
then associated an abstract function f such that ao foy C f4, where C is the
approximation ordering. For instance, if we take for f the successor function on
concrete sets of states, an invariant can be obtained by computing the fixpoint
of f4 applied on the abstract image of the set of initial states [CC80]. In this
framework, the abstract domain need not be finite, or more precisely, the finite
abstract domain in which the approximated fixed point is computed need not
be fixed a priori. It can rather be choosen during computation of the fixed
point. This is possible when one can design a widening operator which allows to
approximate limits of infinite chains.

An important difference between the two frameworks is that the abstract in-
terpretation framework is about the computation of abstract properties, whereas
simulation is mainly about abstract systems whose properties are preserved by
concretization. In the simulation framework, nothing is said about how to com-
pute a simulation. Only in the context of strong preservation (the property holds
on the abstract system if and only if it holds on the concrete one) by bisimulation
[Mil80], computation of abstract systems had initially been proposed.

In [BBLS92,L.GS™95], we have shown that any simulation relation p between
a set of concrete and abstract states can be represented in the abstract interpreta-
tion framework by taking the pair of associated image functions (post[p], wp|[p])
as the corresponding Galois connection, and the other way round, each Galois
connection can be put into the form (post[p], WP[p]), as long as the abstract lat-
tice is constructed from a partition of the set of concrete states. Also [DGG93,Dam96]
discuss in great detail the relationship between abstract interpretation and the
verification by abstraction approach. Both frameworks allow to deal with over-
as well as under-approximation of the fixed points. In the framework of simula-
tion a combined framework has been introduced in [Lar89,LSW95] by means of
modal transition systems, which have may-transitions representing supersets of
actual transitions and must-transitions representing subsets.

The property preservation results of [LGS195] and [DGG93] lead to an in-
creasing interest in the combination of model-checking and abstraction. Indeed,
given a large or infinite state system that has to be verified, one can first com-
pute a tractable finite system that abstracts the given concrete one, then check
abstract properties on the obtained systems and finally, in case these properties
are satisfied, deduce that the concrete system satisfies the concrete proprties.
This is the so-called verification by abstraction approach. To apply this approach
one needs to first find an accurate abstract space and abstraction relation and



then automatically generate an abstract property and an abstract system that
simulates the concrete one. Several papers have discussed the automatic con-
struction of the abstract system, e.g. [GS97,BLO98b,BLO98a,ABLS01,CU98|
for infinite-state systems.

In this paper, we discuss methods for automatically generating abstract sys-
tems, refining abstractions and analysing the accuracy of the abstractions, in the
context of infinite state systems.

When the infiniteness of a systems comes from the presence of variables
with infinite domains, abstractions can be computed by means of abstract data
types: for each variable to be abstracted define an abstract domain and lift all
operations on the sets representable in the abstract domain. Then, an abstract
model is obtained by replacing each variable by one of a corresponding abstract
domain, and each operation by an apropriate abstract operation. This is the way
abstract interpretation is used, and it has also used in combination with model-
checking e.g. in the tool Cospan [Kur89,Kur94], in [Gra94] and in the Bandera
tool [HDLS98,CDH*00].

These approaches are often based on very general, predefined abstractions
and aimed for generic properties. We investigate here more property depending
abstractions where better results are obtained when the atomic entity to be
abstracted is a “transition relation”; this is meaningful in the context of systems
defined as combinations of a set of transition relations. Automatic abstraction
of infinite systems based on this principle have been introduced in [GS97] in the
form of predicate abstractions, and has been developed in different contexts since
then mostly together with counter example based refinement, e.g. [DDP,JHR99].

Parameterized systems, where the source of infinity is the existence of an
unbounded number of parallel components can be dealt with by introducing
counters for the number of components in each potential system state, and can
then be treated using the above mentioned abstraction methods. Nevertheless,
a number of specialised approaches for this kind of systems has been proposed,
e.g. [ABJN99,BBLS00,BLS01,MP95b].

Abstract transition relations on finite domains can be used directly in any
model-checker to verify any properties which are preserved by the abstraction.
Whenever, the abstract system does not satisfy the property, the model-checker
will come up with a abstract counter example. If this counter example can be
transformed into a concrete one, there is a proof that the concrete system does
not satisfy the property. Otherwise, the abstract system is not detailed enough
and needs to be refined.

Using counter-examples to refine abstract systems has been investigated by a
number of other researchers e. g. [Kur94,BSV93,CGJ*00]. Closest to our work is
Clarke et al’s techniques [CGJT00]. The main differences are, however, that we
focus on infinite-state systems and that our algorithms for analyzing counter-
examples work backwards while their algorithms are forward. This difference
can lead to completely different abstractions. Moreover, our technique allows
in many cases to do in one step a refinement that cannot be done in finitely
many ones using their method. The key issue here is that our technique incor-



porates accelerating the analysis of counter-examples that involve the unfold-
ing of loops. On the other hand, we do not consider liveness properties. Also
close to our work is Namjoshi and Kurshan’s work [NKO00] on computing finite
bisimulations/simulations of infinite-state systems. The main idea there is to
start from a finite set of atomic formulae and to successively split the abstract
state space induced by these formulae until stabilization. However, in contrast
to [BFH90,LY92,HHK95], the splitting in [NKO00] is done on atomic formulae in-
stead of equivalence classes which correspond to boolean combinations of these.
A similar idea is applied in [SUMO96].

Abstraction can also be used in combination with other verification tech-
niques, in particular when in the abstract system still some infinite domain vari-
ables exist. A typical case is a system with finite but implict control and infinite
data, where abstraction is used to define an explicit finite control, but the prop-
erties to be verified depend also on the still infinite data part'. In this context,
either the above mentioned refinement techniques or the combination with tech-
niques working directly on infinite state systems, such as abstract interpretation
or deductive verification, can be used. The combination with abstract interpre-
tation techniques has been proposed in particular for parameterized systems
[LS97] where the infinite variables are state counters increased or decreased by
each transition, in the context of timed systems or linear hybrid systems where
the infinite state variables increase in each control state monotonically.

We are interested here in the use of abstraction in the context of deduc-
tive verification. From a theoretical point of view, finding a finite abstraction
and finding an invariance proof are equivalent. Nevertheless, in practice, the
combination of automatic construction of abstractions and deductive invariance
proofs can be useful: use automatic abstraction in order to extract information
on global control, information which then is used in a deductive invariance proof.
In [LBBOO1], we have have shown how to exploit the abstract invariant, here we
show that sometimes it can be also be interesting to exploit directly the abstract
transition relation.

2 Preliminaries

First we define some notations. Given a set X of typed variables, a state over X
is a type-consistent mapping that associates with each variable x € X a value
in its domain. Given X ,we denote by X'(X) the set of states on X.

Definition 1. (Transition system)

A transition system is given by a triple (X, I, R), where X is a set of states,
I C X is a set of initial states, and R C X2 s the transition relation. In
the sequel we always consider sets of states of the form X(X) for some set of
variables X.

! any finite abstract system which does not satisfy a given property, can be considered

as suach a system when considering the concrete transition relation in combination
with the constructed finite abstraction



Definition 2. (Syntactic Transition system)

A syntactic transition system is given by a triple (X,0(X), p(X, X")), where X
is a set of typed variables, 0(X) is a predicate representing the set of initial
states and p(X, X') is a predicate representing the transition relation, where the
unprimed variables x € X represent the start states and primed variables ' € X'
target states. Often the transition relation is of the form p = |J7; where 7; is the
predicate defining the transition relation of an individual transition.

With a syntactic transition system is associated in the usual way a corre-
sponding transition system.

Definition 3. (synchronous product)

Given two binary relations R; C X;x X!, fori = 1,2, we define their synchronous
or conjunctive product Ry ® Ry C (X1 U Xs) x (X U XY), by (s,8') € R1 @ Ry
iff (S\Eiﬂsizg) € Ry, fori=1,2, where 5|5, denotes the restriction of the state s
to Ez

Thus, if Xy = X5 and Ei = Eé then Ry ® Ry = Ry N R».

Definition 4. (synchronous composition)

The synchronous composition of transition systems S; = (X, I;, R;), i = 1,2,
denoted Sy @ Sa, is the transition system (X1 U Yo, {s | sjx, € I1 A 5|5, €
L}, R ® Ry).

Definition 5. (computation and reachable states)

— A computation of a transition system S = (X, I, R) is a sequence of states
S0y, 8n such that sg € I and (s;,si+1) € R, for i < n — 1. As we are
interested in safety properties only and abstraction, we never consider infinite
computations.

— A state s € X' is called reachable in S, if there is a computation sg,-- -, Sp
of S with s, = s.We denote by Reach(S) the set of states reachable in S.

Definition 6. A set P C X' is called an invariant of S, denoted by S | OP, if
Reach(S) C P, that is, every reachable state in S is in P.

Definition 7. (The predicate transformers post, wp and pre)

Given a relation R C X x X', we denote the predicate transformers or image
and inverse image functions associated with R as follows. Let be P C X and
P’ C 3. Then

— The postcondition associated with R with respect to P, denoted by POST[R](P),
is the image function 2% ~» 2" associated with the relation R applied to P,n
that is POST[R|(P) ={s' € X' |3s € X'.(s,s') € R}.

— The precondition of R with respect to P’, denoted by PRE[R](P’), is the pre-
image of P' by R, that is PRE[R|(P') = {se€ X |3s' € X' .(s,s') € R} We
also sometimes write PREg(P') instead of PRE[R](P’).



— the weakest liberal precondition of R with respect to P, denoted by WP[R](P’)
or WPRr(P'), is the dual of PRE[R|(P’), that is the set consisting of states s
such that for every state s, if (s,s’) € R then s’ € P'.

WP[R](P')={s€ X | Vs' € X'[(s,8') € R= s' € P']} = PRE(R)(P)

Definition 8. (Inductive invariant) A set P C X' is called an inductive invari-

ant of S, if

— I C P, that the set of initial states is included in P.
— P C wp(R, P), that is the transition relation R does not allow to “leave” the
set P

Proposition 1. Un inductive invariant of S is also an invariant of S. O

Notice that we often use semantic notations such as “set of states”, inter-
changably with the corresponding syntactic notations “predicate on X”. Also
the notions of preconditions and invariant are supposed to be defined likewise
semantically as well as syntactically. In the sequel, we will freely switch between
semantic and syntactice notations, unless explicitly stated.

3 Deductive verification of invariance properties

There are basically two approaches to the verification of reactive systems, the
algorithmic approach and the deductive approach. The algorithmic approach is
based on the computation of fix-points, on effective representations of sets of
states, and on decision procedures for solving the inclusion problem of sets of
states. For example the backward procedure is an instance of this approach. To
prove that a set of states P is an invariant of a system S, the backward procedure
computes the largest set of states @ satisfying @ C P and @@ C wP(7,Q),
for every transition where R = [J7;; this is done iteratively, by eliminating at
each iteration the set of states which can leave the current approximation X by
computing X*** = XN .p WP(7, X*). Then, P is an invariant of S if and only
if every initial state of S satisfies the fixpoint ), which is the greatest inductive
invariant of S included in P, and when P can be expressed as a temporal logic
formula ¢, @ is the semantic of the temporal formula Oy or VOyp. In general,
the algorithmic approach is based on :

1. an effective representation Rep for sets of states,

2. effective boolean operations and predicate transformers in Rep
3. a procedure for deciding inclusion in Rep,

4. and convergence of fix-points to guarantee completeness.

In general, in case of infinite state systems, first-order logic with Peano arithmetic
is considered as representation Rep. In fact, any weaker logic is not expressive
enough (e.g. [dB80]), when the considered system contains variables that range
over infinite domains. Thus, one has effective boolean operations and can define
predicate transformers, but inclusion is undecidable. Moreover, convergence of
fix-points is not guaranteed. Consequently, the algorithmic approach cannot be
applied in general to infinite state systems.



3.1 Deductive verification

The deductive approach is very powerful and gives a complete method even for
infinite state systems. It relies upon finding auziliary invariants and proving
validity of first-order formulas, called verification conditions. The deductive ap-
proach is, however, in contrast to the algorithmic approach, difficult to apply in
practice. It is in general hard to find suitable auxiliary invariants and time con-
suming to discharge all generated verification conditions. One means, for making
deductive verification more efficient is, as we will see later on, abstraction.

To prove, by induction, that ¢ is an invariant of of a system .S one has to come
up with a stronger inductive invariant ¢ that is preserved by every transition of
S. As shown, e.g. in [MP95a], Rule (Inv), is a sound and complete for proving
invariance properties of transitions systems. A predicate i which satisfies the

There exists a predicate ¥ s. t.
Y=
1=
Y = WP(R,¢)
S E=0Op

Fig. 1. Proof rule (Inv).

premises of the rule above is called auziliary invariant for a transition system
S and @. The (semantic) completeness proof of the rule states that for every
transition system S and predicate ¢, if S = Op then there exists an auxiliary
predicate ¢ for S and ¢.

It is very important to understand that the completeness result/proof of
Rule (Inv) does not say anything about how to find an auxiliary invariant. The
creative task in deductive invariant verification is to come up with a predicate
¢ which satisfies Reach(()S) = 1 = O¢ and which is an inductive invariant.
Indeed, Reach(S) is the smallest inductive invariant of S, but it is in general
not a very helpful invariant in the deductive approach, as to come up with a
predicate representing Reach(S), makes necessary a, possibly infinite, fixpoint
computation. Alternatively, one could choose the set o N[\ WP!(R, ) as a guess
for an auxiliary invariant. And if this does not allow to prove the invariance of ,
try pNwp(R,WP(R,¢)), and so on. In fact, this corresponds to the inductive
computation of the weakest auxiliary invariant O¢p for S and ¢. Notice that this
algorithm does not necessarily converge, and only the fixpoint is an inductive
invariant.



When S is a finite-state system each of these predicates can be expressed in
propositional logic, checking the premises can be done algorithmically and con-
vergence of fixpoint computations is guaranteed. When Presburger Arithmetic
is sufficient to express all these predicates, then checking the premises of the rule
is still decidable, but convergence of fixpoint computations is not guaranteed.
When general first order logic is necessary, even the decidability of implications
is lost. Our examples, will often be taken from the group of those where decid-
ability of implication is given, but reaching of fixpoints cannot be guaranteed.

Notice that generic techniques for generating and strengthening invariants
(cf. [MP95a,BBM97,BLS96,SDB96,BL.99]) seem to give limited results, except
when the property to be proven invariant is in some sense ”almost” an invariant
or when the system is relatively simple.

To summarize, the deductive method has three drawbacks:

1. it is often hard to find suitable auxiliary invariants,

2. when a guess for an auxiliary invariant fails, one has little hint how to
strengthen it and finally

3. contrary to algorithmic methods, where for a failed invariant proof, one can
always construct effectively a counter-example, here a failed proof doesn’t
even prove the existence of a counter-example.

4 Abstraction

Property preserving abstractions is a crucial technique for pushing further the
limits of model-checking: given a program and a property to be verified, find a
(simpler) abstract program such that the satisfaction on the abstract program
implies the satisfaction on the initial program, called concrete program. Simula-
tion as defined by Milner [Mil71] yields an appropriate preorder. In section 4.2,
we introduce the notions of abstraction and property preservation and show
that, given some invariant, a weaker notion of simulation, imposing no require-
ment on the successors of states outside the invariant, preserves the same set of
properties.

An important point is, given a concrete program, how to construct an ab-
stract program that is both, simple enough in order to be verified by available
tools, and that still contains enough relevant details for the satisfaction of the
considered properties. Several alternative methods for constructing abstractions
are discussed in detail in section 4.3.

4.1 An introductive example

In order to give an intuitive idea about abstraction, let us consider the following
small reader-writer example :



system RW

vars
nr,nw : nat; %representing the number of readers resp. writers
init
nr=0Anw = 0;
do
nw=0Anr=0— nw:=1; %nobody active; a writer can become active
[ nw>0 — nw = nw — 1; % writer terminates
[[nw=0 — nr:=nr+1; %no writer active; readers read at any time
[| nr>0 — nr:=nr —1; %a reader terminates
od

In this example, the set of states is the set IN x IN of all values (v, v2)
for variables nw,nr. There is only one initial state, in which no reader nor
writer is active (I = {(0,0)}) and the transition relation is given by the guarded
commands.

Assume we want to formally reason about this transition system. For example
that it satisfies mutual exclusion between readers and writers. In order to do so, it
is enough to show that (nr > 0) = (nw = 0) (whenever there is a reader active,
then there is no writer) is an invariant. As the S, example has an infinite state
space (cf. figure 2) and we cannot directly apply the algorithmic approach?

(0,0) _(0,1) =—(0,2)
(1,0) (1,1) (1,2)
(2,0) (2,1)

Fig. 2. The system Sy,

As already motivated earlier, the construction of an abstract transition sys-
tem, which simulates the concrete transition system of Figure 2 is a possible way
to overcome the complexity problems induced by large or infinite state spaces.

2 Notice that for this simple example, having only integer variables with the + and
- operation, we could use tools using polyhedra representations [HPR94] to directly
compute the set of reachable states. On the other hand, we know that the deductive
approach generates only decidable verification conditions.



The key elements are:

1. Defining a set of abstract states and a mapping from concrete to abstract
states

2. construct an abstract transition system by constructing the abstract initial
states and an abstract transition relation, and

3. finally reason on the initial system by examining the abstracted system which
has ”less states” or ”a simpler representation”

We present these elements for the small example in order.

The graph of Figure 2 suggests to use the partition of the set of concrete states
induced by the predicates nw = 0 and nr = 0 to define the set of abstract states
(and the corresponding mapping. Notice that htes predicates (or there negations)
are used in the guards and they define four abstract states Xy, ..., X4. There is

— the initial state (0,0) (X3 = I) in which there are whether readers nor
writers, (nw = 0) A (nr = 0)

— Y5 represents the states where only readings are being performed that is
=(nr =0) A (nw=0)

— X3 represents the states where only writings are being performed, that is
(nr=0) A =(nw = 0) and

— and XY, represents all the remaining states where both write and read are
performed, that is =(nr = 0) A ~(nw = 0)

The mutual exclusion property states that no state Xy can be reached from the
initial state.

The abstract transition relation contains at last all those transitions (X; , X))
such that there exists a least one pair of concrete states s; € X, s; € X; and
the (si,85) € Ryw-

This definition of the abstract transition relation preserves abviously “non-
reachability”: if X4 is not reachable in this abstract system, then by definition,
there exists no concrete transition reaching the set X4 from any state in X', 3
or X3. But in the other way round, reaching or non-satisfaction of an invariant
is not preserved by abstraction.

In this example the abstract transition is indeed very precise: the abstract
transition relations corresponding to start-w and start-r are detemriministic de-
terministc and for every abstract transition (X; — X)), for every concrete
state o represented by X; has a concrete transition into the set represented by
Y, and the other way round, every concrete state o’ represented by X; can be
reached by a concrete transition from a state in the set represented by ;.

The abstract transition relations corresponding to end-w and end-r are non-
deterministic, as for example the abstract state Y5 represents two classes, the
state with nw = 1 for which end-w leads to state X;, and all other states for
which the ranstion end-w leads back to state Y. Therefore, on the abstract tran-
sition system, the behaviour start-w, end-w, end-w,.... is a possible behaviour,
whereas on the concrete system, it is not. Intuitively, simulation based abstrac-
tion preserves properties of all executions, and in particular invariants, whereas,



() 0
end-|

end-w

Set of reachable states of the
abstract system

Fig. 3. The abstract system S/,

from the existence of a a particular abstract behaviour nothing can be concluded
on the concrete system.

In order to prove that P = nw = 0V (nr = 0) A (nw < 1) is an invariant,
two possiblities exist.

The first one consists in refining the state X5 which contains both, states in
P and states not in P.

When we split X5 into two abstract states, one containing only the value
nw = 1 and the other all other values of nw, we get, using the same definition of
the abstract transition relation, the abstract system of the figure 4 above. The
set of reachable states of this refined abstraction is nw = 0V (nr = 0) A (nw < 1).
Notice that for the construction of the refined transition relation, only the transi-
tions starting from or leading to the new states X5, and Y9, need to be checked.
Moreover as state Y4 is known to be non-reachable, thus uninteresting, we need
not really care about the transitions starting from Y. Refinement of abstrac-
tions are presented in Section 5.3.

A second alternative of making use of an abstract system is

— to use the set of reachable states nw = 0V nr = 0 as known auxialiary
invariant to prove the invariance of P by the deductive approach.

— to use transition invariants of the abstract system in the deductive approach.
A transition invariant of the system S7 is that all successor of a transition
end-r starting in a reachable state satisfy nw = 0.

Nevertheless, these auxialiary invriants and transition invariants are not helpful
in this example, as the new invariant to be proved P is a strict subset of the



EAU-T Set of reachable states of the

abstract system

Fig. 4. The refined abstract system Sﬁ;

invariant obtained from the abstraction, and as all verification conditions are
very simple. More about the use of abstract invariants in deductive proof rules
is given in section 5.1.

4.2 Definition of abstraction and preservation results

We consider here abstraction based on the notion of simulation [Par81,Mil71]
and on preservation results which tell for which properties, we can conclude true
the fact that they hold on the abstract system S, then they hold also on the
concrete system S°.

In this section, we recall the definition of simulation as well as preservation
results for invariance properties.

Notation 41 Let be a« C X x X% an abstraction relation between a concrete
set of states X° and an abstract set of states X*. Whenever, no confusion is
possible, we dentote

— the image or abstraction function associated with «, by writing a(°) instead
of POST[a](¢°)

— the inverse image, precondition or concretisation function associated with «,
by writing a1 (%) instead of PRE[a](p%). Indeed, o= (%) represents the
set of all concrete states represented by the set of abstract states p®



Notice that for any concrete set of states ¢°, the result of an abstraction
followed by a re concretisation is a superset of ¢, that is p° C a=™!(a(p°))?. We
say that (¢ is abstracted ezactly, if ¢ = a~!(a(¢®)) holds.

Definition 9. Let S¢ = (X<, I¢,R¢) and S* = (X%, I* R%) be two transition
systems. We say that S® is an abstraction of S¢ with respect to a relation o C
¢ x X denoted by S° T, S, if the following conditions are satisfied:

1. « is total on X°,

2. for all states sp,s1 € X¢ and s§ € X with (sg, s§) € «, if (so,51) € R® then
there exists a state s¢ € X such that (s§,s?) € R* and (s1,s§) € a.

3. for every state s in I there exists a state s in I® such that (s,s%) € a.

When X is finite we call S* a finite abstraction of S¢ with respect to «.

It can be easily proved that if S¢ T, S® then for every computation sg, - -, s,
of S there exists a computation sg,---,s% of S such that (s;,s?) € «, for every
i < n. This implies the following preservation result (cf. [CGL94,LGST95]):

Theorem 1. Let S¢ and S® be transition systems such that S¢ T, S*. Let
©¢ C X¢ and ¢* C X If a1 (p%) C ¢° and S* = Op® then S¢ |= Op°

Thus, to prove that a transition system S¢ satisfies an invariance property ¢
it suffices to find a finite abstraction S® of S¢ with respect to some relation «
such that S* = Og® for some abstract predicate ¢* C X whose concretization
includes the invariant to be proved.

This method is complete in the sense that, it suffices to take an abstract
system with two states s and s{ and a relation o such that (s,sg) € « iff s
is reachable in S¢ and (s,s}) € « iff s is not reachable in S¢. The abstract
system S® has s3 as unique initial state. Obviously, S¢ C,, S% and S = O{s¢}.
Moreover, since S¢ = Og°, we have a=!({sg}) C ¢°.

We can show that, if S¢ = Op® can be proved using an abstraction S* of
S¢ with respect to «, then it can also be proved using the auxiliary invariant
a~!(Reach(5%)), where Reach(S®) is the set consisting of the reachable states of
S%. Thus, from a theoretical point of view proving invariance properties using
abstractions is as difficult as using auxiliary invariants. Still in practice it is often
the case useful abstractions are easier to find than useful invariants.

Definition 9 can be weakened, allowing more abstractions, while preserving
soundness of theorem 1. Indeed, if ¢ is an invariant of S¢ then conditions 1 and
2 in definition 9 can be weakened by restricting the quantification on states in
2¢ to states that satisfy ¢°.

We can also weaken definition 9 using a set of states in X¢ that is not neces-
sarily an invariant of S¢ leading nevertheless to a (weaker) preservation result.
To explain this, let us introduce the following definition:

3 this result is also true in abstract interpretation, where the concretisation function,
call it ~y, is chosen as the weakest precondition of the relation a rather than its
preimage. In this case, the pair («, ) forms a Galois connection, for which we know
v oa < id, and for total relations we have v < a™"



Definition 10. We say that S is an abstraction of S¢ with respect to a C
X x X and p° C X°, denoted by S° Eﬁc 5%, if the following conditions are
satisfied:

1. « is total on ¢°,
2. for every state sg,s1 € X° and s§ € X with so € ¢° and (so,s§) € «, if
S0,51) € R then there exists a state s§ € X such that (s§,s}) € R* and
1 0551
(s1,89) € a,
3. I° C ¢°, and
4. for every state s in I¢ there exists a state s* in I* such that (s,s) € a.

Figure 5 shows the difference between these notions of simulation.

s¢ —R,. Js¢ s¢ R—,.Esa

o T T o a T T a

s E—— SEQP® E——
R°¢ R°

Fig. 5. Simulation notions.

In [BLO98a] we have proved by induction on n that for every computation
S0, *,8p, of S¢ such that s; € ¢°, for every i« = 0,---,n — 1, there exists a
computation s§,---,s% of S* such that (s;,s?) € a, for every i < n. Therefore,
we can state the following preservation result:
Theorem 2. Let S and S* be transition systems such that S Eﬁc 5. Let p* C

X and o C X If a (%) C Ny, and S* | Op?, then S¢ | O(p° N ). O

Notice that definition 9 and theorem 1 can be obtained from definition 10 and
theorem 2 by taking ¢ = X°.

The advantage of definition 10 is that it allows to define an abstract transition
relation in which we do not care about the transitions starting from states from
which want to prove that they aren’t reachable, similar as for the refinement of
the abstract transition relation constructed in section 4.1. This is particularly
important when we are seeking a method that automatically computes finite
abstractions for analysis by model-checking techniques. Indeed, this result is
used in many concrete applications, in the large litterature of abstraction but
its correction is mostly shown only informally.

4.3 Computing Abstractions

Verification by means of abstract transition systems can also be applied when the
concrete system is infinite state, as shown in [DF95,Gra99,MN95,HS96]. How-
ever, in all these approaches the verifier has either to fully provide the abstract
system, and only the check that it is indeed an abstraction is tool supported,



or, like in [Gra99], the user provides abstract data types which can then be used
to compute an abstract transition system. In all cases a relatively important
amount of user intervention is required to prove that the abstract system is
indeed an abstraction of the concrete one.

What is needed is a method to automatically compute an abstract system for
a given infinite state system, an abstract domain and a mapping from concrete
to abstract states. We present a method that computes an abstract system S =
S¢| - || S, for a given system S¢ = S || --- || S& — where each S¢ is
given by a set of transition relations — and abstraction relation «, such that
S¢ simulates S* is guaranteed by the construction. Hence, by the previously
established preservation results, if S satisfies an invariant ¢® then S satisfies
its concretisation, a1 (°).

We do not want to fix a parallel operator here, as the method builds ab-
stractions of the individual transition relations, and in [GL.93a] has been shown
that abstraction is preserved by most useful notions of parallel composition. An
important point is that the produced abstract system S is given in a symbolic
manner, which still allows to apply all the known methods for avoiding the state
explosion problem, while analyzing S“. Moreover, there is a clear correspon-
dence between concrete and abstract transitions. This allows for debugging the
concrete system, since it can be checked whether a given trace of the abstract
system corresponds to a concrete trace.

We consider the problem of computing an abstraction of a transition system
S¢ with respect to an abstraction relation «. Thus, consider a syntactic transition
system S°® = (C, 0°, p°), where p° is of the form U;7;. Let the abstraction relation
a be given by a predicate on CUA, where A are the variables defining the abstract
domain.

The basic idea underlying the methods of [CGL94,GL93b,DGGY3,Dam96)
for computing abstractions of finite state systems is based on abstract inter-
pretation of individual operators or individual transition relations: the abstract
transition relation is completely determined by abstract versions of the primitive
operators or of individual transition relations. If the concrete and abstract state
space is finite, the abstract transition relation 7;* associated with the concrete
transition relation 7; can simply be represented by the relation a~! o7 o a on
the abstract state space®. In [CGL94] abstract transition systems are obtaineded
by computing abstractions of primitive operators as defined precedingly (where
the abstraction relation is always a function), and in [GL93b] the same principle
is applied to symbolic transition systems and abstract domains with boolean
variables only.

Here, we follow the approach of abstracting entire individual transition rela-
tions rather than primitive operations. We want to compute an abstract transi-
tion system of the form a(S¢) = (A, a(6°), a(p®)). a(6°) can be represented by
the expression 3C- (f°Aa) and a(p¢) by ICIC’- (aAa’Ap¢)3. a(S€) is indeed an

4 or by its corresponding function on sets, denoted in the same way
% as defined earlier, o/ is obtained from « by substituting every variable ¢ € C by ¢’
and every variable a € A by a’



abstraction of S¢. In case « is a function®, a(S¢) is the least abstraction of S¢
with respect to a.

Unfortunately, it is not possible in general to analyze «(S°¢) directly by model-
checking even when all the variables in A range over finite domains. The reason
is that the description of «(S¢) involves quantification over the variables in C
which includes variables ranging over infinite domains and quantifier elimination
is not possible in general”.

The elimination method We present a method for computing abstractions which
avoids the direct elimination of quantifiers. Consider again a transition relation
given by a predicate p(C,C’) and an abstraction relation given by a predicate
a(C, A). There is a trivial abstraction of p with respect to a which is the uni-
versal relation on X*. Let us denote it by U,4. Of course one cannot use the
universal abstract transition relation U4 to prove any interesting invariant. One
can, however, obtain a more interesting abstraction of p(C,C") by eliminating
transitions from U,4. The following lemma states which transitions can be safely
eliminated:

Lemma 1. Let S¢ = (C,0° p°), S® = (A4, 0%, p*) be transition systems such that
Se C¥" S, Let s§,5¢ be sets of abstract states. If a1 (s8) = wp[p®](~a~1(s$))
then S¢ C¥" S', where S’ consists of the same components as S® except that
its transition relation is p® \ {(s&, s{)}. O

In other words, if the concrete transition does not lead from a concrete state
s§ with a(s§, s) to a concrete state s§ with «(s§, s{), then we can safely elim-
inate the transition(s) (s§,s{) from S*. When p is given as union of individ-
ual transition relations, this can be done individually for each of them. No-
tice that since the concrete system in general is infinite state the condition
a~(sd) = wr[p](—a~1(s})) can not always be checked algorithmiquely. In our
tool, we use the theorem prover PVS [SRSS96] to discharge this kind of verifi-
cation conditions. Notice also that if we eliminate all the pairs (s§, s7) for which
this condition is satisfied, we obtain as result the smallest abstract system a/(S¢).

The elimination method in its rough form is not feasible since it requires too
many formulas to be checked for validity. Indeed, if there are n boolean abstract
variables then there are 22 such conditions to be checked. Therefore, we present
techniques which make the elimination method feasible.

In [GS97] we have presented a method called predicate abstraction, where the
set of abstract states is a set of boolean variables by, ...b,,, representing each one a
concrete predicate p;. The method computes both, a symbolic representation of
each individual transition relation and a global reachability graph. Each abstract
transition relation is initialized to the trivial relation U,4 relating all states, and
then stepwise refined by eliminating transitions from states which are reachable.

% or a quasi function as shown in [LGS195]

" When C is a finite domain, the abstract transition relation is exactly the on computed
for example in the tool presented in [GL93b]



This guarantees that any intermediate result represents an abstraction and the
refinement can be stopped at any point of time (with the risk to obtain a too
rough overapproximation). The refinement is done as follows:

1. start by some straightforward elimination of transitions (leading to a more
precise abstraction) exploiting

— each of the individual transition relations is in general independent of
at least some of the predicates (if R is the current representation of an
abstract transition relation, and we find out that it is indepenedent of
abstract variables by and ba, its new representation will be R A (b1 =
b)) A (b = b))

— dependences between concrete predicates (which induce dependences be-
tween the abstract variables).

— special cases, where in a given transition relation the “nextvalue” of some
prediciate is independent of the values of other predicates (for example,
when b3 stand for the concrete predicate x > 0, then for any transition
relation with an assignment z := 0, the corresponding abstract transition
relation has a conjunct b5 = false.

Sometimes, these simplifications allow to eliminate a large number of transi-
tions, making the transition relation more deterministic, and thus less work
is left for the second step.

2. In the second step a more precise approximation of the successors of an
(over approximation of) all reachable states is computed. As computing a a
precise abstraction of a transition relation depending on k abstract variables
may require up to 227 tests, and tests are the already mentioned verification
condition in terms of concrete variables expressing s (set of ) start states has
no successor in a (set of) target states, we had chosen to test only start
states which have been found reachable and only target sets of states of the
form predicate p; is true or predicate p; is false.

This method is meant for building a global control abstraction of the system,
where the predicates on which the abstraction is based, is a relatively small set
of predicates (in our experiments [GS97] we went up to 25 predicates, that is
abstract variables), representing guards or their literals. The set of guards of a
system in which coordination is done by global variables, are often havily inter-
dependent, the obtained graphs are irregular, and the set of reachable abstract
states is small with respect to the overall set of abstract states (for example
not more than 1000 reachable states with 25 abstract variables). Only in this
context, the simulataneous computation of the set of gloabally reachable states
is useful.

In [BLO98a] we have presented a much more compositional method, in the
context where the set of conrete variables can be partitioned into a number
of small sets of variables, abstracted independently. Moreover we don’t restrict
ourselves to boolean abstract variables, as the type of abstraction we yield are
more of the kind “data abstraction”. We present here in more details the second
method, as its method for the computation of the abstract transition relation
is more evolved. Here, it could also save time to construct only successors of



reachable configurations, but in the context of communication through shared
variables, local invariants are not necessarily preserved by the global system.

Partitioning the abstract variables A simple and practical way to enhance the
elimination method consists of partitioning the set A of abstract variables into
subsets Ay,---, A, and considering the effect of the abstraction of a concrete
transition p on each set A; separately. Let us consider this in more detail. We
assume that the considered abstraction relation « is a function and we denote
by a; the projection of a onto Ay, i.e. a;(s) = a(s)|a,, for every concrete state
s and 7 < m. Then, we have the following lemma:

Lemma 2. Let ¢° C X°. Fori=1,---,m, let S¢ = (A;,I*, R?) be an abstract
transition system and let S® = @ S¢ (see section 2 for the def. of Q).
i<m

Then, S¢ T S2, fori=1,---,m iff S° C&" S O

Proof. We only consider the implication from left to right and show that for every
state s,s" € X° with s € ¢°, if (s,5") € R° then (a(s),«(s’)) € R*. Therefore,
assume that S°¢ Eﬁ: S¢, for i =1,---,m. Consider states s,s’ € X¢ with s € ¢°
and (s,s') € R°. From S° C¥2 5% and a4(s) = a(s)a,, for i = 1,-+-,m, we
obtain (a;(s),®;(s")) € R?. Hence, by definition of R%, (a(s),a(s")) € R*.

For the truth of this statement it suffices to have one of the assumptions that «
is a function or Ay,---, A,, is a partition of A. It is, however, in general unsound
if we do not have either of these assumptions. The lemma suggests to partition
the set of abstract variables and consider each element of the partitioning in
isolation. If we have n boolean abstract variables and partition them into two
sets of ny and ny elements then, when applying the elimination method, we have
to check for 22" + 222 validities instead of for 22("+72) validities.

Now, the question arises whether an abstract system that is computed using a
partitioning is at most non-deterministic as the system computed without using
the partitioning, i.e. whether o(S¢) = Q),.,, @i(S¢) holds. The answer is that
in general @),.,, @i(S¢) has more transitions than «(S¢), because there might
be dependencies between the a;’s which are not taken into account during the
process of computing «;(S¢). We can, however, state the following lemma:

Lemma 3. Assume that the set C' of concrete variables can be partitioned into
sets C, - - - Cy, such that R¢ can be written in the form R{®- --® RS, , where each
R{ is a relation on states over C;. Assume also that each a; can be considered
as a function of C;. Then, a(S¢) = Q),<,, @i(S°). O

It is often the case, however, that most of the dependencies between the «;’s are
captured as an invariant of S°, which can then be used during the computation
of the abstract system.

Given two partitions P = {4, -+, An} and P’ = {A4,---, A ,} of A, we
say that P is finer than P’, if for every ¢ < m there is j < m’ such that A; C A/
In this case, we write P < P’. The following lemma states that, in general, finer
partitions lead to more transitions in the abstract system.



Lemma 4. Let P and P’ be partitions of A such that P < P'. Moreover, for
every j <m', let o; denote the projection of v on A}, i.e., aj(s) = a(s)‘AQ_, for
every concrete state s. Then, @ ;< @5(5¢) Cray &<,y i(S€), where Ida is

the identity on the abstract states. O

The proof of the lemma uses the fact that for every concrete state s, every
abstract state s%, every ¢ < m, and every j < m’ such that 4; C A;-, if s“|A; =
a’(s) then s% 4, = ai(s).

Using substitutions In many cases we do not need to apply the elimination
method to compute the abstraction of a transition 7 but we can achieve this using
syntactic substitutions. To explain how this goes we assume in this section that
transitions are given as guarded simultaneous assignments of the form g(c) —
c := e. Thus, consider a transition 7 and an abstraction function a given by

N\ a=eq, ie., a(s)(a) = s(eq), for every concrete state s, where s(e,) denotes
acA
the evaluation of e, in s. To compute the abstraction of 7 one can proceed as

follows:

1. Determine a list ¢; = vy, - -+, ¢, = v, of equations, where ¢; € C and v; is a
constant, such that ¢; = v; follows from the guard g.

2. Substitute each variable ¢; with v; in e obtaining a new concrete transition

7' with 7/ = g(¢) > c:=¢€’ and &' =e[vi/c1, -+, v, /cn).

Let B(a) be e,]e’/c], for each a € A.

4. We say that an abstract variable a is determined by 3, if one of the following
conditions is satisfied:
(a) there is a variable-free expression e such that for every concrete state s,

s(B(a)) = s(e) holds, or

(b) there is an abstract variable @ such that 5(a) e; are syntactically equal.
Let v(a) be e in the first case and @ in the second.

5. If all variables in A are determined by ( then the transition with guard «(g)
and which assigns v(a) to every abstract variable a is an abstraction of 7
with respect to a.

@

To see that 5.) is true notice that transitions 7 and 7" are semantically equivalent
and that for all concrete states s and s’ if (s, ") € 7/ then a(s')(a) = a(s)(v(a)),
for every a € A.

Thus, in case all abstract variables are determined by ( the complete ab-
straction of 7 is determined by substitutions without need for the elimination
method. However, in general we can apply the procedure described above fol-
lowed by the elimination method to determine the assignments to the abstract
variables which are not determined by (.

Ezxample 1. To illustrate how we can use syntactic substitution to compute the
abstraction of a concrete transition, we consider the Bakery mutual exclusion
algorithm, which has an infinite state space.

Transition system Si:



T1:per =l — y1:=%y2+1,pc1 =12
Ta:per =l A (Y2 =0V yr <y2) — peyi=li3

T3 1 per = i3 — y1:=0,pcy =111
Transition system Sa:

T4 1 pea = o1 — Y2 :=y1 +1,pcy =l
Ts:pcy = lpa A (y1 =0V ya <y1) — pea =3

Te 1 pC2 = lo3 — y2:=0,pco =2

Here pe; and pep range over {l11,l12,013} and {l21,leg, l23}, respectively, and
y1,y2 range over the set of natural numbers. As abstract variables we use the
boolean variables a;, az, a3 and the variables pc{ and pc§. The abstraction func-
tion « is given by the predicate a1 = (y1 = 0) Aaz = (y2 = 0) Aaz = (y1 <
y2) A pc§ = pey A pe = pes.

Let us consider transition 7; of S; and apply step 1.) to 5.) to it. It can be
easily seen that we obtain 3(pc}) = li2, B(a1) = 14+y2 =0, B(az) = 1+ y2 < yo,
B(pc§) = pea, and B(az) = y2 = 0. Moreover, a(pc; = l11) = pef = ly1. Since
14+y> = 0and 1+ y» < yo are equivalent to false, we obtain as abstract
transition pcf = l11 — a1 := false, a3 := false, pcf := l13.

Also the abstraction of transitions 7 to 75 are computed by substitutions.
For transition 74, the assignment to variables ay and pc§ are determined by
substitutions, while we need the elimination method to determine the affectation
to as.

5 Combining abstraction and deductive verification

In the case where the abstract system does not verify the invariant ¢ to be
proved, several alternatives exist depending on the choice of the abstract domain:

1. if ¢ is exactly represented by the abstraction relation®, then either the ab-
straction is not good enough to show invariance of ¢ and we have to refine
it, or we did not try hard enough to prove all verification conditions and
have not eliminated some of the bad transitions. The second case is not very
interesting and the first case is considered in section 5 where we compute
refinements of abstractions.

2. if ¢ is not exactly represented by the abstraction relation, for example be-
cause some of the variables occuring in it are totally abstracted away in
the abstract domain. Then, the information contained in the constructed
abstract system, can be used when trying to prove by any backward veri-
fication method, that is symbolic model checking or deductive verification.
In both cases, the invariant a(Reach(S®)) obtained from the set of abstract
reachable states can be used

— in symbolic model-checking, we compute a chain of decreasing approx-
imations of a deductive invariant included in ¢. The knowlwdge that
a(Reach(S")) is an invariant, allows us to start with the smaller set
© A a(Reach(S®)) and possibly to faster convergence

¥ that is when o™ (a(p)) = ¢



— similarly, if ¢ contains infinite domain variables and we apply deductive
verification, the applied proof rule can exploit the fact that a(Reach(S?))
is an established invariant.

3. finally, we can not only use the invariant represented by the abstract system
but also the abstract transition relation itself, that is all the proofs of non
reachability which have been made to obtain a given abstraction. This is
specially interesting when the abstract transition relation where non trivial
to obtain. The invariance proof tries to establish that

the successors of all states which satisfy ¢ and a(Reach(S®)), must
satisfy also .
For any transition relation 7 and given start set X, the abstract transi-
tion relation allows to compute an overapproximation POST(7)(X) of states
reachable from X by 7. THis allows to simplify the verification condition
above to
the successors of all states which satisfy ¢ and a(Reach(S®)), must
satisfy also prestricted to the subset POST(7)(X).
We will use the equivalent formulation in terms of preconditions.

5.1 Proof rules exploiting the existence of an abstract transition
system

First, we exploit the invariant represented by an abstract transition system.

To do so, we fix throughout this section a transition system S¢ = (X¢, I¢, R)
and a set ¢ C X° of states. We then consider the problem of showing that ¢°
is an invariant of S°.

While Theorem 2 allows us to deduce S = Op° in case S® = Op?, it does not
tell us whether it is possible to take advantage from S* in case S* = Og®. Rule
(Inv-Uni) (see Fig. 6), shows how the invariant represented by the abstract tran-
sition system can be exploited. Indeed, the proof rule shows how concretizations
of invariants of the abstract system can be used to prove that the predicate ¢° is
preserved by the transition relation of S¢. In fact, these concretizations are used
to strengthen the inductive hypothesis in the third premise of the rule (Inv-Uni).

=

a™'(Reach(5*)) = Q

QA" N = WP[R)(¢° A p)
I° = ¢°

S ED(e" Ayp)

Fig. 6. Proof rule (Inv-Uni).



Theorem 3. The proof Rule (Inv-Uni) (see Figure 6) is sound and complete.

Proof. Let us first show soundness. Let S° and S be transition systems such
that

_ ( 1) Se Eﬁc Sa7

~ (P2) a (Reach(5%)) = Q,
— (P3) Q A ¢° = WP[R®](¢° A ¢), and
— (P4) I = .

Let sg,---,s, be a computation of S°. We prove by induction on n that
Sn € p° N . Now, since (P1) implies that all initial states of S¢ satisfy ¢, we
have sg € ¢°Np. Moreover, from (P1) and (P2), we have s,,_1 € @RA, and hence
by induction hypothesis, s,,_1 € <pRA N ¢°Np. From (P3), we get s, € p° N .
Completeness is obtained from the fact that Rule (Inv-Uni) is a generalization
of Rule (Inv) and thus at least as complete as it. O

Rule (Inv) can be easily derived from Rule (Inv-Uni), that is, Rule (Inv)
is an instance of Rule (Inv-Uni). To do so, we choose @ equal the auxiliary
invariant ¢ of rule (Inv), and build an abstract transition system S¢ represented
in Figure 5.1 with two states, denoted by [@] and [~Q)], where [Q] is initial. As @
is an invariant, we have S¢ C¥" S® for ¢° = ¥ and « the total relation defined
by (s,[Q]) € a iff s € Q, and we can therefore extend rule (Inv) to an instance

of rule (Inv-Uni).

Fig. 7. Transition system Sq

The rule (Inv-Uni) is stronger than rule (Inv) as it adds the fact that only the
set @ = a(Reach(S?)) is indeed reachable, and thus only successors of states in
Q@ need to be tested.

But we can also reuse the “proof” of the “invariance of )", that is the fact
that for every transition 7; @ = WP(7;)(Q) which is of the form Q A7, = Q'.
Indeed, this assertion is a tautology and it has been proved during the construc-
tion of the abstract system. Thus, conjoining it with any premiss in a proof rule,
does not strengthen the proof rule, strictly speaking, but it summarizes a proof
done earlier, may be with an important effort.

Now we can reuse the information contained in the abstract transition system
at any level of granularity. For any X C Reach(S®), we can determine easily an



abstract set Y such that post(7;)(X*) C Y* or equivalently X C wp(7;)(Y?).
Posing X = a7 1(X%) and Y = a~}(Y?), we get tautologies of the form X =
wP(1)(Y)or X AT, =Y.

In order to prove

QNN = wWP(1;)(¢° A )

as required in rule (Inv-Uni), supposing that X ¢ is the set guard(r;)AReach(S4),
we can replace this assertion by

(X = we(r)(Y)) = QA Ap = We(73)(¢° A p)
which can be simplified to
N ANX AWP(1;)(Y) = WP(3) (¢ A o)

or
CCAPAXATANY = Ny

In practice, this means that one needs not to prove again that Y’ can be assumed,
and Y’ can often allow to deduce ¢ A ¢’ easily.

Instead of using X* which represents all the abstract reachable states in
which tau; is enabled, one can partion X into UX{, which allows also to reduce
the corresponding sets Y;* = posT(7;)(X?)?. We will than enforce the above
assertion to be proved by the tautaulogy N;(X; = wp(r;)(¥7)) or N;(X; A1y =
Y)).

Notice that we do not get a new proof rule, as formally we just enforce some
of the assertions with true which doesn’t change anything from the point of view
of validity. Nevertheless, these tautologies can greatly simplify the proofs. In all
cases where the construction of the abstract transition relation is very simple,
the obtained information is not very “precious” and adding these tautologies can
be more an overhead than a help.

5.2 Concretizing BDD’s
In order to apply the Rule (Inv-Uni), we need

1. a efficient representation of the set Reach(S®) of abstract reachable states
and

2. to transform it into a finite representation of its concretisation, that is,
a~Y(Reach(S%)).

The second step is straighforward, as given an expression representing Reach(S),
a representation of a~!(Reach(S®)) is obtained by simple substitution of each
abstract variable by the concrete expression it stands for (the definition of a.. In

% which need not to represent a partition of Y%; notice that UX¢ is an interesting
partition if UY;® is a little overlapping as possible



this section, we give a procedure for computing an efficient representation of the
set Reach(S)®.

As the set of abstract states is finite, finiteness of the representation of
Reach(S)® is not a problem, and as application of a~! the substitution, the
finiteness of the representation of the set of concrete states is also not a prob-
lem.

Invariant verification of the abstract system, is best done by means of a
model-checker. Enumerative model-checker like CADP [] or IF [] create an ex-
plicite set of concrete states and transitions for which one can extract the re-
quired representation of the corresponding concrete states as a disjunction, but
this is effecient only if the set of states is relativelly small. Symbolic model-
checkers, like SMV [] can directly compute a predicate representing the set of
abstract reachable states. As these model-checkers use often BDDs, we have to :

— encode the abstract transition relation by booleans,
— extract from the BDD representation a compact expression. Such represen-
tation can, however, be unnecessarily cumbersome.

In this section, we describe an algorithm for converting an BDD into a propo-
sitional formula over the original state variables (not necessarily boolean), which
is often almost as compact as the original BDD.

Consider first a simple case when the top variable = of an BDD b is boolean.
Then, by the Shannon-Boole expansion law, b = - b|z—true + T * b z=false. Equiv-
alently, this can be written as a formula

(z = false — formula(b|=faise)) A (z = true — formula(b|,=true)),

where formula(b) is a formula corresponding to the BDD b. Generalizing this
to program variables with arbitrary number of possible values represented as a
vector of boolean variables z = (z1,...,z,), and assuming that z;’s are the n
top variables in b, we can recursively construct a formula

/\ (z = v — formula(b|,=))-

vEtype(x)

The basic algorithm is shown on Figure 8. It takes an BDD b and the list
of state variables (not necessarily boolean), and returns an equivalent formula.
For better performance, one can use a hash table H that hashes pairs of the
form (b, f), where f is a formula previously constructed for a BDD b. At the
very beginning the algorithm checks whether b is already in the table, and if it
is, it simply returns the associated formula. If the formula has not been con-
structed yet, it checks for the trivial base cases (TRUE or FALSE). Otherwize,
it constructs a formula recursively on the BDD structure. For every value in the
domain of the first variable 1© we restrict b to that value, remove the variable
from the list, construct the formula recursively for that restricted BDD, and add

10 We assume that the domains are always finite.



bdd2f(b: BDD, var_list: list of variables): formula =
if b € H then return H(b);

if b = true_bdd then res := TRUE;

else if b = false_bdd then res := FALSE;

else
x := car(var_list);
res := TRUE;

for every v € domain(z) do
tmp := bdd2f(b|z=v, cdr(var_list));
res := res A (x = v — tmp);
end;
H — (b,res);
end if
return res;

end bdd2f

Fig. 8. Basic algorithm converting BDD to a formula.

the result into the final formula. Finally, the result is included into the hash
table before it is returned.

If the internal representation of the formula being constructed is done using
variables of type ”formula”, then multiple occurences of the same subformula in
the final formula does not cause the formula to grow exponentially in the size of
b. In fact, its size is only linear. However, the formula cannot be easily printed
without losing this structure sharing. A simple solution to that would be to print
the subformulas collected in the hash table with names assigned to them, and
then print the final formula that has the names instead of these subformulas.
However, the formula will be ugly and hardly manageable both for a human
and for a mechanical tool reading it. We designed a set of simplifications that
make the formula look a lot more understandable and even more compact. These
transformations are applied for each program variable before the function returns
from the recursive call.

We assume that the current variable is =, and the original formula is the
conjunction of implications, as described above.

1. Collect all the values {v;,,...,v; } of  for which the conclusion F of the
implication z = v;; — F is the same, and replace all such conjuncts by
x € {vig,...,v;, } = F. Also, if the size of the set {v;,, ..., v;, } contains more
than the half of the domain of z, replace it by = & (type(x)—{vi,,-..,vi,}) =
F. If the set is a singleton, replace the set inclusion by equality or disequality
respectively.

2. Remove conjuncts of the form TRUE and ¢ — TRUE. Replace conjuncts of
the form g — FALSE by —g. If the entire conjunction has only two conjuncts,
then (g1 — FALSE)A (g2 — F) is simplified to (g2 A F'). This transformation
is sound, since g;’s restrict x to disjoint ranges of values, and together they
have to cover the entire domain of x, which implies g; = —gs.



Splitting on Guards. The shape of the formula for the set of reachable states
can be very complicated and does not always reflect the structure of the program.
To simplify further, we use program guards to “slice” the set of reachable states
into smaller and more manageable pieces.

The idea is very simple. Suppose, g1, . .., g, are some of the program guards,
and the set of reachable states is represented by a predicate R. Construct BDDs
for RAN\;cic,, g7, where

p_J9ifp=0
g g, if p=1.

Convert each such BDD into a formula Fj,. Then the formula for the set of
reachable states can be put in the following form:

R= N (N &= F).
peB™ 1<i<n

The hope is that the set of reachable states is highly influenced by the guards in
the program, and therefore, splitting on the guards could lead to much shorter
and simpler formulas

Ezxample 2. Let us consider the abstract system of the Bakery example :
Abstract transition system S{:

T petd =111 — a1 := false,az := false,pc§ :=l12
Tg :pcfl‘ =19 A (CLQ \Y a3) — pc‘f =3
75 1 pcd =13 — ay = true,as = true,pcf =1

Abstract transition system S3:

az = false,az := true,pcy = laa
pcy = lag

ag := true,az := false,pc§ :=lay
ag = true,az := false,pc§ = lo;
ag := true, az := true,pcs = lo;
ag := true,pcs = la;

ag := true,as := true, pcs := lo;

Til : pC(QL = 121

TE s pc§ = laa A (a1 V —a3)

Té, 1 pCy = lag N\ —aq A\ —ag A —ag
Télz :pc% = 123 N —ayp N\ —ag N ag
Télg :pc% = 123 ANay N\ —ag N\ ag
T& :pc% = 123 AN - /\a2 A —-as
6. 1pcs =lag ANar Nas A ag

LEELELL

If we apply the basic algorithm (see Figure 8) to the obdd that characterizes the
reachable states of this abstract system, we obtain the following formula:

(al = (a2 = a3 Apcl =111 Apc2=121)A
(ma2 = a3 Apel =111 A pe2 # 121))A
(mal = (a2 = —a3 Apcl # 111 Ape2 = [21)A
(a2 = (a3 = pel # 111 A pe2 = [22)A
(ma3 = pcl =112 A pe2 £ 121)))

The concretization of the above formula yields the conjunction of following for-
mulae:

(y1 =0Ay2 =0) = pcl =111 A pcl =21 (1)



(y1=0Ay2>0)=pcl =111 A pecl # 121 (2)
(y1 20Ay2=0) = pcl #1011 Apcl =121 (3)
ylZO0AYy2 Z0Ayl <y2 = pcl #1111 Apcl =122 (4)
yl ZO0AYy2 £Z0Ayl > y2 = pcl =112 Apcl #1021 (5)

In this example, the concrete invariant obtained by this approach is stronger
than the invariant generated by the method presented in [BLY96,BL99]. The
invariants (4) and (5) cannot be immediately obtained by these methods. Indeed,
these methods cannot easily generate invariants relating the variables of different
processes.

5.3 Analyzing Counter-examples and Refining Abstraction
Relations

A key issue in applying the verification method described by Theorem 2, respec-
tively Rule (Inv-Uni), is finding a suitable abstraction relation c. In this section,
we discuss a heuristic for finding an initial abstraction relation and present a
method for refining it by analyzing abstract counter-examples, that is, counter-
examples of the abstract system.

Initial abstraction relation Assume that we are given a syntactic transi-
tion system S = (X, 0, p) and a quantifier-free formula P with free variables in
X. Henceforth, we assume that p is given as a finite disjunction of transitions
T, "+, Tn, Where each 7; is given by a guard g; that is quantifier-free formula
and a multiple-assignment z1, -+, z, 1= €1, -, €.

We want to prove that P is an invariant of S. To do so, we choose a constant
N € w and compute A,y WP,(P). Then, A,y WP, (P) is also a quantifier-free
formula. Let F' = {f1, -, fm} be the set of atomic formulas that appear in
/\i<NWP§,(P) in the predicate describing the initial states or in the property.
(Notice that one can choose N sufficiently large to include the atomic formulae
in the guards.) Then, we introduce for every formula f; an abstract variable
a; and define the abstraction function a defined by a; = f;. In [BLO98a], we
show how given a transition system .S, a predicate P and an abstraction function
@, we compute a system S such that S CF S% and a predicate P* such that
a”}(P*) C P. Rule (Inv-Uni) addresses the question of how to benefit from
computing the set of reachable states of S® even when S does not satisfy OP®.
In this, section we address the following questions:

1. given a counter-example for S® = OP* does it correspond to some behavior
in the concrete system and

2. in case the answer to the first question is no, how can we use the given
counter-example to refine the abstraction function.

Identifying false negatives As in this paper, we focus on invariance prop-
erties, counter-examples are finite computations. Let 0% = si7{s{ ---7%s% be a
counter-example for S = OP”. The concretization a~!(c®) of ¢ is the sequence



a HsH)roa(s]) - - Tho1a”(52). We call a=1(0®) a symbolic computation of
S, if there exists a computation so7181 - - 7,8, of S such that s; € a=1(s?), for
1 = 0,---,n. Clearly, this definition can be generalized to arbitrary sequences
Qo1 Q1 ThQn, with Q; C X. Then, we have the following:

Lemma 5. A sequence QomiQ1 '+ TnQn, with Q; C X is a symbolic computa-
tion iff 0 N Xy # 0, where X,, = Qn and Xp—i—1 = Qn—i—1 N PRE,, _,(Xn—i).
O

Lemma 5 suggests the procedure CouAnal given in Figure 9 for checking whether
an abstract counter-example is a false negative or whether it corresponds to a
behavior of the concrete system.

Input: An abstract counter-example o® = sg7i's{ -+ - T S
X :=a l(sh);
ii=n;
while (X # 0 and ¢ > 0) do
Y =X,
X = PRE,, (X) Na~ (57 ,);
t:=1—1
od
if i =0 and # N X # () then return ”the following is a counter-example:
Take any s € 6N X #0
Let so :=s,81 :=71(50) "+, S0 := T (Sn—1)
write so - - - Sn
else return ¢,Y

fi

”»

Fig. 9. Counter-example Analyzer: CouAnal

Refining the abstraction function First, we consider a simple refinement
strategy of the abstraction function. Thus, let 0 = s{7{'s{ - - - 7%s% be a counter-
example for S® = OP” that is not a symbolic computation of S. By Lemma 5,
procedure CouAnal returns some ¢ < n and a set ¥ = X; C X such that
Xi—1 = 0. Now, since X;_; = 0, Qi:—1 C wp,,(=X;) and abstract transitions
from abstractions of states in @;_; to abstractions of states in X; are superfluous
and should be omitted. To achieve this, we add for every atomic formula f in —=X;
which is not already in o, a corresponding new abstract variable ay with ay = f.
Let a. denote the so-obtained new abstraction function. Moreover, let S¢ be the
abstract system with (s{, s3) € p. iff there exist concrete states sy, so such that

(8i,8%) € e, for i = 1,2, and (s1,s2) € p. Then, 0% is not a computation of SZ.

' We assume that i > 0 as the case of 4 = 0 is easily handled



Speeding-up refinement of abstraction functions The simple illustrative exam-
ple given in Figure 10 shows that in general applying finitely many times the
procedure CouAnal is not sufficient. In this example, we want to show that lo-
cation [, is not reachable and we initially take the abstraction function defined
a = x = y. After the n-th application of CouAnal we will have the abstraction
function defined by a1 =z =y, - ,0; =x+i =1y, --,a, = x+n =y. However,
the abstraction function we need is a = ¢ = y,a1 = « > y. The problem here
is clearly that the abstract counter-examples contain abstract transitions that
correspond to the unfolding of a loop in the concrete system. In the following,
we generalize procedure CouAnal to cope with this situation. Let us first explain
the main idea.

Fig. 10. Example for showing that speeding-up is needed

Henceforth, we assume that the description of the concrete system makes a
clear distinction between control and data variables. That is, we assume that
the concrete system is given by an extended transition system as in Figure 10,
where [g,l1,l3 are the control locations and =z and y are the data variables.
Let 0% = sg7{s{---72s% be a counter-example for S% = OP% Assume that
Ties ", Ti, is a loop in the control graph of the concrete system. In the procedure
CouAnal we apply one time PRE,, on each X;. However, since 7;,,---,7;, is a
loop, it is more interesting to apply an arbitrary number of times PRE(7;, - -, 74, )
on X;,, that is, to consider \/, ., PRE* (7, -+, 7,) on Xj,.

For instance, in the example of Figure 10, applying \/,,, PRE‘(z++) onz =y
gives after quantifier elimination the predicate & < y. Now, since PRE(z,y :=
1,0)(z < y) is empty our strategy consists in adding an abstract variable b such
that b is true in the abstraction of a state s iff s satisfies =(z < y) which is
x > y; what we indeed expect.

This idea of speeding-up counter-example analyzes leads to the procedure
AccCouAnal given in Figure 11. There are several remarks to say about pro-
cedure AccCouAnal. The first one is that for a sequence 7q,---,7, of tran-
sitions there are in general several but finitely many ways to partition it in
Tyt oy Tig—1L1, Tiy 4k, 41, -+, Lm. The accuracy of the obtained abstraction func-
tion depends on this choice. In principle, one could, however, consider all pos-
sible choices and combine the obtained abstraction functions into a single one
(take their conjunction). An other point is that in order to have reasonably sim-



Input: An abstract counter-example o® = s§7i's{ -+ T55%;

Let L1, -+, Ly, be loops in the concrete system such that
Lj =i, -, Ti+k; and
Tl 5T = Ty s Tig =1L, Ty kg +15 7+ Ly Ti k157 75 T
X :=a l(sh);
i:=mn;
k:=m;
while (X # 0 and 7 > 0) do
Y = X;

if ¢ = iy then
X =V, prep, (X) Na™ (si-1);
i:= 1 — length(Ly)
else X := PRE,,(X)Na™'(s{y)
fi
t:=1—1
od
if i =0 and # N X # 0 then return ”S does not satisfy the property”
else return ¢, Y

fi

Fig. 11. Accelerated Counter-example Analyzer: AccCouAnal

ple abstraction functions one needs to simplify the predicates \/,,, preij (X)n

a~Y(Q;_1), in particular, when possible, one should eliminate the existential
quantification on 3.
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