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Abstract� We present a methodology for constructing abstractions and
re
ning them by analyzing counter�examples� We also present a uniform
veri
cation method that combines abstraction� model�checking and de�
ductive veri
cation� In particular� it shows how to use the abstract sys�
tem in a deductive proof even when the abstract model does not satisfy
the speci
cation and when it simulates the concrete system with respect
to a weaker notion of simulation than Milner�s�

� Introduction

Veri�cation can always been expressed in terms of �xed point computation over
a domain that corresponds to the properties of interest� The properties can
be described as sets of states� sets of traces �sequences of states� or sets of
trees� A key issue is then the tractability of the computation of these �xed
points� In general� in order to be able to compute such �xed points one either
has to restrict to �nite systems or to be satis�ed with approximations of �xed
points� Even in the case of �nite systems� however� where the e�ectiveness of the
computation of the �xed points is given� one has to rely upon approximations
for e�ciency reasons� The main issue is that the applied approximations allow
to safely deduce properties of the concrete �xed points� One is usually interested
in stating whether the concrete �xed point is contained or contains a given
property� This is the question of the correctness of the applied abstraction�

There exist two closely related frameworks for developing abstractions and
proving their correctness� The framework of simulation �Par	
�Mil�
� is about
structural relation between abstract and concrete transition systems� represent
ing the step relation of programs by means of an abstraction relation between
abstract and concrete sets of states� where each concrete �set of transitions�
transition must be simulatable by an abstract transition� Thus� nonreachability
properties� in particular invariants� of the abstract transition system� hold also
on the concrete system� In order to make veri�cation of properties automatically
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veri�able� the abstract transition system is in general chosen �nite� even if the
concrete transition system is not�

Abstract interpretation �CC���CC��� replaces the relation between concrete
and abstract states by an abstraction function � from concrete sets of states
�called properties� to the smallest element of some abstract property lattice�
which represents all the elements of the concrete sets� With � is associated a
concretisation function �� which associates with each abstract element the set
of all concrete states represented by it� in such a way that the pair ��� �� forms
a Galois connection� With any function f operating on concrete properties is
then associated an abstract function fA such that � � f � � � fA� where � is the
approximation ordering� For instance� if we take for f the successor function on
concrete sets of states� an invariant can be obtained by computing the �xpoint
of fA applied on the abstract image of the set of initial states �CC	��� In this
framework� the abstract domain need not be �nite� or more precisely� the �nite
abstract domain in which the approximated �xed point is computed need not
be �xed a priori� It can rather be choosen during computation of the �xed
point� This is possible when one can design a widening operator which allows to
approximate limits of in�nite chains�

An important di�erence between the two frameworks is that the abstract in
terpretation framework is about the computation of abstract properties� whereas
simulation is mainly about abstract systems whose properties are preserved by
concretization� In the simulation framework� nothing is said about how to com�
pute a simulation� Only in the context of strong preservation �the property holds
on the abstract system if and only if it holds on the concrete one� by bisimulation
�Mil	��� computation of abstract systems had initially been proposed�

In �BBLS���LGS����� we have shown that any simulation relation � between
a set of concrete and abstract states can be represented in the abstract interpreta
tion framework by taking the pair of associated image functions �post����wp����
as the corresponding Galois connection� and the other way round� each Galois
connection can be put into the form �post����wp����� as long as the abstract lat
tice is constructed from a partition of the set of concrete states� Also �DGG���Dam���
discuss in great detail the relationship between abstract interpretation and the
veri�cation by abstraction approach� Both frameworks allow to deal with over
as well as underapproximation of the �xed points� In the framework of simula
tion a combined framework has been introduced in �Lar	��LSW��� by means of
modal transition systems� which have maytransitions representing supersets of
actual transitions and musttransitions representing subsets�

The property preservation results of �LGS���� and �DGG��� lead to an in
creasing interest in the combination of modelchecking and abstraction� Indeed�
given a large or in�nite state system that has to be veri�ed� one can �rst com
pute a tractable �nite system that abstracts the given concrete one� then check
abstract properties on the obtained systems and �nally� in case these properties
are satis�ed� deduce that the concrete system satis�es the concrete proprties�
This is the socalled veri�cation by abstraction approach� To apply this approach
one needs to �rst �nd an accurate abstract space and abstraction relation and



then automatically generate an abstract property and an abstract system that
simulates the concrete one� Several papers have discussed the automatic con
struction of the abstract system� e�g� �GS���BLO�	b�BLO�	a�ABLS�
�CU�	�
for in�nitestate systems�

In this paper� we discuss methods for automatically generating abstract sys�
tems� re�ning abstractions and analysing the accuracy of the abstractions� in the
context of in�nite state systems�

When the in�niteness of a systems comes from the presence of variables
with in�nite domains� abstractions can be computed by means of abstract data
types� for each variable to be abstracted de�ne an abstract domain and lift all
operations on the sets representable in the abstract domain� Then� an abstract
model is obtained by replacing each variable by one of a corresponding abstract
domain� and each operation by an apropriate abstract operation� This is the way
abstract interpretation is used� and it has also used in combination with model
checking e�g� in the tool Cospan �Kur	��Kur���� in �Gra��� and in the Bandera
tool �HDLS�	�CDH�����

These approaches are often based on very general� prede�ned abstractions
and aimed for generic properties� We investigate here more property depending
abstractions where better results are obtained when the atomic entity to be
abstracted is a �transition relation�� this is meaningful in the context of systems
de�ned as combinations of a set of transition relations� Automatic abstraction
of in�nite systems based on this principle have been introduced in �GS��� in the
form of predicate abstractions� and has been developed in di�erent contexts since
then mostly together with counter example based re�nement� e�g� �DDP�JHR����

Parameterized systems� where the source of in�nity is the existence of an
unbounded number of parallel components can be dealt with by introducing
counters for the number of components in each potential system state� and can
then be treated using the above mentioned abstraction methods� Nevertheless�
a number of specialised approaches for this kind of systems has been proposed�
e�g� �ABJN���BBLS���BLS�
�MP��b��

Abstract transition relations on �nite domains can be used directly in any
modelchecker to verify any properties which are preserved by the abstraction�
Whenever� the abstract system does not satisfy the property� the modelchecker
will come up with a abstract counter example� If this counter example can be
transformed into a concrete one� there is a proof that the concrete system does
not satisfy the property� Otherwise� the abstract system is not detailed enough
and needs to be re�ned�

Using counter�examples to re�ne abstract systems has been investigated by a
number of other researchers e� g� �Kur���BSV���CGJ����� Closest to our work is
Clarke et al�s techniques �CGJ����� The main di�erences are� however� that we
focus on in�nitestate systems and that our algorithms for analyzing counter
examples work backwards while their algorithms are forward� This di�erence
can lead to completely di�erent abstractions� Moreover� our technique allows
in many cases to do in one step a re�nement that cannot be done in �nitely
many ones using their method� The key issue here is that our technique incor



porates accelerating the analysis of counterexamples that involve the unfold
ing of loops� On the other hand� we do not consider liveness properties� Also
close to our work is Namjoshi and Kurshan�s work �NK��� on computing �nite
bisimulations�simulations of in�nitestate systems� The main idea there is to
start from a �nite set of atomic formulae and to successively split the abstract
state space induced by these formulae until stabilization� However� in contrast
to �BFH���LY���HHK���� the splitting in �NK��� is done on atomic formulae in
stead of equivalence classes which correspond to boolean combinations of these�
A similar idea is applied in �SUM����

Abstraction can also be used in combination with other veri�cation tech
niques� in particular when in the abstract system still some in�nite domain vari
ables exist� A typical case is a system with �nite but implict control and in�nite
data� where abstraction is used to de�ne an explicit �nite control� but the prop
erties to be veri�ed depend also on the still in�nite data part�� In this context�
either the above mentioned re�nement techniques or the combination with tech
niques working directly on in�nite state systems� such as abstract interpretation
or deductive veri�cation� can be used� The combination with abstract interpre
tation techniques has been proposed in particular for parameterized systems
�LS��� where the in�nite variables are state counters increased or decreased by
each transition� in the context of timed systems or linear hybrid systems where
the in�nite state variables increase in each control state monotonically�

We are interested here in the use of abstraction in the context of deduc
tive veri�cation� From a theoretical point of view� �nding a �nite abstraction
and �nding an invariance proof are equivalent� Nevertheless� in practice� the
combination of automatic construction of abstractions and deductive invariance
proofs can be useful� use automatic abstraction in order to extract information
on global control� information which then is used in a deductive invariance proof�
In �LBBO�
�� we have have shown how to exploit the abstract invariant� here we
show that sometimes it can be also be interesting to exploit directly the abstract
transition relation�

� Preliminaries

First we de�ne some notations� Given a set X of typed variables� a state over X
is a typeconsistent mapping that associates with each variable x � X a value
in its domain� Given X�we denote by ��X� the set of states on X�

De�nition �� �Transition system�
A transition system is given by a triple ��� I�R�� where � is a set of states�
I � � is a set of initial states� and R � �� is the transition relation� In
the sequel we always consider sets of states of the form ��X� for some set of
variables X�

� any 
nite abstract system which does not satisfy a given property� can be considered
as suach a system when considering the concrete transition relation in combination
with the constructed 
nite abstraction



De�nition �� �Syntactic Transition system�
A syntactic transition system is given by a triple �X� ��X�� ��X�X ���� where X
is a set of typed variables� ��X� is a predicate representing the set of initial
states and ��X�X �� is a predicate representing the transition relation� where the
unprimed variables x � X represent the start states and primed variables x� � X �

target states� Often the transition relation is of the form � �
S
�i where �i is the

predicate de�ning the transition relation of an individual transition�

With a syntactic transition system is associated in the usual way a corre
sponding transition system�

De�nition �� �synchronous product�
Given two binary relations Ri � �i��

�
i� for i � 
� �� we de�ne their synchronous

or conjunctive product R� � R� � ��� ����� ���
� ���

��� by �s� s�� � R� � R�

i� �sj�i � s
�
j��

i
� � Ri� for i � 
� �� where sj�i denotes the restriction of the state s

to �i�

Thus� if �� � �� and ��
� � ��

� then R� �R� � R� �R��

De�nition �� �synchronous composition�
The synchronous composition of transition systems Si � ��i� Ii� Ri�� i � 
� ��
denoted S� � S�� is the transition system ��� � ��� fs j sj��

� I� � sj��
�

I�g� R� �R���

De�nition �� �computation and reachable states�

� A computation of a transition system S � ��� I�R� is a sequence of states
s�� 	 	 	 � sn such that s� � I and �si� si��� � R� for i 
 n � 
� As we are
interested in safety properties only and abstraction� we never consider in�nite
computations�

� A state s � � is called reachable in S� if there is a computation s�� 	 	 	 � sn
of S with sn � s�We denote by Reach�S� the set of states reachable in S�

De�nition 	� A set P � � is called an invariant of S� denoted by S j� �P � if
Reach�S� � P � that is� every reachable state in S is in P �

De�nition 
� �The predicate transformers post� wp and pre�
Given a relation R � � � ��� we denote the predicate transformers or image
and inverse image functions associated with R as follows� Let be P � � and
P � � ��� Then

� The postcondition associated with R with respect to P � denoted by post�R��P ��
is the image function �� � ��

�

associated with the relation R applied to P �n
that is post�R��P � � fs� � �� j �s � � � �s� s�� � Rg�

� The precondition of R with respect to P �� denoted by pre�R��P ��� is the pre�
image of P � by R� that is pre�R��P �� � fs � � j �s� � �� � �s� s�� � Rg We
also sometimes write preR�P

�� instead of pre�R��P ���



� the weakest liberal precondition of R with respect to P � denoted by wp�R��P ��
or wpR�P

��� is the dual of pre�R��P ��� that is the set consisting of states s
such that for every state s�� if �s� s�� � R then s� � P ��
wp�R��P �� � fs � � j s� � ����s� s�� � R� s� � P ��g � pre�R��P ��

De�nition �� �Inductive invariant� A set P � � is called an inductive invari
ant of S� if

� I � P � that the set of initial states is included in P �
� P � wp�R�P �� that is the transition relation R does not allow to �leave	 the

set P

Proposition �� Un inductive invariant of S is also an invariant of S� �

Notice that we often use semantic notations such as �set of states�� inter
changably with the corresponding syntactic notations �predicate on X�� Also
the notions of preconditions and invariant are supposed to be de�ned likewise
semantically as well as syntactically� In the sequel� we will freely switch between
semantic and syntactice notations� unless explicitly stated�

� Deductive veri�cation of invariance properties

There are basically two approaches to the veri�cation of reactive systems� the
algorithmic approach and the deductive approach� The algorithmic approach is
based on the computation of �xpoints� on e�ective representations of sets of
states� and on decision procedures for solving the inclusion problem of sets of
states� For example the backward procedure is an instance of this approach� To
prove that a set of states P is an invariant of a system S� the backward procedure
computes the largest set of states Q satisfying Q � P and Q � wp���Q��
for every transition where R �

S
�i� this is done iteratively� by eliminating at

each iteration the set of states which can leave the current approximation X by
computingXi�� � Xi�

T
��Rwp���X

i�� Then� P is an invariant of S if and only
if every initial state of S satis�es the �xpoint Q� which is the greatest inductive
invariant of S included in P � and when P can be expressed as a temporal logic
formula 	� Q is the semantic of the temporal formula �	 or �	� In general�
the algorithmic approach is based on �


� an e�ective representation Rep for sets of states�
�� e�ective boolean operations and predicate transformers in Rep
�� a procedure for deciding inclusion in Rep�
�� and convergence of �xpoints to guarantee completeness�

In general� in case of in�nite state systems� �rstorder logic with Peano arithmetic
is considered as representation Rep� In fact� any weaker logic is not expressive
enough �e�g� �dB	���� when the considered system contains variables that range
over in�nite domains� Thus� one has e�ective boolean operations and can de�ne
predicate transformers� but inclusion is undecidable� Moreover� convergence of
�xpoints is not guaranteed� Consequently� the algorithmic approach cannot be
applied in general to in�nite state systems�



��� Deductive veri�cation

The deductive approach is very powerful and gives a complete method even for
in�nite state systems� It relies upon �nding auxiliary invariants and proving
validity of �rstorder formulas� called veri�cation conditions� The deductive ap
proach is� however� in contrast to the algorithmic approach� di�cult to apply in
practice� It is in general hard to �nd suitable auxiliary invariants and time con
suming to discharge all generated veri�cation conditions� One means� for making
deductive veri�cation more e�cient is� as we will see later on� abstraction�

To prove� by induction� that 	 is an invariant of of a system S one has to come
up with a stronger inductive invariant 
 that is preserved by every transition of
S� As shown� e�g� in �MP��a�� Rule �Inv�� is a sound and complete for proving
invariance properties of transitions systems� A predicate 
 which satis�es the

There exists a predicate � s� t�
� � �

I � �

� � wp�R���

S j� ��

Fig� �� Proof rule �Inv��

premises of the rule above is called auxiliary invariant for a transition system
S and 	� The �semantic� completeness proof of the rule states that for every
transition system S and predicate 	� if S j� �	 then there exists an auxiliary
predicate 
 for S and 	�

It is very important to understand that the completeness result�proof of
Rule �Inv� does not say anything about how to �nd an auxiliary invariant� The
creative task in deductive invariant veri�cation is to come up with a predicate

 which satis�es Reach���S� � 
 � �	 and which is an inductive invariant�
Indeed� Reach�S� is the smallest inductive invariant of S� but it is in general
not a very helpful invariant in the deductive approach� as to come up with a
predicate representing Reach�S�� makes necessary a� possibly in�nite� �xpoint
computation� Alternatively� one could choose the set 	�

T
wp

i�R�	� as a guess
for an auxiliary invariant� And if this does not allow to prove the invariance of 	�
try 	�wp�R�

T
wp

i�R�	��� and so on� In fact� this corresponds to the inductive
computation of the weakest auxiliary invariant �	 for S and 	� Notice that this
algorithm does not necessarily converge� and only the �xpoint is an inductive
invariant�



When S is a �nitestate system each of these predicates can be expressed in
propositional logic� checking the premises can be done algorithmically and con
vergence of �xpoint computations is guaranteed� When Presburger Arithmetic
is su�cient to express all these predicates� then checking the premises of the rule
is still decidable� but convergence of �xpoint computations is not guaranteed�
When general �rst order logic is necessary� even the decidability of implications
is lost� Our examples� will often be taken from the group of those where decid
ability of implication is given� but reaching of �xpoints cannot be guaranteed�

Notice that generic techniques for generating and strengthening invariants
�cf� �MP��a�BBM���BLS���SDB���BL���� seem to give limited results� except
when the property to be proven invariant is in some sense �almost� an invariant
or when the system is relatively simple�

To summarize� the deductive method has three drawbacks�


� it is often hard to �nd suitable auxiliary invariants�

�� when a guess for an auxiliary invariant fails� one has little hint how to
strengthen it and �nally

�� contrary to algorithmic methods� where for a failed invariant proof� one can
always construct e�ectively a counterexample� here a failed proof doesn�t
even prove the existence of a counterexample�

� Abstraction

Property preserving abstractions is a crucial technique for pushing further the
limits of modelchecking� given a program and a property to be veri�ed� �nd a
�simpler� abstract program such that the satisfaction on the abstract program
implies the satisfaction on the initial program� called concrete program� Simula
tion as de�ned by Milner �Mil�
� yields an appropriate preorder� In section ����
we introduce the notions of abstraction and property preservation and show
that� given some invariant� a weaker notion of simulation� imposing no require
ment on the successors of states outside the invariant� preserves the same set of
properties�

An important point is� given a concrete program� how to construct an ab
stract program that is both� simple enough in order to be veri�ed by available
tools� and that still contains enough relevant details for the satisfaction of the
considered properties� Several alternative methods for constructing abstractions
are discussed in detail in section ����

��� An introductive example

In order to give an intuitive idea about abstraction� let us consider the following
small readerwriter example �



system RW
vars

nr� nw � nat� �representing the number of readers resp� writers

init
nr � � � nw � ��

do
nw � � � nr � � �� nw �� 
� �nobody active� a writer can become active

�� nw � � �� nw �� nw � 
� � writer terminates

�� nw � � �� nr �� nr � 
� �no writer active� readers read at any time

�� nr � � �� nr �� nr � 
� �a reader terminates

od
In this example� the set of states is the set IN � IN of all values �v�� v��

for variables nw� nr� There is only one initial state� in which no reader nor
writer is active �I � f��� ��g� and the transition relation is given by the guarded
commands�

Assume we want to formally reason about this transition system� For example
that it satis�es mutual exclusion between readers and writers� In order to do so� it
is enough to show that �nr � ��� �nw � �� �whenever there is a reader active�
then there is no writer� is an invariant� As the Swr example has an in�nite state
space �cf� �gure �� and we cannot directly apply the algorithmic approach�

��� ������

���

����� ����� �����

����� ����� �����

����� �����

���

���

���

Fig� �� The system Srw

As already motivated earlier� the construction of an abstract transition sys
tem� which simulates the concrete transition system of Figure � is a possible way
to overcome the complexity problems induced by large or in�nite state spaces�

� Notice that for this simple example� having only integer variables with the � and
� operation� we could use tools using polyhedra representations �HPR��� to directly
compute the set of reachable states� On the other hand� we know that the deductive
approach generates only decidable veri
cation conditions�



The key elements are�


� De�ning a set of abstract states and a mapping from concrete to abstract
states

�� construct an abstract transition system by constructing the abstract initial
states and an abstract transition relation� and

�� �nally reason on the initial system by examining the abstracted system which
has �less states� or �a simpler representation�

We present these elements for the small example in order�
The graph of Figure � suggests to use the partition of the set of concrete states

induced by the predicates nw � � and nr � � to de�ne the set of abstract states
�and the corresponding mapping� Notice that htes predicates �or there negations�
are used in the guards and they de�ne four abstract states ��� � � � � ��� There is

� the initial state ��� �� ��� � I� in which there are whether readers nor
writers� �nw � �� � �nr � ��

� �� represents the states where only readings are being performed that is
��nr � �� � �nw � ��

� �� represents the states where only writings are being performed� that is
�nr � �� � ��nw � �� and

� and �� represents all the remaining states where both write and read are
performed� that is ��nr � �� � ��nw � ��

The mutual exclusion property states that no state �� can be reached from the
initial state�

The abstract transition relation contains at last all those transitions ��i � �j�
such that there exists a least one pair of concrete states si � �i� sj � �j and
the �si� sj� � Rrw�

This de�nition of the abstract transition relation preserves abviously �non
reachability�� if �� is not reachable in this abstract system� then by de�nition�
there exists no concrete transition reaching the set �� from any state in ��� ��

or ��� But in the other way round� reaching or nonsatisfaction of an invariant
is not preserved by abstraction�

In this example the abstract transition is indeed very precise� the abstract
transition relations corresponding to start�w and start�r are detemriministic de
terministc and for every abstract transition ��i �� �j�� for every concrete
state � represented by �i has a concrete transition into the set represented by
�j � and the other way round� every concrete state �� represented by �j can be
reached by a concrete transition from a state in the set represented by �i�

The abstract transition relations corresponding to end�w and end�r are non
deterministic� as for example the abstract state �� represents two classes� the
state with nw � 
 for which end�w leads to state ��� and all other states for
which the ranstion end�w leads back to state ��� Therefore� on the abstract tran
sition system� the behaviour start�w� end�w� end�w����� is a possible behaviour�
whereas on the concrete system� it is not� Intuitively� simulation based abstrac
tion preserves properties of all executions� and in particular invariants� whereas�
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nw � � � nr � �
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Fig� �� The abstract system SArw

from the existence of a a particular abstract behaviour nothing can be concluded
on the concrete system�

In order to prove that P � nw � � � �nr � �� � �nw  
� is an invariant�
two possiblities exist�

The �rst one consists in re�ning the state �� which contains both� states in
P and states not in P �

When we split �� into two abstract states� one containing only the value
nw � 
 and the other all other values of nw� we get� using the same de�nition of
the abstract transition relation� the abstract system of the �gure � above� The
set of reachable states of this re�ned abstraction is nw � ���nr � ����nw  
��
Notice that for the construction of the re�ned transition relation� only the transi
tions starting from or leading to the new states ��a and ��b need to be checked�
Moreover as state �� is known to be nonreachable� thus uninteresting� we need
not really care about the transitions starting from ��� Re�nement of abstrac
tions are presented in Section ����

A second alternative of making use of an abstract system is

� to use the set of reachable states nw � � � nr � � as known auxialiary
invariant to prove the invariance of P by the deductive approach�

� to use transition invariants of the abstract system in the deductive approach�
A transition invariant of the system SArw is that all successor of a transition
end�r starting in a reachable state satisfy nw � ��

Nevertheless� these auxialiary invriants and transition invariants are not helpful
in this example� as the new invariant to be proved P is a strict subset of the
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invariant obtained from the abstraction� and as all veri�cation conditions are
very simple� More about the use of abstract invariants in deductive proof rules
is given in section ��
�

��� De�nition of abstraction and preservation results

We consider here abstraction based on the notion of simulation �Par	
�Mil�
�
and on preservation results which tell for which properties� we can conclude true
the fact that they hold on the abstract system Sa� then they hold also on the
concrete system Sc�

In this section� we recall the de�nition of simulation as well as preservation
results for invariance properties�

Notation �� Let be � � �c � �a an abstraction relation between a concrete
set of states �c and an abstract set of states �a� Whenever� no confusion is
possible� we dentote

� the image or abstraction function associated with �� by writing ��	c� instead
of post����	c�

� the inverse image� precondition or concretisation function associated with ��
by writing ����	a� instead of pre����	a�� Indeed� ����	a� represents the
set of all concrete states represented by the set of abstract states 	a



Notice that for any concrete set of states 	c� the result of an abstraction
followed by a re concretisation is a superset of 	c� that is 	c � ������	c���� We
say that 	c is abstracted exactly� if 	c � ������	c�� holds�

De�nition �� Let Sc � ��c� Ic� Rc� and Sa � ��a� Ia� Ra� be two transition
systems� We say that Sa is an abstraction of Sc with respect to a relation � �
�c ��a� denoted by Sc v� Sa� if the following conditions are satis�ed


�� � is total on �c�
�� for all states s�� s� � �c and sa� � �a with �s�� s

a
�� � �� if �s�� s�� � Rc then

there exists a state sa� � �a such that �sa� � s
a
�� � Ra and �s�� s

a
�� � ��

� for every state s in Ic there exists a state sa in Ia such that �s� sa� � ��

When �a is �nite we call Sa a �nite abstraction of Sc with respect to ��
It can be easily proved that if Sc v� Sa then for every computation s�� 	 	 	 � sn

of S there exists a computation sa� � 	 	 	 � s
a
n of Sa such that �si� s

a
i � � �� for every

i 
 n� This implies the following preservation result �cf� �CGL���LGS������

Theorem �� Let Sc and Sa be transition systems such that Sc v� Sa� Let
	c � �c and 	a � �a� If ����	a� � 	c and Sa j� �	a then Sc j� �	c

Thus� to prove that a transition system Sc satis�es an invariance property 	c

it su�ces to �nd a �nite abstraction Sa of Sc with respect to some relation �
such that Sa j� �	a for some abstract predicate 	a � �a whose concretization
includes the invariant to be proved�

This method is complete in the sense that� it su�ces to take an abstract
system with two states sa� and sa� and a relation � such that �s� sa�� � � i� s
is reachable in Sc� and �s� sa�� � � i� s is not reachable in Sc� The abstract
system Sa has sa� as unique initial state� Obviously� Sc v� Sa and Sa j� �fsa�g�
Moreover� since Sc j� �	c� we have ����fsa�g� � 	c�

We can show that� if Sc j� �	c can be proved using an abstraction Sa of
Sc with respect to �� then it can also be proved using the auxiliary invariant
����Reach�Sa��� where Reach�Sa� is the set consisting of the reachable states of
Sa� Thus� from a theoretical point of view proving invariance properties using
abstractions is as di�cult as using auxiliary invariants� Still in practice it is often
the case useful abstractions are easier to �nd than useful invariants�

De�nition � can be weakened� allowing more abstractions� while preserving
soundness of theorem 
� Indeed� if 	c is an invariant of Sc then conditions 
 and
� in de�nition � can be weakened by restricting the quanti�cation on states in
�c to states that satisfy 	c�

We can also weaken de�nition � using a set of states in �c that is not neces
sarily an invariant of Sc leading nevertheless to a �weaker� preservation result�
To explain this� let us introduce the following de�nition�

� this result is also true in abstract interpretation� where the concretisation function�
call it �� is chosen as the weakest precondition of the relation � rather than its
preimage� In this case� the pair ��� �� forms a Galois connection� for which we know
� � � � id� and for total relations we have � � ���



De�nition �� We say that Sa is an abstraction of Sc with respect to � �
�c � �a and 	c � �c� denoted by Sc v�c

� Sa� if the following conditions are
satis�ed


�� � is total on 	c�
�� for every state s�� s� � �c and sa� � �a with s� � 	c and �s�� s

a
�� � �� if

�s�� s�� � Rc then there exists a state sa� � �a such that �sa� � s
a
�� � Ra and

�s�� s
a
�� � ��

� Ic � 	c� and
�� for every state s in Ic there exists a state sa in Ia such that �s� sa� � ��

Figure � shows the di�erence between these notions of simulation�
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Fig� �� Simulation notions�

In �BLO�	a� we have proved by induction on n that for every computation
s�� 	 	 	 � sn of Sc such that si � 	c� for every i � �� 	 	 	 � n � 
� there exists a
computation sa� � 	 	 	 � s

a
n of Sa such that �si� s

a
i � � �� for every i 
 n� Therefore�

we can state the following preservation result�

Theorem �� Let S and Sa be transition systems such that S v�c

� Sa� Let 	a �
�a and 	 � �c� If ����	a� � 	c � 	� and Sa j� �	a� then Sc j� ��	c � 	�� �

Notice that de�nition � and theorem 
 can be obtained from de�nition 
� and
theorem � by taking 	c � �c�

The advantage of de�nition 
� is that it allows to de�ne an abstract transition
relation in which we do not care about the transitions starting from states from
which want to prove that they aren�t reachable� similar as for the re�nement of
the abstract transition relation constructed in section ��
� This is particularly
important when we are seeking a method that automatically computes �nite
abstractions for analysis by modelchecking techniques� Indeed� this result is
used in many concrete applications� in the large litterature of abstraction but
its correction is mostly shown only informally�

��� Computing Abstractions

Veri�cation by means of abstract transition systems can also be applied when the
concrete system is in�nite state� as shown in �DF���Gra���MN���HS���� How
ever� in all these approaches the veri�er has either to fully provide the abstract
system� and only the check that it is indeed an abstraction is tool supported�



or� like in �Gra���� the user provides abstract data types which can then be used
to compute an abstract transition system� In all cases a relatively important
amount of user intervention is required to prove that the abstract system is
indeed an abstraction of the concrete one�

What is needed is a method to automatically compute an abstract system for
a given in�nite state system� an abstract domain and a mapping from concrete
to abstract states� We present a method that computes an abstract system Sa �
Sa� k 	 	 	 k San� for a given system Sc � Sc� k 	 	 	 k Scn � where each Scn is
given by a set of transition relations � and abstraction relation �� such that
Sc simulates Sa is guaranteed by the construction� Hence� by the previously
established preservation results� if Sa satis�es an invariant 	a then Sc satis�es
its concretisation� ����	c��

We do not want to �x a parallel operator here� as the method builds ab
stractions of the individual transition relations� and in �GL��a� has been shown
that abstraction is preserved by most useful notions of parallel composition� An
important point is that the produced abstract system Sa is given in a symbolic
manner� which still allows to apply all the known methods for avoiding the state
explosion problem� while analyzing Sa� Moreover� there is a clear correspon
dence between concrete and abstract transitions� This allows for debugging the
concrete system� since it can be checked whether a given trace of the abstract
system corresponds to a concrete trace�

We consider the problem of computing an abstraction of a transition system
Sc with respect to an abstraction relation �� Thus� consider a syntactic transition
system Sc � �C� �c� �c�� where �c is of the form �i�i� Let the abstraction relation
� be given by a predicate on C�A� whereA are the variables de�ning the abstract
domain�

The basic idea underlying the methods of �CGL���GL��b�DGG���Dam���
for computing abstractions of �nite state systems is based on abstract inter
pretation of individual operators or individual transition relations� the abstract
transition relation is completely determined by abstract versions of the primitive
operators or of individual transition relations� If the concrete and abstract state
space is �nite� the abstract transition relation �ai associated with the concrete
transition relation �i can simply be represented by the relation ��� � � � � on
the abstract state space�� In �CGL��� abstract transition systems are obtaineded
by computing abstractions of primitive operators as de�ned precedingly �where
the abstraction relation is always a function�� and in �GL��b� the same principle
is applied to symbolic transition systems and abstract domains with boolean
variables only�

Here� we follow the approach of abstracting entire individual transition rela
tions rather than primitive operations� We want to compute an abstract transi
tion system of the form ��Sc� � �A����c�� ���c��� ���c� can be represented by
the expression �C	 ��c��� and ���c� by �C�C �	 �������c��� ��Sc� is indeed an

� or by its corresponding function on sets� denoted in the same way
� as de
ned earlier� �� is obtained from � by substituting every variable c � C by c�

and every variable a � A by a�



abstraction of Sc� In case � is a function�� ��Sc� is the least abstraction of Sc

with respect to ��
Unfortunately� it is not possible in general to analyze ��Sc� directly by model

checking even when all the variables in A range over �nite domains� The reason
is that the description of ��Sc� involves quanti�cation over the variables in C
which includes variables ranging over in�nite domains and quanti�er elimination
is not possible in general	�

The elimination method We present a method for computing abstractions which
avoids the direct elimination of quanti�ers� Consider again a transition relation
given by a predicate ��C�C �� and an abstraction relation given by a predicate
��C�A�� There is a trivial abstraction of � with respect to � which is the uni
versal relation on �a� Let us denote it by UA� Of course one cannot use the
universal abstract transition relation UA to prove any interesting invariant� One
can� however� obtain a more interesting abstraction of ��C�C �� by eliminating
transitions from UA� The following lemma states which transitions can be safely
eliminated�

Lemma �� Let Sc � �C� �c� �c�� Sa � �A� �a� �a� be transition systems such that
Sc v�c

� Sa� Let sa� � s
a
� be sets of abstract states� If ����sa��� wp��c�������sa���

then Sc v�c

� S�
a
� where S�

a
consists of the same components as Sa except that

its transition relation is �a n f�sa� � s
a
��g� �

In other words� if the concrete transition does not lead from a concrete state
sc� with ��sc�� s

a
�� to a concrete state sc� with ��sc�� s

a
��� then we can safely elim

inate the transition�s� �sa� � s
a
�� from Sa� When � is given as union of individ

ual transition relations� this can be done individually for each of them� No
tice that since the concrete system in general is in�nite state the condition
����sa��� wp��c�������sa��� can not always be checked algorithmiquely� In our
tool� we use the theorem prover PVS �SRSS��� to discharge this kind of veri�
cation conditions� Notice also that if we eliminate all the pairs �sa� � s

a
�� for which

this condition is satis�ed� we obtain as result the smallest abstract system ��Sc��
The elimination method in its rough form is not feasible since it requires too

many formulas to be checked for validity� Indeed� if there are n boolean abstract
variables then there are ��n such conditions to be checked� Therefore� we present
techniques which make the elimination method feasible�

In �GS��� we have presented a method called predicate abstraction� where the
set of abstract states is a set of boolean variables b�� ���bn� representing each one a
concrete predicate pi� The method computes both� a symbolic representation of
each individual transition relation and a global reachability graph� Each abstract
transition relation is initialized to the trivial relation UA relating all states� and
then stepwise re�ned by eliminating transitions from states which are reachable�

� or a quasi function as shown in �LGS����
� When C is a 
nite domain� the abstract transition relation is exactly the on computed
for example in the tool presented in �GL��b�



This guarantees that any intermediate result represents an abstraction and the
re�nement can be stopped at any point of time �with the risk to obtain a too
rough overapproximation�� The re�nement is done as follows�


� start by some straightforward elimination of transitions �leading to a more
precise abstraction� exploiting
� each of the individual transition relations is in general independent of
at least some of the predicates �if R is the current representation of an
abstract transition relation� and we �nd out that it is indepenedent of
abstract variables b� and b�� its new representation will be R � �b� �
b��� � �b� � b����

� dependences between concrete predicates �which induce dependences be
tween the abstract variables��

� special cases� where in a given transition relation the �nextvalue� of some
prediciate is independent of the values of other predicates �for example�
when b� stand for the concrete predicate x � �� then for any transition
relation with an assignment x �� �� the corresponding abstract transition
relation has a conjunct b�� � false�

Sometimes� these simpli�cations allow to eliminate a large number of transi
tions� making the transition relation more deterministic� and thus less work
is left for the second step�

�� In the second step a more precise approximation of the successors of an
�over approximation of� all reachable states is computed� As computing a a
precise abstraction of a transition relation depending on k abstract variables
may require up to ��n tests� and tests are the already mentioned veri�cation
condition in terms of concrete variables expressing s �set of� start states has
no successor in a �set of� target states� we had chosen to test only start
states which have been found reachable and only target sets of states of the
form predicate pi is true or predicate pi is false�

This method is meant for building a global control abstraction of the system�
where the predicates on which the abstraction is based� is a relatively small set
of predicates �in our experiments �GS��� we went up to �� predicates� that is
abstract variables�� representing guards or their literals� The set of guards of a
system in which coordination is done by global variables� are often havily inter
dependent� the obtained graphs are irregular� and the set of reachable abstract
states is small with respect to the overall set of abstract states �for example
not more than 
��� reachable states with �� abstract variables�� Only in this
context� the simulataneous computation of the set of gloabally reachable states
is useful�

In �BLO�	a� we have presented a much more compositional method� in the
context where the set of conrete variables can be partitioned into a number
of small sets of variables� abstracted independently� Moreover we don�t restrict
ourselves to boolean abstract variables� as the type of abstraction we yield are
more of the kind �data abstraction�� We present here in more details the second
method� as its method for the computation of the abstract transition relation
is more evolved� Here� it could also save time to construct only successors of



reachable con�gurations� but in the context of communication through shared
variables� local invariants are not necessarily preserved by the global system�

Partitioning the abstract variables A simple and practical way to enhance the
elimination method consists of partitioning the set A of abstract variables into
subsets A�� 	 	 	 � Am and considering the e�ect of the abstraction of a concrete
transition � on each set Ai separately� Let us consider this in more detail� We
assume that the considered abstraction relation � is a function and we denote
by �i the projection of � onto Ai� i�e� �i�s� � ��s�jAi � for every concrete state
s and i 
 m� Then� we have the following lemma�

Lemma �� Let 	c � �c� For i � 
� 	 	 	 �m� let Sai � �Ai� I
a
i � R

a
i � be an abstract

transition system and let Sa �
N
i�m

Sai �see section � for the def� of
N

��

Then� Sc v�c

�i
Sai � for i � 
� 	 	 	 �m i� Sc v�c

� Sa� �

Proof� We only consider the implication from left to right and show that for every
state s� s� � �c with s � 	c� if �s� s�� � Rc then ���s�� ��s��� � Ra� Therefore�
assume that Sc v�c

�i
Sai � for i � 
� 	 	 	 �m� Consider states s� s� � �c with s � 	c

and �s� s�� � Rc� From Sc v�c

�i
Sai and �i�s� � ��s�jAi � for i � 
� 	 	 	 �m� we

obtain ��i�s�� �i�s
��� � Ra

i � Hence� by de�nition of Ra� ���s�� ��s��� � Ra�

For the truth of this statement it su�ces to have one of the assumptions that �
is a function or A�� 	 	 	 � Am is a partition of A� It is� however� in general unsound
if we do not have either of these assumptions� The lemma suggests to partition
the set of abstract variables and consider each element of the partitioning in
isolation� If we have n boolean abstract variables and partition them into two
sets of n� and n� elements then� when applying the elimination method� we have
to check for ��n� � ��n� validities instead of for ��
n��n�� validities�

Now� the question arises whether an abstract system that is computed using a
partitioning is at most nondeterministic as the system computed without using
the partitioning� i�e� whether ��Sc� �

N
i�m �i�S

c� holds� The answer is that
in general

N
i�m �i�S

c� has more transitions than ��Sc�� because there might
be dependencies between the �i�s which are not taken into account during the
process of computing �i�S

c�� We can� however� state the following lemma�

Lemma �� Assume that the set C of concrete variables can be partitioned into
sets C�� 	 	 	Cm such that Rc can be written in the form Rc

��	 	 	�R
c
m� where each

Rc
i is a relation on states over Ci� Assume also that each �i can be considered

as a function of Ci� Then� ��S
c� �

N
i�m �i�S

c�� �

It is often the case� however� that most of the dependencies between the �i�s are
captured as an invariant of Sc� which can then be used during the computation
of the abstract system�

Given two partitions P � fA�� 	 	 	 � Amg and P � � fA�
�� 	 	 	 � A

�
m�g of A� we

say that P is �ner than P �� if for every i 
 m there is j 
 m� such that Ai � Aj� �
In this case� we write P 
 P �� The following lemma states that� in general� �ner
partitions lead to more transitions in the abstract system�



Lemma �� Let P and P � be partitions of A such that P 
 P �� Moreover� for
every j 
 m�� let ��j denote the projection of � on A�

j� i�e�� �
�
j�s� � ��s�jA�

j
� for

every concrete state s� Then�
N

j�m� ��j�S
c� vIdA

N
i�m �i�S

c�� where IdA is
the identity on the abstract states� �

The proof of the lemma uses the fact that for every concrete state s� every
abstract state sa� every i 
 m� and every j 
 m� such that Ai � A�

j � if s
a
jA�

j
�

��j�s� then sajAi � �i�s��

Using substitutions In many cases we do not need to apply the elimination
method to compute the abstraction of a transition � but we can achieve this using
syntactic substitutions� To explain how this goes we assume in this section that
transitions are given as guarded simultaneous assignments of the form g�c� �
c �� e� Thus� consider a transition � and an abstraction function � given byV
a�A

a � ea� i�e�� ��s��a� � s�ea�� for every concrete state s� where s�ea� denotes

the evaluation of ea in s� To compute the abstraction of � one can proceed as
follows�


� Determine a list c� � v�� 	 	 	 � cn � vn of equations� where ci � C and vi is a
constant� such that ci � vi follows from the guard g�

�� Substitute each variable ci with vi in e obtaining a new concrete transition
� � with � � � g�c�� c �� e

� and e
� � e �v��c�� 	 	 	 � vn�cn��

�� Let ��a� be ea�e
��c �� for each a � A�

�� We say that an abstract variable a is determined by �� if one of the following
conditions is satis�ed�
�a� there is a variablefree expression e such that for every concrete state s�

s���a�� � s�e� holds� or
�b� there is an abstract variable �a such that ��a� e�a are syntactically equal�
Let ��a� be e in the �rst case and �a in the second�

�� If all variables in A are determined by � then the transition with guard ��g�
and which assigns ��a� to every abstract variable a is an abstraction of �
with respect to ��

To see that ��� is true notice that transitions � and � � are semantically equivalent
and that for all concrete states s and s� if �s� s�� � � � then ��s���a� � ��s����a���
for every a � A�

Thus� in case all abstract variables are determined by � the complete ab
straction of � is determined by substitutions without need for the elimination
method� However� in general we can apply the procedure described above fol
lowed by the elimination method to determine the assignments to the abstract
variables which are not determined by ��

Example �� To illustrate how we can use syntactic substitution to compute the
abstraction of a concrete transition� we consider the Bakery mutual exclusion
algorithm� which has an in�nite state space�
Transition system S��



�� � pc� � l�� �� y� �� y� � 
� pc� �� l��
�� � pc� � l�� � �y� � � � y� 
 y�� �� pc� �� l��
�� � pc� � l�� �� y� �� �� pc� �� l��
Transition system S��

�� � pc� � l�� �� y� �� y� � 
� pc� �� l��
�� � pc� � l�� � �y� � � � y�  y�� �� pc� �� l��
�� � pc� � l�� �� y� �� �� pc� �� l��

Here pc� and pc� range over fl��� l��� l��g and fl��� l��� l��g� respectively� and
y�� y� range over the set of natural numbers� As abstract variables we use the
boolean variables a�� a�� a� and the variables pca� and pc

a
�� The abstraction func

tion � is given by the predicate a� � �y� � �� � a� � �y� � �� � a� � �y� 

y�� � pca� � pc� � pca� � pc��

Let us consider transition �� of S� and apply step 
�� to ��� to it� It can be
easily seen that we obtain ��pca�� � l��� ��a�� � 
�y� � �� ��a�� � 
�y� 
 y��
��pca�� � pc�� and ��a�� � y� � �� Moreover� ��pc� � l��� � pca� � l��� Since

 � y� � � and 
 � y� 
 y� are equivalent to false� we obtain as abstract
transition pca� � l�� � a� �� false� a� �� false� pca� �� l���

Also the abstraction of transitions �� to �� are computed by substitutions�
For transition ��� the assignment to variables a� and pca� are determined by
substitutions� while we need the elimination method to determine the a�ectation
to a��

� Combining abstraction and deductive veri�cation

In the case where the abstract system does not verify the invariant 	 to be
proved� several alternatives exist depending on the choice of the abstract domain�


� if 	 is exactly represented by the abstraction relation� then either the ab
straction is not good enough to show invariance of 	 and we have to re�ne
it� or we did not try hard enough to prove all veri�cation conditions and
have not eliminated some of the bad transitions� The second case is not very
interesting and the �rst case is considered in section � where we compute
re�nements of abstractions�

�� if 	 is not exactly represented by the abstraction relation� for example be
cause some of the variables occuring in it are totally abstracted away in
the abstract domain� Then� the information contained in the constructed
abstract system� can be used when trying to prove by any backward veri
�cation method� that is symbolic model checking or deductive veri�cation�
In both cases� the invariant ��Reach�Sa�� obtained from the set of abstract
reachable states can be used
� in symbolic modelchecking� we compute a chain of decreasing approx
imations of a deductive invariant included in 	� The knowlwdge that
��Reach�Sa�� is an invariant� allows us to start with the smaller set
	 � ��Reach�Sa�� and possibly to faster convergence

	 that is when ��������� � �



� similarly� if 	 contains in�nite domain variables and we apply deductive
veri�cation� the applied proof rule can exploit the fact that ��Reach�Sa��
is an established invariant�

�� �nally� we can not only use the invariant represented by the abstract system
but also the abstract transition relation itself� that is all the proofs of non
reachability which have been made to obtain a given abstraction� This is
specially interesting when the abstract transition relation where non trivial
to obtain� The invariance proof tries to establish that

the successors of all states which satisfy 	 and ��Reach�Sa��� must
satisfy also 	�

For any transition relation � and given start set X� the abstract transi
tion relation allows to compute an overapproximation post����X� of states
reachable from X by � � THis allows to simplify the veri�cation condition
above to

the successors of all states which satisfy 	 and ��Reach�Sa��� must
satisfy also 	restricted to the subset post����X��

We will use the equivalent formulation in terms of preconditions�

��� Proof rules exploiting the existence of an abstract transition

system

First� we exploit the invariant represented by an abstract transition system�
To do so� we �x throughout this section a transition system Sc � ��c� Ic� Rc�

and a set 	c � �c of states� We then consider the problem of showing that 	c

is an invariant of Sc�
While Theorem � allows us to deduce S j� �	c in case Sa j� �	a� it does not

tell us whether it is possible to take advantage from Sa in case Sa �j� �	a� Rule
�InvUni� �see Fig� ��� shows how the invariant represented by the abstract tran
sition system can be exploited� Indeed� the proof rule shows how concretizations
of invariants of the abstract system can be used to prove that the predicate 	c is
preserved by the transition relation of Sc� In fact� these concretizations are used
to strengthen the inductive hypothesis in the third premise of the rule �InvUni��

Sc v�c

� Sa

����Reach�Sa��� Q

Q � �c � �� wp�Rc���c � ��
Ic � �c

Sc j� ���c � ��

Fig� �� Proof rule �Inv�Uni��



Theorem �� The proof Rule �Inv�Uni� �see Figure �� is sound and complete�

Proof� Let us �rst show soundness� Let Sc and Sa be transition systems such
that

� �P
� Sc v�c

� Sa�
� �P�� ����Reach�Sa��� Q�
� �P�� Q � 	c � wp�Rc��	c � 	�� and
� �P�� Ic � 	�

Let s�� 	 	 	 � sn be a computation of Sc� We prove by induction on n that
sn � 	c � 	� Now� since �P
� implies that all initial states of Sc satisfy 	c� we

have s� � 	c�	� Moreover� from �P
� and �P��� we have sn�� � 	R
A

� and hence

by induction hypothesis� sn�� � 	R
A

� 	c � 	� From �P��� we get sn � 	c � 	�
Completeness is obtained from the fact that Rule �InvUni� is a generalization
of Rule �Inv� and thus at least as complete as it� �

Rule �Inv� can be easily derived from Rule �InvUni�� that is� Rule �Inv�
is an instance of Rule �InvUni�� To do so� we choose Q equal the auxiliary
invariant 	 of rule �Inv�� and build an abstract transition system SQ represented
in Figure ��
 with two states� denoted by �Q� and ��Q�� where �Q� is initial� As Q
is an invariant� we have Sc v�c

� Sa for 	c � �c and � the total relation de�ned
by �s� �Q�� � � i� s � Q� and we can therefore extend rule �Inv� to an instance
of rule �InvUni��

��Q� �Q�

Fig� �� Transition system SQ

The rule �InvUni� is stronger than rule �Inv� as it adds the fact that only the
set Q � ��Reach�Sa�� is indeed reachable� and thus only successors of states in
Q need to be tested�

But we can also reuse the �proof� of the �invariance of Q�� that is the fact
that for every transition �i Q � wp��i��Q� which is of the form Q � �i � Q��
Indeed� this assertion is a tautology and it has been proved during the construc
tion of the abstract system� Thus� conjoining it with any premiss in a proof rule�
does not strengthen the proof rule� strictly speaking� but it summarizes a proof
done earlier� may be with an important e�ort�

Now we can reuse the information contained in the abstract transition system
at any level of granularity� For any Xa � Reach�Sa�� we can determine easily an



abstract set Y a such that post��i��X
a� � Y a or equivalently Xa � wp��i��Y

a��
Posing X � ����Xa� and Y � ����Y a�� we get tautologies of the form X �
wp��i��Y � or X � �i � Y ��

In order to prove

Q � 	c � 	� wp��i��	
c � 	�

as required in rule �InvUni�� supposing thatXa is the set guard��i��Reach�S
A��

we can replace this assertion by

�X � wp��i��Y ��� Q � 	c � 	� wp��i��	
c � 	�

which can be simpli�ed to

	c � 	 �X �wp��i��Y �� wp��i��	
c � 	�

or
	c � 	 �X � �i � Y

� � 	c� � 	�

In practice� this means that one needs not to prove again that Y � can be assumed�
and Y � can often allow to deduce 	c� � 	� easily�

Instead of using Xa which represents all the abstract reachable states in
which taui is enabled� one can partion X into �Xa

i � which allows also to reduce
the corresponding sets Y a

i � post��i��X
a
i �

�� We will than enforce the above
assertion to be proved by the tautaulogy �i�Xi � wp��i��Yi�� or �i�Xi � �i �
Y �
i ��
Notice that we do not get a new proof rule� as formally we just enforce some

of the assertions with true which doesn�t change anything from the point of view
of validity� Nevertheless� these tautologies can greatly simplify the proofs� In all
cases where the construction of the abstract transition relation is very simple�
the obtained information is not very �precious� and adding these tautologies can
be more an overhead than a help�

��� Concretizing BDD�s

In order to apply the Rule �InvUni�� we need


� a e�cient representation of the set Reach�Sa� of abstract reachable states
and

�� to transform it into a �nite representation of its concretisation� that is�
����Reach�Sa���

The second step is straighforward� as given an expression representing Reach�Sa��
a representation of ����Reach�Sa�� is obtained by simple substitution of each
abstract variable by the concrete expression it stands for �the de�nition of �� In


 which need not to represent a partition of Y a� notice that �Xa
i is an interesting

partition if �Y a
i is a little overlapping as possible



this section� we give a procedure for computing an e�cient representation of the
set Reach�S�a�

As the set of abstract states is �nite� �niteness of the representation of
Reach�S�a is not a problem� and as application of ��� the substitution� the
�niteness of the representation of the set of concrete states is also not a prob
lem�

Invariant veri�cation of the abstract system� is best done by means of a
modelchecker� Enumerative modelchecker like CADP �� or IF �� create an ex
plicite set of concrete states and transitions for which one can extract the re
quired representation of the corresponding concrete states as a disjunction� but
this is e�ecient only if the set of states is relativelly small� Symbolic model
checkers� like SMV �� can directly compute a predicate representing the set of
abstract reachable states� As these modelcheckers use often BDDs� we have to �

� encode the abstract transition relation by booleans�
� extract from the BDD representation a compact expression� Such represen
tation can� however� be unnecessarily cumbersome�

In this section� we describe an algorithm for converting an BDD into a propo
sitional formula over the original state variables �not necessarily boolean�� which
is often almost as compact as the original BDD�

Consider �rst a simple case when the top variable x of an BDD b is boolean�
Then� by the ShannonBoole expansion law� b � x 	 bjx�true� �x 	 bjx�false� Equiv
alently� this can be written as a formula

�x � false� formula�bjx�false�� � �x � true� formula�bjx�true���

where formula�b� is a formula corresponding to the BDD b� Generalizing this
to program variables with arbitrary number of possible values represented as a
vector of boolean variables x � �x�� � � � � xn�� and assuming that xi�s are the n
top variables in b� we can recursively construct a formula

�
v�type
x�

�x � v � formula�bjx�v���

The basic algorithm is shown on Figure 	� It takes an BDD b and the list
of state variables �not necessarily boolean�� and returns an equivalent formula�
For better performance� one can use a hash table H that hashes pairs of the
form �b� f�� where f is a formula previously constructed for a BDD b� At the
very beginning the algorithm checks whether b is already in the table� and if it
is� it simply returns the associated formula� If the formula has not been con
structed yet� it checks for the trivial base cases �TRUE or FALSE�� Otherwize�
it constructs a formula recursively on the BDD structure� For every value in the
domain of the �rst variable �� we restrict b to that value� remove the variable
from the list� construct the formula recursively for that restricted BDD� and add

�� We assume that the domains are always 
nite�



bdd�f�b� BDD� var list� list of variables�� formula �
if b � H then return H�b��
if b � true bdd then res �� TRUE�
else if b � false bdd then res �� FALSE�
else

x �� car�var list��
res �� TRUE�
for every v � domain�x� do
tmp �� bdd�f�bjx�v� cdr�var list���
res �� res � �x � v � tmp��

end�
H � �b� res��
end if

return res�
end bdd�f

Fig� 	� Basic algorithm converting BDD to a formula�

the result into the �nal formula� Finally� the result is included into the hash
table before it is returned�

If the internal representation of the formula being constructed is done using
variables of type �formula�� then multiple occurences of the same subformula in
the �nal formula does not cause the formula to grow exponentially in the size of
b� In fact� its size is only linear� However� the formula cannot be easily printed
without losing this structure sharing� A simple solution to that would be to print
the subformulas collected in the hash table with names assigned to them� and
then print the �nal formula that has the names instead of these subformulas�
However� the formula will be ugly and hardly manageable both for a human
and for a mechanical tool reading it� We designed a set of simpli�cations that
make the formula look a lot more understandable and even more compact� These
transformations are applied for each program variable before the function returns
from the recursive call�

We assume that the current variable is x� and the original formula is the
conjunction of implications� as described above�


� Collect all the values fvi� � � � � � vikg of x for which the conclusion F of the
implication x � vij � F is the same� and replace all such conjuncts by
x � fvi� � � � � � vikg � F � Also� if the size of the set fvi� � � � � � vikg contains more
than the half of the domain of x� replace it by x �� �type�x��fvi� � � � � � vikg��
F � If the set is a singleton� replace the set inclusion by equality or disequality
respectively�

�� Remove conjuncts of the form TRUE and g � TRUE� Replace conjuncts of
the form g � FALSE by �g� If the entire conjunction has only two conjuncts�
then �g� � FALSE���g� � F � is simpli�ed to �g��F �� This transformation
is sound� since gi�s restrict x to disjoint ranges of values� and together they
have to cover the entire domain of x� which implies g� � �g��



Splitting on Guards� The shape of the formula for the set of reachable states
can be very complicated and does not always re�ect the structure of the program�
To simplify further� we use program guards to �slice� the set of reachable states
into smaller and more manageable pieces�

The idea is very simple� Suppose� g�� � � � � gn are some of the program guards�
and the set of reachable states is represented by a predicate R� Construct BDDs
for R �

V
��i�n g

pi
i � where

gp �

�
g� if p � �
�g� if p � 
�

Convert each such BDD into a formula Fp� Then the formula for the set of
reachable states can be put in the following form�

R �
�
p�Bn

�
�

��i�n

gpii � Fp��

The hope is that the set of reachable states is highly in�uenced by the guards in
the program� and therefore� splitting on the guards could lead to much shorter
and simpler formulas

Example �� Let us consider the abstract system of the Bakery example �
Abstract transition system Sa� �

�a� � pca� � l�� �� a� �� false� a� �� false� pca� �� l��
�a� � pca� � l�� � �a� � a�� �� pca� �� l��
�a� � pca� � l�� �� a� �� true� a� �� true� pca� �� l��

Abstract transition system Sa� �

�a� � pca� � l�� �� a� �� false� a� �� true� pca� �� l��
�a� � pca� � l�� � �a� � �a�� �� pca� �� l��
�a�� � pc

a
� � l�� � �a� � �a� � �a� �� a� �� true� a� �� false� pca� �� l��

�a�� � pc
a
� � l�� � �a� � �a� � a� �� a� �� true� a� �� false� pca� �� l��

�a�� � pc
a
� � l�� � a� � �a� � a� �� a� �� true� a� �� true� pca� �� l��

�a�� � pc
a
� � l�� � �a� � a� � �a� �� a� �� true� pca� �� l��

�a�� � pc
a
� � l�� � a� � a� � a� �� a� �� true� a� �� true� pca� �� l��

If we apply the basic algorithm �see Figure 	� to the obdd that characterizes the
reachable states of this abstract system� we obtain the following formula�

�a
 � �a� � a� � pc
 � l

 � pc� � l�
��
��a�� a� � pc
 � l

 � pc� �� l�
���

��a
� �a� � �a� � pc
 �� l

 � pc� � l�
��
��a�� �a�� pc
 �� l

 � pc� � l����

��a�� pc
 � l
� � pc� �� l�
���

The concretization of the above formula yields the conjunction of following for
mulae�

�y
 � � � y� � ��� pc
 � l

 � pc
 � l�
 �
�



�y
 � � � y� � ��� pc
 � l

 � pc
 �� l�
 ���

�y
 �� � � y� � ��� pc
 �� l

 � pc
 � l�
 ���

y
 �� � � y� �� � � y
 
 y�� pc
 �� l

 � pc
 � l�� ���

y
 �� � � y� �� � � y
 � y�� pc
 � l
� � pc
 �� l�
 ���

In this example� the concrete invariant obtained by this approach is stronger
than the invariant generated by the method presented in �BLY���BL���� The
invariants ��� and ��� cannot be immediately obtained by these methods� Indeed�
these methods cannot easily generate invariants relating the variables of di�erent
processes�

��� Analyzing Counter�examples and Re�ning Abstraction

Relations

A key issue in applying the veri�cation method described by Theorem �� respec
tively Rule �InvUni�� is �nding a suitable abstraction relation �� In this section�
we discuss a heuristic for �nding an initial abstraction relation and present a
method for re�ning it by analyzing abstract counterexamples� that is� counter
examples of the abstract system�

Initial abstraction relation Assume that we are given a syntactic transi
tion system S � �X� �� �� and a quanti�erfree formula P with free variables in
X� Henceforth� we assume that � is given as a �nite disjunction of transitions
��� 	 	 	 � �n� where each �i is given by a guard gi that is quanti�erfree formula
and a multipleassignment x�� 	 	 	 � xn �� e�� 	 	 	 � en�

We want to prove that P is an invariant of S� To do so� we choose a constant
N � � and compute

V
i�N wp

i
��P �� Then�

V
i�N wp

i
��P � is also a quanti�erfree

formula� Let F � ff�� 	 	 	 � fmg be the set of atomic formulas that appear inV
i�N wp

i
��P � in the predicate describing the initial states or in the property�

�Notice that one can choose N su�ciently large to include the atomic formulae
in the guards�� Then� we introduce for every formula fi an abstract variable
ai and de�ne the abstraction function � de�ned by ai � fi� In �BLO�	a�� we
show how given a transition system S� a predicate P and an abstraction function
�� we compute a system Sa such that S vP

� Sa and a predicate P a such that
����P a� � P � Rule �InvUni� addresses the question of how to bene�t from
computing the set of reachable states of Sa even when Sa does not satisfy �P a�
In this� section we address the following questions�


� given a counterexample for Sa j� �P a does it correspond to some behavior
in the concrete system and

�� in case the answer to the �rst question is no� how can we use the given
counterexample to re�ne the abstraction function�

Identifying false negatives As in this paper� we focus on invariance prop
erties� counterexamples are �nite computations� Let �a � sa��

a
� s

a
� 	 	 	 �

a
ns

a
n be a

counterexample for Sa j� �P a� The concretization �����a� of �a is the sequence



����sa�����
���sa�� 	 	 	 �n���

���san�� We call �����a� a symbolic computation of
S� if there exists a computation s���s� 	 	 	 �nsn of S such that si � ����sai �� for
i � �� 	 	 	 � n� Clearly� this de�nition can be generalized to arbitrary sequences
Q���Q� 	 	 	 �nQn� with Qi � �� Then� we have the following�

Lemma �� A sequence Q���Q� 	 	 	 �nQn� with Qi � � is a symbolic computa�
tion i� � � X� �� �� where Xn � Qn and Xn�i�� � Qn�i�� � pre�n�i�Xn�i��
�

Lemma � suggests the procedure CouAnal given in Figure � for checking whether
an abstract counterexample is a false negative or whether it corresponds to a
behavior of the concrete system�

Input� An abstract counter�example �a � sa��
a
� s

a
� 	 	 	 �

a
ns

a
n

X �� ����san��
i �� n�
while �X 
� � and i � �� do

Y �� X�
X �� pre�i�X� � ����sai����
i �� i �

od
if i � � and 	 �X 
� � then return �the following is a counter�example��

Take any s � 	 �X 
� �
Let s� �� s� s� �� ���s�� 	 	 	 � sn �� �n�sn���
write s� 	 	 	 sn

else return i� Y




Fig� 
� Counter�example Analyzer� CouAnal

Re�ning the abstraction function First� we consider a simple re�nement
strategy of the abstraction function� Thus� let �a � sa��

a
� s

a
� 	 	 	 �

a
ns

a
n be a counter

example for Sa j� �P a that is not a symbolic computation of S� By Lemma ��
procedure CouAnal returns some i 
 n and a set Y � Xi � � such that
Xi�� � ���� Now� since Xi�� � �� Qi�� � wp�i��Xi� and abstract transitions
from abstractions of states in Qi�� to abstractions of states in Xi are super�uous
and should be omitted� To achieve this� we add for every atomic formula f in �Xi

which is not already in �� a corresponding new abstract variable af with af � f �
Let �e denote the soobtained new abstraction function� Moreover� let Sae be the
abstract system with �sa� � s

a
�� � �e i� there exist concrete states s�� s� such that

�si� s
a
i � � �e� for i � 
� �� and �s�� s�� � �� Then� �a is not a computation of Sae �

�� We assume that i � � as the case of i � � is easily handled



Speeding�up re�nement of abstraction functions The simple illustrative exam
ple given in Figure 
� shows that in general applying �nitely many times the
procedure CouAnal is not su�cient� In this example� we want to show that lo
cation l� is not reachable and we initially take the abstraction function de�ned
a � x � y� After the nth application of CouAnal we will have the abstraction
function de�ned by a� � x � y� 	 	 	 � ai � x� i � y� 	 	 	 � an � x�n � y� However�
the abstraction function we need is a � x � y� a� � x � y� The problem here
is clearly that the abstract counterexamples contain abstract transitions that
correspond to the unfolding of a loop in the concrete system� In the following�
we generalize procedure CouAnal to cope with this situation� Let us �rst explain
the main idea�

l�
l� l�

x� y �� �� � x�y

x��

Fig� ��� Example for showing that speeding�up is needed

Henceforth� we assume that the description of the concrete system makes a
clear distinction between control and data variables� That is� we assume that
the concrete system is given by an extended transition system as in Figure 
��
where l�� l�� l� are the control locations and x and y are the data variables�
Let �a � sa��

a
� s

a
� 	 	 	 �

a
ns

a
n be a counterexample for Sa j� �P a� Assume that

�i� � 	 	 	 � �i� is a loop in the control graph of the concrete system� In the procedure
CouAnal we apply one time pre�i on each Xi� However� since �i� � 	 	 	 � �i� is a
loop� it is more interesting to apply an arbitrary number of times pre��i� � 	 	 	 � �i��
on Xi� � that is� to consider

W
i�� pre

i��i� � 	 	 	 � �i�� on Xi� �

For instance� in the example of Figure 
�� applying
W
i�� pre

i�x��� on x � y
gives after quanti�er elimination the predicate x 
 y� Now� since pre�x� y ��

� ���x 
 y� is empty our strategy consists in adding an abstract variable b such
that b is true in the abstraction of a state s i� s satis�es ��x 
 y� which is
x � y� what we indeed expect�

This idea of speedingup counterexample analyzes leads to the procedure
AccCouAnal given in Figure 

� There are several remarks to say about pro
cedure AccCouAnal� The �rst one is that for a sequence ��� 	 	 	 � �n of tran
sitions there are in general several but �nitely many ways to partition it in
��� 	 	 	 � �i���L�� �i��k���� 	 	 	 � Lm� The accuracy of the obtained abstraction func
tion depends on this choice� In principle� one could� however� consider all pos
sible choices and combine the obtained abstraction functions into a single one
�take their conjunction�� An other point is that in order to have reasonably sim



Input� An abstract counter�example �a � sa��
a
� s

a
� 	 	 	 �

a
ns

a
n�

Let L�� 	 	 	 � Lm be loops in the concrete system such that
Lj � �ij � 	 	 	 � �ij�kj and
��� 	 	 	 � �n � ��� 	 	 	 � �i���L�� �i��k���� 	 	 	 � Lm� �im�km��� 	 	 	 � �n�
X �� ����san��
i �� n�
k �� m�
while �X 
� � and i � �� do

Y �� X�
if i � ik then

X ��
W
j��

pre
j
Lk

�X� � ����sai����

i �� i length�Lk�
else X �� pre�i�X� � ����sai���


i �� i �

od
if i � � and 	 �X 
� � then return �S does not satisfy the property�
else return i� Y




Fig� ��� Accelerated Counter�example Analyzer� AccCouAnal

ple abstraction functions one needs to simplify the predicates
W
j�� pre

j
Lk
�X� �

����Qi���� in particular� when possible� one should eliminate the existential
quanti�cation on i�
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