
1

Verification of Hybrid Systems

Goran Frehse
Universite Grenoble 1, Verimag

- with work from Thao Dang, Antoine Girard and Colas Le Guernic -

MOVEP’08, June 25, 2008

2

Boeing & Tupolew Collision

● Überlingen, July 1, 2002

● 21:33:03

– Alarm from Traffic Collision
Avoidance System (TCAS)

B757-200 TU154M

!

3

Boeing & Tupolew Collision

● Überlingen, July 1, 2002

● 21:33:03

– Alarm from Traffic Collision
Avoidance System (TCAS)

● 21:34:49

– Human air traffic controller
command

B757-200 TU154M

!

4

Boeing & Tupolew Collision

● Überlingen, July 1, 2002

● 21:33:03

– Alarm from Traffic Collision
Avoidance System (TCAS)

● 21:34:49

– Human air traffic controller
command

● 21:34:56

– TCAS recommendation

B757-200 TU154M

!

5

Boeing & Tupolew Collision

● Überlingen, July 1, 2002

● 21:33:03

– Alarm from Traffic Collision
Avoidance System (TCAS)

● 21:34:49

– Human air traffic controller
command

● 21:34:56

– TCAS recommendation

● 21:35:32

– Collision

B757-200 TU154M

!

6

Boeing & Tupolew Collision

● Überlingen, July 1, 2002

● 21:33:03

– Alarm from Traffic Collision
Avoidance System (TCAS)

● 21:34:49

– Human air traffic controller
command

● 21:34:56

– TCAS recommendation

● 21:35:32

– Collision

B757-200 TU154M

!
Official Inquiry Recommendation:

“pilots are to obey and
follow TCAS advisories,
regardless of whether

contrary instruction is given”

⇒⇒⇒⇒ Requires high confidence design

Official Inquiry Recommendation:

“pilots are to obey and
follow TCAS advisories,
regardless of whether

contrary instruction is given”

⇒⇒⇒⇒ Requires high confidence design

2

7

Incorrect /
Unknown

Revise
Design

Formal Verification

Model of
System

Formal
Specification

Correct

TCAS verified
in part

[Livadas, Lygeros,
Lynch, ’00]

Verification
(algorithmic)

8

Join Maneuver [Tomlin et al.]

● Traffic Coordination Problem

– join paths at different speed

● Goals

– avoid collision

– join with sufficient separation

9

Join Maneuver [Tomlin et al.]

● Traffic Coordination Problem

– join paths at different speed

● Goals

– avoid collision

– join with sufficient separation

● Models

– Environment: Planes

– Software: Controller

• switches fast/slow

● Specification

– keep min. distance

disturbances

10

Formal Verification

● Characteristics
– mathematical rigor (sound proofs & algorithms)

– exhaustive

● In this talk: Reachability Analysis

initial states

run (trajectory)
forbidden states

reachable states
= states on any run

11

Join Maneuver [Tomlin et al.]

time

reachable states
yellow plane

reachable states
blue plane

12

Join Maneuver [Tomlin et al.]

time

Possible collision!Possible collision!

reachable states
yellow plane

reachable states
blue plane

13

Formal Verification

● Key Problems
– computable (decidable) only for simple dynamics

– computationally expensive

– representation of / computation with continuous sets

14

Formal Verification

● Fighting complexity with overapproximations
– simplify dynamics

– set representations

– set computations

● Overapproximations should be
– conservative

– easy to derive and compute with

– accurate (not too many false positives)

15

Outline

I. Hybrid Automata and Reachability

II. Reachability for Simple Dynamics
a) Linear Hybrid Automata

b) Piecewise Affine Hybrid Systems

III. Application to Complex Dynamics
a) Hybridization Techniques

b) Abstraction Refinement

16

Incorrect /
Unknown

Revise
Design

Formal Verification

Model of
System

Formal
Specification

Correct

TCAS verified
in part

[Livadas, Lygeros,
Lynch, ’00]

Verification
(algorithmic)

17

Formal Verification

Model of
Physics

Model of
Software

Model of System

continuous dynamics discrete dynamics

ẋ = f(x)

18

Modeling Hybrid Systems

● Example: Bouncing Ball
– ball with mass m and position x in free fall

– bounces when it hits the ground at x = 0

– initially at position x and at rest

x

0

Fg

19

● Condition for Free Fall
– ball above ground:

● First Principles (physical laws)

Part I – Free Fall

• gravitational force :
Fg = −mg

g = 9.81m/s2

• Newton's law of motion :
mẍ = Fg

x ≥ 0 x

0

Fg

20

● Obtaining 1 st Order ODE System

Part I – Free Fall

Fg = −mg
mẍ = Fg

• ordinary differential equation ẋ = f(x)

• transform to 1st order by introducing variables
for higher derivatives

• here: v = ẋ:
ẋ = v
v̇ = −g

x

0

Fg

21

Part II – Bouncing

● Conditions for “Bouncing”

● Action for “Bouncing”

• ball at ground position: x = 0

• downward motion: v < 0

• velocity changes direction

• loss of velocity (deformation, friction)

• v := −cv, 0 ≤ c ≤ 1

22

Combining Part I and II

● Free Fall

● Bouncing

• while x ≥ 0,
ẋ = v
v̇ = −g

• if x = 0 and v < 0
v := −cv

continuous dynamics

discrete dynamics

ẋ = f(x)

x ∈ G
x := R(x)

23

Hybrid Automaton Model

x ≥ 0 bounce

x = 0 ∧ v < 0
v := −cv

freefall

ẋ = v
v̇ = −g

x = x0
v = 0

flow

location

invariant

discrete transition

guard

label

reset

initial conditions

24

Hybrid Automata

● Defining Inhabited State Space:
– Locations

– Variables

• Valuation:

• State:

– Initial states

– Invariant

s = (l, x), with l ∈ Loc, x ∈ RVars

Ini ⊆ Loc × RVars

Loc

Var

x ∈ RVars attributes a real value to each variable

{(freefall , (x = x0, v = 0))}

{freefall}

{x, v}

Inv ⊆ Loc × RVars

H = (Loc,Var , Ini , Inv ,Trans ,Lab,Flow)

{(freefall , (x ≥ 0, v ∈ R))}

25

Hybrid Automata – Discrete Dynamics

● Defining Discrete Dynamics: Trans

● Semantics: Discrete Transition
– can jump from (l,x) to (l’, x’) if x ∈ G and x’ ∈ R(x)

(l, α,G,R, l′) ∈ Trans , with

• label α ∈ Lab,

• guard G ⊆ RVars ,

• reset R : RVars → 2R
Vars

G

R

(l,x)

(l’,R(x))

26

Hybrid Automata – Cont. Dynamics

● Defining Continuous Dynamics: Flow

– for each location l differential inclusion

● Semantics: Time Elapse
– change state along x(t) as time elapses

– x(t) must be in invariant Inv

– ẋ(t) ∈ Flow(l, x)

Flow : Loc × RVars → 2R
Vars

ẋ ∈ Flow(l, x)

27

Hybrid Automata – Cont. Dynamics

● Bouncing Ball:
– Flow:

x(0)

v(0)

x, v

t

x(t)

v(t)

ẋ = v
v̇ = −g

28

Hybrid Automata - Semantics

● Run
– sequence of discrete transitions and time elapse

● Execution
– run that starts in the initial states

x(t)

x(t)

x(t)

29

Execution of Bouncing Ball

time t

position x

x(t)
x(t)

x(t)
x(t)

x(t)

δ δ δ δ δ

x

0

…

time t

velocity v

v(t)
v(t)

v(t)
v(t)

v(t)

δ δ δ δ δ

v

0

…

30

Execution of Bouncing Ball

● State-Space View (infinite time range)

position x

velocity v

discrete transition

x

0

x(t)

x(t)

x(t)

31

Incorrect /
Unknown

Revise
Design

Formal Verification

Model of
System

Formal
Specification

Correct

TCAS verified
in part

[Livadas, Lygeros,
Lynch, ’00]

Verification
(Reachability)

32

Computing Reachable States

● Reachable states: Reach(S)

– any state encountered in a run starting in S

position x

velocity v0

S

33

● Compute successor states

0

R0

Computing Reachable States

• discrete transitions : Postd(R)

• time elapse : Post c(R)

R1=Postc(R0)

R2=Postd(R1)

R3=Postc(R2)

34

Computing Reachable States

● Fixpoint computation

● Problems
– in general termination not guaranteed

– time-elapse very hard to compute with sets

• Initialization: R0 = Ini

• Recurrence: Rk+1 = Rk ∪ Postd(Rk) ∪ Post c(Rk)

• Termination: Rk+1 = Rk ⇒ Reach = Rk.

35

Chapter Summary

● Why should we care?
– Reachability Analysis is a set-based computation that can

answer many interesting questions about a system (safety,
bounded liveness,…)

● What’s the problem?
– The hardest part is computing time elapse.

– Explicit solutions only for very simple dynamics.

● What’s the solution?
– First study simple dynamics.

– Then apply these techniques to complex dynamics.

36

Outline

I. Hybrid Automata and Reachability

II. Reachability for Simple Dynamics
a) Linear Hybrid Automata

b) Piecewise Affine Hybrid Systems

III. Application to Complex Dynamics
a) Hybridization Techniques

b) Abstraction Refinement

37

In this Chapter…

● A very simple class of hybrid systems

● Exact computation of discrete transitions and time
elapse
– Note: Reachability (and pretty much everything else) is

nonetheless undecidable .

● A case study

38

Linear Hybrid Automata

● Continuous Dynamics

• piecewise constant: ẋ = 1

• intervals: ẋ ∈ [1, 2]

• conservation laws: ẋ1 + ẋ2 = 0

• general form: conjunctions of linear constraints

a · ẋ ⊲⊳ b, a ∈ Zn, b ∈ Z, ⊲⊳ ∈ {<,≤}.

= convex polyhedron over derivatives

39

Linear Hybrid Automata

● Discrete Dynamics

• affine transform: x := ax + b

• with intervals: x2 := x1 ± 0.5

• general form: conjunctions of linear constraints (new value x′)

a · x + a′ · x′ ⊲⊳ b, a, a′ ∈ Zn, b ∈ Z, ⊲⊳ ∈ {<,≤}

= convex polyhedron over xxxx and xxxx’

40

Linear Hybrid Automata

● Invariants, Initial States

• general form: conjunctions of linear constraints

a · x ⊲⊳ b, a ∈ Zn, b ∈ Z, ⊲⊳∈ {<,≤},

= convex polyhedron over xxxx

41

Reachability with LHA

● Compute discrete successor states Postd(S)

– all x’ for which exists x ∈ S s.t.

• x ∈ G

• x’ ∈ R(x) � Inv

● Operations:
– existential quantification

– intersection

– standard operations on convex polyhedra

42

Reachability with LHA

● Compute time elapse states Postc(S)

● Theorem [Alur et al.]

– Time elapse along arbitrary trajectory iff time elapse along
straight line (convex invariant).

– time elapse along straight line can be computed as projection
along cone [Halbwachs et al.]

Inv

43

Reachability with LHA [Halbwachs, Henzinger, 93-97]

invariant

initial states

9

derivatives

successors

projection
cone

1. get projection
cone

1. get projection
cone

2. time elapse by
projection

2. time elapse by
projection 3. compute

successors of
transitions

3. compute
successors of
transitions

44

Multi-Product Batch Plant

85

45

Multi-Product Batch Plant

● Cascade mixing process

– 3 educts via 3 reactors
⇒ 2 products

● Verification Goals
– Invariants

• overflow

• product tanks never empty

– Filling sequence

● Design of verified
controller

LIS
11

M

LIS
22

QIS
22

LIS
32

LIS
31

M

LIS
23

QIS
23

M

LIS
21

QIS
21

LIS
13

LIS
12

46

Switched Buffer Network

● Buffers s1,…,sn

– store material � continuous level
x1,…,xn

● Channels
– transport material from buffer to buffer

� continuous throughput v(s,s’),
nondeterministic inside interval

● Switching
– activate/deactivate channels

discretely

x

vin

vout

x=xM

x=0

Buffer

47

Continuous Dynamics

● Stationary throughput
– v ∈ [a,b]

● Source buffer empty
– throughput may seize, v ∈ [0,b]

– inflow of source = outflow of source

● Target buffer full
– throughput may seize, v ∈ [0,b]

– inflow of target = outflow of target

48

Buffer Automaton Model

– tank levels = cont. variables xi

– incoming flow vin(s)=∑s’ v(s’,s)

– outgoing flow vout(s)=∑s’ v(s,s’)

49

Channel Automaton Model

– throughput = algebraic variable (will be projected away)

this case study:
omit saturation

50

Production Schedule

– uses 3 reactors in parallel

– transfers of batches from one tank to another

– formally a control strategy: locations × cont. variables → locations

51

Verification with PHAVer

● Controller automaton model

– 78 locations

– ASAP transitions

● Controller + Plant

– 266 locations, 823 transitions
(~150 reachable)

● Reachability over infinite time

– 120s—1243s, 260—600MB

– computation cost increases
with nondeterminism
(intervals for throughputs,
initial states)

Controller Controlled Plant

52

Verification with PHAVer

53

Outline

I. Hybrid Automata and Reachability

II. Reachability for Simple Dynamics
a) Linear Hybrid Automata

b) Piecewise Affine Hybrid Systems

III. Application to Complex Dynamics
a) Hybridization Techniques

b) Abstraction Refinement

54

In this Chapter…

● Another class of (not quite so) simple dynamics
– but things are getting serious (no explicit solution for sets)

● Exact Computation time elapse only at discrete
points in time
– used to overapproximate continuous time

● Efficient data structures

55

Piecewise Affine Hybrid Systems

● Affine dynamics
– Flow:

– For time elapse it’s enough to look at a single location.

ẋ = Ax + b (deterministic)

ẋ ∈ Ax + B, with B a set (nondeterministic)

56

Linear Dynamics

● Let’s begin with “autonomous” part of the dynamics:

● Known solutions:
– analytic solution in continuous time

– explicit solution at discrete points in time
(up to arbitrary accuracy)

● Approach for Reachability:
– Compute reachable states over finite time: Reach[0,T](XIni)

– Use time-discretization, but with care!

ẋ = Ax, x ∈ Rn

57

Time-Discretization for an Initial Point

● Analytic solution:

● Explicit solution in discretized time (recursive):
x0 = xIni
xk+1 = eAδxk

x(t) = eAtxIni

2δ 3δδ0

x0
x1

x2

x3

t

x(t)

multiplication with const. matrix eAδ

= linear transform

x(δ(k + 1)) = eAδx(δk)

• with t = δk :

58

Time-Discretization for an Initial Set

● Explicit solution in
discretized time

● Acceptable solution for purely continuous systems
– x(t) is in ǫ(δ)-neighborhood of some Xk

● Unacceptable for hybrid systems
– discrete transitions might “fire” between sampling times

– if transitions are “missed,” x(t) not in ǫ(δ)-neighborhood

2δ 3δδ0

X0

X1

X2

X3

t

X0 = XIni

Xk+1 = eAδXk

Reach[0,3δ](XIni)

59

Bouncing Ball

– In other examples this error might not be as obvious…

X90 = ∅

60

● Goal:
– Compute sequence Ωk over bounded time [0,Nδ] such that:

● Approach:
– Refine Ωk by recurrence:

– Condition for Ω:

Reachability by Time-Discretization

Reach[0,Nδ](XIni) ⊆ Ω0 ∪ Ω1 ∪ . . . ∪ ΩN

2δ 3δδ0 t

Reach[0,3δ](XIni)

Ω0

Ω1

Ω2

Ωk+1 = eAδΩk

Reach[0,δ](XIni) ⊆ Ω0

61

Time-Discretization with Convex Hull

● Overapproximating Reach[0,δ]:

X0

X1

Reach[0,δ](XIni) Conv(X0, X1) Bloat(Conv(X0, X1))

62

Time-Discretization with Convex Hull

● Bouncing Ball:

Ω0

X0

X1

X0

X1

Ω0

63

Nondeterministic Affine Dynamics

● Let’s include the effect of inputs:

– variables x,…,xn, inputs u,…,up

● Input u models nondeterminism

– used later for overapproximating nonlinear dynamics

ẋ = Ax + Bu, x ∈ Rn, u ∈ U ⊆ Rp

ẋ ∈ Ax + BU

64

Nondeterministic Affine Dynamics

● Analytic Solution

2δ 3δδ0 t

Reach[0,3δ](XIni)

influence of inputs

x(t) = eAδx(0) +

∫ τ

0

eA(δ−τ)Bu(τ)dτ

autonomous
dynamics

influence of
inputs

65

Nondeterministic Affine Dynamics

● How far can the input “push” the system in δδδδ time?

● Minkowski Sum: A⊕B = {a + b | a ∈ A, b ∈ B}

• V = box with radius e||A||δ−1
||A|| supu∈U ||Bu||

Ω0 = Bloat(Conv(XIni, e
AδXIni))⊕ V

Ωk+1 = eAδΩk ⊕ V

66

Nondeterministic Affine Dynamics

2δ 3δδ0 t

Ω0

Ω1

Ω2 = eAδΩ1 ⊕ V

eAδΩ1

67

Implementing Reachability

● Find representation for continuous sets with
– linear transformation (Ωκ+1 = Φ Ωκ)

– Minkowski Sum

– intersection (with guards)

68

Polyhedra

● Finite conjunction of linear constraints

aT1x ≤ b1 aT2x ≤ b2

aT3x ≤ b3
aT5x ≤ b5

aT4x ≤ b4

P = {x | Ax ≤ b} .

69

Operations on Polyhedra

● Linear Transformation
– transform matrix

– O(n3)

● Minkowski Sum
– need to compute vertices

– O(exp(n))

● Intersection
– join lists of constraints

– O(1)

70

Zonotopes

● Central symmetric polyhedron

Z = (c, 〈v1, . . . , vm〉) =



c+

m∑

i=1

αivi | αi ∈ [−1,1]



 .

generators
center

center generators

zonotope
(2 dimensional)

71

Operations on Zonotopes

● Linear Transformation
– transform generators

– O(n2)

● Minkowski Sum
– join lists of generators

– O(1)

● Intersection
– Problem: intersection of zonotopes is not a zonotope

– overapproximate

Z ⊕ Z′ = (c+ c′, 〈v1, . . . , vm, v
′
1, . . . , v

′
m′〉)

ΦZ = (Φc, 〈Φv1, . . . ,Φvm〉)

72

Ellipsoids

● Quadratic form
– matrix or generator representation

E =
{
x | xTQx+Ax ≤ b

}
.

73

Operations on Ellipsoids

● Linear Transformation
– transform generators

– O(n2)

● Minkowski Sum
– Problem: result is not an ellipsoid

– overapproximate

● Intersection
– Problem: intersection of ellipsoids is not an ellipsoid

– overapproximate

74

Implementing Reachability

● Complexity of 1 Step of Time Elapse:
– Polyhedra: O(exp(n))

– Zonotopes: O(n2)

● Problem: With each iteration, ΩΩΩΩiiii get more complex

– Minkowski sum increases number of

• Polyhedra: constraints

• Zonotopes: generators

Ωk+1 = eAδΩk ⊕ V

75

Wrapping Effect

● Fight complexity by overapproximation

● Overapproximated Sequence

– accumulation of approximations → Wrapping Effect

– exponential increase in approximation error!

Ω̂k+1 = Approx (eAδΩ̂k ⊕ V)

76

Wrapping Effect

● Exact vs. overapproximation
– dimension 5 for 600 time steps

– overapproximation with 100 generators

77

Wrapping Effect

● How does error accumulate?
– linear transformation (scaling error up → exp)

– adding V is added (adding some more error)

Ω̂k+1 = Approx (eAδΩ̂k ⊕ V)

78

Wrapping Effect

Ω̂k+1 = Approx (eAδΩ̂k ⊕ V)

= eAδ
Ω0 V

79

Wrapping Effect

Ω̂k+1 = Approx (eAδΩ̂k ⊕ V)

Ω̂1

VΩ1

80

Wrapping Effect

Ω̂k+1 = Approx (eAδΩ̂k ⊕ V)

Ω̂2

VΩ2
eAδΩ̂1

81

Wrapping Effect

Ω̂k+1 = Approx (eAδΩ̂k ⊕ V)
Ω̂3

Ω3

eAδΩ̂2

not even
touching!
not even
touching!

82

Fighting the Wrapping Effect

● Separate transformations and Minkowski sums:

● 4 Sequences:

Ωk+1 = e(k+1)δAΩ0 ⊕ ekδAV ⊕
(
e(k−1)δAV ⊕ · · · ⊕ V

)
.

Ri+1 = eδARi,

Vi+1 = eδAVi,

Si+1 = Si ⊕ Vi,

Ωi+1 = Ri+1 ⊕ Si+1

R0 = Ω0, V0 = V , S0 = {0}

Ri+1

Si+1

Vi Si

83

4-Sequence Algorithm

● Only transformations in RRRRkkkk and VVVVkkkk

– complexity independent of k

– no overapproximation necessary

● Only Minkowski sum in SSSSkkkk and ΩΩΩΩkkkk

– growing number of generators, but no longer transformed

– O(Nn3) instead of O(N2n3)

Rk+1 = eδARk,

Vk+1 = eδAVk,

Sk+1 = Sk ⊕ Vk,

Ωk+1 = Rk+1 ⊕ Sk+1

84

4-Sequence Algorithm

● Use overapproximation with

– bounding box, octagonal, etc.

● No accumulation of error:

Rk+1 = eδARk,

Vk+1 = eδAVk,

Ŝk+1 = Ŝk ⊕ Approx (Vk),

Ω̂k+1 = Rk+1 ⊕ Ŝk+1

Approx (X)⊕ Approx(Y) = Approx (X ⊕ Y)

Ŝk = Approx (Sk)

Ω̂k ⊆ Approx (Ωk)

85

Fighting the Wrapping Effect

● Exact vs. overapproximation
– dimension 5 for 600 time steps

– overapproximation with bounding box

86

Experimental Results

● Time and memory for 100 steps

4-Sequence Zonotopes
4-Sequence Box

Zonotope, 20 Gen.

4-Sequence Zonotopes
4-Sequence Box

Zonotope, 20 Gen.

87

Outline

I. Hybrid Automata and Reachability

II. Reachability for Simple Dynamics
a) Linear Hybrid Automata

b) Piecewise Affine Hybrid Systems

III. Application to Complex Dynamics
a) Hybridization Techniques

b) Abstraction Refinement

88

In this Chapter…

● Complex nonlinear dynamics
– and how to overapproximate them with simpler dynamics

● How to keep approximation error small

● Strategic heuristics to improve performance

89

Hybridization

● Goal: Overapproximation of H with
– simpler dynamics

– approximation error ≤ ǫ

● Observation:
– approximation error depends on size of invariant in each location

● Approach:
– split locations until all invariants small enough

– overapproximate dynamics in each location

90

Splitting Locations

● same behavior as before if
– τ-transitions don’t change variables and are unobservable

– Inv ∪ Inv = Inv (and some details)

x ∈ Inv(l)
ẋ ∈ Flow(l, x)

x ∈ Inv 2(l)
ẋ ∈ Flow(l, x)

x ∈ Inv 1(l)
ẋ ∈ Flow(l, x)

ττ

91

Overapproximating Dynamics

● same or more behavior as before if

x ∈ Inv(l)
ẋ ∈ Flow(l, x)

x ∈ Înv(l)

ẋ ∈ F̂low(l, x)

Inv(l) ⊆ Înv(l)

Flow(l, x) ⊆ F̂low(l, x)

92

From Affine to LHA-Dynamics

ẋ ∈ Ax + B, B ⊆ Rn ẋ ∈ C, C ⊆ Rn

● By definition x ∈ Inv(l):
– overapproximation

● If B,Inv polyhedra
– C polyhedron

– O(exp(n))

C = {x′ | ∃x ∈ Inv(l) : x′ ∈ Ax + B}

93

From Affine to LHA-Dynamics

ẋ ∈ Ax + B, B ⊆ Rn ẋ ∈ C, C ⊆ Rn

94

Hybridization with LHA

● Bouncing Ball Dynamics

– dynamics of xxxx are affine (depend on vvvv).

● Invariant: x ≥ 0

– no restriction on v

– entire invariant reachable

ẋ = v
v̇ = −g

⇒ ẋ ∈ R

95

Hybridization with LHA

● Bouncing Ball Dynamics

● Split v–axis in K parts
– on bounded subset v ∈ [-2,2]

● Arbitrary accuracy for small enough K

ẋ = v
v̇ = −g

K →∞ ⇒ ẋ→ v

ẋ ∈ {v ± 4/K}

96

Hybridization with LHA

● Bouncing Ball – Reachable states for K=64:

97

Tunnel Diode Oscillator

● What are good parameters?
– startup conditions

– parameter variations

– disturbances

Tunnel
Diode

6

Vd

()
()inLCLL

LCdCC

VRIVI

IVIV

+−−=

+−=
1

1)(

&

&

98

Tunnel Diode Oscillator

R=0.20ΩΩΩΩ ⇒⇒⇒⇒ Oscillation

VC [V]

IL [mA]

Time [µs]

initial states

6

99

Tunnel Diode Oscillator

R=0.24ΩΩΩΩ ⇒⇒⇒⇒ Stable equilibrium

VC [V]

IL [mA]

Time [µs]

initial states

6

100

VC [V]

IL [mA]

()
()inLCLL

LCdCC

VRIVI

IVIV

+−−=

+−=
1

1)(

&

&

Tunnel Diode Oscillator

Tunn
el
Diode

• Oscillation
• Jitter
• …

Reachability Analysis

Formal Model

Analog/Mixed Signal Circuit

Guaranteed Safety Property

101

Reachability Analysis

1. Hybridization
– Partition State Space

(on the fly)

– Switching between

⇒ Hybrid System

VC [V]

IL [mA]

9

102

Reachability Analysis

1. Hybridization
– Partition State Space

(on the fly)

– Switching between

⇒ Hybrid System

2. Overapproximation
– Linear Hybrid Automata

⇒ Polyhedral enclosure
of actual trajectories

IL [mA]

VC [V]

vector field

9

103

Reachability Analysis

● Efficiency through
– adapting partitions to

dynamics

– overapproximation of
complex polyhedra with
simplified polyhedra

● Good performance
– Reachability with high

accuracy in 72s, 127MB
VC [V]

IL [mA]

Partition depending
on dynamics

10

104

Hybridization with LHA

● Problems with high accuracy
– requires small partitions

– small partitions → small fractional coefficients → large integer
representations

– complex dynamics → complex fixpoint

● Simplification of polyhedra needed
– must be overapproximations

105

1

1

y

x0

109 x 121 y 100

6 x 6 y ?6 x 6 y ?

1

1

y

x0

600

109
6 x 6 y

600

109
6 x 6 y

1

1

y

x0

6 x 6 y 66 x 6 y 6

1. truncate bits of
coefficients

2. push plane to
outside (solve LP)

3. snap to next
largest integer

7 bit7 bit

3 bit3 bit

12

Limiting the Number of Bits

106

Limiting the Number of Bits

1

1

y

x0

109 x 121 y 100

6 x 6 y ?6 x 6 y ?

1

1

y

x0

600

109
6 x 6 y

600

109
6 x 6 y

1

1

y

x0

6 x 6 y 66 x 6 y 6

1. truncate bits of
coefficients

2. push plane to
outside (solve LP)

3. snap to next
largest integer

7 bit7 bit

3 bit3 bit

● in practice large problems infeasible without

● guarantees termination

– finite number of possible constraints

● but: unbounded error

107

Limiting the Number of Constraints

● Reduce from m to z constraints

● Significance Measure f(m,d)

– Volume: exp

– Slack: LP

– max. angle: m 2d

⇒ - mini≠j ai
Taj

● Heuristics to choose constraints
– deconstruction:

drop (m-z) least significant

– reconstruction:
add z most significant

● Experiments: angle & reconstr.
– 1000 → 50 in 4 dim: < 2 sec.

(1000x faster than slack)

45° 15°

30°

45°

90°

135°A

B

C

D

E
F

45°

30°

45°

150°2

1

3

4

5 D

F

B

A

C

From 6 to 5 constraints

13

108

Clocked Tunnel Diode Oscillator

● 2-dim. oscillator
+ clock to measure bound

on cycle time
= 3-dim. system

Nonlinearity

x1

x1

x2

g(x1)

22

Vd [V]

IL [mA]

t [µs]

0.0

0.5

1.0

0.0

0

14.90
12.75

109

0 25 50 75 100 125
0

20

40

60

80

100

120

Iteration

M
ax

.
C

on
st

ra
in

ts

Max. # of Constraints

unlimited

limited

0 25 50 75 100 125
100

1000

10000

Iteration

M
ax

.
B

its

Max. # of Bits

unlimited

limited

Clocked Tunnel Diode Oscillator

● Limiting at every iteration bad
– prohibitively expensive

– convergence problems

● Trigger limiting at threshold
– 300 bits ⇒ 16 bits

– 56 constraints ⇒ 32 constraints

● Comparison for low accuracy:
– 12x faster, 20% memory

– Loss of accuracy: < 0.3%

23

110

Hybridization with LHA

● Problem with reachability computations:
– fixpoint may be complex

– or even not representable by finite number of polyhedra
(spirals…)

● Apply overapproximation techniques

● Splitting locations can “localize” error
– approximation error limited to invariant

– small invariant → small error

111

3rd-Order Delta Sigma Modulator

● Analog/Digital converter
– linear circuit + 1-bit quantizer

– 3 discrete-time integrators

● To show: quantizer input in [-2,2]

Monitor quantizer
input

Richard Schreier. The delta-sigma toolbox version 6.0, January 2003.

112

Symbolic Execution

● All runs of fixed length

– const. input, cont. set of initial states

● Advantage

– Find errors after few time steps

● Drawback

– Combinatorial explosion inherent in
switching algorithm prevents longer
horizons

x1

x3

x3

x2

189,4146min100PHAVer
No Failure

1160.17s15PHAVer
3minCheckMate

Failure Detected
Polyh.TimeDepth

Quantizer ok: x3 2 [-2,2]

0.6

-0.6

0

-1.5 0 1.0

-0.8 0 0.8
-1.0

0

1.0
Quantizer ok: x3 2 [-2,2]

113

Delta-Sigma Modulator – Variable Input

● All runs of fixed length
– cont. set of initial states

● Variable Input
– changing to arbitrary values at each

sampling step

– modeled using state variable
→ 4-dimensional system

– greatly increased complexity

x1

x3

x3

x2

94012min18PHAVer
No Failure, u ∈∈∈∈ [0.5,0.6]

464195s9PHAVer
Failure Detected, u ∈∈∈∈ [0,0.8]

Polyh.TimeDepth

Quantizer overload

Quantizer overload

114

Delta-Sigma Modulator - Reachability

● Infinite time horizon

● Compute convex hull
– cover state space, so eventually new states

will be contained

● Limit bits + constraints

● Localize overapproximation by partitioning
– otherwise too large in undesirable directions

● Computation: 34min, 224MB

Saturation Bounds

guaranteed

x1

x3

x3

x2

115

Nonlinear Dynamics

● Continuous Time System

● Hybridization
– partition state space (invariant) into small regions

– overapproximate with simpler dynamics in each region

ẋ = F (x)

116

Nonlinear Dynamics

● Continuous Time System

● Approximation with affine dynamics

● U modeling approximation error
– determine U such that

ẋ = F (x)

ẋ = Ax+ Bu, u ∈ U

F (x) −Ax ∈ BU

117

Van der Pool Oscillator

● Nonlinear Continuous Time System

● Reachability Analysis using Hybridization
– approximation with piecewise affine dynamics

– uniform triangular mesh, partition of size 0.05

– result used in detection of limit cycle

ẋ = y
ẏ = y(1− x2)− x

118

Van der Pool Oscillator

● Reachable states

119

Outline

I. Hybrid Automata and Reachability

II. Reachability for Simple Dynamics
a) Linear Hybrid Automata

b) Piecewise Affine Hybrid Systems

III. Application to Complex Dynamics
a) Hybridization Techniques

b) Abstraction Refinement

120

Forward/Backward Refinement - Principle

● To show:
– bad states not reachable

● Observation:
– Small partitions not leading to

bad states

● Solution:
– forward/backward between

initial and bad states

– smaller partitions at each step
Initial states

Final states

Reachable
states

Partitions

16

121

F/B-Refinement - Example

Step 1

a) Forward reachability

with coarse partition R1

final states

not reachable

final states

not reachable

Step 3

a) Restrict final states

and invariants to R2

b) Backward

reachability with

finer partition R3

Step 2

a) Restrict final states

and invariants to R1

b) Backward

reachability with

finer partition R2

17

122

Voltage Controlled Oscillator

● 3-dim. system with nonlinearity

● Goal: Show invariance of cycle

× No success after 20min, 1GB RAM

× 64x accuracy needed ⇒ 20h, 64GB?

15

123

F/B-Refinement of VCO

● F/B-Refinement
– final (forbidden) :=

states outside initial

– not reachable ⇒
any cycle passes
through
initial statesVC [V]

IL [mA]

final states

hybrid automaton

AB

C D

ii.

ii.

initial states

124

F/B-Refinement of VCO

● F/B-Refinement
– final (forbidden) :=

states outside initial

– not reachable ⇒
any cycle passes
through
initial states

● Success
– 11.5h, 1.7GB RAM

last iteration
vanishes

initial states

overapprox.
harmless

VD2

VD1

15

1

steps

hybrid automaton

AB

C D

ii.

125

Navigation Benchmark

● Fehnker, Ivancic.
Benchmarks for Hybrid
Systems Verification.
HSCC'04

● “Balloon driven by wind”

– moving object in plane

– 4-dimensional piecewise affine dynamics (position, velocity)

– equilibrium velocity depends on position

● Instances NAV01-NAV29 with increasing difficulty

● Verification Task: Reachability of forbidden states

initial
states

target states

forbidden
states

direction of
equilibrium
velocity

initial velocities

reachable
states

2

NAV02

126

Navigation Benchmark

“

“

-?-

152s 180MB

153s 68MB

34s

Pred. Abstr.
UPenn‘02

4x250MHz Sun

∞
∞

8s 48MB

6s 27MB

6s 27MB

5s 27MB

PHAVer
’05/’06

2.8GHz P4

∞
∞

1191s 16MB

78s 5MB

73s 5MB

5s 2MB

TimePass
Stanf. ’06

PIII(!)

46000s 529MB∞“NAV05

81s 52MBSept. ‘0575s“NAV04

48000s 575MB

33s 60MB

34s 60MB

32s 59MB

PHAVer
F/B-Ref.’05
2.8GHz P4

∞

10s

10s

5s

PHAVer
F/B-Ref.’05
3GHz Xeon

Raskin

Henzinger,

Doyen,

“

?

~150s

~30s

d/dt
Verimag

‘00

NAV03

NAV06

NAV02

NAV01

Tool

Instance

forbidden
states

initial
states

initial
velocities

NAV02 NAV04 NAV05

No results with: HyTech (‘95-’00, Henzinger)

CheckMate (’98-’05, CMU)

HSOLVER (’05, MPI)

19

127

Navigation Benchmark

“

“

-?-

152s 180MB

153s 68MB

34s

Pred. Abstr.
UPenn‘02

4x250MHz Sun

∞
∞

8s 48MB

6s 27MB

6s 27MB

5s 27MB

PHAVer
‘05/’06

2.8GHz P4

∞
∞

1191s 16MB

78s 5MB

73s 5MB

5s 2MB

TimePass
Stanf. ’06

PIII(!)

46000s 529MB∞“NAV05

81s 52MBSept. ‘0575s“NAV04

48000s 575MB

33s 60MB

34s 60MB

32s 59MB

PHAVer
F/B-Ref.’05
2.8GHz P4

∞

10s

10s

5s

PHAVer
F/B-Ref.’05
3GHz Xeon

Raskin

Henzinger,

Doyen,

“

?

~150s

~30s

d/dt
Verimag

‘00

NAV03

NAV06

NAV02

NAV01

Tool

Instance

forbidden
states

initial
states

initial
velocities

NAV02 NAV04 NAV05

Only results: PHAVer & TimePass

128

Navigation Benchmark

“

“

-?-

152s 180MB

153s 68MB

34s

Pred. Abstr.
UPenn‘02

4x250MHz Sun

∞
∞

8s 48MB

6s 27MB

6s 27MB

5s 27MB

PHAVer
‘05/’06

2.8GHz P4

∞
∞

1191s 16MB

78s 5MB

73s 5MB

5s 2MB

TimePass
Stanf. ’06

PIII(!)

46000s 529MB∞“NAV05

81s 52MBSept. ‘0575s“NAV04

48000s 575MB

33s 60MB

34s 60MB

32s 59MB

PHAVer
F/B-Ref.’05
2.8GHz P4

∞

10s

10s

5s

PHAVer
F/B-Ref.’05
3GHz Xeon

Raskin

Henzinger,

Doyen,

“

?

~150s

~30s

d/dt
Verimag

‘00

NAV03

NAV06

NAV02

NAV01

Tool

Instance

forbidden
states

initial
states

initial
velocities

NAV02 NAV04 NAV05

convergence problems → widening? [Halbwachs]
convergence problems → widening? [Halbwachs94]

129

Navigation Benchmark
NAV05

high accuracy
required

130

Bibliography

● Hybrid Systems Theory

– Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger, Pei-Hsin

Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. The algorithmic

analysis of hybrid systems. Theoretical Computer Science 138:3-34, 1995

– Thomas A. Henzinger. The theory of hybrid automata. Proceedings of the 11th Annual

Symposium on Logic in Computer Science (LICS), IEEE Computer Society Press,

1996, pp. 278-292

● Linear Hybrid Automata

– Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi, HyTech: The next

generation. RTSS’95

– Goran Frehse. PHAVer: Algorithmic Verification of Hybrid Systems past HyTech.

HSCC’05

131

Bibliography

● Affine Dynamics

– E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate Reachability Analysis of

Piecewise-Linear Dynamical Systems. HSCC’00

– A. Girard, C. Le Guernic, and O. Maler. Efficient computation of reachable sets of linear

time-invariant systems with inputs. HSCC’06

● Hybridization and Nonlinear Dynamics

– Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. Algorithmic analysis of

nonlinear hybrid systems. IEEE Transactions on Automatic Control 43:540-554, 1998

– E. Asarin, T. Dang, and A. Girard. Reachability Analysis of Nonlinear Systems Using

Conservative Approximation. HSCC’03

● Forward/Backward Refinement

– G. Frehse, B. H. Krogh, R. A. Rutenbar. Verifying Analog Oscillator Circuits Using

Forward/Backward Abstraction Refinement. DATE’06

132

Verification Tools for Hybrid Systems

● HyTech: LHA
– http://embedded.eecs.berkeley.edu/research/hytech/

● PHAVer: LHA + affine dynamics
– http://www-verimag.imag.fr/~frehse/

● d/dt: affine dynamics + controller synthesis
– http://www-verimag.imag.fr/~tdang/Tool-ddt/ddt.html

● Matisse Toolbox: zonotopes
– http://www.seas.upenn.edu/~agirard/Software/MATISSE/

● HSOLVER: nonlinear systems
– http://hsolver.sourceforge.net/

