
Pre-proceedings of
The First International Workshop on

Graphical Models for Security

GraMSec’14

Preface

The present volume contains the pre-proceedings of The First International Workshop on Graphical
Models for Security (GraMSec’14). The workshop was held in Grenoble, France, on April 12, 2014,
as one of the satellite events of The European Joint Conferences on Theory and Practice of Software
(ETAPS) 2014.

Graphical security models provide an intuitive but systematic methodology to analyze security weak-
nesses of systems and to evaluate potential protection measures. Such models have been subject of aca-
demic research and they have also been widely accepted by the industrial sector, as a means to support
and facilitate threat analysis and risk management processes.

The objective of the International Workshop on Graphical Models for Security is to contribute to the
development of well-founded graphical security models, efficient algorithms for their analysis, as well
as methodologies for their practical usage. The workshop brings together academic researchers and
industry practitioners designing and employing visual models for security in order to provide a platform
for discussion, knowledge exchange and collaborations.

Thirteen submissions were received by this first edition of GraMSec and each of them was reviewed by
at least three reviewers. Based on their quality and contribution to the field, six papers, presented in
this volume, were accepted for presentation at the workshop and inclusion in the final proceedings of
GraMSec’14.

We would like to thank all the authors for submitting their work to GraMSec’14 and the members of
the Program Committee as well as external reviewers for their efforts and high-quality reviews. We
are also grateful to the organizers of ETAPS 2014, especially to the Workshops Chair Axel Legay, for
accepting GraMSec’14 as an ETAPS-affiliated event and for providing a perfect environment for run-
ning the workshop. We would like to thank the Fonds National de la Recherche Luxembourg and the
European Commission’s Seventh Framework Programme for their partial sponsorship of the workshop
(FNR-CORE ADT2P grant and the EU FP7 grant no. 318003 TREsPASS). Finally, we are thankful to
the University of Luxembourg, the University of Twente, and Delft University of Technology for their in
kind contribution to GraMSec’14.

February 2014

Sjouke Mauw
Barbara Kordy
Wolter Pieters

GraMSec’14 Organizing Committees

General Chair
Prof. Dr. Sjouke Mauw, University of Luxembourg, Luxembourg

Program Co-chairs
Dr. Barbara Kordy, University of Luxembourg, Luxembourg
Dr. Wolter Pieters, Delft University of Technology and University of Twente, The Netherlands

Program Committee
Giampaolo Bella, University of Catania, Italy
Matt Bishop, University of California at Davis, USA
Stefano Bistarelli, University of Perugia, Italy
Mathias Ekstedt, KTH Royal Institute of Technology, Sweden
Donald Firesmith, Software Engineering Institute, USA
Virginia N. L. Franqueira, University of Central Lancashire, UK
Paolo Giorgini, University of Trento, Italy
Siv Hilde Houmb, Secure-NOK AS and Gjvik University College, Norway
Sushil Jajodia, George Mason University, USA
Henk Jonkers, BiZZdesign, The Netherlands
Jan Jürjens, Technical University Dortmund, Germany
Peter Karpati, Institute for Energy Technology, Norway
Dong Seong Kim, University of Canterbury, New Zealand
Gabriele Lenzini, University of Luxembourg, Luxembourg
Per Håkon Meland, SINTEF, Norway
Svetla Nikova, KU Leuven, Belgium
Andreas L. Opdahl, University of Bergen, Norway
Stéphane Paul, Thales Research and Technology, France
Milan Petkovic, Philips and Eindhoven University of Technology, The Netherlands
Ludovic Piètre-Cambacédès, EDF, France
Christian W. Probst, Technical University of Denmark, Denmark
William H. Sanders, University of Illinois, USA
Simone Sillem, Delft University of Technology, The Netherlands
Guttorm Sindre, Norwegian University of Science and Technology, Norway
Mariëlle Stoelinga, University of Twente, The Netherlands
Kishor S. Trivedi, Duke University, USA
Luca Viganò, King’s College London, UK
Lingyu Wang, Concordia University, Canada
Jan Willemson, Cybernetica, Estonia

External Reviewers
Elisa Costante, Eindhoven University of Technology, The Netherlands
Dennis Guck, University of Twente, The Netherlands
Hugo Jonker, University of Luxembourg, Luxembourg
Ali Koudri, Thales Research and Technology, France
Zhan Wang, George Mason University, USA

Papers Accepted to GraMSec’14

• Erlend Andreas Gjære and Per Håkon Meland
Threats Management Throughout the Software Service Life-Cycle

• Ludovic Apvrille and Yves Roudier
Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

• Stéphane Paul
Towards Automating the Construction & Maintenance of Attack Trees: a Feasibility Study

• Thomas Bauereiss and Dieter Hutter
Possibilistic Information Flow Control for Workflow Management Systems

• Cristian Prisacariu
Actor Network Procedures as Psi-calculi for Security Ceremonies

• Aitor Couce Vieira, Siv Hilde Houmb and David Rios Insua
A Graphical Adversarial Risk Analysis Model for Oil and Gas Drilling Cybersecurity

Pre-proceedings of
The International Workshop on Graphical Models for Security 2014

c© EA Gjære & PH Meland
This work is licensed under the
Creative Commons Attribution License.

Threats management
throughout the software service life-cycle

Erlend Andreas Gjære
SINTEF ICT

Trondheim, Norway
erlendandreas.gjare@sintef.no

Per Håkon Meland
SINTEF ICT

Trondheim, Norway
per.h.meland@sintef.no

Software services are inevitably exposed to a fluctuating threat picture. Unfortunately, not all threats
can be handled only with preventive measures during design and development, but also require adap-
tive mitigations at runtime. In this paper we describe an approach where we model composite services
and threats together, which allows us to create preventive measures at design-time. At runtime, our
specification also allows the service runtime environment (SRE) to receive alerts about active threats
that we have not handled, and react to these automatically through adaptation of the composite ser-
vice. A goal-oriented security requirements modelling tool is used to model business-level threats
and analyse how they may impact goals. A process flow modelling tool, utilising Business Process
Model and Notation (BPMN) and standard error boundary events, allows us to define how threats
should be responded to during service execution on a technical level. Throughout the software life-
cycle, we maintain threats in a centralised threat repository. Re-use of these threats extends further
into monitoring alerts being distributed through a cloud-based messaging service. To demonstrate
our approach in practice, we have developed a proof-of-concept service for the Air Traffic Manage-
ment (ATM) domain. In addition to the design-time activities, we show how this composite service
duly adapts itself when a service component is exposed to a threat at runtime.

1 Introduction

With the emerging paradigm of composite services, i.e. software services which are composed of func-
tionality provided by several services components, possibly involving several service providers, an attack
on a service component implies an attack on the composite service as a whole. Service compositions in
general are highly distributed and have a complex nature, exposing a greater attack surface than tradi-
tional stand-alone systems. To make this kind of services secure enough, it is vital to take a holistic
approach to how they are built, security-wise. This assumes incorporation of activities that deal with
threats at many stages throughout the life-cycle, comprising both design and development as well as the
runtime phase.

At design-time, we can utilise preventive activities for mitigating threats, and at runtime there should
be performed corrective activities to handle the residual threats. It is very optimistic to think that all
threats are known and correctly assessed from the very beginning, e.g. it is not given that we have
reliable knowledge of motivation and available resources for a potential attacker or enough resources to
implement preventive measures. What we do know, is that when a threat escalates, we need to make sure
that our organisation and the system(s) we are trying to protect are prepared to respond effectively.

Our main goal with this paper is to describe a process and tool-chain which combines threat mod-
elling with graphical goal and process models to derive preventive measures, such as security require-
ments for development, and also enables further corrective measures to be automatically applied at run-
time. We have chosen to support security analysis through activities and tools that are already adopted
and in use, although these have not necessarily been previously combined.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Threats management throughout the software service life-cycle

The details of our proposed approach is given in section 2, incorporating our Air Traffic Management
system case study. Through this we explain and demonstrate the use of a threat repository to facilitate
sharing and re-use of threats, goal-oriented modelling with threats, service design with BPMN, model
transformation, threat response recommendation, defining rules for dealing with escalations, and finally
runtime management of composite services. Section 3 discusses strengths and compromises made in this
approach, and section 4 concludes the paper.

Figure 1: A software life-cycle model showing how threats can be modelled and managed at design-time
and prepared for automated service adaptation at runtime.

2 Approach description

Figure 1 gives a visual overview of the threat management life-cycle, outlining both activities in the
process as well as data flow. Key to understanding the advantages of this holistic view are the threat
repository and notification services in the centre, which together connect the dots between the remaining

EA Gjære & PH Meland 3

components and stages. In the requirements engineering process we utilise goal-oriented modelling
(Socio-Technical Security modelling language, STS-ml [18]) to elicit and define security requirements.
Here we also instantiate some of the main threats to our system on an organisational/business level
of abstraction. Further, we use Business Process Model and Notation (BPMN) [13] for designing the
service process of a composite web service. At this stage we do not depend upon how the requirements
engineering has been done, but if STS-ml has been used, we can transform the goal models into process
models with some help from a software tool. The BPMN model defines a service process which can be
deployed and executed as a web service, and here should the threats be refined on a more technically
detailed level. Based on this, we can ask for accordingly technical countermeasures from the threat
repository. We can also define rules for responding to particular events, if we are able to monitor the
service components at runtime. Whenever an alert is received from the monitors, these rules will be
evaluated by a service runtime environment (SRE) tailored for this purpose. If is a match is found, a
re-composition can for example be triggered, replacing a service component instance with another one
providing similar functionality. Alternatively, one can move along in the life-cycle to re-design of the
system and/or the particular service.

2.1 Case study: Air Traffic Management

For demonstrating our proof-of-concept, we have chosen a case study based on Air Traffic Management
(ATM). The European air navigation services and their supporting systems are currently undergoing
a paradigm shift, most notably through the System Wide Information Management (SWIM) [6]. Go-
ing from numerous incompatible stand-alone systems, SWIM enables cross-border collaboration and
data exchange between many systems and organisations with its service oriented architecture (SOA)
approach. This raises prospects for an expansive registry of composite services, which hopefully will
contribute to maximizing efficiency of the airspace with time. The service we demonstrate is one that
gathers various information about an airport to be used e.g. in the cases when a pilot wants a fresh report
on the flight’s destination. As seen from the perspective of this service provider, further details on this
composite service sample is provided along with the description of each step in our approach below.
Security-experts from three ATM organisations were involved in the modelling, using already defined
security requirements and system specifications from the SESAR project [17] through which SWIM is
developed. However, the models provided in this paper only represent a limited excerpt of the SWIM
system model, and the demonstrator we have implemented is not based on service components actually
provided through SWIM. Work on collecting and analysing feedback from the actual case study users is
yet to be completed, and results as such are hence not considered in this paper.

2.2 Knowledge management through a threat repository

Every part of our approach is tied together by the concept of having a centralised repository of threats
[9]. While threats can always be created and modelled independently in the different diagram types that
we use, a persistent threat repository provides better conditions for import and re-use of threats [12]. It is
of essence here that each threat in the threat repository is associated with a unique threat identifier (ID),
and that this threat ID is stored along with the threats in the various diagrams we create. This allows the
tools to always access (meta-) information on threats stored in the repository, and for the threats to be
passed between the models and pushed further through deployment into the runtime phase.

In our proof-of-concept, we have utilised an existing online threat repository service [16], providing
an application programming interface (API) for accessing its large collection threats externally. The API

4 Threats management throughout the software service life-cycle

offers functionality for searching for threats in terms of their name, class (business-level or operational
level), or business domain tags. Some additional meta-data may also be available, such as a textual
description and links to further information resources. For the two graphical modelling tools we present
below, we have implemented a plug-in that takes advantage of this API, as shown in Figure 2. In addition
to the API, we have access to a web-based user interface which allows more info to be looked up on each
threat, including suggestions for countermeasures and relationships with other threats. A threat uploader
tool has also been developed for adding new threats to the threat repository, using existing diagrams.

Figure 2: Importing a domain-specific threat from the threat repository into a graphical model.

Threats related specifically to ATM are found in the threat repository under the business domain
selector Air Traffic Management. These threats can both be general ones that are known to also apply in
that particular domain, such as Gain access to server, as well as threats more specific to ATM only – e.g.
A/G SWIM Access Point Denial of Service. Generic high-level threats, like Tampering, can for instance
be specialised into a domain specific threat such as False airport coordinates.

2.3 Requirements engineering

While requirements engineering can take many shapes and forms, graphical goal-oriented modelling
is an approach well suited for complex and distributed socio-technical systems (of systems) [14, 15].
Where goals justify why the system and its functions are needed, threats justify why security for the
system is needed.

In the STS model from our case study, depicted in Figure 3, we see that the pilot’s request for a
destination report is transmitted to SWIM rather than directly to a specific service provider. Since the
requesting aircraft’s destination is information already known inside SWIM, the request is complemented
with this information here. Through its service registry, SWIM can select and invoke an actual service

EA Gjære & PH Meland 5

Figure 3: Goal-oriented model (STS-ml) of the airport report service – the red triangles are threats.

provider on behalf of the pilot/aircraft, possibly depending on the particular destination’s location. The
airport report contains various local information on the airport, along with weather conditions and a map
onto which various local observations (e.g. wind meter readings, contaminations) are plotted. Threats
from the perspective of the airport report provider, would in this case be any kind of tampering with
externally acquired data or unavailability of any of the service components, which might hold them
accountable for impacting flight safety. A threat worth including could also be denial of service within
the SWIM area of responsibility, since that could block an airport report to arrive timely on the provider’s
behalf – although not being the airport report service provider’s actual responsibility in the end.

Supported by the STS-Tool [18], we are able to both perform both graphical modelling as well as
advanced formal analyses of the models. This includes checking consistency and detecting conflicts
between goals and requirements, as well as analysing (visually in the model) how threats can propagate
throughout the modelled system [11]. The STS-Tool also supports generating a security requirements
document which contains the information we have added on threats. In addition, the document generator
performs the aforementioned threat propagation analysis so that the results can be output in textual form,
as shown in Figure 4. In our case specifically, the A/G SWIM Access Point Denial of Service threat
does not have a propagated impact, and is hence not mentioned in the document, as it is directed at an
actor external to the modelled system owner. Although not implemented, the document generator could
potentially use the threat IDs provided in the model to look up information on countermeasures, and
hence include that in the document for further reference.

2.4 Service design

In the BPMN model, we specify the process flow which our composite service shall follow. Herein lies
the advantage of standardised BPMN as the service process language, that the graphical models translate
into well-defined execution semantics, which in turn can be executed in business process model engines
as a web service. Although BPMN has no explicit language construct for threats, we have in previous
work concluded that e.g. the standard ErrorBoundaryEvent element can be used for representing threats

6 Threats management throughout the software service life-cycle

Figure 4: Propagation of threats can be analysed with the generated security requirements document.

[10].
While our BPMN model in Figure 5 may appear similar to the STS model, the service tasks (yellow

boxes) now represent atomic components of a process, unambiguously ordered as an executable process
flow. Moreover, each service task implies a single invocation of a particular web service, taking process
variables as (optional) input to operations defined by each service components’ web service definition
file (Web Service Definition Language, WSDL [20]). Although not visible in the model, the first service
task, Airport geocoding, takes as input the IATA code of an airport (e.g. FCO for Rome, Fiumicino) and
queries a public airport information service. The returned value, which is also defined by the component’s
WSDL file, should be a pair of coordinates which pinpoint the airport’s geographical location. These
coordinates are in turn used as input for the following two tasks, which can be done in parallel, namely
to obtain the weather and any local observations from/surrounding the location in question. A fourth
service takes care of plotting the gathered information on a map, whereas the final (internally maintained)
service wraps up and creates the report data to be returned to the pilot’s application.

Figure 5: Service process specified in BPMN, using standard ErrorBoundaryEvent elements for threats.

We have extended the Activiti Designer tool [1], built as a plug-in for the Eclipse IDE [8], in order
to support our BPMN modelling. We have chosen to store the threat ID in the BPMN 2.0 XML file, as
shown in Figure 6, which is in line with the standard. This results in compatibility between different
modelling tools, at least when it comes to portability of the graphical model. What is not part of BPMN
is functionality for producing several alternative composition plans, i.e. alternative combinations of
service components, that each provide the very same functionality [21]. This is possible when you have

EA Gjære & PH Meland 7

Figure 6: Using an ErrorEventDefinition XML-element with errorRef attribute to store the threat ID.

more than one possible candidate services for a service task, while still maintaining the required level of
functionality. In our proof-of-concept, we have two candidates for the map service. The total number of
composition plans equals the Cartesian product of all service component candidates for all service tasks,
i.e. all possible combinations of service implementations. These different composition plans can in turn
be ranked against one or several criteria, such as level of trustworthiness, quality-of-service, etc., if this
information is maintained on behalf of the components [4, 5].

2.4.1 Model transformation

In order to support security information from the requirements engineering phase to be maintained at
development time, essential parts from the goal models are possible to transform into a simple process
model skeleton. The STS-Tool is not only, as previously described, able to output a textual description
of the security requirements and threats. The STS-models can also be output to a machine-readable
security requirements specification (SRS) format for use in the transformation. Although there is no
way to completely automate the transformation from STS to BPMN, a transformation tool can provide
a structured way to manually support selection of threats that are relevant for the service process model
[2], as shown in Figure 7.

Figure 7: Tool-supported model transformation of threats from STS-ml (via SRS) to BPMN.

Transformation of STS-ml threats into BPMN threats is preferable in cases where we have input
from monitors that can give the modelled threats a meaningful role at runtime. An advantage of the tool-

8 Threats management throughout the software service life-cycle

supported model transformation is that the threat ID, which enables linking a modelled threat to the threat
repository, can be conveniently transferred between the models. In that way, any further transformation
and use of the threat can be done with support from the threat repository, and the information always to
be found here.

In our case study, we have Unavailable component as a threat in the goal model, which can be
specialised into e.g. a DDoS attack on service component threat in the service process. This threat can
be fairly easy to monitor, and we hence are potentially able adapt our service in case this threat escalates.

2.4.2 Threat response recommendations

A separate component, also integrated with the online threat repository, implements logic and knowledge
to find and recommend possible mitigations for threats [3]. These countermeasures can potentially be
provided in various formats, ranging from textual descriptions to actual code or services.

Figure 8: Threat ID is maintained so the service process modelling tool can ask for countermeasures.

In order to obtain the threat response recommendations, the threat IDs are gathered from the BPMN
diagram and the relevant ErrorBoundaryEvent elements. Again, the threat ID is input to the threat
repository, and returned are the countermeasures. As there may be several countermeasures available for
each threat, the various options are ranked before being presented to the service designer.

2.4.3 Rules definition

Not only finding appropriate countermeasures, but actually implementing those that are appropriate, is
essential to improve security of the service. Based on threats defined in the diagram and any other events
that are monitored and one can be notified about, rules can be defined to address the scenarios we are
able to foresee. Rules assume some kind of monitoring in place to provide actual value, but as long as the
format can match what the SRE is able to interpret from the individual monitors, the rules are in practice
agnostic to monitoring implementations.

The service tasks form the basis for defining such rules, as shown in Figure 9. The tasks are both
accurate in targeting the rule’s scope, yet independent of the actual service implementation we choose.
Therefore, we do not need to define individual rule-sets for each potential composition plan.

In our case study service process we have already modelled a DDoS-attack occurs on service com-
ponent threat, and this can be addressed by choosing Threat level change as the event type, and then
selecting the service task it applies to. For values in the rule, we choose a decimal number between 0 and
1 (inclusive). This matches our threat monitoring module, which can send alerts with probability value
for the escalation of threats [3]. Further, in the scope section of the rule editor, it is possible to define
where in the process the rule shall apply. If a particular threat escalates for a component, we might not
need to perform reactive measures unless it happens before, after or during the execution of a particular

EA Gjære & PH Meland 9

Figure 9: Threat ID appears in rule editor when threatened task is selected as basis for a new rule.

task in our process. Anyhow, we have several options for also defining the action to perform when the
rule is matched, such as simply stopping the service execution (and further provision), or trying to re-
compose or reconfigure the service. We also have an option to launch an additional service process, e.g.
one that might initiate hardening of other parts of the system, and/or send notification messages to clients
and/or service technicians. In the end, we might end up with a list of several rules for several service
tasks, or simply one for the one we have defined in our case study, as shown in Figure 10.

Figure 10: A rule has been defined for responding to a DDoS-attack on the map service.

2.5 Runtime management

2.5.1 Notifications

In order to operate a self-adapting service infrastructure at runtime, a commonly supported system for
machine-to-machine (M2M) messaging is needed. Since there may be an endless number of services
and SREs utilising this infrastructure, we cannot provide all messages to everyone. A publish-subscribe
pattern is rather suitable, since we already define rules for what we need to respond to. Hence, appropriate
subscriptions can be derived automatically from these rules and registered by the SRE. The SRE will then
receive notifications only as specified, although the granularity of the rules will determine the relevance
of e.g. slight variations in threat level probabilities (not all changes will actually trigger an action).

10 Threats management throughout the software service life-cycle

The SRE in our proof-of-concept creates subscriptions based on the rules which are attached to ser-
vice deployment. It receives notifications according to the subscriptions, and whenever such notifications
arrive, all rules are being checked for a match. The messaging system is based on Apache ActiveMQ
[7], which utilises the Java Messaging Standard (JMS) to provide compatibility for many platforms and
alternative protocols. ActiveMQ subscriptions are registered with a centralised broker, or network of
brokers for horizontal scalability, since it is the broker(s) that deal with receiving and dispatching the
notifications to all subscribers. Our broker is in addition deployed on a cloud-based infrastructure, for
further increased scalability. In addition to threat level changes, we have implemented support for no-
tifications about changes in trustworthiness, service contract violations, security properties of service
components, service runtime context, and service component changes. The notifications are delivered on
a best-effort basis, and may of course arrive too late in some cases (depending on how quickly a problem
is discovered and duration of the attack).

Figure 11: The SRE has replaced the Google map service with Bing Maps through a recomposition.

2.5.2 Dynamic adaptation

Since a threat monitor has now purportedly detected that the original map service used in our case study
is hit by a DDoS-attack, the SRE becomes notified about this through the notification service. In order
to trigger events in the self-configuring service process, the SRE must naturally be able to receive such
notifications and align these with the previously defined and deployed rules. As it finds a match with
the rule we defined earlier on DDoS-attacks, the SRE initiates the specified action according to that rule,
which is here to try a recomposition.

Since we had support for two different map services providing the same functionality, we have pre-
pared an additional composition plan for the airport report service. When the notification concerning a
DDoS-attack on the map service is triggered and received by the SRE, the first plan no longer satisfy

EA Gjære & PH Meland 11

our security requirements through verification [22]. Since the rule in Figure 10 provides the match, a
recomposition is initiated accordingly. The original composition plan with the DDoS-ed map service
will be ignored, and the second plan becomes the top-ranked one based on a chosen ranking criteria.
The recomposition proceeds with deploying the second composition plan, containing the alternative map
service instead of the original one. Nevertheless, the same level functionality is provided, as illustrated
with Figure 11 where the airport reports, before and after recomposition, are lined up next to each other.
Before the new composition is deployed, the SRE invokes a runtime verification, and the time this takes
depends on the complexity of the composition. This is a well-known scalability issue associated with
any kind of runtime adaptation.

3 Discussion

An obvious shortcoming to our approach is that we do not integrate a proper information security risk
assessment anywhere. This is usually where threats are actually identified in a systematic manner, and
where they are ranked in the order of overall risk. With this approach, we do assume that such risk
assessment activities are already taking place, and that the results from these are actively used to enrich
the goal and service process models. However, we also suggest that enrichment can also occur in the op-
posite direction, so that threat discoveries made during the requirements engineering and service design
process can indeed enrich the identification phase of a risk assessment. If tool-support is to be added
for this interactivity, it is indeed possible to use the threat repository service for exchanging the threat
information between applications.

In terms of threats within the service process model, we have been forced to make a pragmatic
compromise. Since BPMN is a process language, it is capable of defining an entire process as it is
intended to flow, however not without language constructs for handling quite a few exceptions. Threats
also provoke exceptions to normal flow, and although explicitly missing from the language, we have
earlier concluded that the graphical language itself is even capable of representing what is needed here
[10]. Still, we found that runtime support for handling externally triggered notifications on the process
level is not handled in BPMN software tools such as the Activiti process engine. That is the reason we
developed a custom plug-in for the SRE, and consequently a compatible rule editor was developed and
integrated into the BPMN tool as well.

Another limitation with the tool-set we present, is that process diagrams are not supported with
automatic reflection of changes in the goal diagrams. This may impact an iterative process which goes
back and forth between goals and process models. Mitigating this problem through re-transformation
is possible, albeit not very appealing, since any process information that is not part of the goal diagram
and its security commitments will be lost. Our transformation tool is however capable of comparing any
BPMN-diagram with a security requirements specification document, in order to point out nonconformity
with the original security requirements. While not yet implemented, this tool could in theory be made
capable of also including threats in the analysis, and point out which threats are missing in the BPMN-
diagram. The problem here is however if a business-level threat from the goal model, such as “Integrity
error”, has been manually sub-typed by the process designer to either one or several operational-level
threats, e.g. “Checksum mismatch” or “Certificate verification failed”. Our threat repository does not
express a hierarchy of the threats, and we cannot automatically trace neither the parent from a child
nor the children of a parent. It is not always straightforward to create such threat hierarchies either, in
particular when a child has several parents.

The main motivation for threat modelling described in this paper is related to preventive and correc-

12 Threats management throughout the software service life-cycle

tive measures for design-time creation and runtime execution of composite services. Another significant
motivation that we have not delved into here is the need for engineers and business-people to commu-
nicate better around security when systems are designed and implemented, as pointed out by Wolter et
al. [19]: “It is evident that both security and business domain experts need to be able to define their secu-
rity goals collaboratively on a common abstraction level”. For this we believe that the use of threats in
well-defined graphical modelling languages, such as STS-ml and BPMN can be a positive contribution.
We currently have ongoing work on practical evaluation of the presented tools and services within the
ATM domain (and others), along with other functionality on security requirements management which
is out of scope for this paper. Through this evaluation we hope to gain more knowledge on what will
be necessary for a broad uptake of such an approach to managing threats. Along with the already avail-
able STS-Tool [18], the described software modules will eventually be released as part of our extended
BPMN tool, and/or as online services.

4 Conclusion

We have demonstrated how graphical threat modelling can benefit design-time mitigation and runtime
correction of unwanted incidents. Though a service may be regarded as secure enough in the early
life-cycle phases, risks are not static, and threats, vulnerabilities, probabilities and consequences can
change abruptly. Tool-support is therefore essential to be able to analyse which measures to implement
at design-time, and create mechanisms to handle the residual ones at runtime through e.g. automatic
adaptation.

An essential part of the tool-chain we have presented is the use and re-use of threats through a shared
threat repository that many tools are able to interface with. Having a common reference on the name,
nature and mitigation options for the threats has been valuable to us both during the graphical modelling
at design-time and for runtime alert messaging and response. By basing our work on existing languages
and tools, we believe that chances of uptake is significantly larger compared to a comprehensive tool-set
built from scratch. However, this also means that some transitions between the tools can be seen as a
bit cumbersome. For our future work we seek to gain more knowledge on usability and integration with
existing risk assessment methods that should complement the threat modelling.

5 Acknowledgement

The authors would like to thank in particular Francesco Malmignati, Balazs Kiss, Mauro Poggianella,
Mattia Salnitri, Eider Iturbe and Konstantinos Giannakakis for their technical work related to enabling
our proof-of-concept implementation. The research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7/2007-2013) under grant no 257930 (Aniketos).

References

[1] Activiti (2013): Activiti BPM platform website. Available at http://www.activiti.org/.

[2] Aniketos project (2013): Deliverable 5.2 Initial ANIKETOS platform integration. Technical Report. Avail-
able at http://www.aniketos.eu/content/deliverables.

[3] Aniketos project (2013): Deliverable D4.3 Algorithms for responding to changes and threats. Technical
Report. Available at http://www.aniketos.eu/content/deliverables.

http://www.activiti.org/
http://www.aniketos.eu/content/deliverables
http://www.aniketos.eu/content/deliverables

EA Gjære & PH Meland 13

[4] Achim Brucker & Isabelle Hang (2013): Secure and Compliant Implementation of Business Process-
Driven Systems. In: Business Process Management Workshops, Lecture Notes in Business Information
Processing 132, Springer Berlin Heidelberg, pp. 662–674. Available at http://dx.doi.org/10.1007/
978-3-642-36285-9_66.

[5] Achim D. Brucker, Francesco Malmignati, Madjid Merabti, Qi Shi & Bo Zhou (2013): A Framework for
Secure Service Composition. In: ASE/IEEE International Conference on Information Privacy, Security,
Risk and Trust (PASSAT), IEEE Computer Society, Los Alamitos, CA, USA. Available at http://www.
brucker.ch/bibliography/abstract/brucker.ea-framework-2013.

[6] Eurocontrol (2014): System Wide Information Management (SWIM). Available at http://www.

eurocontrol.int/swim.

[7] The Apache Software Foundation (2013): Apache ActiveMQ website. Available at http://activemq.
apache.org/.

[8] The Eclipse Foundation (2013): Eclipse IDE downloads website. Available at http://www.eclipse.org/
downloads/.

[9] Per Håkon Meland, Shanai Ardi, Jostein Jensen, Erkuden Rios, Txus Sanchez, Nahid Shahmehri & In-
ger Anne Tøndel (2009): An Architectural Foundation for Security Model Sharing and Reuse. In:
Availability, Reliability and Security, 2009. ARES ’09. International Conference on, pp. 823–828,
doi:10.1109/ARES.2009.110.

[10] Per Håkon Meland & Erlend Andreas Gjære (2012): Representing Threats in BPMN 2.0. In: ARES, IEEE
Computer Society, pp. 542–550. Available at http://doi.ieeecomputersociety.org/10.1109/ARES.
2012.13.

[11] Per Håkon Meland, Erlend Andreas Gjære & Stephane Paul (2013): The Use and Usefulness of Threats
in Goal-Oriented Modelling. In: Availability, Reliability and Security (ARES), 2013 Eighth International
Conference on, pp. 428–436, doi:10.1109/ARES.2013.57.

[12] E. Oladimeji, S. Supakkul & L. Chung (2006): Security threat Modeling and Analysis: A goal-oriented
approach.

[13] OMG (2011): Business Process Model and Notation (BPMN) Version 2.0. Available at http://www.omg.
org/spec/BPMN/2.0/.

[14] Elda Paja, Fabiano Dalpiaz, Mauro Poggianella, Pierluigi Roberti & Paolo Giorgini (2012): STS-Tool: Using
Commitments to Specify Socio-Technical Security Requirements. In: Advances in Conceptual Modeling,
Lecture Notes in Computer Science 7518, Springer Berlin Heidelberg, pp. 396–399. Available at http:
//dx.doi.org/10.1007/978-3-642-33999-8_48.

[15] Elda Paja, Fabiano Dalpiaz, Mauro Poggianella, Pierluigi Roberti & Paolo Giorgini (2013): Specifying and
Reasoning over Socio-Technical Security Requirements with STS-Tool. In: ER, pp. 504–507. Available at
http://dx.doi.org/10.1007/978-3-642-41924-9_45.

[16] SHIELDS project (2013): Security Vulnerability Repository Service (SVRS). Available at https://svrs.
shields-project.eu/SVRS/.

[17] SESAR Joint Undertaking (2014): Single European Sky ATM Research (SESAR). Available at http://www.
sesarju.eu.

[18] University of Trento (2013): Website of the Socio-Technical Security modelling language and tool. Available
at http://www.sts-tool.eu/.

[19] Christian Wolter, Michael Menzel, Andreas Schaad, Philip Miseldine & Christoph Meinel (2009): Model-
driven business process security requirement specification. Journal of Systems Architecture 55(4), pp. 211–
223.

[20] World Wide Web Consortium (W3C) (2013): Web Services Description Language (WSDL) 1.1. Available at
http://www.w3.org/TR/wsdl.

http://dx.doi.org/10.1007/978-3-642-36285-9_66
http://dx.doi.org/10.1007/978-3-642-36285-9_66
http://www.brucker.ch/bibliography/abstract/brucker.ea-framework-2013
http://www.brucker.ch/bibliography/abstract/brucker.ea-framework-2013
http://www.eurocontrol.int/swim
http://www.eurocontrol.int/swim
http://activemq.apache.org/
http://activemq.apache.org/
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://dx.doi.org/10.1109/ARES.2009.110
http://doi.ieeecomputersociety.org/10.1109/ARES.2012.13
http://doi.ieeecomputersociety.org/10.1109/ARES.2012.13
http://dx.doi.org/10.1109/ARES.2013.57
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://dx.doi.org/10.1007/978-3-642-33999-8_48
http://dx.doi.org/10.1007/978-3-642-33999-8_48
http://dx.doi.org/10.1007/978-3-642-41924-9_45
https://svrs.shields-project.eu/SVRS/
https://svrs.shields-project.eu/SVRS/
http://www.sesarju.eu
http://www.sesarju.eu
http://www.sts-tool.eu/
http://www.w3.org/TR/wsdl

14 Threats management throughout the software service life-cycle

[21] Bo Zhou, David Llewellyn-Jones, Qi Shi, Muhammad Asim & Madjid Merabti (2013): Prototype for design-
time secure and trustworthy service composition. In: Consumer Communications and Networking Confer-
ence (CCNC), 2013 IEEE, pp. 847–848, doi:10.1109/CCNC.2013.6488561.

[22] Bo Zhou, David Llewellyn-Jones, Qi Shi, Muhammad Asim, Madjid Merabti & David Lamb (2012): Secure
Service Composition Adaptation Based on Simulated Annealing. In: 6 th Layered Assurance Workshop,
p. 49.

http://dx.doi.org/10.1109/CCNC.2013.6488561

Pre-proceedings of
The International Workshop on Graphical Models for Security 2014

c© L. Apvrille, Y. Roudier
This work is licensed under the
Creative Commons Attribution License.

Towards the Model-Driven Engineering of Secure yet Safe
Embedded Systems

Ludovic Apvrille
Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI

Sophia Antipolis, France
ludovic.apvrille@telecom-paristech.fr

Yves Roudier
EURECOM

Sophia Antipolis, France
yves.roudier@eurecom.fr

We introduce SysML-Sec, a SysML-based Model-Driven Engineering environment aimed at foster-
ing the collaboration between system designers and security experts at all methodological stages of
the development of an embedded system. A central issue in the design of an embedded system is
the definition of the hardware/software partitioning of the architecture of the system, which should
take place as early as possible. SysML-Sec aims to extend the relevance of this analysis through
the integration of security requirements and threats. In particular, we propose an agile methodology
whose aim is to assess early on the impact of the security requirements and of the security mech-
anisms designed to satisfy them over the safety of the system. Security concerns are captured in a
component-centric manner through existing SysML diagrams with only minimal extensions. After
the requirements captured are derived into security and cryptographic mechanisms, security proper-
ties can be formally verified over this design. To perform the latter, model transformation techniques
are implemented in the SysML-Sec toolchain TTool in order to derive a ProVerif specification from
the SysML models. An automotive firmware flashing procedure serves as a guiding example through-
out our presentation.

1 Introduction

Most contributions around Model Driven Engineering (MDE) now offer appropriate methodologies and
modeling environments for designing safe, complex, distributed, and real-time embedded systems. The
analysis of timing constraints, scheduling, resource allocation, and concurrency are commonly handled
by these environments. In contrast, security has long been considered in retrospect, especially after seri-
ous flaws were discovered in computerized systems. Security as well as privacy issues have in particular
only recently become a major concern in embedded systems. However, the size, heterogeneity, and com-
munication features of modern embedded systems make it compelling to develop a suitable engineering
environment to more explicitly define security objectives and threats, to implement countermeasures with
security mechanisms, and to assess or even formally prove the effectiveness of security countermeasures.

We introduce SysML-Sec, a SysML-based Model-Driven Engineering environment aimed at fos-
tering the collaboration between system designers and security experts at all methodological stages of
the development of an embedded system. SysML-Sec introduces both customized SysML diagrams for
security matters and an associated methodology. The SysML-Sec methodology includes three SysML-
based stages. (i) System analysis starts with a partitioning-based process in which security requirements
and threats can be identified together with functional features of the system. (ii) System design focuses
on software-implemented security mechanisms. Finally, (iii) System validation intends to formally ver-
ify, simulate, and test the models built at previous stages by relying on model transformation techniques.
This paper presents the overall methodology, with a particular focus on the design and proof of security
mechanisms.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

The SysML-Sec methodology and diagrams have been developed and experimented in the scope of
the FP7 European project EVITA, which resulted in the design and implementation of a secure architec-
ture for automotive embedded systems. The definition, design, and validation of this architecture was
performed with the methodology that is presented in this paper. Thus, more than 20 use cases (notably
an emergency braking use case) were taken into account for that purpose. The diagrams in this paper are
directly excerpted from the EVITA ”firmware flashing” case study.

2 Context: embedded systems

2.1 Designing embedded systems

IT systems are commonly designed following a V-cycle, with building stages (requirements, analysis,
design, deployment) followed with verification stages (e.g., tests, formal proofs). For embedded systems,
the V-cycle can obviously start only once functions have been partitioned into software and hardware.
System partitioning usually relies on the Y-chart approach [7]. This is the very first step to co-design
software and hardware functions on the one hand, and the hardware architecture (defined in terms of
execution, communications, and storage) on the other hand. The result of this process is an optimal
hardware / software architecture with regards to criteria at stake for that particular system (e.g., cost,
performance, etc.). In the scope of the DIPLODOCUS environment [4], on top of which SysML-Sec is
built, the Y-Chart is implemented as follows:

1. Applications are first described as abstract communicating tasks: tasks represent functions inde-
pendently from their implementation form.

2. Hardware architectures are described as a set of abstract execution nodes (e.g., CPU with operating
systems and middleware, hardware accelerators), communication nodes (e.g., buses), and storage
nodes (e.g., memories).

3. A mapping model [7] defines how tasks and communications between tasks are assigned to com-
putation and communication / storage elements, respectively. Tasks are also partitioned between
hardware and software. For example, a task mapped on a hardware accelerator is a hardware-
implemented function whereas a task mapped over a CPU is a software implemented function.

This partitioning process is of utmost importance. Indeed, if critical high-level design choices are
invalidated afterwards because of late discovery of issues (performance, power, etc.), then it may induce
prohibitive re-engineering costs and late market availability.
DIPLODOCUS relies on the SysML allocation mechanisms for the mapping stage. The UML deploy-
ment diagram might be a good candidate for this, but it is rather used for the deployment of already-
designed software functions: ”the assignment of software artifacts to nodes”, as stated in the UML
standard. In DIPLODOCUS, functions may be fully hardware implemented. Moreover, they are highly
abstracted, that is, we do not map any concrete artifacts (e.g., a source file), but only high-level functional
elements.

2.2 Security issues in embedded systems

An increasing number of embedded systems have become communicating artifacts, feature new interac-
tions with their immediate environment or with backend systems, and are thus exposed to criminals. For
example, attacks have been shown to be possible on set-top boxes like Microsoft’s XBox [16] or ADSL
routers [6], mobile appliances [13], avionics [34], or automotive systems [15] to cite but a few. Many

L. Apvrille, Y. Roudier 3

of these security issues reflect either the exploitation of low-level vulnerabilities, which might often be
addressed with appropriate programming practices and specific component tests, or design flaws due to
an insufficient understanding of the mapping of functional or security logical components to the hard-
ware architecture. We claim that the SysML-Sec Model-Driven Engineering approach makes it possible
to perform an appropriate system analysis, design and proof in both directions, and to describe both
security threats and security objectives and to further prove whether their are well handled at system
design.

3 SysML-Sec: an Overview

3.1 Rationale

We designed the SysML-Sec environment in order to make it possible to describe security issues to-
gether with partitioning requirements, as further discussed in [30]. In particular, our extensions bridge
the gap between goal-oriented descriptions of security requirements and attacks, and the fine-grained
representation of assets based on the software / hardware architecture (and their model-driven analysis).
SysML-Sec also supports phases of the V-cycle after the partitioning stage, and notably the design of the
software-partitioned functions1. The main objectives of SysML-Sec are:

• Guiding and increasing the collaboration between system engineers and security experts through-
out the entire embedded system lifecycle. This has been the reason for our adoption of the OMG
standards, and more specifically SysML, which are quite widespread in the embedded system
world today.

• Providing detailed representations of the security threats and security requirements compatible
with the MDE methodology used and making it possible to adopt a stepwise refinement approach
to the definition of both the functional and the security architecture. This refinement should also
make it possible to bridge the gap between initial high-level requirements and the definition of
precise and detailed security mechanisms later on.

• Combining software/hardware codesign together with the handling of security concerns. We con-
tend that this particular design objective is a key in the embedded system domain.

• Offering simulation and formal verification capabilities at system partitioning, system design,
which constitute two critical phases of embedded system engineering. At the system partition-
ing level, simulations help assess the impact of security features on the system performance, e.g.,
the impact of a security protocol on a bus load. At the system design level, formal verification
intends to prove whether threats are correctly handled.

3.2 Methodology

The SysML-Sec methodology adopts a three-phase approach that first deals with the system analysis,
then with software design, and finally with system validation, as depicted in Figure 1. The analysis
includes the elicitation of requirements and attacks, and the partitioning of the system. The design stage
includes the definition of security mechanisms, and the refinement of security requirements in security
properties to be proved in the design. Lastly, the verification takes place at different engineering phases,
as follows. Simulation is mostly used at the partitioning stage in order to evaluate the impact of security

1SysML-Sec does not address hardware design beyond the partitioning stage

4 Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

mechanisms in terms or performance. Formal verification intends to prove the resilience of the system
under design to threats. Testing is meant to do the same, but on the deployed implementation resulting
from the design models.

y-chart

Attacks

Requirements Application Architecture

Application mapped on architecture

System design

mapping

Simulation,
Formal verification

Testing

Figure 1: SysML-Sec methodology

3.3 Tooling

TTool [1] is a free software supporting several UML profiles, e.g., DIPLODOCUS and AVATAR. For
the partitioning stage, SysML-Sec reuses DIPLODOCUS, as explained in [27]. Requirements, attacks,
and design are analyzed with AVATAR, a profile dedicated to the analysis and modeling of embedded
systems [3].

4 Case study: Firmware update

We illustrate SysML-Sec methodological stages with a ”firmware update” case study. The latter is taken
from a public deliverable of the European project EVITA [20]. The main purpose of EVITA is to define
a secure architecture for automotive embedded systems. Such systems are in charge of critical functions
and are quite complex: they contain around 100 Electronic Controls Units (ECUs) all interconnected to
the main system bus (CAN, FlexRay). Attacks are motivated by safety and economical reasons (notably
theft). Security concerns, which were mostly related with physical access to the car are also evolving
today with the advent of the connected car and of Car2X communications, which further exposes these
systems.

The considered case study aims at the update of an ECU software with a newer version of the
firmware, as performed at a service station through diagnosis tools. Car diagnosis is hardwired accord-
ing to the Standard Unified Diagnosis Services UDS, which is specified in the ISO 14229-1. At first, the
ECU to be flashed initializes its software and starts the diagnosis function. The service station employee
connects his diagnosis tool to the on-board diagnosis interface in the vehicle. Once the diagnosis has
been performed and authentication is performed, a programming session is settled. Finally, the flashing
can be performed in ROM.

The overall process is expected to be secure, in particular with respect to integrity, confidentiality,
and authenticity of the firmware and/or of the flashing process. More specifically, the following security
requirements can be defined (see [20] for further details):

• Authenticity: is the vehicle sure to communicate with a valid diagnosis Tool?

L. Apvrille, Y. Roudier 5

• Confidentiality: the firmware constitutes intellectual property to protect.

• Data integrity: the flashed code must not have been modified.

• Anonymity: Private information about the driver should not be disclosed to the service station
during the flashing process.

5 System requirement engineering and analysis

The security requirement and threat analysis is mostly regarded as a preamble to risk analysis in IT
systems. This process is generally meant to decide whether to introduce security countermeasures into
the system, which means additional costs. In the case of embedded systems, we contend that the security
analysis also has a strong impact on the system architecture and its realtime performance: the security
requirements and threat analysis should thus be performed along an iterative, and therefore more agile
partitioning process.

5.1 Iterative security/system codesign process

System partitioning, security requirements, and threats are progressively refined based on one or several
typical use cases. The following phases, which thus start with an initial architecture, are iterated in order
to reach a satisfactory level of refinement:

Initial architecture mapping. The functionalities of the system highlighted in these use cases are
first modeled as tasks. Exchanges between functions are modeled with information and event flows
between tasks. Tasks and communications can then be mapped to a draft architecture of the system. The
designer’s experience plays a key role in determining the first draft of the architecture.

Architecture analysis. System assets are identified among architectural elements (processors, pieces
of software, sensors, hardware accelerators, communication channels) and will first refer to generic
components, like for example: ”all system buses”. When the architecture gets more detailed, assets
are more likely to be refined into specific elements. The hardware/software partitioning and the function
mapping adopted play a key role here in defining the type of asset at hand (and later on its vulnerabilities).

Security concern identification. Threats and security vulnerabilities of the selected assets should
as much as possible describe the capabilities that an attacker should meet or exceed and the origin of
attacks (local, remote, through a specific interface). The SysML-Sec environment supports the assess-
ment of risks following the approach described in more detail in the EVITA case study [31, 14]. We also
implemented automated checks of the threat coverage by security objectives. Based on the risk analysis,
one should also identify and prioritize security objectives that are mapped to a threat.

Security objectives might originate (1) from security standards or properties expected from the sys-
tem, or (2) from unaddressed threats or attacks on assets, or (3) from the refinement of another security
objective when the process is iterated and the level of detail of the architecture has changed. In further
iterations, one may need to update security objectives deprecated by changes in the architecture.

Architecture refinement. The architecture refinement originates from a more detailed description
of the architecture components as the system and its usage become more precisely known (e.g., new
communication channels, refinement of an execution environment into OS/middleware/application lay-
ers, etc.). It may also result from transitively mapping requirements to system information flows, which
are often distributed among multiple hardware elements. The refinement phase may fail if the architec-
ture and security requirements are incompatible, for instance, if the performance overhead of security
mechanisms is too high. Consistency checks should also be performed to ensure that a security objective

6 Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

does not conflict with another requirement expressed over the same asset. A failure is the sign that the
analysis should be backtracked to the previous stage of refinement.

5.2 Diagrams

5.2.1 Requirements

Security requirements are modeled in SysML Requirement Diagrams (RD). The main operators of RDs
are Requirement Containment and Derive Dependency formalisms used to define relationships between
requirements. The containment relationship depicts sub-requirements in terms of hierarchy and enables
a complex requirement to be decomposed into its containing child requirements whereas deriveReqt
determines the multiple derived requirements that support a source requirement. A Security Require-
ment stereotype is introduced to make a clear distinction between functional requirements and security
requirements of the system, yet modeling both functional and non-functional requirements in a single en-
vironment. Furthermore, a Kind parameter is defined to specify the category of the security requirement
(confidentiality, access control, integrity, freshness, etc.).

Figure 2 represents 5 security requirements for a ”Firmware update”: the authenticity of the firmware,
controlled access to the flash memory, itself derived into controlled access to both the flashing function
and to reading the flash, and the confidentiality of firmware data.

<<Security Requirement>>
ConfidentialityOfFirmwareData

ID=FBSR-1.2.1
Kind="Confidentiality"
Risk="Low"

<<Security Requirement>>
ControlledAccessToFlashingFunction

ID=FBSR-1.1
Kind="Controlled access (authorization)"
Risk="Low"

<<Security Requirement>>
ControlledAccessToFlashMemory

ID=FBSR-1
Text="Flash memory should be paired
with their ECU
to prevent flash replacement"
Kind="Controlled access (authorization)"

<<Security Requirement>>
FirmwareAuthenticatedByCarMaker

ID=FBSR-2
Kind="Data origin authenticity"
Risk="Low"

<<Security Requirement>>
ControlledAccessToReadFromFlash

ID=FBSR-1.2
Kind="Controlled access (authorization)"
Risk="Low"

<<deriveReqt>>

Figure 2: Excerpt from the SysML-Sec Requirement Diagram of ”Firmware Update”

5.2.2 Threats and Attacks

Instead of using the traditional attack tree approach [32], we suggest that threats can be better modeled
with a more relational approach, using slightly customized SysML Parametric Diagrams. Threats are
modeled as values embedded into blocks representing the target of the attacks, thus achieving a repre-
sentation that is more compact and better mapped to the system architecture. Attacks (<< attack >>
stereotype) can be linked together with logical operators like OR, AND, as well as temporal causality op-
erators like SEQUENCE, BEFORE, or AFT ER. We consider the latter constructs as especially helpful
to describe the attacker’s operational point of view in embedded systems, like for instance situations in
which there is a maximum duration between two causally related attacks. For example, when attacking a
system with time-limited authentication tokens, the token must be first retrieved, and then the use of this
token must occur before its expiration.

Attack instances in different parametric diagrams can be linked together in order to assess the impact
of a specific vulnerability and the need to address it at the risk assessment phase. An attack can also be

L. Apvrille, Y. Roudier 7

tagged as a root attack, meaning that this attack is at the top of a tree of attacks. Last but not least, attacks
can be linked to requirements, thus allowing an automated check of the coverage of attacks.

<<block>>
CommunicationUnit

<<attack>>
ExploitVulnerabilitiesInFlashing

<<attack>>
InfectedECUShuttingDownCommunication

<<attack>>
InfectedCCUReportsBogusMoreRecentVersionofECU

<<attack>>
GarageGainsAccessToCCU

<<attack>>
CCUTakesTooLongToRespond

<<block>>
InCarCommunication

<<attack>>
ExploitVulnerabilityOrImplementationError

<<attack>>
AttackerInjectWrongFirmwareOnTheDomainBus

<<attack>>
CorruptOrFakeMessage

<<AFTER>>

<<OR>>

<<AFTER>>

Figure 3: Excerpt from the Attack Diagram of ”Firmware Update”

Figure 3 depicts a few attacks identified in the scope of the EVITA ”Firmware update” case study.
Two assets are represented (CommunicationUnit, InCarCommunication). For example, performing the
attack ”ExploitVulnerabilityinFlashing” in CommunicationUnit and then forging a ”CorruptOrFakeMes-
sage” in the InCarCommunication makes it possible to perform ”GarageGainsAccessToCCU”.

DiagRequestManagerDiagConnInit
ProgSessionManager

FirmwareId

FirmwareProg

ConnectionRequest

ConnectionResponse

AskECUFirmwareInfoRequest
openProgrammingSession

ackOpenProgrammingSession

forwardECUFirmwareInfoRequest

forwardECUFirmwareInfoResponse

ECUFirmwareInfoRequest

ECUFirmwareInfoResponse

SendECUFirmwareInfoResponse

SendFirmwareUpdate
ForwardFirmwareUpdate

FirmwareUpdate

updateDone

forwardUpdateDoneSendUpdateDone

closeSession forwardCloseSession

Figure 4: Application model of firmware update

8 Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

5.2.3 Partitioning

The application model is a graph of communicating functions. For example, in Figure 4, event flows cor-
respond to purple ports, and information-flows to blue ports. Five main functions are modeled: the initial-
ization of the diagnosis connection (DiagConnInit), diagnosis request management (DiagRequestMan-
ager), programming session management (ProgSessionManager), firmware identification (FirmwareId)
and lastly, the firmware programming (FirmwareProg).

The architecture model is partially depicted in Figure 5. It represents the assets to be protected. Two
subdomains are connected to the main CAN bus. Each subdomain has its own CPU, RAM, and bus. The
first domain also has a hardware accelerator, and the second one has a flash memory that the procedure
intends to update.

The mapping consists in assigning functional elements to assets, i.e., assigning tasks to either a CPU
or hardware accelerators, and communications to buses and memories. Figure 5 displays the mapping of
three tasks in the two subdomains: ProgSessionManager is mapped to ”CPU PTC” and FirmwareProg
and FirmwareId are mapped on ”CPU ECU”.

<<CPURR>>
CPU_PTC

Flashing_OBD::ProgSessionManager

<<BUS-RR>>
CAN_CU

<<BUS-RR>>
CAN_ECU

<<BUS-RR>>
CAN

<<CPURR>>
CPU_ECU

Flashing_OBD::FirmwareProg

Flashing_OBD::FirmwareId

<<MEMORY>>
RAM_ECU

<<MEMORY>>
Flash_ECU

<<BRIDGE>>
PTC_To_CAN

<<BRIDGE>>
PTC_to_ECU

<<MEMORY>>
RAM_PTC

<<HWA>>
PTC_Devices

Figure 5: Excerpt from the architecture and mapping model of firmware update

6 System design

6.1 Methodological aspects

System design intends to refine the architecture and behavior of all functions mapped over processor
nodes during the partitioning. From a security point of view, the aim is to describe in more detail how

L. Apvrille, Y. Roudier 9

security requirements can be fulfilled with security hardware mechanisms of software mechanisms exe-
cuted on top of the hardware architecture defined in the partitioning stage, and to verify that requirements
identified during the partitioning phase are really satisfied by this design. Requirements expressed at par-
titioning are informal and refer to assets: they therefore need to be refined until their expression directly
relates to design elements (e.g., attributes, methods, exchanged messages, states, etc.). Once refined,
they constitute the security properties that are to be verified, notably through formal methods.

Diagrams of SysML generally used for system design, like block diagrams and state machine dia-
gram, lack explicit ways to model security mechanisms. For example, security mechanisms commonly
need the pre-sharing of cryptographic material (e.g., secret keys), but block diagrams have no way to
model this. Thus, SysML-Sec extends SysML in order to explicitly model security mechanisms and
properties.

6.2 Security design extensions

A SysML-Sec design is made upon SysML block and state machine diagrams, extended with several
features, and formally defined in pi-calculus (a process algebra). We assume a Dolev-Yao attacker model,
that is, only messages exchanged between blocks can be eavesdropped, contrary to attributes of blocks
that are considered as private from the point of view of the attacker. That attacker model is enough
to describe attacks on the protocols deployed between the components of the embedded system, from
outside (i.e., using communication networks) or from within the system (i.e., using internal buses or any
other accessible component interface within the system). It however does not aim at capturing physical
attacks on the hardware, nor a sequence of exploitation of vulnerabilities of several components. The
main extensions are:

• Public and private channels: Since communication channels may have been mapped over secure
or non secure buses at the partitioning stage, we give the possibility to tag links between blocks
with a public label if an attacker can eavesdrop, or with a private label otherwise.

• Cryptographic algorithms. SysML-Sec blocks can define a set of methods corresponding to
cryptographic algorithms (e.g., encrypt), verifyMAC, etc. so as to be able to describe security
mechanisms built upon these algorithms, e.g., cryptographic protocols.

• Cryptographic material. Blocks can also pre-share values, a feature commonly needed to setup
cryptographic protocols. SysML-Sec introduces specific pragmas for that purpose: (InitialSys-
temKnowledge and InitialSessionKnowledge). The first one is used to describe data that are shared
before the system execution. The second one defines data that are shared within each session of
the same system. Typically, when considering a cryptographic protocol, the first pragma means
that the data are pre-shared and common to all protocol sessions, and the second one states that the
data are shared but have different values in each protocol session.

] InitialSystemKnowledge BlockID.attribute [BlockID.attribute]*

For example, Figure 6 displays the block diagram of a key distribution protocol used as a security pro-
tocol so as to allow ECUs to communicate in a secure way. That protocol is built upon three different
entities: the initiator of the key distribution (ECU1), a key master (KM) and the ECUs with which ECU1
expects to share keys (ECUN). All blocks define cryptographic functions, two of them being visible in
ECUN (encrypt(), decrypt()). The pragma ”InitialSystemKnowledge” states that PSK1 is an attribute
which is shared between ECU1 and KM before system startup.

Figure 6 presents the subset of the KM state machine diagram. State machines are used to describe the
behavior of each block. They can manipulate cryptographic functions and data. For example in the state

10 Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

machine of the KM block, the action msg8=MAC(msg1,PSK1) assigns the result of MAC(msg1,PSK1)
to msg8 .

<<block>>
SecuredSystem

~ in chin(Message msg)
~ out chout(Message msg)
~ in chinprivate(Message msg)
~ out choutprivate(Message msg)

<<block>>
ECUN

- PSKN : Key;
- keyOfGroup : Key;
- msg : Message;
- msg1 : Message;
- timestamp : int;
- ACK : int;
- b : bool;
- secretData : int;

~ Message encrypt(Message msg, Key k)
~ Message decrypt(Message msg, Key k)

<<block>>
ECU1

- PSK1 : Key;
- SesK : Key;
- msg : Message;
- msg1 : Message;
- msg2 : Message;
- msg3 : Message;

<<block>>
KM

- PSKN : Key;
- PSK1 : Key;
- msg : Message;
- msg1 : Message;
- msg2 : Message;
- msg3 : Message;
- msg4 : Message;
- msg5 : Message;
- msg6 : Message;
- msg7 : Message;
- timestamp1 : int;

<<datatype>>
Key

- data : int;

<<datatype>>
Message

- data : int;

#Confidentiality ECU1.SesK
#Authenticity ECU1.st1.msg KM.decipherOK.msgauth

#InitialSystemKnowledge ECU1.PSK1 KM.PSK1
...

chin(msg8)

testMAC1

TestMACFailed

gotFirstMessage

testMAC_OK

[msg8.data == msg4.data]

get2(msg8, msg1, msg4)
msg8 = MAC(msg1, PSK1)

[not(msg8.data == msg4.data)]

Figure 6: SysML-Sec block diagram and a state machine diagram of Key Distribution Protocol

6.3 Security properties

Security properties linked to the design are obtained from a refinement of security requirements elicited
at analysis stage. A dedicated language has been defined for describing the commonly complex safety
properties, which is based on SysML Parametric diagrams [22]. On the contrary, security properties can
usually be defined with a type (e.g., confidentiality), and with design elements related to that kind (e.g.,
the confidentiality of the attribute of a block). This simplicity pleads for a basic modeling solution, that
is not based on complex diagrams or operators. Our solution again relies on pragmas, provided in notes
of Block Diagrams: confidentiality and authenticity can be directly expressed at this level.

A confidentiality pragma states that the content of an attribute of a block shall never be disclosed to
an attacker:
] Confidentiality block.attribute

An authenticity pragma states that a message m2 received by a block block2 was necessarily sent
before by block block1 in a message m1. The following examples describes such a situation:
] Authenticity block1.s1.m1 block2.s2.m2

This authenticity pragma specifies two states: one associated with the sender block, and one associ-
ated with the receiving block, i.e. one state s1 in block1, and one state s2 in block2. Also, in the state
machine diagram of block1, s1 corresponds to the state right before the sending of m1. Analogously, s2
corresponds to the state right after message m2 has been received and accepted as authentic.

The confidentiality pragma of Figure 6 states that the PSK1 (pre-shared key 1) of ECU1 shall never be
disclosed (secret key). This property is derived from the requirement on confidentiality: secret keys must
remain secret so as to ensure the confidentiality of the firmware that is to be sent to the flash memory.
Similarly, the authenticity pragma states that msgauth received by KM right after state decipherOK has
necessarily been sent by ECU in variable msg right before state st1.

L. Apvrille, Y. Roudier 11

7 System validation

A system validation can be performed from partitioning models (e.g., performance evaluation of the
selected hardware architecture: load of CPUs and buses), from design models (e.g., proof of safety and
security properties), or from executable code automatically generated from deployment models (e.g.,
safety and security tests) [2]. Model transformations have been defined in order to transform SysML-Sec
models into simulation, formal, or executable specifications. Mapping model transformations are given
in [21], and design model transformations are described in [26] and [17].

From partitioning models, it is possible to evaluate the impact of security mechanisms onto safety
constraints, e.g., real-time constraints such as latencies. An example of such a study is given in [33]
where the impact of adding security-oriented MAC information in the messages of CAN bus is checked
against safety-oriented properties (latencies) at partitioning stage. The impact of security mechanisms
onto the load of buses and CPUs might be evaluated as well, as they might impact the behaviour of
safety-critical processes and communications. For instance, the decryption of packets sent from an ECU
to another one may prevent the scheduling of the process controlling the brake actuation.

From SysML-Sec designs, the formal proof relies respectively on UPPAAL [8] and on ProVerif [10]
for the proof of safety and security properties (see Figure 7). Our safety proofs take into account all
design elements, including security mechanisms like the liveness and reachability of all states of cryp-
tographic protocols, and the impact of security mechanisms onto safety-critical processes. Our security
proofs may relate to any behavior described with state machines. The notion of protocol is central here:
it captures both communications over buses or networks and communications between components in
separate blocks like separate trust zones within a processing unit, for instance when virtualization mech-
anisms are used.

UPPAAL

Pi-Calculus

UPPAAL ProVerif

Model transformation

<<block>>
SecuredSystem

~ in chin(Message msg)
~ out chout(Message msg)
~ in chinprivate(Message msg)
~ out choutprivate(Message msg)

<<block>>
KM

- PSKN : Key;
- PSK1 : Key;
- msg : Message;
- msg1 : Message;
- msg2 : Message;
- msg3 : Message;
- msg4 : Message;
- msg5 : Message;
- msg6 : Message;
- msg7 : Message;
- timestamp1 : int;

<<block>>
ECU1

- PSK1 : Key;
- SesK : Key;
- msg : Message;
- msg1 : Message;
- msg2 : Message;
- msg3 : Message;

<<block>>
ECUN

- PSKN : Key;
- keyOfGroup : Key;
- msg : Message;
- msg1 : Message;
- timestamp : int;
- ACK : int;
- b : bool;
- secretData : int;

~ Message encrypt(Message msg, Key k)
~ Message decrypt(Message msg, Key k)

<< datatype> >
Key

- data : int;

<< d a ta typ e > >
Message

- data : int;

#Confidentiality ECU1.SesK
#Authenticity ECU1.makingFirstMessage.msg KM.decipherOK.msgauth

#InitialSystemKnowledge ECU1.PSK1 KM.PSK1
...

Figure 7: (a) Model transformations of TTool for proving safety and security properties. (b) TTool
assistant for the formal verification of confidentiality and authenticity properties defined at Figure 6

ProVerif [10] is a toolkit that relies on Horn clauses resolution for the automated analysis of security
properties over cryptographic protocols, under the Dolev-Yao model. ProVerif takes in input a set of
Horn Clauses, or a specification in pi-calculus together with a set of queries. ProVerif outputs whether
each query is satisfied or not. In the latter case, ProVerif tries to identify a trace explaining how it came
to the conclusion that a query is not satisfied. Figure 7 depicts the successful verification in TTool of
the confidentiality and authenticity properties modeled in Figure 6. While we can specify any security

12 Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

requirement, we currently only support the formal validation of those that can be expressed with these
two security properties.

Safety proofs take into account all design elements apart from the ones specifically defined for se-
curity purposes, that is the security-oriented pragmas and cryptographic methods that have no impact on
safety properties (liveness, reachability). Similarly, the proof of security properties abstracts away irrele-
vant system details. Such a proof does not require values on variables nor temporal information. Several
state machine elements, like temporal operators (after clause) and computations with variable values,
are not taken into account for the security proof. For instance, a = b+ c is executed in a symbolic way,
but without concrete values: the data flow captured in that manner (we know that a contains information
from b and c) is the only useful information for security proofs.

8 Related work and perspectives

Many proposals already exist that address security requirements engineering or threat modeling in IT
systems. In [24], Nhlabatsi et al. classify security requirements engineering work according to four di-
mensions, namely: goal-based approaches, Model-based approaches, problem-oriented approaches, and
Process-oriented approaches. Our approach combines a goal-based description of security requirements
with a model-driven engineering of the system architecture and threat analysis, and emphasizes the im-
portance of agile interactions throughout the engineering V-cycle. In that respect, its philosophy follows
that of the TwinPeaks approach [25], even though the latter does not address hardware systems. Instead
of a simple spiral alternating between the requirements and the architecture as TwinPeaks suggests, we
also alternate between the Y-Chart modelling of software and its mapping to hardware components, the
identification of assets and threats to them, and the identification of security requirements.

Assessing security properties at design level mostly relies on formal approaches. For example, [35]
proposes to verify cryptographic protocols with a probabilistic analysis approach. In more recent ef-
forts, [11] introduces a first order Linear Temporal Logic (LTL) into the Isabelle/HOL theorem prover,
thus making it possible to model both a system and its security properties, but unfortunately leading to
non-easily reusable specific models. [23] mixes formal and informal security properties, but the overall
verification process is not completely automated, again requiring specific skills. Our approach focuses
on refining semi-formal specifications into formal models using a graphical language, with the aim of
formal validation of the satisfaction of security properties. In this respect, it may seem very similar to
the UMLsec approach [19], a modeling framework aimed at defining security properties of software.
UMLsec also primarily features a model-based approach to security requirements engineering according
to the abovementioned classification. It makes it possible to define security properties of software com-
ponents and of their composition within a UML framework. It also features a rather complete framework
addressing various stage of model-driven secure software engineering from the specification of security
requirements to tests, including logic-based formal verifications regarding the composition of software
components. With respect to the embedded system field which the current paper focuses on, UMLsec al-
lows for the description of the mapping of already-designed software onto hardware nodes [19] through
the use of UML deployment diagrams. According to OMG’s own definition, such diagrams describe
“a set of constructs that can be used to define the execution architecture of systems that represent the
assignment of software artifacts to nodes.”. This means that they unfortunately cannot handle software-
hardware partitioning in the sense of [7]. In contrast, SysML-Sec adopts the more holistic point of view
of SysML proponents and focuses on the very evaluation of various mappings for security and func-
tional features before and during detailed system design. Additionally, SysML-Sec provides hardware

L. Apvrille, Y. Roudier 13

nodes with an explicit autonomous simulation and proof semantics. Lastly, SysML-Sec includes low-
level hardware nodes whose use may impact communications and executions of functions, e.,g. a DMA
engine may favorize, or not, a urgent communication with regards to security-oriented communications.
Similarly to UMLsec[18], our proposal additionally features a goal-based approach to describe security
objectives. Still, our approach fits entirely within SysML with minor extensions (essentially new stereo-
types and a few operators) and does not introduce any new diagram in order to make it easy to adopt for
system engineers.

From our experience, partitioning is in our opinion a central issue in embedded systems. Achieving
a correct partitioning that adheres to safety requirements necessitates that the impact of security mecha-
nisms be understood and quantified as early as possible. We note that only a few authors, notably Eames
and Moffet [12], and more recently Piètre-Cambacédès and Bouissou [28] and Raspotnig and Opdahl
[29] have dealt with the relationships between security and safety requirements. For instance, the last
two authors discuss quite thoroughly the relationships that can be established between security and safety
requirements. In particular, these studies can describe conflicts, like we considered in the current paper,
but also reinforcement relationships (when safety and security concur towards the same design), or con-
ditional dependence. We think that obtaining similar descriptions within SysML-Sec would require the
engineering methodology to be extended with an additional feedback interaction from all engineering
phases to the specification phase: for instance, the satisfaction of safety requirements should be checked
based on the security mechanisms introduced before any further safety mechanism would be introduced.
We did not evaluate any such methodological step in our case study, which did not feature safety require-
ments. However, we plan to investigate such issues in the future.

The work we presented in this paper aims more specifically at validating the innocuity of security
mechanisms with respect to safety requirements whose specification is outside the scope of this paper.
This is based on quantitative validations during the specification and design phases, together with the
refinement of the system architecture. In particular, approximations can first be made based on the na-
ture of security mechanisms, and most notably, the cryptographic algorithms used and their costs (both
computationally and in terms of bandwidth usage). As the design of the security mechanisms to be de-
ployed is increasingly refined, together with a more detailed hardware/software partitioning, simulations
by the SysML-Sec framework can be used to achieve a more precise evaluation of those elements. Al-
though not yet supported by our toolchain, tests might finally be used on the developed components to
validate the adherence to safety requirements. Threat analysis itself pleads for such a move, to incor-
porate the description of security tests performed over implementations into the system model. In this
respect, our proposal includes the use of the SysML parametric diagram for threat modeling. SysML-Sec
can thus encode an attack tree, yet it adopts a block-centric perspective with reuse in mind. We espe-
cially think that this will allow for the composition of the threat modeling performed by security analysts
about commercial off-the-shelf (COTS) components with system specific analyses. We plan to further
extend SysML-Sec expressivity here: our declarative approach should be especially useful in order to
incorporate knowledge from other threat modeling approaches.

Tool support is in our opinion critical to the successful and systematic engineering of systems, and
especially so in what regards non-functional requirements like security and the validation of their satis-
faction in a given design. This need has been recognized by many other authors at various levels of the
development lifecycle of IT systems. Furthermore, the availability of free software is another important
factor of success, would it only be due to their extensibility for specific needs. The KAOS framework
[36], which pioneered goal-oriented security requirements engineering, features an entire dedicated en-
vironment. CARiSMA (a recent extension of UMLsec) integrates into the Eclipse development environ-
ment, which ensures a better acceptance factor. Threat modeling frameworks have also been developed

14 Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

like Isograph Software’s AttackTree+ for designing attack trees or the free software ADTool [9]. There
also exists a number of formal verification tools with nice interfaces like AVISPA [5], which provides
good support for protocol verification. It can be observed that many of these tools address only a part of
the development lifecycle of a system, which is detrimental to their adoption. Our framework aims at a
more comprehensive environment adhering to SysML, a formalism supported by the OMG and INCOSE,
and widely known to system engineers.

9 Conclusion and future work

Embedded systems are becoming ever more complex and intricate combinations of software and hard-
ware, exposed to a plethora of attacks as those systems open up to attackers through the introduction
of communication functionalities. The economic incentives to reduce the time-to-market of such sys-
tems while ensuring equally good or better engineering qualities require the introduction of systematic
security engineering methodologies with an appropriate support. The adoption of user-friendly tools fea-
turing automated and simplified verification will likely become mandatory in this respect. Our proposal,
SysML-Sec, specifically addresses that need at the diverse phases of system design and development.
It is based on a popular language (OMG’s SysML) and supported by a free software toolkit (TTool).
It features formal verification capabilities that rely on recognized toolkits for security (ProVerif) and
safety (UPPAAL). The methodology we developed has been experimented to define a secure automotive
embedded system. We presented the results of a case study on that system, which highlights several
advantages of our approach, especially regarding formal verification. Our future work will be dedicated
to further evaluating our approach on other embedded systems as well as to extending the tool support,
especially for enhancing threat coverage and requirements traceability analyses.

References

[1] L. Apvrille (2013): TTool website. In: http://ttool.telecom-paristech.fr/.

[2] L. Apvrille & A. Becoulet (2012): Prototyping an Embedded Automotive System from its UML/SysML Mod-
els. In: ERTSS’2012, Toulouse, France.

[3] L. Apvrille & P. De Saqui-Sannes (2013): Requirements Analysis. Embedded Systems: Analysis and Mod-
eling with SysML, UML and AADL.

[4] L. Apvrille, W. Muhammad, R. Ameur-Boulifa, S. Coudert & R. Pacalet (2006): A UML-Based Environment
for System Design Space Exploration. In: Electronics, Circuits and Systems, 2006. ICECS ’06. 13th IEEE
International Conference on, pp. 1272 –1275, doi:10.1109/ICECS.2006.379694.

[5] A. Armando, D. A. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P. Hankes Drielsma, P.-C.
Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch, J. Santiago, M. Tu-
ruani, L. Viganò & L. Vigneron (2005): The AVISPA Tool for the Automated Validation of Internet Security
Protocols and Applications. In: CAV, pp. 281–285.

[6] F. Assolini (2012): The Tale of One Thousand and One DSL Modems, Kaspersky Lab. Available at http:
//www.securelist.com/en/blog/208193852/The_tale_of_one_thousand_and_one_DSL_modems.

[7] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone & A. Sangiovanni-Vincentelli (2003): Metropo-
lis: An Integrated Electronic System Design Environment. Computer 36(4), pp. 45–52.

[8] J. Bengtsson & W. Yi. (2004): Timed Automata: Semantics, Algorithms and Tools. In: Lecture Notes on
Concurrency and Petri Nets, W. Reisig and G. Rozenberg (eds.), LNCS 3098, Springer-Verlag, pp. 87–124.

http://dx.doi.org/10.1109/ICECS.2006.379694
http://www.securelist.com/en/blog/208193852/The_tale_of_one_thousand_and_one_DSL_modems
http://www.securelist.com/en/blog/208193852/The_tale_of_one_thousand_and_one_DSL_modems

L. Apvrille, Y. Roudier 15

[9] B.Kordy, P. Kord, S. Mauw & P. Schweitzer (2013): ADTool: Security Analysis with Attack-Defense Trees.
In: QEST’13, LNCS vol. 8054, p. 173-176, Springer.

[10] B. Blanchet (2009): Automatic Verification of Correspondences for Security Protocols. Journal of Computer
Security 17(4), pp. 363–434.

[11] M. Drouineaud, M. Bortin, P. Torrini & K. Sohr: A First Step Towards Formal Verification of Security Policy
Properties for RBAC. In: QSIC’04, Washington, DC, USA, pp. 60–67.

[12] D. P. Eames & J. D. Moffett (1999): The Integration of Safety and Security Requirements. In: SAFECOMP,
pp. 468–480.

[13] S. Esser (2011): iOS Kernel Exploitation. In: BlackHat 2011.

[14] O. Henniger, L. Apvrille, A. Fuchs, Y. Roudier, A. Ruddle & B. Weyl: Security Requirements for Automotive
On-Board Networks. In: ITST 2009, Lille, France.

[15] T. Hoppe, S. Kiltz & J. Dittmann (2011): Security Threats to Automotive CAN Networks - Practical Examples
and Selected Short-Term Countermeasures. Rel. Eng. & Sys. Safety 96(1), pp. 11–25. Available at http:
//dx.doi.org/10.1016/j.ress.2010.06.026.

[16] A. Huang (2002): Keeping Secrets in Hardware: the Microsoft XBox Case Study, AI Memo 2002-008, Mas-
sachusetts Institute of Technology, Artificial Intelligence Laboratory. Technical Report.

[17] M. S. Idrees (2012): A Requirements Engineering Driven Approach to Security Architecture Design for
Distributed Embedded Systems. Ph.D. thesis, Telecom ParisTech.

[18] J. Jürjens (2002): Using UMLsec and Goal-Trees for Secure Systems Development. In G. B. Lamont, H. Had-
dad, G. Papadopoulos & B. Panda, editors: Proceedings of the 2002 Symposium of Applied Computing
(SAC), ACM, Madrid, Spain, pp. 1026–1031. Proceedings of the 2002 ACM Symposium of Applied Com-
puting.

[19] J. Jürjens (2007): Developing Secure Embedded Systems: Pitfalls and How to Avoid Them. In: 29th Interna-
tional Conference on Software Engineering (ICSE 2007), ACM, pp. 182–183.

[20] E. Kelling, M. Friedewald, T. Leimbach, M. Menzel, P. Säger, H. Seudié & B. Weyl (2009): Specification
and Evaluation of e-Security Relevant Use cases. Technical Report Deliverable D2.1, EVITA Project.

[21] D. Knorreck (2011): UML-based Design Space Exploration, Fast Simulation and Static Analysis. In: Ph.D.
of Ecole doctorale informatique, télécommunications et électronique of Paris.

[22] D. Knorreck, L. Apvrille & P. De Saqui-Sannes (2011): TEPE: A SysML Language for Time-Constrained
Property Modeling and Formal Verification. ACM SIGSOFT Software Engineering Notes 36(1), pp. 1–8.

[23] A. Maña & G. Pujol (2008): Towards Formal Specification of Abstract Security Properties. In: The Third
International Conference on Availability, Reliability and Security, 0-7695-3102-4/08, IEEE.

[24] A. Nhlabatsi, B. Nuseibeh & Y. Yu (2010): Security Requirements Engineering for Evolving Software Sys-
tems: a survey. Technical Report 1, The Open University.

[25] B. Nuseibeh (2001): Weaving Together Requirements and Architectures. IEEE Computer 34(3), pp. 115–117.

[26] G. Pedroza (2013): Assisting the Design of Secured Applications for Mobile Vehicles. In: Ph.D. of Ecole
doctorale informatique, télécommunications et électronique of Paris.

[27] G. Pedroza, M. S. Idrees, L. Apvrille & Y. Roudier (2011): A Formal Methodology Applied to Secure Over-
The-Air Automotive Applications. In: VTC-Fall2011, IEEE 74th Vehicular Technology Conference, 5-8
September 2011, San Francisco, USA, San Francisco, USA.

[28] L. Pietre-Cambacedes & M. Bouissou (2013): Cross-fertilization between safety and security engineering.
Rel. Eng. & Sys. Safety 110, pp. 110–126.

[29] C. Raspotnig & A. L. Opdahl (2013): Comparing risk identification techniques for safety and security re-
quirements. Journal of Systems and Software 86(4), pp. 1124–1151.

[30] Y. Roudier, M. S. Idrees & L. Apvrille (2013): Towards the Model-Driven Engineering of Security Require-
ments for Embedded Systems. In: proceedings of MoDRE’13, Rio de Janeiro, Brazil.

http://dx.doi.org/10.1016/j.ress.2010.06.026
http://dx.doi.org/10.1016/j.ress.2010.06.026

16 Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

[31] A. Ruddle & et al (2009): Security Requirements for Automotive On-board Networks Based on Dark-side
Scenarios. Technical Report Deliverable D2.3, EVITA Project.

[32] B. Schneier (1999): Attack Trees: Modeling Security Threats.
[33] H. Schweppe, Y. Roudier, B. Weyl, L. Apvrille & D. Scheuermann (2011): C2X Communication: Secur-

ing the Last Meter. In: The 4th IEEE International Symposium on Wireless Vehicular Communications:
WIVEC2011, San Francisco, USA.

[34] H. Teso (2013): Aircraft Hacking. In: HITB Security Conference, Amsterdam, The Netherlands.
[35] M. J. Toussaint (1993): A New Method for Analyzing the Security of Cryptographic Protocols. In: Journal

on Selected Areas in Communications, 11, No. 5, IEEE.
[36] A. Van Lamsweerde (2007): Engineering Requirements for System Reliability and Security. Software System

Reliability and Security 9, pp. 196–238.

Pre-proceedings of
The International Workshop on Graphical Models for Security 2014

c© Stéphane Paul
This work is licensed under the
Creative Commons Attribution License.

Towards automating the construction & maintenance of
attack trees: a feasibility study

Stéphane Paul
Thales Research & Technology

Palaiseau, France
stephane.paul@thalesgroup.com

Security risk management can be applied on well-defined or existing systems; in this case, the ob-
jective is to identify existing vulnerabilities, assess the risks and provide for the adequate counter-
measures. Security risk management can also be applied very early in the system’s development
life-cycle, when its architecture is still poorly defined; in this case, the objective is to positively in-
fluence the design work so as to produce a secure architecture from the start. The latter work is
made difficult by the uncertainties on the architecture and the multiple round-trips required to keep
the risk assessment study and the system architecture aligned. This is particularly true for very large
projects running over many years. This paper addresses the issues raised by those risk assessment
studies performed early in the system’s development life-cycle. Based on industrial experience, it
asserts that attack trees can help solve the human cognitive scalability issue related to securing those
large, continuously-changing system-designs. However, big attack trees are difficult to build, and
even more difficult to maintain. This paper therefore proposes a systematic approach to automate the
construction and maintenance of such big attack trees, based on the system’s operational and logical
architectures, the system’s traditional risk assessment study and a security knowledge database.

1 Introduction

Large industries perform security risk assessments for large new systems whose development life-cycles
span over many years. The security risk assessment work is to begin very early in the development
life-cycle of the systems so as to positively influence the design towards secure architectures; the work
is difficult because it has to be run on a yet poorly defined system architecture and because the risk
assessment has to consider the complete system, i.e. an aggregation of premises, equipment, people
and procedures. The amount of work justifies that multiple security experts are involved on the project,
possibly from multiple sites and background. In this context, traditional risk assessment approaches,
usually based on ISO-31000 [3] and ISO-27001 [4], reach their limit, in particular with respect to human
cognitive scalability. On the European Galileo programme, the use of graphical attack trees has been
shown to provide a positive contribution to traditional risk assessment approaches. However, the con-
struction and maintenance of attack trees are tedious and error-prone tasks. Moreover, in a multi-user
context, construction approaches differ from one security expert to another, which renders the reading
and maintenance of attack trees even more complex for third-parties.

This paper reports on a feasibility study that was run to assess if it is possible to automate the con-
struction & maintenance of attack trees using yet poorly defined architectural artefacts. This paper pro-
poses a preliminary layer-per-layer systematic approach to generate skeletons of attack trees based on
information coming from the system’s architecture, as classically established using an architecture frame-
work (AF), and information coming from the system’s security risk assessment study, as traditionally run
using a given risk assessment method and its related security knowledge base, e.g. EBIOS [1]. The sup-
port of an industrially used AF was a very important constraint imposed on this feasibility study; indeed,

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Technique for automating the construction & maintenance of attack trees

we wanted to assess how much of an attack tree could be generated without additional work from sys-
tem architects and/or designers. This feasibility study was run using empirical data from the Galileo
risk assessment programme (cf. chapter 2 below), but obvious confidentiality reasons do not permit us
to publish such data. Thus, this paper details the steps of the approach, and illustrates it on a running
example from the automotive domain, which is public and easily understandable by all.

2 Scientific and empirical baseline to defining the approach

Galileo is Europe’s own global navigation satellite system, providing a highly accurate, guaranteed global
positioning service under civilian control. It is inter-operable with GPS and GLONASS, i.e. the US and
Russian global satellite navigation systems. It corresponds to a system based on 30 satellites, 2 main
control centres and 25 unmanned world-wide sites. The system is developed by the European Space
Agency (ESA) for the European Commission (EC). To satisfy the security objectives identified in the
frame of the Galileo programme, it was requested to define a risk management process. This needed to
be an evolving process, taking into account the global life cycle of the system, from its specification to
its operation. The main objective of the process to be defined was to provide the security accreditation
authority assurance that the Galileo system is secure enough for authorising: (i) the launches of the
satellites; (ii) the deployment of the ground infrastructure; (iii) the operation of the Galileo services.

Considering the above, the risk management process was defined through a series of brainstorming
sessions, involving 10 experts from EC, ESA and industry, over a period of approximately 6 months.
Techniques used in cyber-security and safety were analysed with respect to their applicability at system-
level, whereby the system comprises equipment, people and procedures. Initial risk management process
proposals were consolidated by assessing their direct application on the Galileo programme itself. The
process was finally approved by the 27 Member States, in Sept. 2011, just before the first satellite
launch. It is now proposed as the reference risk management process for other major EC programmes,
e.g. EGNOS.

The graphical representation of risks on attack trees permitted the security accreditation authority
to: (i) gain an intuitive approach of the risk, (ii) associate each risk to the Galileo System Design; and
(iii) better perceive the impact of risk treatment on the system architecture. The success of the process
defined for the Galileo programme has conducted Thales to generalise the risk management process for
all IT systems under its responsibility. The approach proposed in this document is in a large part based
on the empirical background gained through the Galileo programme. It also rests upon an important state
of the art analysis [5] [11]. It will be further consolidated on other commercial risk assessment studies.

3 The running example

The running example is based on the Loss of Integrity the Manual Breaking capability in a standard
modern Car used as Taxi. The running example has been modelled using the Thales Melody AF. It is a
simplistic model; the objective here is not to build a realistic car model, but to include the key modelling
artefacts that can be used to generate an attack tree.

The Thales Melody AF supports architecting using four abstraction levels, as illustrated in Figure
1. Under our assumption that the security risk assessment is being performed early in the system’s
development life-cycle, the Physical abstraction level of Melody has not been used in our approach.

The Thales Melody Architecture Frameworks is UMLish. It is our believe that most state-of-the-art
and commercially available AFs would provide similar capabilities to support the proposed approach, so

Stéphane Paul 3

Figure 1: The four abstraction levels of the Thales Melody framework

alternative AFs could have been used, but a detailed assessment has not (yet) been performed.

4 Attack tree construction overview

Our approach uses the dominant type of attack tree model, i.e. the Boolean-logical tree based approach
in which the top or root node of the tree represents a defender’s feared event. Given a feared event, our
proposal is to systematically structure the attack tree in layers according to the following elements:

• system states and modes, in which the occurrence of the feared event makes sense;

• supporting asset types (e.g. hardware, software) that could potentially be attacked;

• attack entry points (i.e. supporting asset interfaces) for each supporting asset type;

• threats that can be exercised on the attack entry points;

• threat sources that can exercise the threats.

The two high-level principles governing the tree construction are the following:

• the feared events are defined at strategic level: they are driven by operational considerations,

• logical AND gate decompositions should be located as low as possible in the tree.

The first principle originates from the customer and enforces a true risk-based approach (by oppo-
sition to technical security). Moreover, when the feared event at the root of an attack tree is driven by
operational considerations, it is simple to assign an individual stakeholder to the attack tree, with which
the security expert will be able to discuss the relevance and completeness of the attack tree decomposi-
tion.

The second principle is driven by attack tree exploitation and ergonomic considerations. Conjunctive
Boolean gates create dependencies between tree branches. Locating AND gates as low as possible in the
tree limits the span of dependent branches and increases readability of the attack trees. In this set-up,
AND gates are typically used to capture:

4 Technique for automating the construction & maintenance of attack trees

• pre-conditions to attack enacting, for example, knowledge about the supporting asset, or, more
complex, a change in state and mode;

• conditions to make succeed the attack, in particular with respect to system redundancy;

• post-conditions, typically to allow for the repudiation of the attack.

5 Step-by-step description of the approach

5.1 Step 1: Creation of the attack tree root

Feared events are classically captured textually in the security risk assessment study. For our running
example, let us suppose that the feared event is defined as the Loss of Integrity of the Manual Braking
operational process on the Car. Thus, it is easy to extract the feared event from the security risk assess-
ment study to create the attack tree root. The technical challenge here is to map this informal statement
with artefacts of the system’s architecture and security knowledge base.

From the system’s operational architecture (cf. Figure 2) it is possible to recognise the Car as being
an Operational Entity (OE). The Manual Braking operational process is pictured as a sequence of
operational activities (OAs); the first activity (i.e. Dynamic Sensing) and the last activity (i.e. Brake)
of the operational process are surrounded by thick borders; the interactions between the operational
activities are pictured by thick arrows; other (thin) arrows represent interactions that are not part of the
Manual Braking operational process.

From our security knowledge base, it is possible to recognise the term Integrity as being a standard
security criterion; Confidentiality and Availability would likewise be eligible.

Figure 2: Running example - the manual braking operational process

Stéphane Paul 5

Our proposal is not to perform automatic recognition on informally stated feared events, but rather
to impose a strict grammar to the description of feared events in the security risk assessment study,
typically:

Loss of [security criterion] of the [primary asset] on the [operational entity].

To capture the security criterion, the security expert would select an option from a drop down menu,
or similar mechanism, in line with the security knowledge base selected for the study. To capture the
operational entity (i.e. the Car), the security expert would select the artefact directly from the system’s
operational architecture by browsing through the list of defined operational entities. Such an approach
has already been successfully experimented in a security risk assessment context [10]. In the above
construct, the Manual Braking operational process of the AF is not referenced directly. Instead, we
have used the concept of primary asset, as defined in the French EBIOS risk assessment method, i.e.
something that is of value [1]. It is assumed that the primary asset has been previously mapped to the op-
erational process artefact in the system’s operational architecture (i.e., the Manual Braking operational
process, in a similar manner as for the operational entity above [10].

The severity of the feared event originates from the risk assessment study. In our running example,
it is assumed to be Critical.

5.2 Step 2: Structuring the tree according to states and modes

The second step in constructing the attack tree is to take into consideration the system’s states and modes
in which the realisation of the considered feared event makes sense. The Melody AF allows for a state
machine X operational activities matrix, which defines in which states and modes the operational pro-
cesses can be run. From this matrix, the attack tree can be generated as follows:

• a first decomposition of the feared event is made with all the states in which the operational process
can run, connected with an OR gate;

• a decomposition of the state nodes can then be made with all the modes in which the operational
process can run, connected with an OR gate to the corresponding state node in the tree.

For our running example, let us consider a simple state machine, as illustrated in Figure 3. Let us
also make the reasonable assumption that the Manual Braking operational process can be run only in
the Operating state and in the Engine Running mode of the Car. Thus, in the attack tree, there is
need for only one branch corresponding to the Operating state, and there is need for only one branch
corresponding to the Engine Running mode. The resulting tree is shown in Figure 4.

It is noteworthy that the labelling of the attack tree nodes can be automatically and dynamically
generated based on the system’s operational architecture. Dynamicity stems from the traceability links
that are established between the tree nodes and the states and modes in the operational architecture.
Thus, if the name of a state or mode changes, the label of the corresponding node in the attack tree can
be automatically and immediately updated. Likewise, if a state or mode is deleted, a warning can be
attached to the corresponding subtree, calling for specific attention by the security expert. The running
example illustrated here is obviously simplistic, but it is sufficient to capture the general idea that an
attack depends on the states and modes of the targeted system.

It is worthwhile recalling here that elaborating the attack tree with states and modes is not just a tree
structuring feature. States and modes carry semantics about system behaviour, and therefore also about
what attacks are possible at a given time. In step 6 (see below), we introduce attack preconditions; some
of these conditions can be a change of system state or mode, which inherently transforms the attack tree
into a Directed Acyclic Graph (DAG) or creates duplicate sub-trees.

6 Technique for automating the construction & maintenance of attack trees

Figure 3: Running example - the manual braking operational process

Figure 4: Automatically constructed attack tree based on states and modes

Stéphane Paul 7

5.3 Step 3: Structuring the tree according to supporting asset types

Security knowledge bases often organise supporting assets in types in order to define categories of vul-
nerabilities with their corresponding threats, e.g. paper documents can burn, hardware can be stolen,
networks can be saturated, people can be influenced. In this 3rd step of the attack tree construction, we
make use of this supporting asset typology in order to map the attack tree structure with the knowledge
base. The goal here is to increase the readability of the attack tree and assure its completeness with re-
spect to best practices as captured in the security knowledge bases. However, this structuring is optional
and can be skipped if felt as unnecessary.

For our running example, let us suppose the existence of four supporting asset types: Hardware,
Software, Networks and Organisations. At this very early stage in the architectural design, Network
must not be understood as routers, servers, switches, and the like, but rather as functional and / or
component exchanges, including social networks. Focus is more on the data that is exchanged in support
of the operational processes, than on the equipment that supports the data exchanges.

Figure 5: Automatically constructed attack tree based on supporting asset types

The resulting tree is shown in Figure 5. As in the previous step, the labelling of the attack tree nodes
can be automatically generated based on the content of the security knowledge base.

5.4 Step 4: Structuring the tree according to attack entry points

During the fourth step, the objective is to capture the supporting assets that can be targeted as attack
entry points by the attacker. This exercise requires identifying all the possible attack entry points defined
in the logical architecture, supported by the traceability links between the artefacts of the operational
architecture and their corresponding elements in the logical architecture (cf. Figure 1).

Figure 6 provides a simplified logical architecture model for our running example. In this model,
a Manual Braking functional chain has been defined that corresponds to the Manual Braking opera-
tional process defined in the operational architecture. The Thales Melody AF allows one to trace artefacts
between abstraction layers, as illustrated for our running example in Figure 7.

8 Technique for automating the construction & maintenance of attack trees

Figure 6: Running example - simplified logical architecture model

Figure 7: Running example - traceability between the operational process and the logical functional
chain

Stéphane Paul 9

In the Melody AF, and presumably in most logical architecture frameworks, the logical components
are not assigned tags specifying their type. However, this work is traditionally done in security risk
assessment studies, as illustrated for our running example in Figure 8. In this figure it can be seen that:

• the Brake Pedal and Brakes (meaning here Break Pads) are hardware components,

• the Customer, Chauffeur and Garage Mechanic are people, and

• the Braking Control and Wheel Speed Sensors are complex systems, including hardware,
software and / or network sub-components.

Figure 8: Running example - tagging of supporting assets in the security risk assessment study

Based on all the aforementioned information, it is now possible to continue the decomposition
of the attack tree: for all leaf nodes of the attack tree corresponding to Hardware, Software and
Organisations add the corresponding identified attack entry points, connected with OR gates, if they
are involved in the logical functional chain corresponding to the operational process referenced in the
feared event at the tree root.

For Network-related nodes, the construct is a bit more complex. The objective here is to identify all
the (external) logical component interfaces that could be used as attack entry points in threatening the
functional chain. The search of these relevant logical component interfaces is highly dependant on the
selected Architecture Framework, and will not be detailed here. Assuming they are correctly identified,
it is possible to complete the attack tree decomposition: add all the identified attack entry points related
to interfaces under the Network leaf node of the tree, connected with an OR gate.

In our running example, the two hardware supporting assets can be added below the hardware attack
node, connected with an OR gate. For people, only the Chauffeur needs to be added, because the other
two persons are not involved in the logical functional chain. For elements typed as SYS (cf. Figure 8),
new nodes need to be created both under the Hardware and Software attack nodes; the construction
process is similar to the one described above, but it should be noted that SYS elements lead either to
the duplication of nodes in the tree, or to the creation of a directed acyclic graph (DAG) if the tooling
supports such a construct. The management of the Network components of SYS elements is explained
below. In our simple running example, we have defined two external interfaces:

• the Dashboard, which allows for the display of the car’s speed and also provides a malfunction
indicator;

10 Technique for automating the construction & maintenance of attack trees

• the Brake Pedal, which allows the driver to apply an analogic braking force that somehow trans-
lates to a braking force on the brake pads.

Only the Dashboard interface is concerned by the two logical components tagged as SYS. Thus only the
Dashboard interface should be added in the attack tree under the Network attack node. The complete
resulting attack tree (in fact a DAG), at the end of this step, is illustrated in Figure 9.

Figure 9: Automatically constructed attack tree based on attack entry points

5.5 Step 5: Structuring the tree according to applicable threats

In this fifth step, we again use the security knowledge base to decompose each supporting asset leaf node
of the attack tree with all realistic threats that can apply, connected with an OR gate. We assume that the
security knowledge base provides a list of threats characterised by at least the targeted supporting asset
type and the concerned security criteria, as illustrated in Table 1. The proposed algorithm systematically
scans the security knowledge base selected for the study; it therefore ensures the completeness of the
threat study with respect to that database. As in the previous steps, the labelling of the attack tree nodes
can be automatically generated based on the content of the security knowledge base.

According to the EBIOS knowledge base [1], amongst the six threats targeting people, only the
Influence over a person and Overloading of the capacity of a person threats are related
to the Integrity security criterion. Thus, in our running example, the attack node on the Chauffeur

can be decomposed with two attack sub-nodes. All the other attack entry points are treated similarly.
Due to space limitations in this paper, the resulting tree is not shown.

Stéphane Paul 11

Table 1: Examples of threat descriptions in the EBIOS knowledge base [1]

Threat Targeted
supporting
asset

Description Concerned
security
criteria

Exploited vulnerabil-
ities

Pre-requisites

MAT-
MOD

Hardware Hardware
modification

Availability,
Integrity,
Confiden-
tiality

Elements can be
added, retrieved or
substituted; Elements
can be deactivated

Knowledge of the ex-
istence and location of
the hardware; Physical
access to the hardware

RSX-
USG

Network Man-in-
the-middle
attack

Availability,
Integrity

Flow content can be
altered; Flow rules
can be altered; Is the
unique transmission
resource

Knowledge of the ex-
istence and location of
the canal; Physical or
logical access to the
canal

5.6 Step 6: Structuring the tree according to threat sources

The sixth and last step of our algorithm is the most complex. For this step, we make the reasonable
assumption that the threat sources are explicitly defined in the risk assessment study. The complexity
of this algorithm step stems from the necessity of adequately selecting the threat sources to be added in
the attack tree, based on the fact that they can realistically enact the threats. Selecting unrealistic threat
sources may lead the attack tree end-users to reject the attack tree because uselessly oversized; on the
contrary, retaining too few threat sources may compromise the completeness of the study.

Each threat has prerequisites, in particular attack entry point access prerequisites that must be satis-
fied by a threat source for that threat source to be retained in the attack tree. For example, to be able to
modify some hardware equipment, a threat source requires knowledge about the existence & location of
the hardware, and needs physical access to that hardware equipment (cf. Table 1).

The system’s logical architecture provides information on the existence of access possibilities, typ-
ically based on the existence of logical component ports. In our running example, access to the Brake

Pedal is possible only through the Body and Interior of the Car.
The system’s logical architecture also provides information on the expected uses of these access

possibilities, typically based on functional chains. In our running example, Figure 6 shows that access to
the Brake Pedal is performed as part of the Manual Braking functional chain.

Finally, the system’s logical architecture provides information on the expected users of these access
possibilities, typically based on operational actors some of which may be considered as threat sources.
In our running example, Figure 6 shows that the Chauffeur is an operational entity that is expected to
access the Brake Pedal as part of the Manual Braking functional chain. If the Chauffeur is expected
to use the Brake Pedal, then it can be assumed that he has knowledge about the existence and location
of the Brake Pedal; he may even have received training about it. Thus, if a threat source is part of the
system’s logical architecture (i.e. insider attacker), some attack entry point access preconditions can be
checked.

However, all preconditions cannot be checked, even when the threat source is part of the system’s
logical architecture. For example, the Taxi Customer has access to the Car Interior but he is not
expected to use the Brake Pedal, so, based on the logical architecture, no assumption can be made on

12 Technique for automating the construction & maintenance of attack trees

his knowledge of the existence and localisation of the Brake Pedal. Indeed, a system design expresses
what a system is or can do, not what it is not or cannot do. This is a major limitation in using architectural
artefacts for building attack trees. This limitation can be overcome by requesting additional expert input,
but such additional inputs must be kept as low as possible to preserve the usability of the approach.

Due to paper length limitations, the conditions determining if a threat source should or should not
be retained for insertion in the attack tree cannot be discussed herein. This paper however exposes the
two main issues that render quite complex this step of the automation approach. It also provides the
high-level algorithm and illustrates the resulting tree with the running example.

There are two main issues in selecting threat sources for insertion in the attack tree: (1) it is required
to distinguish between physical and logical access pre-conditions; (2) access prerequisite satisfaction,
for a known threat source, depends on the system’s state and mode.

The proposed high-level algorithm to decide whether to retain or reject a threat source is the follow-
ing:

• if the threat source is not represented as an actor in the architecture, then the threat source is
retained because we lack knowledge about it: the security expert is requested to further manually
develop or close this branch of the attack tree;

• else if the threat source has the required access (physical and/or logical, as required for the attack)
to the attack entry point in the considered system’s state & mode then the threat source is retained,
for an intentional or an accidental attack; the security expert is requested to further manually
develop or close this branch of the attack tree;

• else if the threat source is malevolent, the threat source is retained, even though there is a doubt
about its access capabilities; the security expert is requested to further manually develop or close
this branch of the attack tree;

• else (i.e. known non-malevolent threat source with no known access to the supporting asset), the
threat source is rejected.

If a threat source is retained to be added in the attack tree for a given attack, then an AND gate is added
with:

• one or more leaf nodes representing the attack preconditions, as provided in the security knowledge
base (cf. Table 1);

• the attack itself; the security expert is requested to further manually develop this attack node;

• optionally, attack post-conditions, typically to ensure attack repudiation.

Amongst the most interesting preconditions are the ones involving a change of state and mode, which can
be far in the past, or immediately before the attack. In our running example, activating malicious code
in the Braking Control system when the Car is moving requires having injected that malicious code
when the Car was in the Maintenance state. Here, the precondition is represented by a very complex
subtree, but an online change of state and mode can be even more complex. Indeed, the attack is then
enacted in the new state and mode, possibly with an impact on the severity, or even the relevance, of the
feared event.

This algorithm step is the first in which we use the AND logical gate, in accordance with our aim to
introduce conjunctions as low as possible in the attack tree.

Figure 10 shows the result of the application of the algorithm on approximately half the attack nodes.
The attack tree is not meant to be legible, but is shown here to give an idea of the complexity of the
generated trees. In the Galileo risk assessment programme, some attack trees are known to stretch over

Stéphane Paul 13

Figure 10: Automatically (partially) constructed tree based on retained threat sources

14 Technique for automating the construction & maintenance of attack trees

40 A4 pages. In our simple running example, the attack tree size is expected to more than double when
the decomposition process is completed.

6 Related work

There are few commercial products related to attack trees. The two most significant ones are SecurITree
[9] and AttackTree+ [7]. None of them proposes support for the automated construction of attack trees.

The scientific community is very active on the construction of attack graphs [8, 2]. However, at-
tack graphs essentially focuses on attacker attempts to penetrate well-defined computer networks, rather
than addressing socio-technical systems, especially when poorly or partially defined; and naturally, the
complexity issues addressed by this community essentially relates to scaling to very large networks,
rather than to usability, i.e. trying to construct an attack tree skeleton that can be easily reworked and
maintained by human security experts.

Some research papers do address socio-technical systems. For example, [6] and [12] propose formal
approaches to generate attack trees, respectively based on system goals, and security policies. These
studies can be seen as upstream complements, but they also require specific frameworks. Our approach
attempts to base most of its attack tree extraction on an industrially used framework.

7 Conclusion and way forward

As can be seen from Figure 10, significant draft trees can be automatically generated, even with a simple
case-study. Beyond saving security expert time to build the attack tree, a systematic approach is enforced,
which ensures the completeness of the threat and vulnerability analysis. Moreover, the top-level structure
of the trees is normalised throughout the study, thus easing the readability and understanding of the
trees by third-parties; only the lower parts of the tree are left for manual completion. Last but not
least, traceability to architecture artefacts is set-up at no additional cost, thus offering support for impact
analysis when the system architecture evolves.

Our approach is foreseen for use only for large new systems, and not to support change in existing
systems. The main reason for that is that one starts the design of a large new system with a white
sheet; in this setting, the approach allows for the rapid construction of some core attack trees, and it
eases the impact management as the system’s design evolves. When system delivery is concluded, the
commercial contract(s) for system provisioning and system risk assessment usually terminate(s). A
new commercial contract may now be enacted to support Security Information and Event Management
(SIEM) at operation-time, possibly with a different industry. There are multiple approaches to SIEM,
but most are based on attack graphs and / or Complex Event Processing (CEP) techniques, rather than
on attack trees. Reuse of the knowledge captured in attack trees to feed the SIEM would definitively be
useful if the same industry manages to win both the design-time risk assessment study and the SIEM
contract, but we have not (yet) investigated this research path.

To support the automatic attack tree generation, inputs are required from: (i) an architecture frame-
work, in particular data from the operational architecture and the logical architecture; (ii) a risk assess-
ment tool, in particular in terms of feared events, primary assets, supporting asset types, threat sources,
etc.; (iii) a security knowledge base, in particular in terms of supporting asset types and threat caracteri-
sation (cf. Figure 11).

Beyond the positive points stated above, this feasibility study has also highlighted some issues; fur-
ther research has been shown to be required on a number of topics, in particular:

Stéphane Paul 15

Figure 11: Inputs and outputs of the attack tree generation approach

• the current work was focused essentially on operational processes and / or logical functional
chains; further research is required to cope with attacks on data and communications between
logical components;

• the proposed algorithm has made the assumption that ports on logical component were tagged to
specify if they provided logical versus physical access; this approach needs to be further validated
because it requires additional work compared to current industrial engineering practices;

• the proposed approach extensively analyses the logical architecture in search of the relevant attack
entry points, rather than using the supporting assets, as defined the EBIOS [1] risk assessment
study; the consistency between attack entry points and supporting assets must be ensured;

• the high-level structuring of the attack tree is based on states and modes; it has been implicitly
assumed in this feasibility study that there were only two levels (i.e. a state-level and a mode-
level which refines the states) in the system’s architecture; however, it can be supposed that very
complex systems may use sub-states and / or sub-modes; further research is required to assess the
importance of considering more than two level state machines;

• the approach fails to capture that some of the attacks may be led during the systems development
life-cycle itself, e.g. theft of detailed design documents during the transmission of those documents
between the development teams; to cover this type of attack, we may need to define a development
life-cycle (e.g. specification, coding, integration) by opposition to a operation-time life-cycle,
or, at minima, include in the attack tree an additional branch for attacks during the development
phase, to be manually completed by the security expert; for certain programmes, it could also be
interesting to include in the tree, attacks that could occur during system disposal;

• the feasibility study has been run using the Thales Melody architecture framework; synthesising
and generalising the required inputs from the architecture framework is required, in particular to
assess connection possibilities to other, possibly commercial, architecture frameworks; formalising
the algorithm would then be possible, for example using the Object Constraint Language (OCL) if
the architecture is expressed in the Unified Modeling Language (UML);

• logical AND gates have been introduced in the tree only to cope with attack pre- and post-conditions;
further work is required to deal with logical redundancy in operational and / or functional chains;

• to ease the readability and understanding of the automatically generated tree, significantly long
node labels have been used to precisely define the attack and its enactment conditions; since many
attack tree tools, whether academic or commercial, do not support long node labels or restrict node

16 Technique for automating the construction & maintenance of attack trees

labels to a unique line, further research is required to assess the trade-off between readability and
scalability; tree layout may also be a constraint to consider, as opening a poorly-formatted large
automatically-generated attack tree may be perturbing for the end-user;

• attack tree node generation can sometimes be disputable; in those cases, we have always favoured
node generation, so as to ensure the completeness of the analysis, making up for possibly unre-
alistic node generation by using node annotations or colour codes to attract the security experts’
attention; this approach, originating from expert judgement, needs to be further validated;

• the threat source selection algorithm is the most complex part of the overall approach, but still
remains the least convincing; further research is required to simplify the approach.

8 Acknowledgment

The research leading to these results has received funding from the ITEA2 MERgE project. The help
and support from engineers at Thales Communications & Security have been of particular value.

References
[1] Agence nationale de la sécurité des systèmes d’information (2010): EBIOS 2010 – Expression of Needs and

Identification of Security Objectives. In French.
[2] H. Birkholz, S. Edelkamp, F. Junge & K Sohr (2010): Efficient automated generation of attack trees from

vulnerability databases. In: Working Notes for the 2010 AAAI Workshop on Intelligent Security (SecArt),
pp. 47–55.

[3] International Organization for Standardization (2009): ISO 31000 – Risk management – Principles and guide-
lines.

[4] International Organization for Standardization / International Electrotechnical Commission (2005): ISO/IEC
27001 – Information technology – Security techniques – Information security management systems – Re-
quirements.

[5] Barbara Kordy, Ludovic Pietre-Cambacedes & Patrick Schweitzer (2013): DAG-Based Attack and Defense
Modeling: Don’t Miss the Forest for the Attack Trees. CoRR abs/1303.7397. Available at http://arxiv.
org/abs/1303.7397.

[6] Axel Van Lamsweerde, Simon Brohez, Renaud De Landtsheer & David Janssens (2003): From System Goals
to Intruder Anti-Goals: Attack Generation and Resolution for Security Requirements Engineering. In: Proc.
of RHAS03, pp. 49–56.

[7] Isograph Ldt.: AttackTree+ for Windows, Version 1.0, Attack Tree Analysis. Available at http://www.
isograph.com/software/attacktree/.

[8] R. Lippmann & K. Ingols (2005): An annotated review of past papers on attack graphs. Technical Report
ESC-TR-2005-054.

[9] Amenaza Technologies Ltd.: SecurITree, Attack tree modelling. Available at http://www.amenaza.com/.
[10] Stéphane Paul & Olivier Delande (2011): Integrability of design modelling solution. SecureChange FP7

project deliverable D4.4b.
[11] Stéphane Paul, Raphael Vignon-Davillier, Quentin Guil, Mickael Malka & André Leblond (2013): Under-

standing attack trees in the context of security risk assessment studies: a state of the art. Thales technical
report. Industry-in-confidence.

[12] W. Pieters, T. Dimkov & D. Pavlovic (2013): Security Policy Alignment: A Formal Approach. IEEE Systems
Journal 7(2), pp. 275–287.

http://arxiv.org/abs/1303.7397
http://arxiv.org/abs/1303.7397
http://www.isograph.com/software/attacktree/
http://www.isograph.com/software/attacktree/
http://www.amenaza.com/

Pre-proceedings of
The International Workshop on Graphical Models for Security 2014

c© T. Bauereiss, D. Hutter
This work is licensed under the
Creative Commons Attribution License.

Possibilistic Information Flow Control for Workflow
Management Systems∗

Thomas Bauereiss Dieter Hutter
German Research Center for Artificial Intelligence (DFKI)

Bibliothekstr. 1
D-28359 Bremen, Germany

thomas.bauereiss@dfki.de hutter@dfki.de

In workflows and business processes, there are often security requirements on both the data, i.e. con-
fidentiality and integrity, and the process, e.g. separation of duty. Graphical notations exist for spec-
ifying both workflows and associated security requirements. We present an approach for formally
verifying that a workflow satisfies such security requirements. For this purpose, we define the seman-
tics of a workflow as a state-event system and formalise security properties in a trace-based way, i.e.
on an abstract level without depending on details of enforcement mechanisms such as Role-Based
Access Control (RBAC). This formal model then allows us to build upon well-known verification
techniques for information flow control. We describe how a compositional verification methodol-
ogy for possibilistic information flow can be adapted to verify that a specification of a distributed
workflow management system satisfies security requirements on both data and processes.

1 Introduction

Computer-supported workflows and business process automation are widespread in enterprises and or-
ganisations. Workflow management systems support the enactment of such workflows by coordinating
the work of human participants in the workflow for human activities as well as by automatically exe-
cuting activities that can be mechanised. Graphical notations such as BPMN allow for the specification
of workflows in an intuitive way. In addition to the control and data flows, there are typically various
security requirements that need to be considered during the design, implementation and execution of
workflows. A well-known security requirement on workflows is separation of duty for fraud prevention
[7]. Confidentiality of data is another important security requirement, e.g. the confidentiality of medical
data from non-medical personnel. These two can be seen as examples for different types of security re-
quirements. On the one hand, there are security requirements on processes, i.e. constraints on the control
flow and the authorisation of users, and on the other hand, there are security requirements on data, i.e.
constraints on the flow of information. Several proposals to extend BPMN with graphical notations for
both kinds of security requirements exist [6, 26, 33].

In this paper, we focus on the question of how the semantics of such a notation can be defined and
how to use them to formally verify both types of security requirements. We do this on an abstract level
without having to refer to details of enforcement mechanisms such as role-based access control (RBAC).
For this purpose, we model the behaviour of a workflow as a set of traces of events, each representing a
possible run of the workflow, and formalise our security requirements in a declarative way as properties
of such trace sets. We map process requirements such as separation of duty to sets of allowed traces, cor-
responding to safety properties [3], whereas we map requirements on data to information flow properties,

∗This research is supported by the Deutsche Forschungsgemeinschaft (DFG) under grant Hu737/5-1, which is part of the
DFG priority programme 1496 “Reliably Secure Software Systems.”

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Possibilistic Information Flow Control for Workflow Management Systems

which have been extensively studied [27, 15, 36, 21, 9]. This allows us to verify the absence not only
of direct information leaks via unauthorised access, but also of indirect information leaks via observing
the behaviour of the system. For example, if the control flow depends on a confidential data item and an
unauthorised user observes which path of the control flow has been taken, they might be able to deduce
the confidential value of the data item.

The relation between possibilistic information flow and safety properties is not trivial due to the re-
finement paradox, i.e. enforcing a safety property by removing disallowed traces might introduce new
information leaks [18]. We discuss this relation for the case of separation of duty, give sufficient condi-
tions for the compatibility with information flow properties, and show that these conditions are satisfied
in our example setting.

We build upon the MAKS framework for possibilistic information flow control [15], which is suitable
for formulating and verifying information flow policies at the specification level, and in which many
information flow properties from the literature can be expressed. We describe how a compositional
verification methodology [13] can be applied to verify our system models, which has the advantage that
we can split up the verification task into separate verification tasks of the individual activities that make
up the overall workflow.

Essentially, our approach allows for the formal modelling of workflows and the verification of se-
curity requirements on data and processes at a high level of abstraction. We have verified our results
using the interactive theorem prover Isabelle/HOL [24]. To improve practicality, future work will focus
on refinement approaches of these specifications towards concrete implementations, while preserving as
much as possible of the security properties established on the abstract level. The long-term goal of our
work is to facilitate the step-wise development of secure workflow management systems, starting from
an abstract specification, derived from a workflow diagram, for example, then performing a series of
refinement steps and eventually arriving at a secure implementation.

The rest of this paper is structured as follows. In the following subsection, we present a running
example of a workflow that we will use for illustration throughout this paper. Section 2 introduces the
system model. In Section 3, we elaborate on modelling confidentiality and separation-of-duty require-
ments, respectively. In Section 4, we describe how existing techniques for compositional verification of
information flow properties can be applied and adapted for our workflow systems. Section 5 discusses
related work and Section 6 concludes the paper.

1.1 Example Scenario

As a running example, we use the workflow depicted in Figure 1, adapted from an industry use-case
described in an (unpublished) paper by A. Brucker and I. Hang. It models a hiring process including
interviews and medical examinations. The swimlanes represent two departments of the organisation
running the hiring workflow, the Human Resources (HR) and the medical department. The placement of
activities in the swimlanes indicates the responsible department, and thus the authorised employees. The
input and output relations of activities are depicted as directed flows of documents between activities.

We use this workflow to illustrate security requirements with respect to both data and process. On
the process side, we demand separation of duty between the two medical examinations, i.e. they have to
be performed by different medical officers, such that no single medical officer can manipulate the hir-
ing process by rejecting unwanted candidates for fabricated medical reasons. Regarding confidentiality
requirements, we assume that the two medical reports are highly confidential due to their potentially sen-
sitive contents. In particular, they are confidential for the employees in the HR department, who should
only be able to access information on a need-to-know basis, e.g. the CVs of applicants.

T. Bauereiss, D. Hutter 3

Figure 1: Example workflow, adapted from Brucker and Hang

In general, we assume there is a set of security domains, which are used to classify documents
exchanged between activities, and a flow policy that specifies the allowed information flows between
domains. We assign a domain to every document (a security classification) and to every employee (a
security clearance). These classifications and clearances determine which users are allowed to participate
in which activities of the workflow. For example, employees with an HR clearance are not allowed to
participate in the activities creating the medical report; otherwise, they would have direct access to
confidential medical data. We formally define the constraints regarding classifications, clearances and
flow policies in Section 3.1.

Besides direct information flows via transfer of documents, we aim to control indirect flows, where
confidential information is deducible from observations of the system behaviour. For example, an HR
employee in the above workflow can deduce whether the two medical officers agreed about the fitness of
the candidate by observing whether the workflow proceeds to activity 12 after the medical examinations
or reverts to activity 4. This is acceptable and actually necessary in our scenario, as long as this is the only
bit of information about the medical condition of the candidate that can be deduced by HR personnel.
Our goal is to verify that the workflow indeed does not leak any additional medical information to non-
medical personnel. In the next section, we begin by formally modelling the workflow, and then proceed
to formalise the security requirements.

1.2 Preliminaries

We briefly recall the definitions of (state-) event systems and security predicates from the MAKS frame-
work for possibilistic information flow [15] that we use in this paper. An event system ES = (E, I,O,Tr)
is essentially a (prefix-closed) set of traces Tr ⊆ E∗ that are finite sequences of events in the event set E.

4 Possibilistic Information Flow Control for Workflow Management Systems

The disjoint sets I ⊆ E and O⊆ E designate input and output events, respectively. We denote the empty
trace as 〈〉, the concatenation of traces α and β as α.β , and the projection of a trace α onto a set E as
α|E . In the composition ES1‖ES2 of two event systems ES1 and ES2, input events of one system match-
ing output events of the other system are connected (and vice versa) and thus become internal events of
the composed system. The set of traces is the set of interleaved traces of the two systems, synchronised
on events in E1∩E2:

Tr(ES1‖ES2) = {α ∈ (E1∪E2)
∗ | α|E1 ∈ Tr(ES1)∧α|E2 ∈ Tr(ES2)}

A state-event system SES = (E, I,O,S,s0,T) has a set of states S, a starting state s0 ∈ S, and a transition
relation T ⊆ (S×E×S). The event system induced by a state-event system has the same sets of events
and the set of traces that is enabled from the starting state via the transition relation.

The MAKS framework defines a collection of basic security predicates (BSPs). Many existing in-
formation flow properties from the literature can be expressed as a combination of these BSPs. Each
BSP is a predicate on a set of traces with respect to a view V . A view V = (V,N,C) on an event system
ES = (E, I,O,Tr) is defined as a triple of event sets that form a disjoint partition of E. The set V defines
the set of events that are visible for an observer, C are the confidential events, and the events in N are
neither visible nor confidential. Notable examples for BSPs, that we will use in this paper, are backwards-
strict deletion (BSD) and backwards-strict insertion of admissible confidential events (BSIA)1, defined in
[19] as follows:

BSDV(Tr)≡∀α,β ∈ E∗.∀c ∈C.(β .c.α ∈ Tr∧α|C = 〈〉)
⇒∃α ′ ∈ E∗.

(
α
′|V = α|V ∧α

′|C = 〈〉∧β .α ′ ∈ Tr
)

BSIAV(Tr)≡∀α,β ∈ E∗.∀c ∈C.(β .α ∈ Tr∧α|C = 〈〉∧β .c ∈ Tr)

⇒∃α ′ ∈ E∗.
(
α
′|V = α|V ∧α

′|C = 〈〉∧β .c.α ′ ∈ Tr
)

Intuitively, the former requires that the occurrence of confidential events must not be deducible, while
the latter requires that the non-occurrence of confidential events must not be deducible. Technically, they
are closure properties of sets of traces. For example, if a trace in Tr contains a confidential event, then
BSD requires that a corresponding trace without the confidential event exists in Tr that yields the same
observations. This means the two traces must be equal with respect to visible V -events, while N-events
might be adapted to correct the deletion of the confidential event.

2 System model

In order to verify that a workflow satisfies given security requirements, we need a formal model of
workflows and their behaviour. We first define our notion of workflows. For simplicity, we omit aspects
such as exceptions or compensation handling, but our definition suffices for our purpose of discussing
the verification of security requirements for workflows.

Definition 1. A workflow W = (A,Docs,SF,MF,U) consists of
• a set A of activities,

1In [19], BSIA is defined with an additional parameter ρ that allows to strengthen the property by further specifying positions
at which confidential events must be insertable. For simplicity, we choose to fix this parameter to ρE in the notation of [19],
i.e we only require confidential events to be insertable into a trace without interfering with observations if they are in principle
admissible exactly at that point in the trace.

T. Bauereiss, D. Hutter 5

• a set Docs of data items,
• a set SF ⊆ (A×A) of sequence flows, where (a1,a2)∈ SF represents the fact that upon completion

of a1, it may send a trigger to a2 signalling it to start execution, and
• a set MF ⊆ (A×Docs×A) of message flows, where (a1,d,a2)∈MF represents data item d being

an output of activity a1 and an input to a2, and
• a set U of users participating in the workflow.
The sets A and Docs correspond to the nodes of a workflow diagram such as Figure 1, while SF and

MF correspond to the solid and dashed edges, respectively.
We define the behaviour of workflows, not in a monolithic way, but in terms of the behaviours of

components representing activities communicating with each other. As we will show in Section 4, this
simplifies the verification, because it allows us to use the decomposition methodology of [13] to verify
the security of the overall system by verifying security properties of the subcomponents. We believe
that such a decomposition approach can help in scaling up verification of information flow properties to
larger systems.

Each activity a is therefore modelled as a state-event system SESa =
(
Ea, Ia,Oa,Sa,s0

a,Ta
)

analo-
gously to Definition 3 of [13]. The set of events Ea consists of events of the form
• Starta(u), starting the activity a and assigning it to the user u ∈U ,
• Enda(u), marking the end of the activity,
• Senda(a′,msg) and Recva(a′,msg), representing the sending (or receiving, respectively) of a mes-

sage msg from activity a to activity a′ (or vice versa),
• Setvala(u, i,val) and Outvala(u, i,val), representing a user u ∈U reading (or setting, respectively)

the value val of data item i, and
• a set of internal events τa.
We denote the set of events of a given activity a ∈ A as Ea, and the set of all events in a workflow

as EW =
⋃

a∈A Ea. We denote the set of events of a given user u ∈ U as Eu = {Starta(u) | a ∈ A}∪
{Setvala(u, i,val) | a ∈ A, i ∈ Docs,val ∈Val} ∪ {Outvala(u, i,val) | a ∈ A, i ∈ Docs,val ∈Val} ∪
{Enda(u) | a ∈ A}, and the set of all user interaction events as EU =

⋃
u∈U Eu. The messages between

activities can have the form
• Trigger, used to trigger a sequence flow to a successor activity in the workflow,
• Data(i,v), used to transfer the value v for data item i, and
• AckData(i), used to acknowledge the receipt of a data item.

Using separate messages for data and sequence flows is inspired by the BPMN standard, which describes
its (informal) execution semantics in terms of tokens that are passed from one activity to the next, repre-
senting control flow separately from data flows. In addition, this separation simplifies the modelling of
confidentiality, as it becomes straightforward to classify events transporting Data messages into confi-
dential or non-confidential events based on the classification of the data items they transport.

The local states of the activities include program variables such as a program counter and a mapping
Mem : Docs→Val, storing the values of data items. After initialisation, the activity waits for messages
from other activities, transferring input data or triggering a sequence flow. When one (or more) of the
incoming transitions have been triggered, the activity internally computes output messages (possibly via
interaction with users), sends them via the outgoing data associations, and triggers outgoing sequence
flows. In Appendix A, we formally specify two types of activities as examples, namely user activities
that allow users to read and write data items, and gateway activities that make a decision on the control
flow based on the contents of their input data items.

Each of these state-event systems SESa induces a corresponding event system ESa. The overall
system then emerges from the composition of these event systems ESa for every activity a ∈A, together

6 Possibilistic Information Flow Control for Workflow Management Systems

with a communication platform ESP:

ESW = (‖a∈AESa)‖ESP

We call ESW the workflow system for the workflow W . We reuse the communication platform of [13],
which is formally specified in Section 2.3 of [13]. It asynchronously forwards messages between the
activities. As we do not assume that it provides guarantees regarding message delivery, its specification
is very simple.2 Upon composition with the platform, the communication events between the activities
become internal events of the composed system. Only the communication events with users remain input
and output events. These events form the user interface of the workflow system.

A simple version of our example workflow can be represented as a composition of instances of the
activity types specified in Appendix A. We can represent the activity T11a in Figure 1 as a gateway that
decides on the control flow based on the results of the medical examinations: If they are positive, the
workflow continues with dispatching the contract, otherwise it goes back to selecting another candidate
from the shortlist. The other activities essentially consist of users reading and generating documents, so
we can represent them as user activities. Of course, these activities can be enriched with further details,
e.g. the interviews can be expanded to subprocesses of their own, but we assume that this is handled in a
subsequent refinement step and consider only the abstract level in this paper.

3 Security policies

3.1 Confidentiality

HR

Med

Figure 2: Flow policy

We assign security domains from a set D of domains to the data
items exchanged between the activities of the workflow. We de-
note this domain assignment function by dom : Docs→D. A flow
policy is a reflexive and transitive relation on domains and speci-
fies from which domains to which other domains information may
flow.[23] Note that, even though we focus on confidentiality in
this paper, also integrity requirements can be seen as a dual to
confidentiality and handled using information flow control. For
example, in [23] a lattice of combined security levels is built as a product of a confidentiality lattice and
an integrity lattice. For our example workflow, we only require two confidentiality domains HR and
Med. The medical reports MedReport1 and MedReport2 created by activities T6–T8 and T9–T11 in
Figure 1 are assigned to the Med confidentiality domain, and other data items to the HR domain. The ex-
ample flow policy states that information may flow from HR to Med, but not vice versa, i.e. HR Med
and Med 6 HR (see Figure 2).

Users read and write the contents of data items via the inputs and outputs of activities they participate
in. In order to exclude unwanted direct information flows, we have to make sure that the classifications
of the data items that users work with are compatible with their clearances. A straightforward approach
is to enforce a Bell-LaPadula style mandatory access control. This can be formulated in terms of classi-
fications that are assigned to activities based on the classifications of their inputs and outputs:

Definition 2. An activity classification clA : A→D is an assignment of domains to activities such that

2However, it is possible to adapt the decomposition methodology to other communication models, e.g. providing some
notion of reliability of message delivery or means for synchronous communication. For example, see Appendix A for some
remarks on guaranteeing a notion of ordered message delivery.

T. Bauereiss, D. Hutter 7

1. for all input data items i of an activity a, dom(i) clA(a), and

2. for all output data items i of an activity a that may be assigned to untrusted users, clA(a) dom(i).

We allow users to participate in an activity of a given classification only if they have a matching
clearance. We denote the mapping of users to clearances as clU : U →D. The conditions in Definition 2
correspond to the Simple Security and ∗-Property of the Bell-LaPadula model, respectively. Note that
we relax the ∗-Property by allowing trusted users to downgrade data items. Otherwise, we would not be
able to assign a classification to the activities T8 and T11 in our example workflow, because they have
high inputs (the medical reports) and low outputs (the statements about the final result of examinations).
However, this specific flow of information in the example is acceptable and necessary, because the output
should contain only the non-confidential final decision of the medical officer3 required by the HR de-
partment, while the detailed content of the medical reports remains classified as confidential. Essentially,
we admit inputs and outputs of trusted users to act as a channel for declassification that is not formally
controlled by our information flow analysis. It would be possible to model declassification more explic-
itly, e.g. using intransitive flow policies [17], but for simplicity we choose this solution for this paper.
The same approach is followed in [33], for example. See [32] for an early discussion of this approach to
downgrading and [28] for a general overview of principles and dimensions of declassification.

Regardless of whether trusted users are present or not, we want to verify that the system itself does
not leak information about data items i with classification dom(i) 6 d to users with clearance d. The set
of confidential events for a domain d thus consists of events setting or reading values of these data items,
while events of activities whose classification is allowed to flow into d are considered to be potentially
observable for users in domain d:

Definition 3. Let d ∈ D be a domain. The security view on a workflow system ESW for d is defined as
Vd = (Vd ,Nd ,Cd), where

Vd =
⋃

clA(a) d

Ea

Cd ={Setvala(u, i,val) | ∃u ∈U, i ∈ Docs,v ∈Val. dom(i) 6 d∧ clA(a) 6 d}
∪{Outvala(u, i,val) | ∃u ∈U, i ∈ Docs,v ∈Val. dom(i) 6 d∧ clA(a) 6 d}

Nd =E \ (Vd ∪Cd)

The set Cd contains the confidential input and output events.4 Note that we assume that confidential
information enters the system only via user input or output, and that the system does not generate con-
fidential information by itself (e.g. by generating cryptographic key material). If that were the case, the
corresponding system events would have to be added to the set Cd . Moreover, it is worth pointing out
that we consider certain other types of information to be non-confidential. In particular, the information
whether an activity has been performed or not, or the information which user has performed which ac-
tivity is considered to be non-confidential. Again, such requirements could be captured by formulating
the security view accordingly. For our setting, the above view reflects our security requirement that the
values of confidential data items should be kept secret. Hence, we use this view for the rest of this paper.

In Section 4, we describe how to verify that a given workflow system satisfies the security predicate
BSDVd ∧BSIAVd with respect to this view for every domain d. It expresses that confidential user inputs
and outputs can be deleted or inserted without interfering with the observations of users in domain d.

3Which can be further enforced by allowing only Boolean values as content of the low output.
4The set Cd only contains events of activities a with clA(a) 6 d, because activities with clA(a) d are considered to be

visible, and the set of visible and confidential events must be disjoint.

8 Possibilistic Information Flow Control for Workflow Management Systems

3.2 Separation of duties

As discussed in the introduction, separation of duties is another common security requirement in work-
flow management systems. Separation of duties can be formally defined as a safety property [3]. The
“bad thing” happens when the same user participates in two activities constrained by separation of duty,
hence we only allow traces where this does not occur.

Definition 4. Let a,a′ ∈ A be two activities. We call the set of traces{
α ∈ E∗W | ∀u,u′ ∈U. ∀e1,e2 ∈ α.(e1 ∈ (Ea∩Eu)∧ e2 ∈ (Ea′ ∩Eu′))→ u 6= u′

}
a separation-of-duty property Pa,a′

SoD.

As we have modelled user assignment explicitly as events, this property can also be characterised by
requiring that 1. constrained activities are assigned to different users, and 2. users may participate in an
activity only after they have been assigned to it:

Pa,a′
SoD ⊇

{
α ∈ E∗W | ∀u,u′ ∈U. Starta1(u) ∈ α ∧Starta2(u

′) ∈ α −→ u 6= u′
}

∩{α ∈ E∗W | ∀a ∈ A,u ∈U,e ∈ (Ea∩Eu). Starta(u) /∈ α −→ e /∈ α}

A system with a set of traces Tr and events E satisfies such a property iff Tr ⊆ Pa,a′
SoD. In our example

workflow, there are separation of duty constraints between the activities belonging to the two medical
examinations (T 6–8 in Figure 1 one the one hand, and T 9–11 on the other hand). Hence, we want to
enforce Pa,a′

SoD for the pairs (a,a′) ∈ {T 6,T 7,T 8}×{T 9,T 10,T 11}.
Similarly, other runtime-enforceable security policies [30] can be modelled as safety properties. In

this paper, we focus on the above notion of separation of duty as an example and investigate its relation
to information flow in Section 4.2.

4 Verification

4.1 Information flow security

To ease the verification of the security of a workflow system, we decompose it into the individual activi-
ties of the workflow and make use of the methodology presented in [13] to verify the resulting distributed
system. For each domain d ∈D, we verify that users in that domain can learn nothing about information
that is confidential for them. The first step of the methodology [13] is to partition the activities into a
set of low activities Ad

L = {a ∈ A | clA(a) d} that are (potentially) visible in domain d and a set of
high activitiesAd

H = {a∈A | clA(a) 6 d} that are not visible and may handle confidential information.5

It follows that Vd from Definition 3 is a global security view as defined in [13, Definition 13], i.e. the
visible events are exactly the events of the low activities, the set of confidential events is a subset of the
events of the high activities, and the remaining events are non-visible and non-confidential.

The second step is finding suitable local views Va
d for high activities a ∈ Ad

H in order to verify that
they do not leak confidential information to low activities. Hence, we cannot generally treat communi-
cation events of these activities as N-events, as we did in the global view, but we have to consider some
of them as V -events (e.g. a high activity sending a trigger or a declassified data item to a low activity)

5In [13], the set Ad
L is called the set of observers, while Ad

H is called the set of friends. This might be a bit counterintuitive
in our setting for some readers, as the friends would be the activities that are not visible. To avoid confusion, we simply speak
of low and high activities, respectively.

T. Bauereiss, D. Hutter 9

and some of them as C-events (e.g. a high activity receiving a confidential data item). Intuitively, this
means we split each of these activities into a part that visibly interacts with low activities and a part that
handles confidential data, and verify that the latter does not interfere with the former. Technically, these
local views satisfy certain constraints that allow us to instantiate the compositionality result of [13], as
we discuss below.

Definition 5. Let d ∈ D be a domain, and a ∈ Ad
H be a high activity for d. Furthermore, let DocsC

d =
{i ∈ Docs | dom(i) 6 d} denote the set of data items that are confidential for d. The local view for a is
defined as Va

d = (V a
d ,N

a
d ,C

a
d) with

V a
d = (Ia∪Oa)\

⋃
i∈DocsC

d

Ei

Ca
d =

⋃
i∈DocsC

d

(Ei \{Senda(b,m) | ∃v. m = Data(i,v)∨m = AckData(i)})

Na
d = Ea \ (V a

d ∪Ca
d)

where the set Ei of high communication events containing data item i is defined as

Ei =
{

e |∃b ∈ Ad
H ,m,u,v. (m = Data(i,v)∨m = AckData(i))

∧ (e = Senda(b,m)∨ e = Recva(b,m)∨ e = Setvala(u, i,v)∨ e = Outvala(u, i,v))
}

Combining these local views, we define the composed view for d as Vd+ = (Vd+ ,Nd+ ,Cd+) where
Vd+ =

⋃
a∈Ad

H
V a

d ∪
⋃

a∈Ad
L

Ea Cd+ =
⋃

a∈Ad
H

Ca
d Nd+ = EW \ (Vd+ ∪Cd+)

Note that the combined view Vd+ is stronger than our global view Vd in the sense that more events
are considered confidential or visible for an observer in domain d. Theorem 1 of [19] tells us that
BSDVd+

∧BSIAVd+
for the stronger view implies BSDVd ∧BSIAVd .

Also note that all communication events with low activities are considered visible, and that the for-
warding of confidential data items from one high activity to another is considered non-confidential. The
justification for this is that secrets enter and leave the subsystem of high activities through communi-
cation with users and low activities, and the forwarding between high activities can be considered as
internal processing. Hence, we can use communication events between high activities for correcting per-
turbations caused by inserting or removing confidential user inputs. We make use of this fact in the proof
of the following theorem, which states the security of activities as we have specified them in Appendix A
in terms of the transition relations T gen

a , T user
a and T gw(Cond)

a .

Theorem 1. Let W be a workflow, d ∈ D a domain and SESa for a ∈ A an activity. If the transition
relation of SESa is
• T gen

a ∪T user
a , or

• T gen
a ∪T gw(Cond)

a and Cond does not depend on confidential data for d,
then BSDVa

d
(Tra)∧BSIAVa

d
(Tra) holds.

The proof of this and the following theorems can be found in the extended version of this paper [5].
We use the unwinding technique [16] for the proof. Note that since the generic transition relation T gen

a

and the activity-specific transition relations are disjoint, we can partition this proof into a generic part
that covers the events and states used in T gen

a , and an activity-specific part. Therefore, if we want to use
a different kind of activity than the ones specified in this paper, and we reuse the generic part T gen

a of the
transition relation, then we can also reuse most of this proof.

10 Possibilistic Information Flow Control for Workflow Management Systems

The next step is to instantiate the compositionality result of [13], which states that the security of
the overall system with respect to the global security view is implied by the security of the subsystems
with respect to their local views. However, our local views do not quite satisfy the requirement of being
C-preserving in the sense of Definition 18 of [13], because that definition disallows N-events in the
communication interface between subsystems. Hence, we slightly adapt the notion C-preserving views,
allowing Send events to be in N:

Definition 6. Let Ad
H ⊆ A and C ⊆ EAd

H
. A family (Va)a∈Ad

H
of views Va = (Va,Na,Ca) for Ea is C-

preserving for C iff

1. a ∈ Ad
H and b /∈ Ad

H implies ∀m.Senda(b,m) ∈Va∧Recva(b,m) ∈Va.

2. a,a′ ∈ Ad
H implies

(a) Recva′(a,m) ∈Ca′ iff Senda(a′,m) 6∈Va and
(b) Recva′(a,m) ∈Va′ iff Senda(a′,m) ∈Va

3. C∩Ea ⊆Ca for all a ∈Φ.

As can be easily seen, our local views are C-preserving for the set of global confidential events Cd
from Definition 3: communication with low activities is visible, corresponding Recv and Send events
are either visible or non-visible (where non-visible Recv events need to be confidential, while the corre-
sponding Send events are allowed to be treated as N-events), and events that are confidential in the global
view are confidential for the local views.

It turns out that the compositionality result of [13] still holds for our weakened notion of C-preserving
local views; a sufficient (but not necessary) condition is that the subsystems satisfy not only BSD (as in
[13]), but BSD and BSIA, which our activities happen to do.

Theorem 2. Let W be a workflow, ESW = (‖a∈AESa)‖ESP be a workflow system, Vd be a global security
view for domain d, and

(
Va

d

)
a∈Ad

H
be a family of local views that is C-preserving for Cd . If for all a∈Ad

H ,
ESa satisfies BSDVa

d
∧BSIAVa

d
, then ESW satisfies BSDVd+

∧BSIAVd+
and, therefore, BSDVd ∧BSIAVd .

Note that, if other kinds of activities than the ones from Appendix A should be part of the workflow,
it is only required to prove that their specifications also satisfy the security predicates for the local views,
in order to show that the overall workflow satisfies the information flow security predicates.

We have formalised and verified our model and proofs using the interactive theorem prover Isabelle
[24]. Our development is based on a formalisation of the MAKS framework developed by the group of
Heiko Mantel at TU Darmstadt (unpublished as of this writing). We intend to make our formalisation
publicly available when the MAKS formalisation is released.

Conceptually, the main difference between our workflow management systems and the shopping
mall system described in [13] lies in the relation between users and the system. In the shopping scenario,
there is a one-to-one correspondence between users and software agents running in the system. Com-
munication with the users happens only during initialisation, when users write their preferences into the
initial memory of their agents, which run autonomously thereafter. In our workflow systems, the interac-
tion is much more dynamic, as multiple activities can be assigned to the same user at runtime and there
is ongoing communication between users and the system. This has impact on the system model — we
introduced additional events for user interaction — and the construction of views. The partitioning into
high and low activities is based on classifications of data items and activities, and access control has to
ensure that only users with a matching clearance can participate in an activity, so that our security views
are actually in line with the possible runtime observations of users. Despite these differences, we have
seen that the methodology of [13] can be applied with small technical adjustments.

T. Bauereiss, D. Hutter 11

4.2 Compatibility with separation of duties

As described in Section 3.2, we can formalise constraints such as separation of duty as safety properties.
Having established information flow security of our workflow system, we now ask whether these security
properties are preserved when enforcing separation of duty constraints. In general, this is not the case.
Altering a system such that it satisfies a safety property can be seen as a refinement, and it is well-known
that possibilistic information flow security is not preserved under refinement in general [18]. Consider,
for example, the security predicate BSIA. Repeatedly inserting confidential events of different users into
a trace can exhaust the possible user assignments that would satisfy the separation of duty constraints,
thus deadlocking the process and making further visible observations impossible. We can, however, try
to find sufficient conditions under which information flow properties are preserved:

Theorem 3. Let ES = (E, I,O,Tr) be an event system and V = (V,N,C) be a view for ES. Let Ea,E ′a⊆ E
be two disjoint sets of events corresponding to activities a and a′, and let Pa,a′

SoD be an SoD property. Let
Eu ⊆V ∪C be the communication events with a user u and EU =

⋃
u∈U Eu the set of all user events. If

1. user assignment is non-confidential, i.e. there is a set Eassign ⊆ E \C of assignment events, and
a user u may only participate in an activity after having been assigned to it via an event from
Eassign∩Eu, or

2. only confidential or only visible user I/O events of activities a and a′ are enabled in ES, i.e. there
is a set Edisabled ⊆ E of events that never occur in a trace of ES, and V ∩(Ea∪E ′a)∩EU ⊆ Edisabled

or C∩ (Ea∪E ′a)∩EU ⊆ Edisabled holds, or

3. the SoD constraint between a and a′ is already enforced by ES, i.e. Tr ⊆ Pa,a′
SoD,

then BSDV(Tr)∧BSIAV(Tr) implies BSDV(Tr∩Pa,a′
SoD)∧BSIAV(Tr∩Pa,a′

SoD).

In our running example, we can choose Eassign = {Starta(u) | u ∈U} and apply the first case of the
theorem for the workflow system ESW and a view Vd+ , because only the details of the results of the med-
ical examinations are confidential, not the information who carried out the examinations. Furthermore,
in case clA(a) 6= clA(a′), the mandatory access control described in Section 3.1 already enforces SoD
statically, so the third condition also applies. In general, Theorem 3 gives us sufficient conditions for the
compatibility of SoD constraints and information flow properties, taking into account the classifications
of events that are relevant for enforcing SoD. Similar results could be developed for other classes safety
properties that are of interest in workflows, but we leave this as future work. Note that Theorem 3 is
not specific to workflow systems as specified in this paper. It can be applied to any system where users
perform different activities in the presence of separation of duty constraints.

5 Related work

We build upon the MAKS framework for possibilistic information flow control [15], which is suitable
for formulating and verifying information flow policies at the specification level. We have focused on
confidentiality of data from unauthorised employees within the organisation, but in principle information
flow control can be adapted to different attacker models and security policies by choosing the security
views appropriately. Furthermore, approaches have been proposed to take into account factors such as
communication over the Internet [12] or encrypted communication channels [14]. In [25], a connection
between role-based access control (RBAC) and mandatory access control is drawn, which might be
adapted to enforce the mandatory access control we described in Section 3.1 using RBAC mechanisms.

12 Possibilistic Information Flow Control for Workflow Management Systems

Early examples for workflow management systems with distributed architectures include [2, 22, 31].
Later, computing paradigms with a similar spirit have emerged, e.g. service-oriented architectures or
cloud computing. We see these techniques and standards as complementary to our work, as they can be
used for the implementation of our abstract specifications.

BPMN extensions to annotate business process diagrams with security annotations can be found in
[6, 26, 33]. Closest to the security requirements considered by us comes the notation proposed in [33]
that supports both the annotation of activities with separation of duty constraints and the annotation of
documents and process lanes with confidentiality and integrity classifications or clearances, respectively.

Several proposals for a formal semantics of workflow specifications can be found in the literature.
For example, [34] maps BPMN diagrams to CSP processes and describes how the formal semantics can
be leveraged to compare and analyse workflow diagrams, e.g. with respect to consistency. It focuses
on the control flow and does not model data flows. In [35], workflows are represented as statements in
a workflow description language, which is mapped to a representation as hierarchical state machines.
An information flow analysis algorithm is described, but the actual information flow property that it
checks is not stated in a declarative, mechanism-independent way. [1] represents workflows as Petri
nets and describes an approach for information flow analysis. The focus is on keeping the occurrence
of tasks confidential, whereas our work focuses on the confidentiality of the data that is processed in
the workflow. In [4] and [29], workflows are formalised as transition systems and model-checking is
employed to verify properties specified as LTL formulas. This is suitable to verify safety or liveness
properties, whereas the information flow predicates considered by us can be seen as hyperproperties [8].

6 Conclusion

Graphical notations such as BPMN are widely used for workflow specification. We have presented an
approach to formally model both the behaviour of a workflow and the associated security requirements,
and described how to apply the decomposition methodology of [13] and how to verify a distributed work-
flow management system with ongoing user interaction. We have shown that, even though possibilistic
information is in general not refinement-closed, the enforcement of separation of duty is compatible with
the information flow security of the system under certain assumptions.

We have sketched how a simple version of our example workflow can be represented as a composition
of instantiations of the activity types specified in Appendix A. As we have shown the security of these
activities in Theorem 1, we can use Theorem 2 to derive the security of the composed system from the
security properties of the individual activities. This demonstrates how instantiations of a type of activities
that has been proven secure once can be plugged into larger workflows in a secure way. Hence, we believe
that this compositional approach can help in making verification techniques for information flow scale
to larger workflow systems. However, more work is needed before this approach can actually be applied
to realistic systems. For example, tool support for translating a more realistic subset of BPMN to our
system model would be a major step in this direction, which would also help us evaluate our approach
with a sample of existing workflows.

Moving from an abstract specification towards the implementation level is another important direc-
tion of future work. This paper deals with workflows on a high level of abstraction. We intend to work
on notions of security-preserving refinement that allow us to expand abstract activities in a workflow into
more concrete subprocesses and refine the behaviour of atomic activities towards an executable imple-
mentation. There is a large body of existing work that we can build upon for this purpose, such as action
refinement for replacing atomic events on the abstract level with sequences of more concrete events [11],

T. Bauereiss, D. Hutter 13

switching between event-based and language-based notions of information flow [20], or directly gener-
ating executable code from specifications [10]. In the long term, we hope that these decomposition and
refinement techniques will contribute to making the step-wise development of secure workflow systems
from workflow diagrams to executable code more scalable and efficient.

Acknowledgements We thank Richard Gay, Sylvia Grewe, Steffen Lortz, Heiko Mantel and Henning
Sudbrock for providing a formalisation of the MAKS framework in Isabelle/HOL that allowed us to
verify our main results in Isabelle, and the anonymous reviewers for helpful comments on the paper.

References

[1] Rafael Accorsi & Andreas Lehmann (2012): Automatic Information Flow Analysis of Business Process Mod-
els. In: BPM, pp. 172–187, doi:10.1007/978-3-642-32885-5 13.

[2] Gustavo Alonso, Roger Günthör, Mohan Kamath, Divyakant Agrawal, Amr El Abbadi & C. Mohan (1996):
Exotica/FMDC: A Workflow Management System for Mobile and Disconnected Clients. Distributed and
Parallel Databases 4(3), pp. 229–247, doi:10.1007/BF00140951.

[3] Bowen Alpern & Fred B. Schneider (1987): Recognizing safety and liveness. Distributed Computing 2(3),
pp. 117–126, doi:10.1007/BF01782772.

[4] Wihem Arsac, Luca Compagna, Giancarlo Pellegrino & Serena Elisa Ponta (2011): Security Validation
of Business Processes via Model-Checking. In: Engineering Secure Software and Systems, LNCS 6542,
Springer, pp. 29–42, doi:10.1007/978-3-642-19125-1 3.

[5] Thomas Bauereiss & Dieter Hutter (2013): Possibilistic information flow security of workflow management
systems. Technical Report. Available at http://bauereiss.name/papers/WorkflowSecurity_TR.pdf.

[6] Achim D. Brucker, Isabelle Hang, Gero Lückemeyer & Raj Ruparel (2012): SecureBPMN: Modeling and
Enforcing Access Control Requirements in Business Processes. In: SACMAT 2012, ACM, pp. 123–126,
doi:10.1145/2295136.2295160.

[7] David D. Clark & David R. Wilson (1987): A Comparison of Commercial and Military Computer Security
Policies. IEEE Symposium on Security and Privacy, pp. 184–194, doi:10.1109/SP.1987.10001.

[8] Michael R. Clarkson & Fred B. Schneider (2010): Hyperproperties. Journal of Computer Security 18(6), pp.
1157–1210, doi:10.3233/JCS-2009-0393.

[9] Riccardo Focardi & Roberto Gorrieri (1995): A Classification of Security Properties for Process Algebras.
Journal of Computer Security 3(1), pp. 5–33, doi:10.3233/JCS-1994/1995-3103.

[10] Florian Haftmann & Tobias Nipkow (2007): A code generator framework for Isabelle/HOL. In: Theorem
Proving in Higher Order Logics: Emerging Trends. Available at http://es.cs.uni-kl.de/events/
TPHOLs-2007/proceedings/B-128.pdf.

[11] Dieter Hutter (2006): Possibilistic Information Flow Control in MAKS and Action Refinement. In: ETRICS,
LNCS 3995, Springer, pp. 268–281, doi:10.1007/11766155 19.

[12] Dieter Hutter (2007): Preserving Privacy in the Web by Using Information Flow Control. In Andreas U.
Schmidt, Michael Kreutzer & Rafael Accorsi, editors: Long-Term and Dynamical Aspects of Information
Security: Emerging Trends in Information and Communication Security, Nova Science.

[13] Dieter Hutter, Heiko Mantel, Ina Schaefer & Axel Schairer (2007): Security of multi-agent systems: A case
study on comparison shopping. Journal of Applied Logic 5(2), pp. 303–332, doi:10.1016/j.jal.2005.12.015.

[14] Dieter Hutter & Axel Schairer (2004): Possibilistic Information Flow Control in the Presence of Encrypted
Communication. In: ESORICS, LNCS 3193, Springer, pp. 209–224, doi:10.1007/978-3-540-30108-0 13.

[15] Heiko Mantel (2000): Possibilistic Definitions of Security - An Assembly Kit. In: CSFW, IEEE Computer
Society, pp. 185–199, doi:10.1109/CSFW.2000.856936.

http://dx.doi.org/10.1007/978-3-642-32885-5_13
http://dx.doi.org/10.1007/BF00140951
http://dx.doi.org/10.1007/BF01782772
http://dx.doi.org/10.1007/978-3-642-19125-1_3
http://bauereiss.name/papers/WorkflowSecurity_TR.pdf
http://dx.doi.org/10.1145/2295136.2295160
http://dx.doi.org/10.1109/SP.1987.10001
http://dx.doi.org/10.3233/JCS-2009-0393
http://dx.doi.org/10.3233/JCS-1994/1995-3103
http://es.cs.uni-kl.de/events/TPHOLs-2007/proceedings/B-128.pdf
http://es.cs.uni-kl.de/events/TPHOLs-2007/proceedings/B-128.pdf
http://dx.doi.org/10.1007/11766155_19
http://dx.doi.org/10.1016/j.jal.2005.12.015
http://dx.doi.org/10.1007/978-3-540-30108-0_13
http://dx.doi.org/10.1109/CSFW.2000.856936

14 Possibilistic Information Flow Control for Workflow Management Systems

[16] Heiko Mantel (2000): Unwinding Possibilistic Security Properties. In: ESORICS, LNCS 1895, Springer, pp.
238–254, doi:10.1007/10722599 15.

[17] Heiko Mantel (2001): Information Flow Control and Applications - Bridging a Gap. In: FME, LNCS 2021,
Springer, pp. 153–172, doi:10.1007/3-540-45251-6 9.

[18] Heiko Mantel (2001): Preserving Information Flow Properties under Refinement. In: IEEE Symposium on
Security and Privacy, IEEE Computer Society, pp. 78–91, doi:10.1109/SECPRI.2001.924289.

[19] Heiko Mantel (2002): On the Composition of Secure Systems. In: IEEE Symposium on Security and Privacy,
IEEE Computer Society, pp. 88–101, doi:10.1109/SECPRI.2002.1004364.

[20] Heiko Mantel & Andrei Sabelfeld (2003): A Unifying Approach to the Security of Distributed and Multi-
Threaded Programs. Journal of Computer Security 11(4), pp. 615–676. Available at http://iospress.
metapress.com/content/r0pr0ma4kv8wa542/.

[21] J. McLean (1996): A general theory of composition for a class of “possibilistic” properties. IEEE Transac-
tions on Software Engineering 22(1), pp. 53–67, doi:10.1109/32.481534.

[22] Peter Muth, Dirk Wodtke, Jeanine Weissenfels, Angelika Kotz Dittrich & Gerhard Weikum (1998): From
Centralized Workflow Specification to Distributed Workflow Execution. Journal of Intelligent Information
Systems 10(2), pp. 159–184, doi:10.1023/A:1008608810770.

[23] Andrew C. Myers, Andrei Sabelfeld & Steve Zdancewic (2006): Enforcing Robust Declassification and
Qualified Robustness. Journal of Computer Security 14(2), pp. 157–196. Available at http://iospress.
metapress.com/content/EYT2D3ERKY3A2H25.

[24] Tobias Nipkow, Lawrence C Paulson & Markus Wenzel (2002): Isabelle/HOL: a proof assistant for higher-
order logic. LNCS 2283, Springer.

[25] Sylvia Osborn, Ravi Sandhu & Qamar Munawer (2000): Configuring role-based access control to en-
force mandatory and discretionary access control policies. ACM Trans. Inf. Syst. Secur. 3(2), p. 85–106,
doi:10.1145/354876.354878.

[26] Alfonso Rodrı́guez, Eduardo Fernández-Medina & Mario Piattini (2007): A BPMN Extension for the
Modeling of Security Requirements in Business Processes. IEICE Transactions 90-D(4), pp. 745–752,
doi:10.1093/ietisy/e90-d.4.745.

[27] A. Sabelfeld & A.C. Myers (2003): Language-based information-flow security. IEEE Journal on Selected
Areas in Communications 21(1), pp. 5–19, doi:10.1109/JSAC.2002.806121.

[28] Andrei Sabelfeld & David Sands (2009): Declassification: Dimensions and principles. Journal of Computer
Security 17(5), pp. 517–548, doi:10.3233/JCS-2009-0352.

[29] Andreas Schaad, Volkmar Lotz & Karsten Sohr (2006): A model-checking approach to analysing organi-
sational controls in a loan origination process. In David F. Ferraiolo & Indrakshi Ray, editors: SACMAT,
ACM, pp. 139–149, doi:10.1145/1133058.1133079.

[30] Fred B. Schneider (2000): Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), p. 30–50,
doi:10.1145/353323.353382.

[31] Hans Schuster, Stefan Jablonski, Thomas Kirsche & Christoph Bussler (1994): A Client/Server Architec-
ture for Distributed Workflow Management Systems. In: PDIS, IEEE Computer Society, pp. 253–256,
doi:10.1109/PDIS.1994.331708.

[32] Daniel F. Stork (1975): Downgrading in a Secure Multilevel Computer System: The Formulary Con-
cept. Technical Report, DTIC Document. Available at http://oai.dtic.mil/oai/oai?verb=

getRecord&metadataPrefix=html&identifier=ADA011696.

[33] Christian Wolter & Christoph Meinel (2010): An approach to capture authorisation requirements in business
processes. Requir. Eng. 15(4), pp. 359–373, doi:10.1007/s00766-010-0103-y.

[34] Peter Y. H. Wong & Jeremy Gibbons (2008): A Process Semantics for BPMN. In: ICFEM, LNCS 5256,
Springer, pp. 355–374, doi:10.1007/978-3-540-88194-0 22.

http://dx.doi.org/10.1007/10722599_15
http://dx.doi.org/10.1007/3-540-45251-6_9
http://dx.doi.org/10.1109/SECPRI.2001.924289
http://dx.doi.org/10.1109/SECPRI.2002.1004364
http://iospress.metapress.com/content/r0pr0ma4kv8wa542/
http://iospress.metapress.com/content/r0pr0ma4kv8wa542/
http://dx.doi.org/10.1109/32.481534
http://dx.doi.org/10.1023/A:1008608810770
http://iospress.metapress.com/content/EYT2D3ERKY3A2H25
http://iospress.metapress.com/content/EYT2D3ERKY3A2H25
http://dx.doi.org/10.1145/354876.354878
http://dx.doi.org/10.1093/ietisy/e90-d.4.745
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.3233/JCS-2009-0352
http://dx.doi.org/10.1145/1133058.1133079
http://dx.doi.org/10.1145/353323.353382
http://dx.doi.org/10.1109/PDIS.1994.331708
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA011696
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA011696
http://dx.doi.org/10.1007/s00766-010-0103-y
http://dx.doi.org/10.1007/978-3-540-88194-0_22

T. Bauereiss, D. Hutter 15

[35] Ping Yang, Shiyong Lu, Mikhail I. Gofman & Zijiang Yang (2010): Information flow analysis of scientific
workflows. Journal of Computer and System Sciences 76(6), pp. 390–402, doi:10.1016/j.jcss.2009.11.002.

[36] Aris Zakinthinos & E. Stewart Lee (1997): A General Theory of Security Properties. In: IEEE Symposium
on Security and Privacy, IEEE Computer Society, pp. 94–102, doi:10.1109/SECPRI.1997.601322.

A Specification of activities

In this appendix, we give a formal specification of the behaviour of our activities using PP-statements.
In this formalism, the transition relation of a state-event system is specified by listing pre- and post-
conditions on the state for each event (see Section 2.1 of [13] for a formal semantics).

Recva(b,Data(i,v)); affects: Mem, AQueue
Pre: pc = 0, (b, i,a) ∈MF , (b, i) /∈ AQueue
Post: Mem′(i) = v, AQueue′ = AQueue ∪
{(b, i)}

Senda(b,AckData(i)); affects: AQueue
Pre: pc = 0, (b, i) ∈ AQueue
Post: AQueue′ = AQueue\ (b, i)

Recva(b,Trigger); affects: TriggeredBy
Pre: pc = 0
Post: TriggeredBy′ = b

τActive
a ; affects: pc

Pre: pc = 0, TriggeredBy 6=⊥, AQueue = /0
Post: pc′ = 1

τSendData
a ; affects: pc, MQueue

Pre: pc = 2
Post: pc′ = 3, MQueue′ =
{(b, i) | (a, i,b) ∈MF ∧Mem(i) 6=⊥}

Senda(b,Data(i,v));
affects: MQueue,AQueue

Pre: pc = 3, (b, i) ∈MQueue
Post: MQueue′ = MQueue \
{(b, i)},AQueue′ = AQueue∪{(b, i)}

Recva(b,AckData(i)); affects: AQueue
Pre: pc = 3, (b, i) ∈ AQueue
Post: AQueue′ = AQueue\{(b, i)}

τAckTimeout
a ; affects: AQueue

Pre: pc = 3
Post: AQueue′ = /0

τ
SendTriggers
a ; affects: pc, SQueue

Pre: pc = 3, MQueue = /0, AQueue = /0
Post: pc′ = 4, SQueue′ = {b | (a,b) ∈ SF}

Senda(b,Trigger); affects: SQueue
Pre: pc = 4, b ∈ SQueue
Post: SQueue′ = SQueue\{b}

Figure 3: PP-statements of generic transition relation T gen
a

We specify the behaviour of our activities in two parts. The PP-statements in Figure 3 specify the
generic part of the behaviour of activities, i.e. the communication with other activities in order to ex-
change data items and trigger sequence flows. For this purpose, it maintains program variables MQueue
(which data items still have to be sent), AQueue (which data items still have to be acknowledged), SQueue
(which triggers still have to be sent), TriggeredBy (whether and from where a trigger has been received),
and User (to which user this activity is assigned). The program counters 0, 3 and 4 correspond to the
phases of waiting for inputs and triggers, sending outputs, and sending triggers, respectively.

When the program counter reaches 1, an activity-specific transition relation takes over in order to
perform the actual activity. In our simple example workflow, we only need two kinds of activities, namely

http://dx.doi.org/10.1016/j.jcss.2009.11.002
http://dx.doi.org/10.1109/SECPRI.1997.601322

16 Possibilistic Information Flow Control for Workflow Management Systems

user input/output and gateways (deciding on the control flow based on a condition Cond on input data).
The latter continues the workflow with that activity b for which Cond(b,Mem) evaluates to true. These
two kinds of activities are specified in Figures 4 and 5, respectively. We denote the transition relations
induced by the PP-statements in Figures 3, 4, and 5 as T gen

a , T user
a , and T gw(Cond)

a , respectively. The
overall transition relation of an activity is the union of T gen

a and an activity-specific transition relation.

Starta(u); affects: User
Pre: pc = 1, User =⊥, clU(u) = clA(a)
Post: User′ = u

Setvala(u, i,v); affects: Mem
Pre: pc = 1, User = u
Post: Mem′(i) = v

Outvala(u, i,v); affects:
Pre: pc = 1, User = u, Mem(i) = v

Enda(u); affects: pc
Pre: pc = 1,User = u
Post: pc′ = 2

Figure 4: PP-statements of transition relation T user
a for user activities

Senda(b,Trigger); affects: pc
Pre: pc = 1, Cond(b,Mem) =>, (a,b) ∈ SF
Post: pc′ = 5

Figure 5: PP-statement of transition relation T gw(Cond)
a for gateways

After completion of the activity has been signalled by setting the program counter to 2, the generic
transition relation takes control again and starts sending output data items to the designated receivers.
It makes sure that they have been received by waiting for acknowledgements, and afterwards proceeds
by sending triggers to the successor activities in the workflow. An exception to this rule is if a receiver
fails to send an acknowledgement; in this case the τAckTimeout

a event can be used to signal a timeout and
proceed with the workflow. This is important for security, because otherwise a confidential activity could
block the progress of the workflow by refusing to acknowledge a data item.

Of course, other modelling decisions are possible to solve this problem. As an alternative, we have
also modelled and verified a system specification where the communication platform guarantees causal
delivery of messages, i.e. messages from one activity to another are always received in the order that they
are sent. This would make acknowledgements unnecessary, because an activity could always be sure that
a trigger message is received after all data items, if the messages are sent in this order. However, this
shifts complexity from the individual activities to the communication platform and the interface, and it
turns out that this makes the proof of compositionality more laborious. Essentially, we had to prove an
additional security predicate FCIA for the platform and the activities together with several additional side
conditions on the local views in order to obtain compositionality. In this paper, we therefore present the
above model with explicit acknowledgements for simplicity. However, we intend to further investigate
the implications of different guarantees provided by the communication platform in future work.

Pre-proceedings of
The International Workshop on Graphical Models for Security 2014

c© C. Prisacariu
This work is licensed under the
Creative Commons Attribution License.

Actor Network Procedures as Psi-calculi
for Security Ceremonies ∗

Cristian Prisacariu†

Dept. of Informatics, University of Oslo, – P.O. Box 1080 Blindern, N-0316 Oslo, Norway.

cristi@ifi.uio.no

Theactor network proceduresof Pavlovic and Meadows are a recent graphical formalism developed
for describing security ceremonies and for reasoning abouttheir security properties. The present
work studies the relations of the actor network procedures (ANP) to the recent psi-calculi framework.
Psi-calculi is a parametric formalism where calculi like spi- or applied-pi are found as instances. Psi-
calculi are operational and largely non-graphical, but have strong foundation based on the theory of
nominal sets and process algebras. One purpose of the present work is to give a semantics to ANP
through psi-calculi. Another aim was to give a graphical language for a psi-calculus instance for
security ceremonies. At the same time, this work provides more insight into the details of the ANPs
formalization and the graphical representation.

1 Introduction

Actor Network Procedures(ANP) is a formalism introduced in [33] for modeling security ceremonies
[12, 38]. Reasoning about security properties of ceremonies is done using the Procedure Derivation
Logic, which comes from a line of research on logics for composition of protocols that started with the
Protocol Composition Logic [11, 8]. This formalism that we concentrate on inthis paper should not be
confused with the work with similar purposes from [35]. Both these approaches [35, 33] aim to be used
for describing security ceremonies by drawing inspiration from the actor network theory in sociology,
where the book [25] gives a good overview.

Security ceremonies are well motivated in [12, 38] with convincing examples.Technically, secu-
rity ceremonies are meant to extend security protocols by including the human inthe formalization and
making explicit the environment (and the attacker). A ceremony may also combine protocols. In con-
sequence, a formalism for security ceremonies is expected to be expressive enough to include existing
formalisms for protocols as special cases. Such a formalism should offerthe possibility to model human
behavior related to the ceremony. Since ceremonies would tend to be large, because of all the assump-
tions that are included explicitly, we expect compositionality to be a main aspect of the formalism, both
for design and for reasoning.

For usability purposes a desired formalism for security ceremonies would offer a graphical language
for developing the ceremonies, as well as for reasoning. Yet the graphics should be formally grounded,
so to have guarantees for the security results obtained. A good example ofsuch formally grounded
graphical languages can be the statecharts [17, 19] or the live sequence charts [18], which were intended
for describing concurrent and reactive systems.

∗This work was partially supported by the project OffPAD with number E!8324 part of the Eurostars program funded by the
EUREKA and European Community.

†Acknowledgements: I would like to thank Audun Jøsang for introducing me to security ceremonies and for explaining
their practical usefulness and the need for an adequate formalism (i.e., graphical, expressive, and with reasoning capabilities).

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
https://www.offpad.org/
http://www.eurekanetwork.org/activities/eurostars
http://www.eurekanetwork.org

2 Actor Network Procedures as Psi-calculi for Security Ceremonies

The aim of the actor network procedures [33] is to be graphical, expressive, compositional, and with
formal logical reasoning capabilities. In this paper we look more carefully at this formalism and relate it
to the psi-calculi framework, which offers solid semantical analysis and possibility for correlations with
existing security formalisms coming from the process algebra approach.

Psi-calculi [3] are a semantics framework where various existing calculi can be found as instances.
In particular, the spi- and applied-pi calculi [2, 1] are two instances of interest for security protocols.
Psi-calculi are though a non-graphical algebraic formalism; but with strong mathematical background.
Results and tools of psi-calculi, e.g., involving theorem provers or true concurrency semantics, could be
thus used in the setting of actor network procedures. Nevertheless thesecould easily be hidden from the
security ceremony developer behind the graphical formalism ANPs provide.

With the danger of seaming somewhat pedantic to some readers, a little bit more motivation for use
of formal techniques for security protocols is in order here. Arguably,for security systems perfection
and assurance of perfection are highly important, since bugs cannot beconsidered “features”, as is the
case in other areas. For a security system one often wants to be providedwith guarantees that some
expected security properties are met. This can be even more difficult to achieve for security ceremonies,
which are more complex, composing protocols, including hidden assumptions and human models. In the
case of security protocols one hardly can rely on testing to provide assurance; and experience has shown
that protocols that are thoroughly tested in practice for years turn out to contain serious flaws, where a
famous example is [26].

This motivates why considerable amounts of research have been put into providing mathematical
models and theories for studying security protocols. But more practical are the formal tools that have
been built on top of these theories so to have a (semi-)automated way of ensuring security properties.
Examples of tools include model checkers like Murphi [29, 40] or FDR [15] which are push-button tools
with yes/no answers; or theorem provers like ProVerif [4] for the symbolic (process calculi) approach
and CryptoVerif [5] for the computational approach, or Isabell/HOL [32], which often need interaction
with expect users but which achieve stronger results than model checkers do.

The psi-calculi is a framework that goes well with the ProVerif and FDR toolswhich are also based
on process calculi. But more than this, psi-calculi have been built (i.e., all the related meta-results have
been proven) using the proof assistant Isabell/HOL [30]. Thereforeone could say that psi-calculi could
be seen as lying at the intersection of the two kinds of tools, making use of the strengths of both.

A downside of such strong formally grounded frameworks is that they aredifficult to use by com-
mon developers of security protocols and ceremonies. This is where graphical formalisms usually can
provide considerable simplifications and hide formal notation, concentratingon the concepts and meth-
ods instead. A quite appreciated example of graphical languages grounded in theory can be found in
the area of developing reactive or concurrent systems. Here the groundbreaking was achieved through
statecharts[17] which has become a standard and which have been extended into the more recentlive
sequence charts[18]. A long term goal of the present author is to have a similar graphical language and
tool-set for security ceremonies; and this paper tries to identify a path in this direction.

2 Background on psi-calculi

Psi-calculus[3] has been developed as a framework for defining nominal process calculi, like the many
variants of the pi-calculus [28]. The psi-calculi framework is based on nominal datatypes, and [3,
Sec.2.1] gives a sufficient introduction to nominal sets used in psi-calculi. We will not refer much to
nominal datatype i this paper, but refer the reader to the book [36] whichcontains a thorough treatment

C. Prisacariu 3

of both the theory behind nominal sets as well as various applications (e.g., see [36, Ch.8] for nominal
algebraic datatypes). We expect, though, some familiarity with notions of algebraic datatypes and term
algebras.

The psi-calculi framework is parametric; instantiating the parameters accordingly, one obtains an
instance of psi-calculi, like the pi-calculus, or the cryptographic spi-calculus. These parameters are:

T terms (data/channels)
C conditions
A assertions

which are nominal datatypes not necessarily disjoint; together with the following operators:
.

↔ : T×T → C channel equality
⊗ : A×A → A composition of assertions
1 ∈ A minimal assertion
⊢ ⊆ A×C entailment relation

Intuitively, terms can be seen as generated from a signature, as in term algebras; the conditions and
assertions can be those from first-order logic; the minimal assertion being top/true, entailment the one
from first-order logic, and composition taken as conjunction. We will shortlyexemplify how pi-calculus
is instantiated in this framework. The operators are usually written infix, i.e.:M

.

↔ N, Ψ⊗Ψ′, Ψ ⊢ ϕ .
The above operators need to obey some natural requirements, when instantiated. Channel equality

must be symmetric and transitive. The composition of assertions must be associative, commutative, and
have1 as unit; moreover, composition must preserve equality of assertions, where two assertions are
considered equal iff they entail the same conditions (i.e., forΨ,Ψ′ ∈ A we define the equalityΨ ≃ Ψ′ iff
∀ϕ ∈ C : Ψ ⊢ ϕ ⇔ Ψ′ ⊢ ϕ).

The intuition is that assertions will be used to assert about the environment of the processes. Con-
ditions will be used as guards for guarded (non-deterministic) choices, and are to be tested against the
assertion of the environment for entailment. Terms are used to represent complex data communicated
through channels, but will also be used to define the channels themselves,which can thus be more than
just mere names, as in pi-calculus. The composition of assertions should capture the notion of combining
assumptions from several components of the environment.

The syntax for building psi-process is the following (psi-processes aredenoted by theP,Q, . . . ; terms
from T by M,N, . . . ;):

0 Empty/trivial process
M〈N〉.P Output
M〈(λ x̃)N〉.P Input
case ϕ1 : P1, . . . ,ϕn : Pn Conditional (non-deterministic) choice
(νa)P Restriction of namesa inside processesP
P|Q Parallel composition
!P Replication
(|Ψ|) Assertions

The empty process has the same behavior as, and thus can be modeled by, the trivial assignment(|1|).
The input and output processes are as in pi-calculus only that the channel objectsM can be arbitrary

terms. In the input process the object(λ x̃)N is a pattern with the variables ˜x bound inN as well as
in the continuation processP. Intuitively, any term message received onM must match the patternN
for some substitution of the variables ˜x. The same substitution is used to substitute these variables in
P after a successful match. The traditional pi-calculus inputa(x).P would be modeled in psi-calculi as
a〈(λx)x〉.P, where the simple namesa are the only terms allowed.

4 Actor Network Procedures as Psi-calculi for Security Ceremonies

The case process behaves like one of thePi for which the conditionϕi is entailed by the current
environment assumption, as defined by the notion offramewhich we preset later. This notion of frame
is familiar from the applied pi-calculus, where it was introduced with the purpose of capturing static
information about the environment (or seen in reverse, the frame is the staticinformation that the current
process exposes to the environment). A particular use of case is ascase ϕ : P which can be read as
if ϕ then P. Another special usage of case is ascase ⊤ : P1,⊤ : P2 , whereΨ ⊢ ⊤ is a special condition
that is entailed by any assertion, likea

.

↔ a; this use is mimicking the pi-calculus nondeterministic choice
P1+P2. Restriction, parallel, and replication are the standard constructs of pi-calculus.

Assertions(|Ψ|) can float freely in a process (i.e., be put in parallel) describing assumptions about
the environment. Otherwise, assertions can appear at the end of a sequence of input/output actions, i.e.,
these are the guarantees that a process provides after it finishes (on the same lines as in assume/guarantee
reasoning about programs). Assertions are somehow similar to the active substitutions of the applied
pi-calculus, only that assertions do not have computational behavior, but only restrict the behavior of the
other constructs by providing their assumptions about the environment.

Example 2.1 (pi-calculus as an instance) To obtain pi-calculus [28] as an instance of psi-calculus use
the following, built over a single set of namesN :

T △

= N

C △

= {a= a | a,b∈ T}
A △

= {1}
.

↔
△

= =

⊢
△

= {(1,a= a) | a∈ T}

with the trivial definition for the composition operation. The only terms are the channel names a∈ N ,
and there is no other assertion than the unit. The conditions are equality tests for channel names, where
the only successful tests are those where the names are equal. Hence, channel comparison is defined as
just name equality.

Psi-calculus is given an operational semantics in [3] using labeled transitionsystems, where the
nodes are the process terms and the transitions represent one reductionstep, labeled with the action that
the process executes. The actions, generally denoted byα ,β , represent respectively the input and output
constructions, as well asτ the internal synchronization/communication action:

M〈(ν ã)N〉 | M〈N〉 | τ
Transitions are done in a context, which is represented as an assertionΨ, capturing assumptions

about the environment:
Ψ ⊲ P

α
−→ P′

Intuitively, the above transition could be read as: The processP can perform an actionα in an environ-
ment respecting the assumptions inΨ, after which it would behave like the processP′.

The context assertion is obtained using the notion offrame which essentially collects (using the
composition operation) the outer-most assertions of a process. The frameF (P) is defined inductively
on the structure of the process as:

F ((|Ψ|)) = Ψ
F (P|Q) = F (P)⊗F (Q)
F ((νa)P) = (νa)F (P)
F (!P) = F (case ϕ̃ : P̃) = F (M〈N〉.P) = F (M〈(λ x̃)N〉.P) = 1

C. Prisacariu 5

Any assertion that occurs under an action prefix or a condition is not visible in the frame.
We give only an exemplification of the transition rules for psi-calculus, and refer to [3, Table 1] for the

full definition. The (CASE) rule shows how the conditions are tested against the context assertions.The
communication rule (COM) shows how the environment processes executing in parallel contribute their
top-most assertions to make the new context assertion for the input-output action of the other parallel
processes. In the (com)-rule the assertionsΨP and ΨQ come from the frames ofF (P) = (ν b̃P)ΨP

respectivelyF (Q) = (ν b̃Q)ΨQ.

Ψ ⊲ Pi
α
−→ P′ Ψ ⊢ ϕi

(CASE)
Ψ ⊲ case ϕ̃ : P̃

α
−→ P′

ΨQ⊗Ψ ⊲ P
M〈(ν ã)N〉
−−−−−→ P′ ΨP⊗Ψ ⊲ Q

K〈N〉
−−−→ Q′ ΨQ⊗ΨP⊗Ψ ⊢ M

.

↔ K
(COM)

Ψ ⊲ P|Q
τ
−→ (ν ã)(P′ |Q′)

There is no transition rule for the assertion process; this is only used in constructing frames. Once
an assertion process is reached, the computation stops, and this assertionremains floating among the
other parallel processes and will be composed part of the frames, whennecessary, like in the case of the
communication rule.

3 A psi-calculus instance for actor network procedures

We do not introduce the notation and definitions used in the ANPs of [33] because our aim here is to
develop teh ANP ideas in the formal language of psi-calculi. In consequence, we lie to see this section as
a formal description of ANPs. The ideas and development from [33] of the ANPs require quite expressive
theories which cannot be easily captured with traditional formalisms for security protocols, but which
are available in the psi-calculi framework.

There are a few aspects of psi-calculi that offer us the possibility to givesemantics to the actor
network procedures in this section; and in fact to complex systems like ubiquitous systems where humans
are part of the system.

One aspect is the expressiveness of the terms that are allowed to be usedfor representing messages.
This is very liberal in psi-calculi, and thus can easily capture complex structures of messages. Moreover,
nominals are allowed in the terms for capturing the important notion of names (like inpi-calculi, or
object-oriented languages). Names appear in actor network procedures in three places, as we see further,
as names for channels, system configurations, and names of participantsin the ceremony.

Another aspect of psi-calculi is the way communication can be done througharbitrarily complex
communication terms. This means we are not restricted to just one channel name, but more structure for
channels is allowed. We exploit this when modeling the structure of the system configurations and their
attached channels and participants. This more complex structure is responsible for the communications
in the actor network procedures.

An important aspect of psi-calculi is also the logic that is available through theassertions and the
conditions language, and the entailment relation between the two. The liberty that the psi-calculi frame-
work offers for defining the logical part of the calculus allows one to choose the right language for the
application purpose. In consequence, depending on the problem one can choose a more expressive log-
ical entailment or one with better computation properties (i.e., feasible for automation). One way of
using the assertions and conditions is as in the Hoare-style of reasoning. We may have pre-conditions
(using the case construct) and post-conditions (using the trailing assertions) for individual actions as well

6 Actor Network Procedures as Psi-calculi for Security Ceremonies

Figure 1: The structure of the configurations, part of the CAP procedure.

as for complex processes. Essentially, psi-calculi allow us to have an assume/guarantee reasoning style
using the logical language of our choice and the granularity of the reasoning (i.e., process/action level).
Processes are annotated with logical assertions so that an external logical reasoning system can be used
on top of the process. But as well, the conditions are logically tested by the process while running,
constituting a runtime level reasoning system.

The logical part of the psi-calculi will be exploited to capture the reasoning aspects that actor net-
works procedures and their PDL logic offers.

3.1 Example of an actor network procedure

We take thetwo-factor authenticationexample from [33] of the Chip Authentication Program (CAP)
procedure. The configuration structure is described in [33, 2.4.2] whereas the runs of the ceremony
are described in [33, 3.5.1]. The graphical formalization of this ceremonyis given in [33, Fig.3] for the
structure and in [33, Fig.7] for the run; we will use the same original figures so to stick with the graphical
choices of the authors of [33].

The Figure 1 (taken from [33, Fig.3]) graphically represents the structure of the configurations and
the attached communication channels for the actor network procedure that formalizes the CAP two-factor
authentication [10]. The structure contains two identity namesA (for Alice) andB (for the Bank) which
are attached (as subscript) to some of the configurations. The circled areas are not strictly necessary, and
become impossible to represent for larger examples; but are good visualaid for examples like this one
where they encircle all those configurations corresponding to the respective identity.

The single configurationCB represents the Bank’s computer. Three configurations are underA’s
control: the computerCA, the cardSA, and the human representation of AliceIA. A card readerR is also
available, which when coupled with Alice’s card form the configurationQ. The humanIA can output
through a keyboard channel information to Alice’s computer and through another keyboard channel to
the card reader. Both the card reader and the computer have visual displays that give information to the
human. There are two cyber channels between the two computers; cyber channels are assumed to be
untrusted and the information on them should be transmitted encrypted.

The arrows represent channels, and have attached a label denoting the type of the channel. The
dark circles and squares represent configurations, where the squares are complex ones containing sub-
configurations, whereas the circles are minimal configurations; which arecalled nodes in [33]. The
dashed lines display the containment relation between the configurations.

Based on this structure, runs are drawn (usually one run, the desired/secure run). The Figure 2 (taken
from [33, Fig.7]) graphically represents the desired run for the CAP authentication. For a better visual
association, the structure of the configurations is displayed at the top, in a more simplistic manner.

C. Prisacariu 7

Figure 2: The desired run of the CAP procedure.

The run in Figure 2 shows several aspects of ANPs. Internal actions are drawn vertically, whereas
communication between configurations are drawn horizontally. The actions are displayed on the arrows,
as well as the channel type that is used for communication. There are actions of generation of fresh
content, of transmission of information, of polyadic communication (tuples of messages are sent), tests,
and assignments. The dashed lines again are related to configurations madefrom combination of other
configurations, but in a run represent sharing of information.

In this run the Bank generates a fresh valuex and sends it to the computer of Alice which communi-
cates it to the human through a visual display channel. The human forwardsthis value and a password
to the card reader through a keyboard input channel. The card reader and the card form a configuration
inside which the information sent by the human is shared. This configuration compares the password
send by the human to the one stored on the cardSA. If matched then the card gives away a long secret
sAB, which is difficult for a human to remember, opposed to a password. The configurationQ hashes
this secret and the fresh value into a response which the card reader displays to the human to copy and
forward it through the computer of Alice to the Bank’s computer. The long secret sAB is shared a pri-
ori between the card and the Bank. Therefore the Bank can perform the same calculation to generate a
hashed value from this secret and the fresh value and to test it against the received response.

The fresh value is used to ensure that phishing cannot be done throughrecording just one session.
The secret stored on the card is assumed to be a strong secret. The password is used only to make sure

8 Actor Network Procedures as Psi-calculi for Security Ceremonies

that the right human has made the configurationQ by inserting her card into the card reader. Sending
this weak password is done through a physical channel, which is assumedto be harder to attack.

3.2 Encoding

Actor network procedures essentially consist of a structure of configurations together with events/actions
causally ordered in the concurrent runs of the procedure/protocol. Configurations are partially ordered by
a containment relation, which specifies which sub-configurations form a larger configuration. Configura-
tions have attached channel ends (input and output ends). There is information flow inside configurations;
more details will come later in the text.

We therefore, identify one nominal datatype built over a set ofconfiguration namesNC. This
datatype captures the partial order on the configurations. The terms that we will use are lists of config-
uration names describing reachability paths based on the parent-child relation between configurations;
i.e., each configuration comes with the list of its ancestors.

[l1, · · · , ln] ∈ T for l i ∈ NC.

The list terms may also contain variables, and the names in the list may also be hidden behind a name
binding restriction operation(ν ·).

Channels and channel types do not bare much distinction in [33]. In consequence we will treat them
in this paper as one and the samechannel name. If proper channel types are needed (like stating what
kind of messages are allowed to be communicated) we could turn to the work on typed psi-calculi of [23]
which extends the classic works on typed pi-calculus [34, 39] or on the distributed pi-calculus [22, 21]
where types capture resources. More complex types of channels, like the ones that [33] talks about, could
be captured with complex processes that are processing the messages received, before forwarding them
to the intended recipient. This is how channels like arandom noise binary channelwould be described,
or a lossy channel. Moreover, we do not restrict the formalism and do not assume that only one channel
of one type exists between two configurations, as is done in [33].

In consequence, the nominal datatype from before is enriched with a setof channel namesNA which
are paired with the list terms. This describes how a channel name is attached tothe configuration de-
scribed by the list term. In consequence a channel is represented by a term:

[l1, · · · , ln]c∈ T for c∈ NA,

where the channel name isc and the list[l1, · · · , ln] denotes the configuration (and it’s ancestor configu-
rations) to whichc is attached.

Communication in psi-calculus on such a channel is defined with the psi-calculus process syntax
from the previous section, e.g.:

[l1, · · · , ln]c〈N〉 in ANP notation would be c〈[N][l1,··· ,ln]〉

whereN ∈ T is usually a message term. Intuitively, this says that there is an output (sending) of the
messageN on the channelc in the configuration[l1, · · · , ln].

We allow message terms to be constructed from some arbitrary signature, as itis allowed in the
actor network procedures, and supported by the psi-calculi framework. For the purposes of this paper,
the signature for building messagesN is left open, and is unimportant for the developments that we
do further. For a specific application to a security ceremony or protocol, the designer decides on the
message terms needed in the procedure. In this way we allow one to specify the minimal signature for

C. Prisacariu 9

message terms as needed for the specific protocol. Therefore the computation needed to analyze the
specific protocol is dependent on the messages being sent part of the protocol.

One more nominal setNI keeps track of theidentitiesinvolved in the ceremony. Identities are associ-
ated to configurations through a partial function, describing which identity controls which configuration;
some configurations may be uncontrolled (thus the partiality of the function). We use a pairing construct
to form configurations which are controlled by some principal:

i[l1, · · · , ln] ∈ T for i ∈ NI .

Channels can be attached to both uncontrolled configurations, like we did before, as well as to con-
trolled configurations:

i[l1, · · · , ln]c∈ T for i ∈ NI , l i ∈ NA,c∈ NC.

This example of term involves all three nominal sets, and is arguably the most complex form of terms
we will use for communications in an ANP. More complication would come only fromthe specific term
algebra of the messages that a designer chooses for a specific protocol.

In the actor network procedures, the communication operations which are not controlled, i.e.,

[l1, · · · , ln]c〈N〉 as Output, or [l1, · · · , ln]c〈(ν ã)N〉 as Input

are calledevents, whereas the controlled ones, like

i[l1, · · · , ln]c〈N〉 or i[l1, · · · , ln]c〈(ν ã)N〉,

are calledactions. But there is no essential difference, and thus the graphical notation does not make a
distinction between the two.

The structure of the actor network procedure is intended to capture how information is shared within
the sub-configurations. In particular, information could flow from a main configuration to its sub-
configurations when received on a channel attached to the main configuration. Opposite, information
could flow from a sub-configuration to its parents (and ancestors) configurations, and be sent out through
channels attached to an ancestor, and not to the originator configuration.This form of information shar-
ing is rather open and liberal in ANPs, which would leave room for a lot of hidden flow of information.

This means that there is not much control on the sharing of information in ANPs. It may be that
the parent configuration wants to share some information only with part of its sub-configurations. In
consequence, here we allow for more control on the information flow so a communication action can
specify explicitly to which sub-configuration it wants to communicate. Moreover, we allow for hiding
of the internal structure of configurations. When hiding is used then sharing can be implemented only
internally, by first communicating with the main (public) configuration, which in turn decides to which
sub-configurations to forward the message (possibly changed).

Until now we have encoded the communication structure of an actor network procedure through the
termsT of psi-calculus. The approach that we took above is inspired by the nested distributed pi-calculus
of [24], where locations can be nested (i.e., a location can have sub-locations). Depending on the list
terms that one defines, different relations between the configurations can be obtained. For the ANPs in
particular, we are aiming for a partial order relation.

But the formalism for ANPs should subsume existing formalisms for security protocols and commu-
nicating processes. Indeed, if the lists defined above are always empty,and only channel names are used,
then we obtain the communication mechanism of pi-calculus. Assume that no identities are present in
the terms. The distributed pi-calculus is then obtained when working only with singleton lists, i.e., a

10 Actor Network Procedures as Psi-calculi for Security Ceremonies

flat structure of the locations (or configurations). Ambient calculi [7] orbigraphs [27] are obtained by
making a tree-like structure between the configurations.

Internal sharing can be captured using local communication, hidden fromoutsiders. The same ap-
proach we use to model local actions, like assignment or generation of fresh names as in the CAP exam-
ple. Sending a fresh value on the cyber channel in the CAP example would be encoded as:

(ν fr)B[lC]cyb〈fr〉.0

For ease of notation, henceforth we will not add the empty process at the end. To encode a local/internal
action we use a private channel on which the configuration communicates withitself, as:

(ν loc)(B[lC]loc〈fr〉 |B[lC]loc〈(λx)x〉).

Example 3.1 The local generation of the fresh value fr by Bank’s computer B[lC], which is then commu-
nicated on the cyber channel is thus modeled as:

(ν loc)((ν fr)B[lC]loc〈fr〉 |B[lC]loc〈(λx)x〉.B[lC]cyb〈x〉).

The restriction operatorν applied to the name loc makes this communication channel visible only inside
the scope ofν , whereas the restriction of the name fr models the uniqueness, thus freshness.

Up to now we have made use only of theT nominal datatype of the psi-calculi, not needing the
logical part offered by the assertionsA and conditionsC. The terms we described until now, part ofT,
are used to capture the complex communication structure of ANP. This was used in conjunction with the
process syntax for input/output, parallel composition and name restriction.

Thecase process of psi-calculus is powerful, offering both non-determinism as well as conditionals.
Actor network procedures do not involve non-determinism, the same as the spi- and applied pi-calculus.
These require only conditional constructs. This is natural when thinking that these are formalisms for
describing security/communication protocols, i.e., deterministic runs of such protocols. But having the
non-deterministic choice possibility in psi-calculi opens up for more modeling opportunities, like when
wanting to refine the model of the human into a probabilistic one, involving probabilistic choices.

We have seen the necessity for the conditional in the CAP example, where terms were tested for
equality. In consequence, we will include as conditions inC, tests for equality for any two nominal
terms fromT:

M = N ∈ C for any M,N ∈ T.

The entailment relation defines when two terms are equal wrt. some assertion:

Ψ ⊢ M = N iff ⊢Σ M = N

whereΣ is the signature over which the message terms are built, and⊢Σ is the equational logic entailment
relation wrt. the signatureΣ. In other words,M = N is decided only looking at the terms, using syntactic
unification in the term algebra described by the signatureΣ. In many cases equations are defined for such
a term algebra, which need to be considered when deciding the equality of two terms. This would then
involve working modulo these equations; we use the same notation⊢Σ for the case when equations are
part of the definition of the algebra of terms too.

Testing for equality of message terms does not depend on the assertions. Nevertheless, we will use
assertions to model the partially ordered runs that actor network procedures use. This way of capturing
true concurrency models (like the pomsets [13, 37] used by ANPs) in psi-calculi is inspired by the
recent [31]. Actor network procedures is among the few formalisms that acknowledges the need for true

C. Prisacariu 11

concurrency [42] when modeling protocols, instead of interleaving concurrency or linear runs as most
process algebras approaches do. Actor network procedures describe a run to be apomset, i.e., a partially
ordered multiset. Knowing that a linear run (word, string) is a totally orderedmultiset (because symbols
may appear multiple times in the string), then a pomset is a partially ordered run, i.e.,a run where some
of the actions are concurrent, not all being linearly ordered. It is natural to model a run of a protocol
or ceremony as a partially ordered run because there are several parties involved, often distributed, thus
executing actions/communication in parallel, concurrently. A single participantmay be deterministic and
sequential, thus exhibiting a linear run. But put together several participants exhibit a partially ordered
run of the whole ceremony. More order constraints can come from the communications, where e.g., input
actions depend on (i.e., must come after) the respective output actions.

Actor network procedures are declarative when defining their runs, inthe same style as true con-
currency models like event structures [41] or pomsets, or as languagesare, as opposed to automata or
process algebras which describe their runs in an operational manner. Psi-calculi allow also a declarative
style of defining dependencies between actions by using the logic capturedin the entailment relation and
the assertions. In this way we have the full descriptive power of true concurrency models so to capture
conjunctive (or disjunctive) dependencies as is the case with pomsets. This cannot be captured only
through the sequence operation of the psi-processes.

We define assertionsA to contain sets of communication terms, e.g.:

{i[l1, . . . , lk]c〈N〉, i[l1, . . . , lk]c〈N〉, . . .} ∈ A with i[l1, . . . , lk]c∈ T andN ∈ T.

In consequence, conditions are also enriched with such actions by combining them with conjunction.
The entailment is defined to treat conjunction appropriately, as in classical logics. For the new kind of
conditions the entailment is just set-containment:

Ψ ⊢ i[l1, . . . , lk]c〈N〉 iff i[l1, . . . , lk]c〈N〉 ∈ Ψ.

With the conditions and assertions in place we can capture orders on the communication actions in
the form of pomsets as follows. Each action is conditioned by a set of other actions on which it depends.
In this way the action cannot be performed until the condition is met, i.e., all the actions on which it
depends have been done. Thus,

case ϕ : i[l1, l2]c〈N〉.P with ϕ = { j[l1]d〈N
′〉, i[l1, l2]b〈N

′′〉}

describes the fact that actioni[l1, l2]c〈N〉 must come after the two actions from the condition have been
executed. The knowledge that an action has been executed is gathered inthe context assertion through
assertion processes which are left behind after each execution of an action. This is easily done by
changing the continuation of an action:

i[l1, l2]c〈N〉.P becomesi[l1, l2]c〈N〉.(P|(|i[l1, l2]c〈N〉|)).

After the action is performed, the trailing assertion will become available to both the continuation and
the other parallel processes, as part of the context assertion collectedby the frame of the parallel process.

The actor network procedure formalism uses the PDL (Procedure Description Logic) to reason about
runs. PDL1 uses two kinds of basic formulas: one states that an action has been executed; and another

1PDL for actor network procedures should not be confused with Propositional Dynamic Logic [20] (usually abbreviated
PDL, or DL for the higher order case) used for reasoning about programs. On the other hand, propositional dynamic logic is
a modal logic that reasons about actions in general, and could also be used for reasoning about ANPs once the special basic
formulas and actions are set, as done for the ANPs. In fact, the reasoning style of PDL for ANPs resembles much the past
temporal logic style of reasoning, and temporal reasoning can be donewith propositional dynamic logic too.

12 Actor Network Procedures as Psi-calculi for Security Ceremonies

states that some action has been executed before another action. Above,the assertions capture only the
first kind of PDL basic formula. We now add another assertion that standsfor the second kind of PDL
formula. This second kind of assertions capture a whole pomset in the assertions only. This pomset is
available to the process for inspection, during the execution, and it captures the partial run so far. It is
like a history in Hoare-style reasoning, only that in our case it is a partially ordered history.

We thus add to the assertion terms, dependency pairs of actions, giving thepossibility to describe
partial orders of actions as assertions:

i[l1, . . . , lk]c〈N〉 ≤ j[l1, . . . , lk]d〈N
′〉 ∈ A

signifying that the right-hand action depends on the left-hand action. If, moreover, both these actions are
part of the assertions set then we conclude that the left action happenedbefore the right action.

A question to ask is how do such dependency pairs get into the assertion set. Trailing assertion
processes would be used, the same as we did earlier, only that more care needs to be taken when defining
the assertion composition operation. We are not just using set union, but for building dependency pairs
we must also achieve the transitivity property of the partial order relation wewant to maintain.

Example 3.2 For the CAP run in Figure 2 the execution of the process would reach a point (e.g., upper
left-most corner) where the environment assertionΨ would contain a dependency pair

A[lC]cyb〈fr〉 ≤ A[lI]kyb〈(pA
, fr)〉,

saying that the action of Alice of typing at the keyboard of the password and the fresh value is dependent,
thus should come after, the computer of Alice having received the fresh value.

We have thus covered all aspects of the actor network procedures graphical formalism through the
psi-calculus operational formalism. The structure of the configurations has been captured through the
nominal datatypes, and the message terms have been treated the same as in ANPs. The definition of the
pomset runs of a ANP was done by making use of the encoding of the dependencies between the actions
using the assertions and conditions. Communication is done through channelsattached to configurations,
and internal actions are modeled also as communications but on private channels.

We have thus seen use of all psi-constructs for building processes: input/output used for communica-
tion and simulation of other actions like assignment; thecase for modeling conditionals (and Hoare-style
pre-conditions); restriction of names for modeling private communications and fresh values; parallel
composition for putting several identities in the protocol to run together; and assertion processes for cap-
turing the Hoare-style guarantees. Thereplicationconstruct has not been used; but it is essentially useful
when needing to model ceremonies that can run through several sessions.

4 Conclusions and outlook

There are many possibilities that psi-calculi open up for modeling ubiquitous systems and security cere-
monies, where humans are part of the system and are intended to be modeledin a more faithful way. The
work we undertook in this paper shows that the psi-calculi framework is expressive enough to capture
faithfully complex formalisms like the actor network procedures, and even withsome generalizations
thereof. We could easily capture concurrent computations in psi-calculi, besides sequential ones.

The logic that psi-calculi offers is opened to be tailored to the application needs. In the case of ANPs
we could use it to capture the Hoare-style reasoning that ANPs use. Sucha reasoning is essential for
security ceremonies where the assumptions should be made explicit, opposed towhat usually is done
with formalisms for security protocols where many assumptions are left underspecified.

C. Prisacariu 13

The term construction mechanisms are also rather liberal in psi-calculi. This offers the possibility to
define with any degree of detail needed, the message terms exchanged in the ceremony. At the same time
we are not constrained when defining communication terms. This allows for modeling a great wealth of
communication mechanisms. We have exploited this second freedom in the construction of the nominal
terms representing the complex communication structure of ANPs.

For ceremonies in particular, we are interested in more faithful modeling of thehuman nodes where
we would like to either leave room for errors, i.e., using non-determinism, or we would like to integrate a
statistical model of the human, using probabilistic choices. These go beyondwhat current actor network
procedures allow. But psi-calculi can accommodate probabilistic models, e.g., by going through CC-pi
[6, 9] which has already been treated as a psi-calculus. But the work onprobabilities and psi-calculus is
not yet mature and still needs more investigation.

An interesting future direction for a graphical formalism line the ANPs for modeling ceremonies is
the notion of action refinement [14]. This is a technique for building (and working with) models in an
incremental way, starting from an abstraction and refining actions into more concrete implementations.
Action refinement is well behaved for true concurrency models and their equivalences like history pre-
serving bisimulation. But it is not studied how to do action refined for graphical languages (except for
the statecharts [17]), and not for ANPs either. Refinement for ANPs would allow a ceremony designer to
refine abstract models, both the configuration structures and the runs. By refining, one can expand single
actions into more complex runs, or can expand one configuration with sub-configurations.

Action refinement is a technique for building models compositionally, in a top-down manner, whereas
process algebras have a compositional approach where they build a model from components plugged to-
gether using operators like choice, sequential, or parallel composition. Action refinement can work well
in combination with the compositional approach of process algebras; and weencourage this combination.

The structure of the configurations in an ANP is static. It is not the case thatduring the execution
of the ceremony some configurations are broken, disappear, or loose some of their sub-configurations.
But in the psi-calculi one can easily model a dynamic structure, similar to how theambients are dynamic
in ambient calculus [7], or how communication changes locations in distributed pi-calculus [21]. The
recent bigraphs formalism [27, 16] is especially focusing on how the structure of the system changes; the
execution is defined in terms of change of structure (and interaction links).We see great possibility for
investigating change of structure in ANPs, starting from the encoding we have given in this paper, and
from the investigations of the above formalisms wrt. the psi-calculi framework.

References

[1] Martı́n Abadi & Cédric Fournet (2001):Mobile values, new names, and secure communication. In Chris
Hankin & Dave Schmidt, editors:POPL, ACM, pp. 104–115. Available athttp://doi.acm.org/10.
1145/360204.360213.

[2] Martı́n Abadi & Andrew D. Gordon (1999):A Calculus for Cryptographic Protocols: The spi Calculus. Inf.
Comput.148(1), pp. 1–70. Available athttp://dx.doi.org/10.1006/inco.1998.2740.

[3] Jesper Bengtson, Magnus Johansson, Joachim Parrow & Björn Victor (2011):Psi-calculi: a framework for
mobile processes with nominal data and logic. Logical Methods in Computer Science7(1). Available at
http://dx.doi.org/10.2168/LMCS-7(1:11)2011.

[4] Bruno Blanchet (2004):Automatic Proof of Strong Secrecy for Security Protocols. In: IEEE Sym-
posium on Security and Privacy, IEEE Computer Society, pp. 86–102. Available athttp://doi.

ieeecomputersociety.org/10.1109/SECPRI.2004.1301317.

http://doi.acm.org/10.1145/360204.360213
http://doi.acm.org/10.1145/360204.360213
http://dx.doi.org/10.1006/inco.1998.2740
http://dx.doi.org/10.2168/LMCS-7(1:11)2011
http://doi.ieeecomputersociety.org/10.1109/SECPRI.2004.1301317
http://doi.ieeecomputersociety.org/10.1109/SECPRI.2004.1301317

14 Actor Network Procedures as Psi-calculi for Security Ceremonies

[5] Bruno Blanchet (2008):A Computationally Sound Mechanized Prover for Security Protocols. IEEE Trans.
Dependable Sec. Comput.5(4), pp. 193–207. Available athttp://dx.doi.org/10.1109/TDSC.2007.
1005.

[6] Maria Grazia Buscemi & Ugo Montanari (2007):CC-Pi: A Constraint-Based Language for Specifying Ser-
vice Level Agreements. In Rocco De Nicola, editor:16th European Symposium on Programming Program-
ming Languages and Systems (ESOP’07), LNCS 4421, Springer, pp. 18–32. Available athttp://dx.doi.

org/10.1007/978-3-540-71316-6_3.

[7] Luca Cardelli & Andrew D. Gordon (1998):Mobile Ambients. In M. Nivat, editor:Foundations of Software
Science and Computation Structure, FoSSaCS’98, Lecture Notes in Computer Science1378, Springer, pp.
140–155. Available athttp://dx.doi.org/10.1007/BFb0053547.

[8] Anupam Datta, John C. Mitchell, Arnab Roy & Stephan Hyeonjun Stiller (2011): Protocol Composition
Logic. In V. Cortier & S. Kremer, editors:Formal Models and Techniques for Analyzing Security Protocols,
IOS Press.

[9] Rocco De Nicola, Gian Luigi Ferrari, Ugo Montanari, Rosario Pugliese & Emilio Tuosto (2005):A Process
Calculus for QoS-Aware Applications. In Jean-Marie Jacquet & Gian Pietro Picco, editors:7th International
Conference on Coordination Models and Languages, LNCS3454, Springer, pp. 33–48. Available athttp://

dx.doi.org/10.1007/11417019_3.

[10] Saar Drimer, Steven J. Murdoch & Ross J. Anderson (2009): Optimised to Fail: Card Readers for Online
Banking. In Roger Dingledine & Philippe Golle, editors:Financial Cryptography and Data Security, LNCS
5628, Springer, pp. 184–200. Available athttp://dx.doi.org/10.1007/978-3-642-03549-4_11.

[11] Nancy A. Durgin, John C. Mitchell & Dusko Pavlovic (2003): A Compositional Logic for Proving Security
Properties of Protocols. Journal of Computer Security11(4), pp. 677–722. Available athttp://iospress.
metapress.com/content/lgf63yyhl3ajnddt/.

[12] Carl Ellison (2007):Ceremony Design and Analysis. Cryptology ePrint Archive, Report 2007/399. Available
athttp://eprint.iacr.org/2007/399.

[13] Jay L. Gischer (1984):Partial Orders and the Axiomatic Theory of Shuffle. Ph.D. thesis, CS, Stanford
University.

[14] Rob J. van Glabbeek & Ursula Goltz (2001):Refinement of actions and equivalence notions for concur-
rent systems. Acta Informatica37(4/5), pp. 229–327. Available athttp://link.springer.de/link/
service/journals/00236/bibs/1037004/10370229.htm.

[15] Michael Goldsmith, Gavin Lowe, Bill Roscoe, Peter Ryan& Steve Schneider (2000):Modelling and analysis
of security protocols. Pearson Education.

[16] Davide Grohmann (2008):Security, Cryptography and Directed Bigraphs. In: 4th International Conference
on Graph Transformations (ICGT’08), LNCS5214, Springer-Verlag, pp. 487–489. Available athttp://dx.

doi.org/10.1007/978-3-540-87405-8_41.

[17] David Harel (1987):Statecharts: A Visual Formulation for Complex Systems. Science of Computer Program-
mings8(3), pp. 231–274. Available athttp://dx.doi.org/10.1016/0167-6423(87)90035-9.

[18] David Harel & Rami Marelly (2003):Come, Let’s Play – Scenario-Based Programming Using LSCs and
the Play-Engine. Springer. Available athttp://www.springer.com/computer/programming/book/
978-3-540-00787-6.

[19] David Harel & Amnon Naamad (1996):The STATEMATE Semantics of Statecharts. ACM Trans. Softw.
Eng. Methodol.5(4), pp. 293–333. Available athttp://doi.acm.org/10.1145/235321.235322.

[20] David Harel, Jerzy Tiuryn & Dexter Kozen (2000):Dynamic Logic. MIT Press, Cambridge, MA, USA.

[21] Matthew Hennessy (2007):A Distributed Pi-Calculus. Cambridge Univ. Press.

[22] Matthew Hennessy & James Riely (2002):Resource Access Control in Systems of Mobile Agents. Inf.
Comput.173(1), pp. 82–120. Available athttp://dx.doi.org/10.1006/inco.2001.3089.

http://dx.doi.org/10.1109/TDSC.2007.1005
http://dx.doi.org/10.1109/TDSC.2007.1005
http://dx.doi.org/10.1007/978-3-540-71316-6_3
http://dx.doi.org/10.1007/978-3-540-71316-6_3
http://dx.doi.org/10.1007/BFb0053547
http://dx.doi.org/10.1007/11417019_3
http://dx.doi.org/10.1007/11417019_3
http://dx.doi.org/10.1007/978-3-642-03549-4_11
http://iospress.metapress.com/content/lgf63yyhl3ajnddt/
http://iospress.metapress.com/content/lgf63yyhl3ajnddt/
http://eprint.iacr.org/2007/399
http://link.springer.de/link/service/journals/00236/bibs/1037004/10370229.htm
http://link.springer.de/link/service/journals/00236/bibs/1037004/10370229.htm
http://dx.doi.org/10.1007/978-3-540-87405-8_41
http://dx.doi.org/10.1007/978-3-540-87405-8_41
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://www.springer.com/computer/programming/book/978-3-540-00787-6
http://www.springer.com/computer/programming/book/978-3-540-00787-6
http://doi.acm.org/10.1145/235321.235322
http://dx.doi.org/10.1006/inco.2001.3089

C. Prisacariu 15

[23] Hans Ḧuttel (2011):Typed psi-calculi. In Joost-Pieter Katoen & Barbara König, editors:CONCUR, Lecture
Notes in Computer Science6901, Springer, pp. 265–279. Available athttp://dx.doi.org/10.1007/

978-3-642-23217-6_18.

[24] Hans Ḧuttel (2013):On Representing Located Process Calculi in the psi-calculus. personal communication.

[25] Bruno Latour (2005):Reassembling the Social – An Introduction to Actor-Network-Theory. Oxford Univ.
Press.

[26] Gavin Lowe (1996):Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR. Software
- Concepts and Tools17(3), pp. 93–102.

[27] Robin Milner (2009):The Space and Motion of Communicating Agents. Cambridge Univ.Press.

[28] Robin Milner, Joachim Parrow & David Walker (1992):A Calculus of Mobile Processes, I-II. Information
and Computation100(1), pp. 1–77, doi:dx.doi.org/10.1016/0890-5401(92)90008-4.

[29] John C. Mitchell, Mark Mitchell & Ulrich Stern (1997):Automated analysis of cryptographic protocols using
Murphi. In: IEEE Symposium on Security and Privacy, IEEE Computer Society, pp. 141–151. Available at
http://doi.ieeecomputersociety.org/10.1109/SECPRI.1997.601329.

[30] Tobias Nipkow, Lawrence C. Paulson & Markus Wenzel (2002): Isabelle/HOL - A Proof Assistant for Higher-
Order Logic. Lecture Notes in Computer Science2283, Springer. Available athttp://dx.doi.org/10.
1007/3-540-45949-9.

[31] Håkon Norman (2013):Event Structures as Psi-calculi. In Tarmo Uustalu & Juri Vain, editors:25th Nordic
Workshop on Programming Theory (NWPT13).

[32] Lawrence C. Paulson (1998):The Inductive Approach to Verifying Cryptographic Protocols. Journal
of Computer Security6(1-2), pp. 85–128. Available athttp://iospress.metapress.com/content/
5wlu8p2am1du051d/.

[33] Dusko Pavlovic & Catherine Meadows (2011):Actor-network procedures: Modeling multi-factor authenti-
cation, device pairing, social interactions. arXiv.org. Available athttp://arxiv.org/abs/1106.0706.

[34] Benjamin C. Pierce & Davide Sangiorgi (1996):Typing and Subtyping for Mobile Processes. Mathematical
Structures in Computer Science6(5), pp. 409–453.

[35] Wolter Pieters (2011):Representing humans in system security models: An actor-network approach. Journal
of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications2(1), pp. 75–92.

[36] Andrew M. Pitts (2013):Nominal Sets: Names and Symmetry in Computer Science. Cambridge Tracts in
Theoretical Computer Science57, Cambridge Univ. Press.

[37] Vaughan R. Pratt (1986):Modeling Concurrency with Partial Orders. J. Parallel Programming15(1), pp.
33–71. Available athttp://dx.doi.org/10.1007/BF01379149.

[38] Kenneth Radke, Colin Boyd, Juan Manuel González Nieto & Margot Brereton (2011):Ceremony Analysis:
Strengths and Weaknesses. In: 26th IFIP-TC-11 International Information Security Conference (SEC), IFIP
Advances in Information and Communication Technology354, Springer, pp. 104–115. Available athttp://

dx.doi.org/10.1007/978-3-642-21424-0_9.

[39] Davide Sangiorgi & David Walker (2001):Theπ-Calculus: a Theory of Mobile Processes. Cambridge Univ.
Press.

[40] Ulrich Stern & David L. Dill (1997):Parallelizing the Murphi Verifier. In Orna Grumberg, editor:9th Inter-
national Conference on Computer Aided Verification (CAV), LNCS 1254, Springer, pp. 256–278. Available
athttp://dx.doi.org/10.1007/3-540-63166-6_26.

[41] Glynn Winskel (1986):Event Structures. In: Advances in Petri Nets, LNCS 255, Springer, pp. 325–392.
Available athttp://dx.doi.org/10.1007/3-540-17906-2_31.

[42] Glynn Winskel & Mogens Nielsen (1995):Models for Concurrency. In Samson Abramski, Dov M. Gabbay
& Tom S.E. Maibaum, editors:Handbook of Logic in Computer Science – vol 4 – Semantic Modelling,
Oxford University Press, pp. 1–148.

http://dx.doi.org/10.1007/978-3-642-23217-6_18
http://dx.doi.org/10.1007/978-3-642-23217-6_18
http://dx.doi.org/dx.doi.org/10.1016/0890-5401(92)90008-4
http://doi.ieeecomputersociety.org/10.1109/SECPRI.1997.601329
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/3-540-45949-9
http://iospress.metapress.com/content/5wlu8p2am1du051d/
http://iospress.metapress.com/content/5wlu8p2am1du051d/
http://arxiv.org/abs/1106.0706
http://dx.doi.org/10.1007/BF01379149
http://dx.doi.org/10.1007/978-3-642-21424-0_9
http://dx.doi.org/10.1007/978-3-642-21424-0_9
http://dx.doi.org/10.1007/3-540-63166-6_26
http://dx.doi.org/10.1007/3-540-17906-2_31

Pre-proceedings of
The International Workshop on Graphical Models for Security 2014

c© A. Couce Vieira, S.H. Houmb & D. Rios Insua
This work is licensed under the
Creative Commons Attribution License.

A Graphical Adversarial Risk Analysis Model for Oil and
Gas Drilling Cybersecurity

Aitor Couce Vieira
Secure-NOK AS

Stavanger, Norway
aitorcouce@securenok.com

Siv Hilde Houmb
Secure-NOK AS

Stavanger, Norway
sivhoumb@securenok.com

David Rios Insua
Royal Academy of Sciences

Madrid, Spain
david.rios@urjc.es

Oil and gas drilling is based, increasingly, on operational technology, whose cybersecurity is compli-
cated by several challenges. We propose a graphical model for cybersecurity risk assessment based
on Adversarial Risk Analysis to face those challenges. We also provide an example of the model
in the context of an offshore drilling rig. The proposed model provides a more formal and compre-
hensive analysis of risks, still using the standard business language based on decisions, risks, and
value.

1 Introduction

Operational technology (OT) refers to “hardware and software that detects or causes a change through
the direct monitoring and/or control of physical devices, processes and events in the enterprise” [20].
It includes technologies such as SCADA systems. Implementing OT and information technology (IT)
typically lead to considerable improvements in industrial and business activities, through facilitating the
mechanization, automation, and relocation of activities in remote control centers. These changes usually
improve the safety of personnel, and both the cost-efficiency and overall effectiveness of operations.

The oil and gas industry (O&G) is increasingly adopting OT solutions, in particular offshore drilling,
through drilling control systems (drilling CS) and automation, which have been key innovations over
the last few years. The potential of OT is particularly relevant for these activities: centralizing decision-
making and supervisory activities at safer places with more and better information; substituting manual
mechanical activities by automation; improving data through better and near real-time sensors; and op-
timizing drilling processes. In turn, they will reduce rig crew and dangerous operations, and improve
efficiency in operations, reducing operating costs (typically of about $300,000 per day).

Since many of the involved OT employed in O&G are currently computerized, they have become
a major potential target for cyber attacks [38], given their economical relevance, with large stakes at
play. Indeed, we may face the actual loss of large oil reserves because of delayed maneuvers, the death
of platform personnel, or potential large spills with major environmental impact with potentially catas-
trophic consequences. Moreover, it is expected that security attacks will soon target several production
installations simultaneously with the purpose of sabotaging production, possibly taking advantage of
extreme weather events, and attacks oriented towards manipulating or obtaining data or information. Cy-
bersecurity poses several challenges, which are enhanced in the context of operational technology. Such
challenges are sketched in the following section.

1.1 Cybersecurity Challenges in Operational Technology

Technical vulnerabilities in operational technology encompass most of those related with IT vulnerabil-
ities [7], complex software [5], and integration with external networks [17]. There are also and specific

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 A Graphical ARA Model for O&G Drilling Cybersecurity

OT vulnerabilities [42, 6]. However, OT has also strengths in comparison with typical IT systems em-
ploying simpler network dynamics.

Sound organizational cybersecurity is even more important with OT given the risks that these systems
bring in. Uncertainties are considerable in both economical and technical sense [2]. Therefore better
data about intrusion attempts are required for improving cybersecurity [32], although gathering them is
difficult since organizations are reluctant about disclosing such information [39].

More formal approaches to controls and measures are needed to deal with advanced threat agents
such as assessing their attack patterns and behavior [19] or implementing intelligent sensor and control
algorithms [10]. An additional problem is that metrics used by technical cybersecurity to evaluate risks
usually tell little to those evaluating or making-decisions at the organizational cybersecurity level. Under-
standing the consequences of a cyber attack to an OT system is difficult. They could lead to production
losses or the inability to control a plant, multimillion financial losses, and even impact stock prices [7].
One of the key problems for understanding such consequences is that OT systems are also cyber-physical
systems (CPS) encompassing both computational and complex physical elements [40].

Risk management is also difficult in this context [31]. Even risk standards differ on how to interpret
risk: some of them assess the probabilities of risk, others focus on the vulnerability component [19].
Standards also tend to present oversimplifications that might alter the optimal decision or a proper un-
derstanding of the problem, such as the well-known shortcomings of the widely employed risk matrices
[12].

Cyber attacks are the continuation of physical attacks by digital means. They are less risky, cheaper,
easier to replicate and coordinate, unconstrained by distance [8], and they could be oriented towards
causing high impact consequences [5]. It is also difficult to measure data related with attacks such as
their rate and severity, or the cost of recovery [2]. Examples include Stuxnet [6], Shamoon [6], and others
[10] . Non targeted attacks could be a problem also[9].

Several kinds of highly skilled menaces of different nature (e.g., military, hacktivists, criminal or-
ganizations, insiders or even malware agents) can be found in the cyber environment [5], all of them
motivated and aware of the possibilities offered by OT [7]. Indeed, the concept Advanced Persistent
Threat (APT) has arisen to name some of the threats [26]. The diversity of menaces could be classified
according their attitude, skill and time constraints [13], or by their ability to exploit, discover or even
create vulnerabilities on the system [5]. Consequently, a sound way to face them is profiling [3] and
treating [24] them as adversarial actors.

1.2 Related Work Addressing the Complexities of Cybersecurity Challenges

Several approaches have been proposed to model attackers and attacks, including stochastic modelling
[30, 36], attack graph models [22] and attack trees [28], models of directed and intelligent attacks [39];
models based on the kill chain attack phases [19], models of APT attack phases [26], or even frameworks
incorporating some aspects of intentionality or a more comprehensive approach to risk such as CORAS
[27] or ADVISE [11].

Game theory has provided insights concerning the behavior of several types of attackers – such as
cyber criminal APTs – and how to deal with them. The concept of incentives can unify a large variety
of agent intents, whereas the concept of utility can integrate incentives and costs in such a way that
the agent objectives can be modeled in practice [25]. Important insights from game theory are that the
defender with lowest protection level tends to be a target for rational attackers [21], that defenders tend
to under-invest in cybersecurity [1], and that the attacker’s target selection is costly and hard, and thus it
needs to be carefully carried on [15]. In addition to such general findings, some game-theoretic models

A. Couce Vieira, S.H. Houmb & D. Rios Insua 3

exist for cybersecurity or are applicable to it, modelling static and dynamic games in all information
contexts [35]. However, game-theoretic models have their limitations [18, 35] such as limited data, the
difficulty to identify the end goal of the attacker, the existence of a dynamic and continuous context, and
that they are not scalable to the complexity of real cybersecurity problems in consideration. Moreover,
from the conceptual point of view, they require common knowledge assumptions that are not tenable in
this type of applications.

Additionally, several Bayesian models have been proposed for cybersecurity risk management such
as a model for network security risk analysis [41]; a model representing nodes as events and arcs as
successful attacks [13]; a dynamic Bayesian model for continuously measuring network security [16]; a
model for Security Risk Management incorporating attacker capabilities and behavior [14]: or models
for intrusion detection systems (IDS) [4]. However, these models require forecasting attack behavior
which is hard to come by.

Adversarial Risk Analysis (ARA) [34] combine ideas from Risk Analysis, Decision Analysis, Game-
Theory, and Bayesian Networks to help characterizing the motivations and decisions of the attackers.
ARA is emerging as a main methodological development in this area [29], providing a powerful frame-
work to model risk analysis situations with adversaries ready to increase our threats. Applications in
physical security may be seen in [37].

1.3 Our Proposal

The challenges that face OT, cybersecurity and the O&G sector create a need of a practical, yet rigorous
approach, to deal with them. Work related with such challenges provides interesting insights and tools
for specific issues. However, more formal but understandable tools are needed to deal with such prob-
lems from a general point of view, without oversimplifying the complexity underlying the problem. We
propose a model for cybersecurity risk decisions based on ARA, taking into account the attacker behav-
ior. Additionally, an application of the model in drilling cybersecurity is presented, tailored to decision
problems that may arise in offshore rigs employing drilling CS.

2 Model

2.1 Introduction to Adversarial Risk Analysis

ARA aims at providing one-sided prescriptive support to one of the intervening agents, the Defender
(she), based on a subjective expected utility model, treating the decisions of the Attacker (he) as uncer-
tainties. In order to predict the Attacker’s actions, the Defender models her decision problem and tries to
assess her probabilities and utilities but also those of the Attacker, assuming that the adversary is an ex-
pected utility maximizer. Since she typically has uncertainty about those, she models it through random
probabilities and uncertainties. She propagates such uncertainty to obtain the Attacker’s optimal random
attack, which she then uses to find her optimal defense.

ARA enriches risk analysis in several ways. While traditional approaches provide information about
risk to decision-making, ARA integrates decision-making within risk analysis. ARA assess intentionality
thoroughly, enabling the anticipation and even the manipulation of the Attacker decisions. ARA incor-
porates stronger statistical and mathematical tools to risk analysis that permit a more formal approach
of other elements involved in the risk analysis. It improves utility treatment and evaluation. Finally, an
ARA graphical model improves the understandability of complex cases, through visualizing the causal
relations between nodes.

4 A Graphical ARA Model for O&G Drilling Cybersecurity

The main structuring and graphical tool for decision problems are Multi-Agent Influence Diagrams
(MAID), a generalization of Bayesian networks. ARA is a decision methodology derived from Influence
Diagrams, and it could be structured with the following basic elements:

• Decisions or Actions. Set of alternatives which can be implemented by the decision makers. They
represent what one can do. They are characterized as decision nodes (rectangles).

• Uncertain States. Set of uncontrollable scenarios. They represent what could happen. They are
characterized as uncertainty nodes (ovals).

• Utility and Value. Set of preferences over the consequences. They represent how the previous
elements would affect the agents. They are characterized as value nodes (rhombi).

• Agents. Set of people involved in the decision problem: decision makers, experts and affected
people. In this context, there are several agents with opposed interests. They are represented
through different colors.

We describe now the basic MAID that may serve as a template for cybersecurity problems in O&G
drilling CS, developed using GeNIe [23].

2.2 Graphical Model

Our model captures the Defender cybersecurity main decisions prior to an attack perpetrated by an
APT, which is strongly “business-oriented”. Such cyber criminal organization behavior suits utility-
maximizing analysis, as it pursues monetary gains. A sabotage could also be performed by this type of
agents, and they could be hired to make the dirty job for a foreign power or rival company. We make
several assumptions in the Model, to make it more synthetic:

• We assume one Defender. The Attacker’s nodes do not represent a specific attacker, but a gener-
alization of potential criminal organizations that represent business-oriented APTs, guided mostly
by monetary incentives.

• We assume an atomic attack (the attacker makes one action), with several consequences, as well
as several residual consequences once the risk treatment strategy is selected.

• The Defender and Attacker costs are deterministic nodes.

• We avoid detection-related activities or uncertainties to simplify the Model. Thus, the attack is
always detected and the Defender is always able to respond to it.

• The scope of the Model is an assessment activity prior to any attack, as a risk assessment exercise
to support incident handling planning.

• The agents are expected utility maximizers.

• The Model is discrete.

By adapting the proposed template in Figure 1, we may generalize most of the above assumptions to the
cases at hand.

A. Couce Vieira, S.H. Houmb & D. Rios Insua 5

Figure 1. MAID of the ARA Model for O&G drilling cybersecurity.

6 A Graphical ARA Model for O&G Drilling Cybersecurity

2.2.1 Defender Decision and Utility Nodes

The Defender nodes, in white, are:

• Protect (DP) decision node. The Defender selects among security measures portfolios to increase
protection against an Attack, e.g., access control, encryption, secure design, firewalls, or personal
training and awareness.

• Forensic System (DF) decision node. The Defender selects among different security measures
portfolios that may harm the Attacker, e.g., forensic activities that enable prosecution of the At-
tacker.

• Residual Risk Treatment (DT) decision node. This node models Defender actions after the assess-
ment of other decisions made by the Defender and the Attacker. They are based on the main risk
treatment strategies excluding risk mitigation, as they are carried on thorugh the Protect and the
Respond and Recovery nodes: avoiding, sharing, or accepting risk. This node must be preceded by
the Protect defender decision node, and it must precede the Attack uncertainty node (the residual
risk assessment is made in advance).

• Respond and Recovery (DR) decision node. The Defender selects between different response and
recovery actions after the materialization of the attack, trying to mitigate the attack consequences.
This will depend on the attack uncertainty node.

• Defender Cost (DC) deterministic node. The costs of the decisions made by the Defender are
deterministic, as well as the monetary consequences of the attack (the uncertainty about such
consequences is solved in the Monetary Consequences node). In a more sophisticated model,
most of the costs could be modeled as uncertain nodes. This node depends on all decision nodes
of the Defender and the Monetary Consequences uncertainty node.

• Value Nodes (DCV and DHV). The Defender evaluates the consequences and costs, taking into
account her risk attitude. They depend on the particular nodes evaluated at each Value node.

• Utility Nodes (DU). This node merges the Value nodes of the Defender. It depends on the De-
fender’s Value nodes.

The Decision nodes are adapted to the typical risk management steps, incorporating ways of evaluating
managing sound organizational cybersecurity strategy, which takes into account the business implications
of security controls, and prepare the evaluation of risk consequences. Related work (Section 1.2) on
security costs and investments could incorporate further complexities underlying the above nodes.

2.2.2 Attacker Decision and Utility Nodes

The Attacker nodes, in black, are:

• Perpetrate (AP) decision node. The [generic] Attacker decides whether he attacks or not. It could
be useful to have a set of options for a same type of attack (e.g., preparing a quick and cheap
attack, or a more elaborated one with higher probabilities of success). It should be preceded by
the Protect and Residual Risk Treatment decision nodes, and might be preceded by the Contextual
Threat node (in case the Attacker observes it).

• Attacker Cost (AC) deterministic node. Cost of the Attacker decisions. Preceded by the Perpetrate
decision node.

A. Couce Vieira, S.H. Houmb & D. Rios Insua 7

• Value Nodes (AMV and ACV). The Attacker evaluates the different consequences and costs, taking
into account his risk attitude. They depend on the deterministic or uncertainty nodes evaluated at
each Value node.

• Utility Nodes (AU). It merges the Value nodes of the Attacker to a final set of values. It must
depend on the Attacker’s Value nodes.

These nodes help in characterizing the Attacker, avoiding the oversimplification of other approaches.
Additionally, the Defender has uncertainty about the Attacker probabilities and utilities. This is propa-
gated over their nodes, affecting the Attacker expected utility and optimal alternatives, which are random.
Such distribution over optimal alternatives is our forecast for the Attacker’s actions.

2.2.3 Uncertainty Nodes

The uncertainty nodes in grey are:

• Contextual Threats (UC) uncertainty node. Those threats (materialized or not) present during the
Attack. The Attacker may carry out a selected opportunistic Attack (e.g. hurricanes or a critical
moment during drilling).

• Attack (UA) uncertainty node. It represents the likelihood of the attack event, given its conditioning
nodes. It depends on the Perpetrate decision node, and on the Protect decision node.

• Consequences (UM and UV) uncertainty node. It represents the likelihood of different conse-
quence levels that a successful attack may lead to. They depend on the Attack and Contextual
Threat uncertainty nodes, and on the Respond and Recovery decision node.

• Residual Consequences (URH) uncertainty node. It represents the likelihood of different conse-
quence levels after applying residual risk treatment actions. They depend on the Consequence
node modelling the same type of impact (e.g., human, environmental, or reputation).

• Counter-Attack (UCA) uncertainty node. Possibility, enabled by a forensic system, to counter-
attack and cause harm to the Attacker. Most of the impacts may be monetized. It depends on the
Forensic System decision node.

Dealing with the uncertainties and complexities and obtaining a probability distribution for these nodes
could be hard. Some of the methodologies and findings proposed in the sections 1.1 and 1.2 are tai-
lored to deal with some of these complexities. Using them, the Model proposed in this paper could
lead to limit the uncertainties in cybersecurity elements such as vulnerabilities, controls, consequences,
attacks, attacker behavior, and risks. This will enable achieving simplification, through the proposed
Model, without limiting the understanding of the complexities involved, and a sounder organizational
cybersecurity.

3 Example

We present a numerical example of the previous Model tailored to a generic decision problem prototyp-
ical of a cybersecurity case that may arise in O&G offshore rig using drilling CS. The model specifies
a case in which the driller makes decisions to prevent and respond to a cyber attack perpetrated by a
criminal organization with APT capabilities, in the context of offshore drilling and drilling CS. The
data employed in this example are just plausible figures helpful to provide an overview of the problems

8 A Graphical ARA Model for O&G Drilling Cybersecurity

that drilling cybersecurity faces. Carrying on the assessment that the Model enables may be helpful for
feeding a threat knowledge base, incident management procedures or incident detection systems.

The context is that of an offshore drilling rig, a floating platform with equipment to drill a well
through the seafloor, trying to achieve a hydrocarbon reservoir. Drilling operations are dangerous and
several incidents may happen in the few months (usually between 2 or 4) that the entire operation may
last. As OT, drilling CS may face most of the challenges presented in Section 1.1 (including being
connected to Enterprise networks, an entry path for attackers) in the context of high-risk incidents that
occur in offshore drilling.

3.1 Agent Decisions

3.1.1 Defender Decisions

The Defender has to make three decisions in advance of the potential attack. In the Protect decision
node (DP), the Defender must decide whether she invests in additional protection: if the Defender im-
plements additional protective measures, the system will be less vulnerable to attacks. In the Forensic
System decision node (DF), the Defender must decide whether she implements a forensic system or not.
Implementing it enables the option of identifying the Attacker and pursuing legal or counter-hacking ac-
tions against him. The Residual Risk Treatment decision node (DT) represents additional risk treatment
strategies that the Defender is able to implement: avoiding (aborting the entire drilling operation to elude
the attack), sharing (buying insurance to cover the monetary losses of the attack), and accepting the risk
(inheriting all the consequences of the attack, conditional on to the mitigation decisions of DP, FD, and
DR).

Additionally, the Respond and Recovery decision node (DR) represents the Defender’s decision be-
tween continuing and stopping the drilling operations as a reaction to the attack. Continuing the drilling
may lead to worsen the consequences of the attack, whereas stopping the drilling will incur in higher
costs due to holding operations. This is a major issue for drilling CS. In general, critical equipment
should not be stopped, since core operations or even the safety of the equipment or the crew may be
compromised.

3.1.2 Attacker Decisions

For simplicity, in the Perpetrate decision node (AP) the Attacker decides whether he perpetrates the
attack or not, although further attack options could be added. In this example, the attack aims at manip-
ulating the devices directly under control of physical systems with the purpose of compromising drilling
operations or harming equipment, the well, the reservoir, or even people.

3.2 Threat Outcomes and Uncertainty

3.2.1 Outcomes and Uncertainty during the Incident

The Contextual Threats uncertainty node (UC) represents the existence of riskier conditions in the drilling
operations (e.g., bad weather or one of the usual incidents during drilling), which can clearly worsen the
consequences of the attack. In this scenario, the Attacker is able to know, to some extent, these contextual
threats (e.g., a weather forecast, a previous hacking in the drilling CS that permits the attacker to read
what is going on in the rig).

A. Couce Vieira, S.H. Houmb & D. Rios Insua 9

The Attack uncertainty node (UA) represents the chances of the Attacker of causing the incident. If
the Attacker decides not to execute his action, the no attack event will happen. However, in case of per-
petration, the chances of a successful attack will be lower if the Defender invests in protective measures
(DC node). An additional uncertainty arises in case of materialization of the attack: the possibility to
identify and counter-attack the node, represented by the Counter-Attack uncertainty node (UCA).

If the attack happens, the Defender will have to deal with different consequence scenarios. The
Monetary (UM) and Human Consequences (UH) nodes represent the chances of different consequences
or impact levels that the Defender may face. The monetary consequences refer to all impacts that can be
measured as monetary losses, whereas human consequences represent casualties that may occur during
an incident or normal operations. However, the Defender has the option to react to the attack by deciding
whether she continues or stops the drilling (DR node). If the Defender decides to stop, there will be
lower chances of casualties and lower chances of worst monetary consequences (e.g., loss of assets or
compensations for injuries or deaths), but she will have to assume the costs of keeping the rig held (one
day in our example) to deal with the cyber threat.

3.2.2 Outcomes and Uncertainty in Risk Management Process

The previous uncertainties appear after the Attacker’s decision to attack or not. The Defender faces
additional relevant uncertainties. She must make a decision between avoiding, sharing, or accepting the
risk (DT node). Such decision will determine the final or residual consequences. The final monetary
consequences are modeled through the Defender Cost deterministic node (DC node), whose outcome
represents the cost of different Defender decisions (nodes DP, DF, DT, and DR). In case of accepting or
sharing the risk, the outcome of the DC node will also inherit the monetary consequences of the attack
(UM node). Similarly, the outcome of the Residual Human Consequences uncertainty node (URH) is
conditioned by the risk treatment decisions (DC node) and, in case of accepting or sharing the risk, it will
inherit the human consequences of the attack (UH node). If the Defender decides to avoid the risk, she
will assume the cost of avoiding the entire drilling operations and will cause that the crew face a regular
death risk rather than the higher death risk of offshore operations. If the Defender shares the risk, she
will assume the same casualties as in UH and a fixed insurance payment, but she will avoid paying high
monetary consequences. Finally, in case the Defender accepts the risk, she will inherit the consequences
from the UM and UH nodes.

The Attacker Cost deterministic node (AC) provides the costs (non-uncertain by assumption) of the
decision made by the Attacker. Since he only has two decisions (perpetrate or not), the node has only two
outcomes: cost or not. This node could be eliminated, but we keep it to preserve the business semantics
within the graphical model.

3.3 Agent Preferences

The Defender aims at maximizing her expected utility, with the utility function being additive, through
the Defender Utility node (DU). The Defender key objective is minimizing casualties, but he also con-
siders minimizing his costs (in this example we assume she is risk-neutral). Each objective has its own
weight in the utility function.

The objective of the Attacker is to maximize his expected utility, represented by an additive utility
function, through the Attacker Utility node (AU). The Attacker key objective is maximizing the monetary
consequences for the Defender. We assume that he is risk-averse towards this monetary impact (he
prefers ensuring a lower impact than risking the operations trying to get a higher impact). He also

10 A Graphical ARA Model for O&G Drilling Cybersecurity

considers minimizing his costs (i.e., being identified and perpetrating the attack). Each of these objectives
has its own weight in the utility function, and its own value function. The Attacker does not care about
eventual victims.

3.4 Uncertainty about the Opponent Decisions

The Attacker is able to know to some extent the protective decisions of the defender (DP node), gathering
information while he tries to gain access to the drilling CS. While knowing if the Defender avoided the
risk (avoiding all the drilling operations) is easy, knowing if the Defender chose between sharing or
accepting the risk is difficult. The most important factor, the decision between continue or stop drilling
in case of an attack, could be assessed by observing the industry or company practices. The Defender may
be able to assess also how frequent similar attacks are, or how attractive the drilling rig is for this kind of
attacker. In ARA, and from the Defender perspective, the AP node would be an uncertainty node whose
values should be provided by assessing the probabilities of the different attack actions, through analyzing
the decision problem from the Attacker perspective and obtaining his random optimal alternative.

3.5 Example Values

An annex provides the probability tables of the different uncertainty nodes employed to simulate the
example in Genie (Tables 1 to 7). It also provides the different parameters employed in the utility and
value functions (Tables 8 to 10). Additionally, the “risk-averse” values for AMV are obtained with

AMV = 3
√

DC
107 ; the “risk-neutral” values for DCV are obtained with DCV = 1− DC

107 ; and, the values for
DHV are 0 in case of victims and 1 in case of no victims.

3.6 Evaluation of Decisions

Based on the solution of the example, we may say that the Attacker should not perpetrate his action
in case he believes the Defender will avoid or share the risk. However, the Attacker may be interested
in perpetrating his action in case he believes that the Defender is accepting the risk. Additionally, the
less preventive measures the Defender implements (DP and DT nodes), the more motivated the Attacker
would be (if he thinks the Defender is sharing the risk). The Attacker’s expected utility is listed in Table
11 in the Annex. The Defender will choose in this example not to implement additional protection (DP
node) without a forensic system (DF node). If the Defender believes that she is going to be attacked,
then she would prefer sharing the risk (DT node) and stop drilling after the incident (DR node). In case
she believes that there will be no attack, she should accept the risk and continue drilling. The Defender’s
expected utilities are listed in Table T12 in Annex.

Thus, the Defender optimal decisions create a situation in which the Attacker is more interested in
perpetrating the attack. Therefore, to affect the Attacker’s behavior, the Defender should provide the
image that her organization is concerned with safety, and especially that it is going to share risks. On the
other hand, if the Attacker perceives that the Defender pays no attention to safety or that she is going to
accept the risk, he will try to carry on his attack. The ARA solution for the Defender is the following:

1. Assess the problem from the point of view of the Attacker. The DT and DR nodes are uncertainty
nodes since that Defender decisions are uncertain for the Attacker. The Defender must model such
nodes in the way that she thinks the Attacker models such uncertainties. In general, perpetrating
an attack is more attractive in case the Attacker strongly believes that the Defender is going to
accept the risk or is going to continue drilling.

A. Couce Vieira, S.H. Houmb & D. Rios Insua 11

2. Once forecasted the Attacker’s decision, the Defender should choose between sharing and accept-
ing the risk. Accepting the risk in case of no attack is better than sharing the risk, but accepting
the risk in case of attack is worse.

Thus, the key factor for optimizing the decision of the Defender are her estimations on the uncertainty
nodes that represent the DT and DR nodes for the attacker. Such nodes will determine the Attacker best
decision, and this decision the Defender best decision.

4 Conclusions and Further Work

We have presented the real problem and extreme consequences that OT cybersecurity in general, and
drilling cybersecurity in particular, are facing. We also explained some of the questions that complicate
cybersecurity, especially in OT systems. The proposed graphical model provides a more comprehensive,
formal and rigorous risk analysis for cybersecurity. It is also a suitable tool, able of being fed by, or
compatible with, other more specific models such as those explained in Section 1.

Multi-Agent Influence Diagrams provide a formal and understandable way of dealing with com-
plex interactive issues. In particular, they have a high value as business tools, since its nodes translate
the problem directly into business language: decisions, risks, and value. Typical tools employed in
widely used risk standards, such as risk matrices, oversimplify the problem and limit understanding. The
proposed ARA-based model provides a business-friendly interpretation of a risk management process
without oversimplifying its underlying complexity.

The ARA approach permits us to include some of the findings of game theory applied to cyberse-
curity, and it also permits to achieve new findings. The model provides an easier way to understand the
problem but it is still formal since the causes and consequences in the model are clearly presented, while
avoiding common knowledge assumptions in game theory.

Our model presents a richer approach for assessing risk than risk matrices, but it still has the security
and risk management language. In addition, it is more interactive and modular, nodes can be split into
more specific ones. The proposed model can still seem quite formal to business users. However, data can
be characterized using ordinal values (e.g., if we only know that one thing is more likely/valuable than
other), using methods taken from traditional risk management, employing expert opinion, or using worst
case figures considered realistic. The analysis would be poorer but much more operational.

Using the nodes of the proposed model as building blocks, the model could gain in comprehensive-
ness through adding more attackers or attacks, more specific decision nodes, more uncertainty nodes, or
additional consequence nodes, such as environmental impact or reputation. Other operations with sig-
nificant business interpretation can be done, such as sensitivity analysis (how much the decision-makers
should trust a figure) or strength of the influence analysis (which are the key elements).

Its applicability is not exempt of difficulties and uncertainties, but in the same way than other ap-
proaches. Further work is needed to verify and validate the model and its procedures (in a similar way
to the validation of other ARA-based models [33]), and to identify the applicability and usability is-
sues that may arise. The model could gain usability through mapping only the relevant information to
decision-makers (roughly, decisions and consequences) rather than the entire model.

5 Acknowledgments

This work is supported by FP7 Seconomics project 285223. David Rios Insua is grateful to the support
of MINECO Riesgos project and the Riesgos-CM program.

12 A Graphical ARA Model for O&G Drilling Cybersecurity

References
[1] S. Amin, G. A. Schwartz & S. S. Sastry (2011): On the interdependence of reliability and security in net-

worked control systems. In: Decision and Control and European Control Conference (CDC-ECC), 2011 50th
IEEE Conference on, IEEE, pp. 4078–4083.

[2] R. Anderson & S Fuloria (2010): Security economics and critical national infrastructure. In: Economics of
Information Security and Privacy, Springer, pp. 55–66.

[3] A. Atzeni, C. Cameroni, S. Faily, J. Lyle & I Fléchais (2011): Here’s Johnny: A methodology for developing
attacker personas. In: Availability, Reliability and Security (ARES), 2011 Sixth International Conference
on, IEEE, pp. 722–727.

[4] M. G Balchanos (2012): A probabilistic technique for the assessment of complex dynamic system resilience.
[5] Defense Science Board (2013): Task Force report: Resilient military systems and the advanced cyber threat.

Department of Defense.
[6] J. F. Brenner (2013): Eyes wide shut: The growing threat of cyber attacks on industrial control systems.

Bulletin of the atomic scientists (1974) 69(5), pp. 15–20.
[7] E. Byres & J Lowe (2004): The myths and facts behind cyber security risks for industrial control systems.

In: Proceedings of the VDE Kongress, 116.
[8] A. Cardenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig & S. Sastry (2009): Challenges for securing cyber

physical systems. In: Workshop on future directions in cyber-physical systems security.
[9] A. A. Cárdenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang & S. Sastry (2011): Attacks against process

control systems: risk assessment, detection, and response. In: Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, ACM, pp. 355–366.

[10] A. A. Cárdenas, S. Amin & S. Sastry (2008): Research challenges for the security of control systems. In:
HotSec.

[11] Conning (2013): ADVISE enterprise risk modeler. Available at https://www.conning.com/
risk-and-capital-management/software/advise.html. Retrieved: 12/13/2013.

[12] L Cox (2008): What’s wrong with risk matrices? Risk analysis 28(2), pp. 497–512.
[13] R. Dantu, P. Kolan, R. Akl & K Loper (2007): Classification of attributes and behavior in risk management

using bayesian networks. In: Intelligence and Security Informatics, 2007 IEEE, IEEE, pp. 71–74.
[14] R. Dantu, P. Kolan & J Cangussu (2009): Network risk management using attacker profiling. Security and

Communication Networks 2(1), pp. 83–96.
[15] D. Florêncio & C Herley (2013): Where do all the attacks go? In: Economics of Information Security and

Privacy III, Springer, pp. 13–33.
[16] M. Frigault, L. Wang, A. Singhal & S Jajodia (2008): Measuring network security using dynamic bayesian

network. In: Proceedings of the 4th ACM workshop on Quality of protection, ACM, pp. 23–30.
[17] A. Giani, S. Sastry, K. H. Johansson & H Sandberg (2009): The VIKING project: an initiative on resilient

control of power networks. In: Resilient Control Systems, 2009. ISRCS’09. 2nd International Symposium
on, IEEE, pp. 31–35.

[18] S. N. Hamilton, W. L. Miller, A. Ott & O. Saydjari (2002): Challenges in applying game theory to the domain
of information warfare. In: 4th Information survivability workshop (ISW-2001/2002), Vancouver, Canada.

[19] E. M. Hutchins, M. J. Cloppert & R. M. Amin (2011): Intelligence-driven computer network defense in-
formed by analysis of adversary campaigns and intrusion kill chains. Leading Issues in Information Warfare
& Security Research 1, p. 80.

[20] Gartner IT: Gartner IT Glossary. Available at http://www.gartner.com/it-glossary/
operational-technology-ot. Retrieved: 12/13/2013.

[21] B. Johnson, J. Grossklags, N. Christin & J Chuang (2012): Nash equilibria for weakest target security games
with heterogeneous agents. In: Game Theory for Networks, Springer Berlin Heidelberg, pp. 444–458.

https://www.conning.com/risk-and-capital-management/software/advise.html
https://www.conning.com/risk-and-capital-management/software/advise.html
http://www.gartner.com/it-glossary/operational-technology-ot
http://www.gartner.com/it-glossary/operational-technology-ot

A. Couce Vieira, S.H. Houmb & D. Rios Insua 13

[22] I. Kotenko & M Stepashkin (2006): Attack graph based evaluation of network security. In: Communications
and Multimedia Security, Springer, pp. 216–227.

[23] Decision Systems Laboratory: GeNIe. Available at http://genie.sis.pitt.edu/.
[24] Z. Li, Q. Liao & A Striegel (2009): Botnet economics: uncertainty matters. In: Managing Information Risk

and the Economics of Security, Springer, pp. 245–267.
[25] P. Liu, W. Zang & M Yu (2005): Incentive-based modeling and inference of attacker intent, objectives, and

strategies. ACM Transactions on Information and System Security (TISSEC) 8(1), pp. 78–118.
[26] Command Five Pty Ltd (2011): Advanced persistent threats: A decade in review. Available at http://www.

commandfive.com/papers/C5_APT_ADecadeInReview.pdf. Retrieved: 12/13/2013.
[27] M. S. Lund, B. Solhaug & K Stolen (2011): Model-driven risk analysis: the CORAS approach. Springer.
[28] S. Mauw & M Oostdijk (2006): Foundations of attack trees. In: Information Security and Cryptology-ICISC

2005, Springer, pp. 186–198.
[29] J. Merrick & G. S. Parnell (2011): A comparative analysis of PRA and intelligent adversary methods for

counterterrorism risk management. Risk Analysis 31(9), pp. 1488–1510.
[30] C. Muehrcke, E. V. Ruitenbeek, K. Keefe & W. H. Sanders (2010): Characterizing the behavior of cyber

adversaries: The means, motive, and opportunity of cyberattacks. IEEE/IFIP International Conference on
Dependable Systems and Networks.

[31] D. K. Mulligan & F. B. Schneider (2011): Doctrine for cybersecurity. Daedalus 140(4), pp. 70–92.
[32] S. L. Pfleeger & R Rue (2008): Cybersecurity economic issues: Clearing the path to good practice. Software,

IEEE 25(1), pp. 35–42.
[33] D. Rios Insua & J. Cano (2013): Basic models for security risk analysis. SECONOMICS D5.1. Technical

Report.
[34] David Rios Insua, J. Rios & D Banks (2009): Adversarial risk analysis. Journal of the American Statistical

Association 104(486), pp. 841–854.
[35] S. Roy, C. Ellis, S. Shiva, D. Dasgupta, V. Shandilya & Q Wu (2010): A survey of game theory as applied to

network security. In: System Sciences (HICSS), 2010 43rd Hawaii International Conference on, IEEE, pp.
1–10.

[36] K Sallhammar (2007): Stochastic models for combined security and dependability evaluation. Ph.D. thesis,
Norwegian University of Science and Technology.

[37] J. C. Sevillano, D Rios Insua & J Rios (2012): Adversarial risk analysis: The Somali pirates case. Decision
Analysis 9(2), pp. 86–95.

[38] Z. Shauk (2013): Hackers hit energy companies more than others. Available at http://fuelfix.com/
blog/2013/03/25/electronic-attacks-hit-two-thirds-of-energy-companies-in-study/.
Retrieved: 12/13/2013.

[39] C.-W. Ten, C.-C. Liu & G Manimaran (2008): Vulnerability assessment of cybersecurity for SCADA systems.
Power Systems, IEEE Transactions on 23(4), pp. 1836–1846.

[40] R. C. Thomas, M. Antkiewicz, P. Florer, S. Widup & M Woodyard (2013): How bad is it?–A branching
activity model to estimate the impact of information security breaches.

[41] P. Xie, J. H. Li, X. Ou, P. Liu & R Levy (2010): Using Bayesian networks for cyber security analysis. In:
Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International Conference on, IEEE, pp. 211–220.

[42] B. Zhu, A. Joseph & S Sastry (2011): A taxonomy of cyber attacks on SCADA systems. In: Internet of Things
(iThings/CPSCom), 2011 International Conference on and 4th International Conference on Cyber, Physical
and Social Computing, IEEE, pp. 380–388.

http://genie.sis.pitt.edu/
http://www.commandfive.com/papers/C5_APT_ADecadeInReview.pdf
http://www.commandfive.com/papers/C5_APT_ADecadeInReview.pdf
http://fuelfix.com/blog/2013/03/25/electronic-attacks-hit-two-thirds-of-energy-companies-in-study/
http://fuelfix.com/blog/2013/03/25/electronic-attacks-hit-two-thirds-of-energy-companies-in-study/

14 A Graphical ARA Model for O&G Drilling Cybersecurity

Table T1. Probability table for UC node.
Riskier conditions 30%
Normal conditions 70%

Table T2. Probability table for UA node.
Attacker’s Perpetrate decision Perpetrate No perpetrate
Defender’s Protect decision Additional protection Non additional protection Additional protection Non additional protection

Attack event 5% 40% 0% 0%
No attack event 95% 60% 100% 100%

Table T3. Probability table for UM node.
Attack event Attack No attack

Contextual Threat event Riskier conditions Normal conditions Riskier conditions Normal conditions

Defender’s Respond and

Recovery decision

Continue

drilling

Stop

drilling

Continue

drilling

Stop

drilling

Continue

drilling

Stop

drilling

Continue

drilling

Stop

drilling

Lossing 0 $ event 3% 0% 10% 0% 92% 0% 96% 0%
Lossing 0 - 1 Million $ event 12% 85% 20% 90% 7% 97% 4% 99%
Lossing 1 - 5 Million $ event 85% 15% 70% 10% 1% 3% 0% 1%

Table T4. Probability table for UH node.
Attack event Attack No attack

Contextual Threat event Riskier conditions Normal conditions Riskier conditions Normal conditions
Defender’s Respond and

Recovery decision

Continue

drilling

Stop

drilling

Continue

drilling

Stop

drilling

Continue

drilling

Stop

drilling

Continue

drilling

Stop

drilling

Non casualties event 96% 99.2% 99.4% 99.96% 99.6% 99.96% 99.9% 99.99%
Casualties event 4% 0.8% 0.6% 0.04% 0.4% 0.04% 0.1% 0.01%

Table T5. Probability table for URH node.
Human Consequences event No casualties Casualties

Defender’s Residual Risk Treatment decision Avoid Share Accept Avoid Share Accept

No casualties event 99.95% 100% 100% 0% 0% 0%
casualties event 0.05% 0% 0% 100% 100% 100%

Table T6. Probability table for UCA node.
Attack event Attack No attack

Defender’s Forensic System decision Forensic No forensic Forensic No forensic

No identification event 30% 90% 100% 100%
Identification event 70% 10% 0% 0%

Table T7. Probability table for DC node:
Avoiding the risk 10,000,000 $
Sharing the risk 500,000 $

Accepting the risk
Monetary Consequences event 0 $ 0 - 1,000,000 $ 1,000,000 - 5,000,000 $

Value assigned 0 $ 500,000$ 2,500,000 $
Additional protection 20,000 $

Forensic system 10,000 $
Stop drilling 300,000 $

Table T8. Weight table for DU node.
Importance of the Costs 5%

Importance of the Human Consequences 95%

Table T9. Value table for ACV node:
Attacker Cost event Cost No cost

Counter Attack Consequences event No identification Identification No identification Identification

Value 0.75 0 1 0.25

Table T10. Weight table for AU node.
Importance of the costs 3%

Importance of the Monetary Consequences on the Defender 97%

A. Couce Vieira, S.H. Houmb & D. Rios Insua 15

Table T11. Attacker expected utilities (in black the highest among the different Attacker’s decisions).

DP node DF node DT node UC node
Defender continues drilling Defender stops drilling

Perpetrate

decision

Non

perpetrate

decision

Perpetrate

decision

Non

perpetrate

decision

Additional protection

Forensic

Avoid
Riskier conditions 1
Normal conditions 1

Share
Riskier conditions 0.56074 0.56903 0.61138 0.61966
Normal conditions 0.56074 0.56903 0.61138 0.61966

Accept
Riskier conditions 0.36484 0.35433 0.61728 0.62458
Normal conditions 0.35170 0.34293 0.61375 0.62130

No forensic

Avoid
Riskier conditions 1
Normal conditions 1

Share
Riskier conditions 0.55938 0.56699 0.61060 0.61821
Normal conditions 0.55938 0.56699 0.61060 0.61821

Accept
Riskier conditions 0.34461 0.33241 0.61653 0.62315
Normal conditions 0.33055 0.32013 0.61299 0.61986

No additional protection

Forensic

Avoid
Riskier conditions 1
Normal conditions 1

Share
Riskier conditions 0.55116 0.56496 0.60295 0.61675
Normal conditions 0.55116 0.56496 0.60295 0.61675

Accept
Riskier conditions 0.45634 0.29898 0.61588 0.62173
Normal conditions 0.42794 0.28532 0.61058 0.61841

No Forensic

Avoid
Riskier conditions 1
Normal conditions 1

Share
Riskier conditions 0.55442 0.56282 0.60690 0.61530
Normal conditions 0.55442 0.56282 0.60690 0.61530

Accept
Riskier conditions 0.32392 0.07465 0.61990 0.62030
Normal conditions 0.28286 0.05131 0.61456 0.61696

Table T12. Defender expected utilitoes (in black the highest among the different Defender’s decisions).

DP node DF node DT node DR node
Possible events

Riskier conditions Normal conditions
Attack event Non attack

event

Attack event Non attack

event

Additional protection

Forensic

Avoid
Continue drilling 0.91154 0.94573 0.94383 0.94858

Stop drilling 0.94193 0.94915 0.94915 0.94943

Share
Continue drilling 0.95935 0.99355 0.99165 0.99640

Stop drilling 0.98825 0.99547 0.99547 0.99576

Accept
Continue drilling 0.95092 0.99575 0.98490 0.99880

Stop drilling 0.98675 0.99517 0.99447 0.99566

No forensic

Avoid
Continue drilling 0.91154 0.94573 0.94383 0.94858

Stop drilling 0.94193 0.94915 0.94915 0.94943

Share
Continue drilling 0.95940 0.99360 0.99170 0.99645

Stop drilling 0.98830 0.99552 0.99552 0.99581

Accept
Continue drilling 0.95097 0.99580 0.98495 0.99885

Stop drilling 0.98680 0.99522 0.99452 0.99571

No additional protection

Forensic

Avoid
Continue drilling 0.91154 0.94573 0.94383 0.94858

Stop drilling 0.94193 0.94915 0.94915 0.94943

Share
Continue drilling 0.95945 0.99365 0.99175 0.99650

Stop drilling 0.98835 0.99557 0.99557 0.99586

Accept
Continue drilling 0.95102 0.99585 0.98500 0.99890

Stop drilling 0.98685 0.99527 0.99457 0.99576

No Forensic

Avoid
Continue drilling 0.91154 0.94573 0.94383 0.94858

Stop drilling 0.94193 0.94915 0.94915 0.94943

Share
Continue drilling 0.95950 0.99370 0.99180 0.99655

Stop drilling 0.98840 0.99562 0.99562 0.99591

Accept
Continue drilling 0.95107 0.99590 0.98505 0.99895

Stop drilling 0.98690 0.99532 0.99462 0.99581

	preface
	commitee
	accepted_papers
	paper_6
	Introduction
	Approach description
	Case study: Air Traffic Management
	Knowledge management through a threat repository
	Requirements engineering
	Service design
	Model transformation
	Threat response recommendations
	Rules definition

	Runtime management
	Notifications
	Dynamic adaptation

	Discussion
	Conclusion
	Acknowledgement

	paper_11
	Introduction
	Context: embedded systems
	Designing embedded systems
	Security issues in embedded systems

	SysML-Sec: an Overview
	Rationale
	Methodology
	Tooling

	Case study: Firmware update
	System requirement engineering and analysis
	Iterative security/system codesign process
	Diagrams
	Requirements
	Threats and Attacks
	Partitioning

	System design
	Methodological aspects
	Security design extensions
	Security properties

	System validation
	Related work and perspectives
	Conclusion and future work

	paper_3
	Introduction
	Scientific and empirical baseline to defining the approach
	The running example
	Attack tree construction overview
	Step-by-step description of the approach
	Step 1: Creation of the attack tree root
	Step 2: Structuring the tree according to states and modes
	Step 3: Structuring the tree according to supporting asset types
	Step 4: Structuring the tree according to attack entry points
	Step 5: Structuring the tree according to applicable threats
	Step 6: Structuring the tree according to threat sources

	Related work
	Conclusion and way forward
	Acknowledgment

	paper_7
	Introduction
	Example Scenario
	Preliminaries

	System model
	Security policies
	Confidentiality
	Separation of duties

	Verification
	Information flow security
	Compatibility with separation of duties

	Related work
	Conclusion
	Specification of activities

	paper_5
	Introduction
	Background on psi-calculi
	A psi-calculus instance for actor network procedures
	Example of an actor network procedure
	Encoding

	Conclusions and outlook

	paper_13
	Introduction
	Cybersecurity Challenges in Operational Technology
	Related Work Addressing the Complexities of Cybersecurity Challenges
	Our Proposal

	Model
	Introduction to Adversarial Risk Analysis
	Graphical Model
	Defender Decision and Utility Nodes
	Attacker Decision and Utility Nodes
	Uncertainty Nodes

	Example
	Agent Decisions
	Defender Decisions
	Attacker Decisions

	Threat Outcomes and Uncertainty
	Outcomes and Uncertainty during the Incident
	Outcomes and Uncertainty in Risk Management Process

	Agent Preferences
	Uncertainty about the Opponent Decisions
	Example Values
	Evaluation of Decisions

	Conclusions and Further Work
	Acknowledgments

