
Leakage in presence of an active and adaptive

adversary

Cristian Ene , Laurent Mounier
e-mail : Cristian.Ene@univ-grenoble-alpes.fr

Laurent.Mounier@univ-grenoble-alpes.fr

January 14, 2021

Measuring the information leakage of a system is very important for security.
From side-channels to biases in random number generators, quantifying how
much information a system leaks about its secret inputs is crucial for preventing
adversaries from exploiting it; this has been the focus of intensive research efforts
in the areas of privacy and of quantitative information flow (QIF). For example,
both programs in Figure 1 are leaking some additional information about the
secret if one can measure the execution time or if one can observe the instruction
cache. Moreover, by interacting iteratively with the application, the adversary
is able to improve his knowledge [4].

void compare(int l, int s){
if (s<l)

{write_log(‘‘too large’’);} // 1 sec.
else

{some_computation();} // 2 sec.
}

int pwdCheck(char *l, char* pwd){
unsigned i;
for (i=0; i<B_Size; i++)

if (l[i]!=pwd[i])
{return 0;}

return 1;
}

Figure 1: Leaking programs

Hence the overall scenario (Figure 2) is the following one:

• Some secret x ∈ X is generated and provided to the application

• Iteratively and adaptively,

1. The adversary provides some public input l ∈ L to the application

2. The application does some computation and outputs some y ∈ Y

The adversary’s knowledge about the the secret x ∈ X at some moment
i is called the prior probability πi (e.g. initially, π0 would be the uniform
distribution on X ). In our context, the application corresponds to a family of
probabilistic channels (Cl)l∈L, such that for each x ∈ X and l ∈ L, it returns a
y ∈ Y according to some distribution PCl

(Y = y | X = x). In the considered

1



Secret : x

Output: y

Input : l

Application

*

Figure 2: The target scenario

scenario, the adversary interacts iteratively (Figure 3) with the application until
his knowledge πk achieves some desired vulnerability level V(πk).

π←π0; // (1)

while V(π) ≤ ε do // (2)

l0←argmaxl∈L V[π.Cl]; // (3)

Execute App with input l0;
Get the output y0 returned by App;

Update π according to y0 // (4)

where

• (1) π0 is the initial probabilistic information about the secret x[1] (called
the prior)

• (2) ε is the intended level of knowledge (modelled by some measure V)
about the secret

• (3) find the “best” input l0 that optimises the leakage ; π.Cl0 is the hyper-
distribution corresponding to executing App with prior π and input l0,
i.e. the distribution of posteriors P(X | Y = y0, L = l0), each with
probability P(Y = y0 | L = l0)

• (4) use the Bayes law to update the belief: π←P(X | Y = y0, L = l0)

Figure 3: Attacker’s strategy

Several issues can be investigated in this internship:

• What are the best choices for the measures V and V[π.C] ?

• How to compute/approximate for each input l, the associated probabilistic
channel Cl (do we have the source code or not for App)?

• How to compute/approximate argmaxl∈L V[π.Cl]? , given that in most
of the cases the sets of inputs L, secrets X and observables Y can be very
large, and that in the most realistic scenario, the output Y will rather be
a continuous random variable [2].

• Information-theoretic vs. probabilistic polynomial-time adversary

2



The topic of this internship can be oriented in various directions:

• refining the scenario from Figure 3 in a grey-box case, where the attacker
has the binary code of the application

• apply machine learning (ML) methods [3, 5] in order to get the necessary
scalability (whenever the sets of inputs L or secrets X are very large or if
the output Y is a continuous random variable) for the grey- or black-box
measurements

• implementing the scenario from Figure 3 in order to synthesis an adaptive
attack [6] or to measure the vulnerability for a concrete application.

References

[1] Mário S. Alvim et al. “An Axiomatization of Information Flow Measures”.
In: Theoretical Computer Science 777 (2019), pp. 32–54. doi: 10.1016/
j.tcs.2018.10.016. url: https://hal.archives-ouvertes.fr/hal-
01995712.

[2] Lucas Bang, Nicolás Rosner, and Tevfik Bultan. “Online synthesis of adap-
tive side-channel attacks based on noisy observations”. In: 2018 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P). IEEE. 2018, pp. 307–
322.

[3] Giovanni Cherubin, Konstantinos Chatzikokolakis, and Catuscia Palamidessi.
“F-BLEAU: Fast Black-Box Leakage Estimation”. In: S&P 2019 - 40th
IEEE Symposium on Security and Privacy. San Francisco, United States:
IEEE, May 2019, pp. 835–852. doi: 10.1109/SP.2019.00073. url: https:
//hal.archives-ouvertes.fr/hal-02422945.

[4] Quoc-Sang Phan et al. “Synthesis of adaptive side-channel attacks”. In:
2017 IEEE 30th Computer Security Foundations Symposium (CSF). IEEE.
2017, pp. 328–342.

[5] Marco Romanelli et al. “Estimating g-Leakage via Machine Learning”. In:
CCS ’20 - 2020 ACM SIGSAC Conference on Computer and Communica-
tions Security. This is the extended version of the paper which appeared
in the Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (CCS), November 9-13, 2020, Virtual Event,
USA. Online, United States: ACM, Nov. 2020, pp. 697–716. url: https:
//hal.archives-ouvertes.fr/hal-03091469.

[6] Seemanta Saha et al. “Incremental Attack Synthesis”. In: ACM SIGSOFT
Software Engineering Notes 44.4 (2019), pp. 16–16.

3


