
Testing Theories for Broadcasting Processes

Cristian ENE1, Traian MUNTEAN1,2

1 University of Marseilles; Parc Scientifique de Luminy - Case 925
F-13288 Marseille, France

tel: 33 - 491 82 85 32, fax: 33 - 491 82 85 11
cene@esil.univ-mrs.fr, muntean@lim.univ-mrs.fr

2 CNRS

Abstract. This paper presents a theory of testing for processes calculi which have broadcast
as basic communication primitive. Firstly, we justify the necessity of an alternative theory to
bisimulations for broadcasting calculi. Then, we remind CBS without message passing and
bπ-calculus, and we adapt the definitions of may testing and must testing in the framework
of broadcasting calculi. Finally, we give a direct characterization for these pre-orders.

1 Introduction

Communication between processes is the main aspect of concurrency when dealing with
distributed and/or parallel computing. One can specify basic communications from several
points of view; primitives interactions can be, for instance, synchronous or asynchronous,
associated to point-to-point or broadcast (one-to-many) message exchange protocols. The
theory behind point-to-point communication is today well-established in process algebra
(e.g. started with Milner’s CCS and Hoare’s CSP pioneering works). On the other hand
more complex and higher level communication schemes, like broadcast or multicast are
encountered in many applications and programming models, but they remain nevertheless
poorly represented in the algebraic theory of distributed systems. We emphasize here
that group interactions shall be considered as a more appropriate exchange scheme for
modelling and reasoning about many communicating systems and networking applications
(e.g. multimedia, data and knowledge mining, mobile computing). Group communications
are, in our opinion, a more abstract and higher level concept of interaction in distributed
computing than the commonly used point-to-point communications, usually expressed by
handshaking message-passing primitives or by remote invocations. Broadcast has been
even chosen as a hardware exchange primitive for some local networks, and in this case
point-to-point message passing (when needed) is to be implemented on top of it. Primitives
for broadcast programming offer several advantages: processes may interact without having
explicit knowledge of each other, receivers may be dynamically added or deleted without
modifying the emitter, and activity of a process can be monitored without modifying the
behaviour of the observed process (this is clearly not the case with the classical rendez-
vous communications). Moreover, from a theoretical point of view, it appears difficult [5]
to encode broadcast in calculi based on point-to-point communications.

Thus, developing an algebraic theory for models based on broadcast communication has
its own interest. Hoare’s CSP [12] is based on a multiway synchronisation mechanism, but
it does not make any difference between input and output. Or, in a broadcast setting the
anti-symmetrie between these two kinds of actions is particularly important (in a broadcast
communication there is one sender, and an unbounded or possibly empty set of receivers;

this is well represented in the I/O automata of Lynch and Tuttle ([13]) where outputs are
non-blocking and locally controlled, whereas inputs are externally controlled and can not
be refused). In [16], Prasad introduces and develops [17] a calculus of broadcasting systems,
namely CBS. His calculus, inspired by Milner’s CCS ([14]), has as main goal to provide a
formal model for packets broadcast in Ethernet-like communication media. It is based on
broadcast, but its main limitation is that it does not allow to model reconfigurable finer
topologies of networks of processes which communicate by broadcast (as dynamic group
communications). It is up to the receiver to use the received value or to discard it. In [11],
Hennessy and Rathke present a process calculus based on broadcast with a more restrictive
input (x ∈ S?p), but the continuation process p, do not change dynamically his restrictions
on further inputs; so it cannot model reconfigurable systems based on broadcast.

In [5], Ene and Muntean introduce bπ-calculus as a framework which combine mobility
and broadcast (as it is the case for processes which use group communications la PVM [9],
buses-based reconfigurable architectures or Packet Radio Networks). In [8], the authors de-
velops for bπ-calculus a theory of co-inductive equivalences and congruences. Bisimulations
have been successfully used in processes algebra to compare two systems according to their
operational ability to simulate each other. Bisimulations are appropriate for distributed re-
active systems, which often have infinite behaviour, and make actions as answers to extern
stimuli. In addition, bisimulations seem well adapted for point-to-point systems, since the
execution of such a system is entirely controlled by the environment (or by a outside ob-
server). In a broadcast calculus, only the inputs are controlled by the environment, whilst
outputs are controlled by the system itself. For exemple, p = news.(pub + movie) and
q = news.pub+news.movie are distinguished by bisimulations. In a point-to-point model,
an observer could put them apart: initially, it provide a news action, and then, deppending
on the evolution of q, it provide pub or movie, thus exhibiting a diffrence between p and q.
In a broadcasting model (where outputs are non-blocking), these two processes cannot be
distinguished, since the actions of p and q do not deppend, no more, of an extern observer
(all what we can, is listening and trying to send messages; the system itself, will be forced
to accept a message only if it could not continue to evolve autonomously). Intuitively, if we
watch TV, we cannot know (nor influence) before (or during) the news, the decision of the
editor to send afterwards the pub or the movie. This example justifies why bisimulations
are too restrictive (at least as they are defined) for broadcasting systems in certain cases.

The aim of this paper is to develop a theory of testing for broadcasting systems. Such
studies were made just in the framework of point-to-point processes algebra. Two systems
are equivalent whenever they satisfy the same set of observers. Depending on the choice
for the universe of observers or for the notion of satisfaction, we obtain several pre-orders
induced by tests. Let S be a system defined over a set of actions A; an observer for the
system S is a process O defined over the set of actions A ∪ {ω̄}, where ω̄ is a new action
used by the observer O to report the success of its observation. For an observer O, a
system S must satisfy it (denoted S must O), if any execution in parallel of S and O
pass by a state such that O can report a success (can made an output ω̄); a system S
may satisfy an observer O (S may O), if there is at least an execution in parallel of S
and O that pass by a state such that O can report a success (can made an output ω̄).
must and may induce two preorders on the set of systems denoted ≪must and ≪may.
These preorders play a significant role in the methodologies used for the description and
verification of systems: they allow to establish the conformance of an implementation

2

with respect to a specification. For a specification Spec, the set of behaviours that an
implementation must enjoy is modeled by the set of observers that Spec must satisfy.
The set of erroneous behaviours is modeled by the set of observers that Spec may not
satisfy. Hence, an implementation Impl is correct with respect a specification Spec iff
Spec ≪must Impl and Impl ≪may Spec.

The rest of the paper is as follows. In section 2 we remind the CBS without message
passing and the bπ-calculus. Section 3 presents the definitions of may testing and must

testing in the framework of broadcasting calculi. In section 4 we give a direct characteri-
zation for these pre-orders. We conclude by related works and some continuations.

2 Broadcasting calculi

2.1 bπ-calculus

In this subsection, we briefly remind bπ-calculus (more details and examples which illus-
trate the expressiveness of the model can be found in [6] and [7]).

The bπ-calculus is a process calculus in which broadcast is the fundamental communi-
cation paradigm. It is derived from the broadcast calculus proposed by Prasad [17], and
the π-calculus proposed by Milner, Parrow and Walker [15]. It differs from the broadcast
calculus, in that communications are made on channels or ports (and transmitted values
are channels too), and from the π-calculus in the manner the channels are used: for broad-
cast communications only. Let Chb be a countable set of channels. Processes are defined
by the grammar of Table 1.

Pb ∋ p ::= nil | π.p | νxp | 〈x = y〉p, q | p1 + p2 | p1 ‖ p2 | A〈x̃〉 | (rec A〈x̃〉.p)〈ỹ〉

where π belongs to the set of prefixes π ::= x(ỹ) | x̄ỹ | τ , and x̃, ỹ ⊆ Chb, x,∈ Chb.

Table 1. Processes in bπ-calculus

Prefixes denote the basic actions of processes: τ is a silent action (which corresponds
to an internal transition), x(ỹ) is the input of the names ỹ on the channel x, and x̄ỹ is
the output of the names ỹ on the channel x. nil is a process which does nothing. π.p is
the process which realize the action denoted by π and next behaves like p. p1 + p2 denotes
choice, it behaves like p1 or p2. νxp is the creation of a new local channel x (whose initial
scope is the process p). 〈x = y〉p1, p2 is a process which behaves like p1 or p2 depending
on the relation between x and y. p1 ‖ p2 is the parallel composition of p1 and p2. X is a
process identifier whose arity is satisfied by 〈x̃〉 and (recX〈x̃〉.p)〈ỹ〉 is a recursive process
(this allows to represent processes with infinite behaviour), with x̃ containing all the free
names which appear in p. In this article, we assume that X occurs guarded in any recursive
definition (underneath a prefix).

The operators νx and y(x̃), are x−binders, i.e. in νxp and y(x̃).p, x and x̃ are bound,
and bn(p) denotes the set of bound names of p. The free names of p are those that do
not occur in the scope of any binder, and are denoted by fn(p). The set of names of p is
denoted by n(p). Alpha-conversion is defined as usual.

3

Definition 1. The set of actions denoted Act and ranged over by α,β is defined by the
following grammar:

α ::= a〈x̃〉 | νỹāx̃ | τ | a :

where a, x ∈ Chb, x̃, ỹ ⊆ Chb. An action is either a reception, a (possibly bound) output, or
the silent action τ , denoting an internal transition. In a〈x̃〉 and νỹāx̃, a is the subject of the
communication and x̃ is its object. By extension n(α) (fn(α), bn(α)) denotes the names
(respectively free names, bound names) used in the action α ((fn(τ) = ∅, fn(a〈x̃〉) =
{a} ∪ x̃, fn(νỹāx̃) = {a} ∪ x̃ \ ỹ, fn(a :) = {a}, bn(τ) = ∅, bn(a〈x̃〉) = ∅, bn(νỹāx̃) = ỹ,
bn(a :) = ∅, n(α) = fn(α) ∪ bn(α)).

We give an operational semantics for our calculus in terms of transitions over the set
Pb of processes. Before, we define, similarly to [16], a relation −→⊆ Pb × Chb denoted
p

a:
−→ and which can be read “p discards all outputs made on the channel a ” (see Table

2).

(1)
nil

a:
−→

(2)
τ.p

a:
−→

(3)
b̄ỹ.p

a:
−→

(4) b 6=a

b(x̃).p
a:
−→

(5) p
a:
−→ ∨ x=a

νxp
a:
−→

(6) p1
a:
−→∧p2

a:
−→

p1+p2
a:
−→

(7) p1
a:
−→

〈x=x〉p1,p2
a:
−→

(8) x 6=y∧ p2
a:
−→

〈x=y〉p1,p2
a:
−→

(9) p1
a:
−→ ∧ p2

a:
−→

p1‖p2
a:
−→

(10) p[(rec X〈x̃〉.p)/X,ỹ/x̃]
a:
−→

(rec X〈x̃〉.p)〈ỹ〉
a:
−→

Table 2. The ”discard” relation

Intuitively, a process ignores all the communications made on the channels it is not
listening. nil, τ.p or b̄ỹ.p discard any communication. A process waiting for a message on a
channel b, discards actions on the other channels a with a 6= b. In rule (5) a the condition
x = a expres the possibility that a does not occur free in p. Rules (6) to (10) follow the
structure of the term.

To simplify the presentation, we extend sub to τ and we denote sub(τ) = obj(τ) = τ ,

and p
τ :
−→ for any process p. Also, we denote by Chb :

def
= {a :| a ∈ Chb}.

Definition 2. Transition system The operational semantics of bπ-calculus is defined
as a labeled transition system defined over the set Pb of processes. The judgement p

α
−→

p′ means that the process p is able to perform action α and to evolve next to p′. The
operational semantics is given in Table 3 (we omitted the symmetric versions of rules (7),
(12) and (13)).

A communication between processes is performed through unbuffered broadcast. Com-
pared to π-calculus, outputs are non-blocking, i.e. there is no need of a receiving process.
One of the processes broadcasts an output and the remaining processes either receive or
ignore the sending, according to whether they are “listening” or not on the channel which
serves as support for the output. A process which “listens“ to a channel a, cannot ignore
any value sent on this channel.

4

(1)
τ.p

τ
−→p

(2)
a(x̃).p

a〈z̃〉
−→p[z̃/x̃]

(3)
āx̃.p

āx̃
−→p

(4) p
νỹāx̃
−→ p′ ∧ z∈x̃\{a,ỹ} ∧ w 6∈fn(νzp′)

νzp
νwνỹā(x̃[w/z])

−→ p′[w/z]
(5) p

νỹāx̃
−→ p′

νap
τ

−→νaνỹp′
(6) p

α
−→p′ ∧ x 6∈n(α)

νxp
α

−→νxp′

(7) p1
α

−→p′ ∧ bn(α)∩fn(p2)=∅

p1+p2
α

−→p′
(8) p1

α
−→p′ ∧ bn(α)∩fn(p2)=∅

〈x=x〉p1,p2
α

−→p′

(9)x 6=y ∧ p2
α

−→p′ ∧ bn(α)∩fn(p2)=∅

〈x=y〉p1,p2
α

−→p′
(10) p[(rec X〈x̃〉.p)/X,ỹ/x̃]

α
−→p′ ∧ α6∈Chb:

(rec X〈x̃〉.p)〈ỹ〉
α

−→p′
(11)

p1
a〈x̃〉
−→p′

1 ∧ p2
a〈x̃〉
−→p′

2

p1‖p2
a〈x̃〉
−→p′

1‖p′
2

(12)
p1

νỹāx̃
−→ p′

1 ∧ p2
a〈x̃〉
−→p′

2 ∧ ỹ∩fn(p2)=∅

p1‖p2
νỹāx̃
−→ p′

1‖p′
2

(13)
p1

α
−→p′

1 ∧ bn(α)∩fn(p2)=∅ ∧ p2
sub(α):
−→

p1‖p2
α

−→p′
1‖p2

Table 3. Operational semantics of bπ-calculus

The operational semantics is an early one, i.e. the bound names of an input are in-
stantiated as soon as possible, in the rule for input. Rule (1) allows to identify process
which are alpha - convertible. Rules (1) to (3) are straightforward and they have the same
signification as in π-calculus: describe the initial action an process can do. Rule (4) states
that when a local channel name is emitted, the related output has to be bound. Rule (5)
does not exist in π -calculus; if a is a channel local to p, then all communications made on
a are hidden for the environment; in addition, this rule establish the scope of the names
exported on the channel a: the new scope of ỹ will be extended by the processes which
were listening on a. Rules (6) to (10) have the same meaning as in π -calculus; condition
bn(α)∩ fn(p2) = ∅ assure that a process cannot send a free name as a new local name. In
rule (10), condition α 6∈ Chb : assure that no processes can change of state as the result of
a discard. Rules (11) and (12) are specific to broadcast; the same message can be received
by more processes in a single communication. In rule (13), a process which does not listen
on a channel a, remains unchanged during a communication made on this channel.

As usual we shall use the following notations:

–
ǫ

=⇒
def
= (

τ
−→)∗,

α
=⇒

def
=

ǫ
=⇒

α
−→

ǫ
=⇒, if α 6= τ ,

–
⊘

−→
def
=

⋃
{ α
−→

∣

∣α is an output or α = τ
}

,
⊘

=⇒
def
= (

⊘
−→)∗.

We shall omit the trail nil and we shall also use the notation ā(x) to stand for the bound
output νxāx.

2.2 CBS without message passing

CBS without message passing [16], is for bπ-calculus what CCS is for π-calculus: broad-
cast remains the basic communications primitive, but this time processes synchronize by
signals, i.e. values exchanged do not change the communication topology and are ignored.
As CBS without message passing is similar and simpler than bπ-calculus, we defer the
syntax of processes and the rules for the operational semantics without any explanation
to the appendix (for more details, the reader can consult [6] or [16]). All the notations are
the same as for bπ-calculus.

5

3 Preorders induced by tests

We adapt in this section the definitions of the preorders induced by tests from [4] in the
framework of broadcasting processes: CBS and bπ-calculus. From now on, as in [11], we
shall use p

α:
−→ p instead of p

a:
−→, if sub(α) = a.

Definition 3. Observers are processes that can make a distinguished output ω̄ with ω 6∈
Chb.

Action ω̄ can be interpreted as an action which allow to observers to announce their
success. Observers interact with tested processes by exchanging messages.

Definition 4. An execution of p is a sequence of transitions p = p0
⊘

−→ p1
⊘

−→ p2
⊘

−→

. . .
⊘

−→ pk
⊘

−→ . . . which is either infinite, or pk is deadlocked. The execution is successful

if there exists n ≥ 0 such that pn
ω̄

−→.

In calculi where rendez-vous is the basic communication (as is the case with CCS or π-

calculus), in definition 4,
⊘

−→ is replaced by
τ

−→. But in broadcasting calculi, a system (or
process) evolves autonomously (without implicating the environment) using the relation
⊘

−→ instead of
τ

−→ (since outputs are non-blocking).
For any process p and any observer O, we define p may O, if and only if there exists

a successful execution of p ‖ O.

Definition 5. May testing
Given two processes p and q, we define p ≪may q if and only if for any observer O,

p may O implies q may O.

For any process p and any observer O, we define p must O, if and only if all executions
of p ‖ O are successful.

Definition 6. May testing
Given two processes p and q, we define p ≪must q if and only if for any observer O,

p must O implies q must O.

In order to relate two processes using the definitions 5 and 6 we need to use a quantifi-
cation on the universe of observers. This push us to search for a direct characterization of
≪may and ≪must. Sections 4 and 5 are devoted to direct characterizations for ≪may and
≪must in CBS without message passing and bπ-calculus.

4 Trace-based characterizations for CBS without message passing

A trace of a process is a sequence of actions that the process can do. An observer it
is not sensible to intern changes of state. Hence, the occurrences of τ in traces are not
significant. For a given trace t, all traces which differ only by some occurrences of τ
satisfy the same set of observers. For this reason we consider a restricted set of actions

RAct
def
= Act\{τ, τ :}. Then, the set of traces Tr, is defined by the grammar: t ::= ǫ | α.t,

where α ∈ RAct; ǫ represents the empty trace; in α.t, the prefix α denotes the first action

6

made by the process, while the suffix t is the trace that the process can make afterwards.
We shall omit often the trail ǫ (a1.an.ǫ will be written a1.an). The length of a
trace t ∈ Tr is denoted by |t|. The set of traces of a process p, denoted by tr(p) is:

tr(p)
def
= {w ∈ RAct∗|∃p′ such that p

w
=⇒ p′}. The set of prefixes pre(s) of a trace

s = a1.an ∈ RAct∗, is defined by pre(s)
def
= {ǫ, a1, a1.a2, . . . , a1.an}.

If t is a trace of an observer O which leads it to a successful state, the set of ”comple-
mentary traces” of t are the traces that allow to p to satisfy O. For a trace t, Comp(t) is
the set of traces defined by: Comp : Tr −→ 2Tr

Comp(t) =











{ǫ} if t = ǫ,

{ā.s1 | s1 ∈ Comp(s)} if t = a : .s or t = a.s, a ∈ Ch,

{a : .s1, a.s1 | s1 ∈ Comp(s)} if t = ā.s, a ∈ Ch.

(1)

Comp will be extended to set of traces: if M ⊆ Tr, then Comp(M) =
⋃

s∈M Comp(s).

The following two results are very useful to prove the main theorems of this paper.
Intuitively, if si ∈ tr(pi), then the ”composition” of traces s1 and s2 provide an execution
of p1 ‖ p2.

Lemma 1.

– Let p1, p2 ∈ Pb be two processes such that p1 ‖ p2
⊘

=⇒ r. Then, there exist two processes

q1, q2 and two traces si ∈ tr(pi), i = 1, 2, such that r = q1 ‖ q2, pi
si=⇒ qi, i = 1, 2 and

s1 ∈ Comp(s2).

– Conversely, if si ∈ tr(pi), i = 1, 2, such that r = q1 ‖ q2, pi
si=⇒ qi, i = 1, 2 and

s1 ∈ Comp(s2), then p1 ‖ p2
⊘

=⇒ r.

Proof

The first implication is proved by induction on the length of the derivation p1 ‖ p2
⊘

=⇒
r. The converse is proved by induction on |s2|. � Lemma 1

Lemma 2. For any traces s0, s1 and s2, if s0 ∈ Comp(Comp(s1)) and s2 ∈ Comp(s1),
then s2 ∈ Comp(s0).

Proof

By induction on |s1|. � Lemma 2

4.1 May testing

For an observer O, p may O if there is a trace s of p that ”satisfy” O (that is complementary
to a trace t of O). Intuitively, we should have p ≪may q if for any trace s of p, q can exhibit
a trace s′ which is equivalent from an observational point of view. This intuition is reflected
by the following trace-based characterization of ≪may.

Theorem 1. For all processes p and q, p ≪may q iff tr(p) ⊆ Comp(Comp(tr(q))).

Proof

7

” =⇒ ” Firstly, we define a special set of observers. If M ⊆ Chb is a finite set of channels, we
shall denote by

in(M)
not
=

{

nil if M = ∅,

a.nil + in(M \ {a}) otherwise, with a ∈ M.
(2)

Let t be a trace and let M ⊆ Chb be a set of channels. Let oM (t) be an observer defined
by

oM (t) =











ω̄.nil if t = ǫ,

ā.oM (s) + in(M) if t = a : .s or t = a.s, a ∈ Ch,

a.oM (s) + in(M) if t = ā.s, a ∈ Ch.

(3)

Let s ∈ tr(p) and let M = fn(p, q). Then, using the definition of oM (s), there exists

s2 ∈ tr(oM (s)) such that p
s

=⇒ p′, oM (s)
s2=⇒ ω̄.nil, and s ∈ Comp(s2) . p ≪may q

implies q may oM (s), i.e. q ‖ oM (s)
⊘

=⇒ q′ ‖ ω̄.nil. Lemma 1, assure the existence of

s0” ∈ tr(q) and s2” ∈ tr(oM (s)) such that s2” ∈ Comp(s0”) and oM (s)
s2”
=⇒ ω̄.nil.

By construction, s2 ∈ pre(s2”) and there exists a prefix s′0 ∈ pre(s0”) such that s2 ∈
Comp(s′0) (the expression in(M) in the definition of oM (s) assure that the observed
process do not make ”wrong outputs”). s ∈ Comp(s2) and s2 ∈ Comp(s′0) imply
s ∈ Comp(Comp(s′0)). Since s0” ∈ tr(q) and s′0 ∈ pre(s0”) we get s′0 ∈ tr(q). Hence
s ∈ Comp(Comp(s′0)) ⊆ Comp(Comp(tr(q))).

” ⇐= ” Let be p may o. Then, there exist s1, s2 with s1 ∈ Comp(s2) such that p
s1=⇒ p′,

o
s2=⇒ o′ and o′

ω̄
−→. tr(p) ⊆ Comp(Comp(tr(q))) implies that there exists s0 ∈

tr(q) such that s1 ∈ Comp(Comp(s0)), and as Comp is symmetrical, we obtain
s0 ∈ Comp(Comp(s1)). Since s0 ∈ Comp(Comp(s1)) and s1 ∈ Comp(s2), using

Lemma 2, we get s0 ∈ Comp(s2) (using that Comp is symmetrical). From o
s2=⇒ o′,

s0 ∈ Comp(s2), and s0 ∈ tr(q), using Lemma 1 we obtain that there exists q′ such that

q ‖ o
⊘

=⇒ q′ ‖ o′. Since o′
ω̄

−→, we get q may o. � Theorem 1

4.2 Must testing

The characterization of ”may testing” is intuitive and looks like the characterization for
CCS ([4]); the difference is that for p ≪may q we do not require tr(p) ⊆ tr(q), but that
any trace s of p must be simulate by a trace s′ ∈ Comp(Comp(s)) that is equivalent from
the visibility point of view (remind that in CBS we cannot see directly whenever a process
receive or discards a message). On the contrary, the trace-based characterization of ”must
testing” is much less evident; more, it is completely different w.r.t. to point-to-point calculi
(CCS or other versions). The fact that outputs are autonomous, changes a lot the results
for CBS.

We say that p ”diverges” (denoted p ⇑⊘) if there exists an infinite execution p = p0
⊘

−→

p1
⊘

−→ . . . pk
⊘

−→ . . . such that pk 6
ω̄

−→ for any k ∈ N. On the contrary, p ”converges”
(denoted p ⇓⊘) iff ¬p ⇑⊘. Following [4], we shall extend the convergence predicate to
traces: for any s ∈ RAct, p ⇓⊘

s iff

– p ⇓⊘
ǫ if p ⇓⊘;

– p ⇓⊘
α.s if p ⇓⊘ and whenever p

α
=⇒ p′, then p′ ⇓⊘

s .

8

We can prove that p ⇓⊘
s iff for any prefix s1 ∈ pre(s) it holds p ⇓⊘

s1
. We denote

Conv(p, s) iff ∀s′ ∈ Comp(Comp(s)), p ⇓⊘
s′ .

Stab(p, s) denote the set of processes p′ that are accessible from p by a trace s′ ”equiv-
alent” with s and which can not evolve autonomously afterwards.

Stab(p, s)
def
= {p′ | p

s′
=⇒ p′, s′ ∈ Comp(Comp(s)), p 6

⊘
−→}.

The trace-based characterization of ”must testing” is given by the relation ≤.

Definition 7. (alternate characterization of ≪must) p ≤ q iff ∀s ∈ RAct∗, Conv(p, s)
implies

– Conv(q, s);
– Stab(q, s) 6= ∅ implies Stab(p, s) 6= ∅.

Before to prove the main theorem of this subsection, we need two auxiliary results.

Lemma 3. If p ≪must q, then ∀s ∈ RAct∗, Conv(p, s) implies

1. Conv(q, s);
2. Comp(Comp(s)) ∩ tr(q) 6= ∅ implies Comp(Comp(s)) ∩ tr(p) 6= ∅.

Lemma 4. If p ≤ q, and Conv(p, s) then
Comp(Comp(s)) ∩ tr(q) 6= ∅ implies Comp(Comp(s)) ∩ tr(p) 6= ∅.

Now, we prove the equivalence of ≪must and ≤.

Theorem 2. For all processes p and q, p ≪must q iff p ≤ q.

Proof

” =⇒ ” We prove that p 6≤ q implies p 6≪must q. Let suppose p 6≤ q and p ≪must q.
p 6≤ q implies that there exists s ∈ RAct∗, such that Conv(p, s) and [¬Conv(q, s) or
(Stab(q, s) 6= ∅ and Stab(p, s) = ∅)].

• Let suppose that Conv(p, s) and ¬Conv(q, s).
Since p ≪must q and Conv(p, s), using Lemma 3 we obtain Conv(q, s), contradic-
tion.

• Let suppose that Conv(p, s), Conv(q, s), Stab(q, s) 6= ∅ and Stab(p, s) = ∅.
For a finite set of channels X ∈ Chb, let in′(X) and o3(t, X) be two processes
defined as follows:

in′(X)
not
=

{

nil if X = ∅,

a.ω̄ + in′(X \ {a}) otherwise, with a ∈ X.
(4)

o3(t, X) =











in′(X) if t = ǫ,

τ.ω̄ + ā.o3(s, X) + in′(X) if t = a : .s or t = a.s, a ∈ Chb,

τ.ω̄ + a.o3(s, X) + in′(X) if t = ā.s, a ∈ Chb.

(5)

Stab(q, s) 6= ∅ implies that there exist q1 and s1 ∈ Comp(Comp(s)) ∩ tr(q) such

that q
s1=⇒ q1 and q1 6

⊘
−→.

By construction (and using Lemma 1) we have q ‖ o3(s, fn(p, q))
⊘

=⇒ q1 ‖ in′(X)

(without emitting on the channel ω) and as q1 6
⊘

−→ we obtain q m6 ust o3(s, fn(p, q)).
Since Stab(p, s) = ∅, we can prove p must o3(s, fn(p, q)), and hence p 6≪must q.

9

” ⇐= ” We shall prove that p 6≪must q implies p 6≤ q. Let suppose that p 6≪must q and p ≤ q.
p 6≪must q implies that there exists o such that p must o and q m6 ust o.
Since q m6 ust o, one of following cases must hold.

• q ‖ o = q0 ‖ o0
⊘

−→ q1 ‖ o1
⊘

−→ . . .
⊘

−→ qn ‖ on and qn ‖ on 6
⊘

−→, and for any

i = 0, n, oi 6
ω̄

−→.
If we consider the contributions of q and o to this execution, by Lemme 1 we obtain

that there exist s ∈ RAct∗ and t ∈ Comp(s) such that q
s

=⇒ qn and o
t

=⇒ on.

In addition, since qn ‖ on 6
⊘

−→ we obtain on 6
⊘

−→ and qn 6
⊘

−→ and thus, Stab(q, s) 6= ∅.

p must o, o
t

=⇒ on, for any i = 0, n, oi 6
ω̄

−→ and t ∈ Comp(s) imply Conv(p, s).
From the definition 7, Stab(q, s) 6= ∅, p ≤ q, and Conv(p, s) involve Stab(p, s) 6= ∅,

and so there exist pn and u ∈ Comp(Comp(s)) such that p
u

=⇒ pn and pn 6
⊘

−→.
From u ∈ Comp(Comp(s)) and t ∈ Comp(s), using the Lemma 2 we get u ∈
Comp(t), and by the Lemma 1 we can build the following execution

p ‖ o = p0 ‖ o0
⊘

−→ p1 ‖ o1
⊘

−→ . . .
⊘

−→ pn ‖ on and pn ‖ on 6
⊘

−→, so p m6 ust o,
contradiction.

• q ‖ o = q0 ‖ o0
⊘

−→ q1 ‖ o1
⊘

−→ . . .
⊘

−→ qn ‖ on, for any i = 0, n, oi 6
ω̄

−→ and

(qn ⇑⊘ or on ⇑⊘). (6)

If we consider the contributions of q and o to this execution, using the Lemma 1
we obtain that there exist s ∈ RAct∗ and t ∈ Comp(s) such that q

s
=⇒ qn and

o
t

=⇒ on.

p must o, o
t

=⇒ on, for any i = 0, n, oi 6
ω̄

−→ and t ∈ Comp(s) imply Conv(p, s).
From the definition 7, p ≤ q, and Conv(p, s) involve Conv(q, s), and so

qn ⇓⊘ . (7)

q
s

=⇒ qn implies s ∈ tr(q), and since p ≤ q, and Conv(p, s), using the Lemma 4 we
obtain that there exist pn and u ∈ Comp(Comp(s)) such that p

u
=⇒ pn.

From u ∈ Comp(Comp(s)) and t ∈ Comp(s), using the Lemma 2 we obtain u ∈
Comp(t), and using the Lemma 1 we can build the following execution

p ‖ o = p0 ‖ o0
⊘

−→ p1 ‖ o1
⊘

−→ . . .
⊘

−→ pn ‖ on, such that for any i = 0, n, oi 6
ω̄

−→.
Since p must o, we obtain on ⇓⊘, contradiction with 6 and 7.

• q ‖ o = q0 ‖ o0
⊘

−→ q1 ‖ o1
⊘

−→ . . .
⊘

−→ qn ‖ on
⊘

−→ . . ., and for any i ∈ N, oi 6
ω̄

−→.
If we consider the contributions of q and o to this execution, using the Lemma
1 we obtain that there exist ”infinite traces” s and t such that for any k ∈ N,

s(k) ∈ RAct∗, t(k) ∈ Comp(s(k)), q
s(k)
=⇒ qk and o

t(k)
=⇒ ok.

Since p must o, using the Lemma 1 we infer that there exists n ∈ N such that

tr(p) ∩ Comp(Comp(s(n))) = ∅. (8)

In addition, since o
t(n)
=⇒, t(n) ∈ Comp(s(n)) and i ∈ N, oi 6

ω̄
−→ we obtain Conv(p, s(n))

(otherwise, we could build a ”divergent” execution from p ‖ o).

q
s(n)
=⇒ qn implies tr(q) ∩ Comp(Comp(s(n))) 6= ∅. In addition we have p ≤ q, and

Conv(p, s(n)), thus, using the Lemma 4 we obtain tr(p)∩Comp(Comp(s(n))) 6= ∅,
contradiction with 8. � Theorem 2

10

5 Trace-based characterizations for bπ-calculus

In this section, we shall extend to monadic bπ-calculus the results presented in the pre-
vious section. Most of the notations remain unchanged; we shall give explicitly only the
differences.

Let
α

−→1 be the relation defined in the Table 4.

(1) p
α

−→p′

p
α

−→1p′
(2) p

a〈x〉
−→p′ ∧ x 6∈fn(p)

p
a(x)
−→1p′

(3) p
a:
−→ ∧ x 6∈fn(p)

p
a(x):
−→1p

Table 4. The relation
α

−→1

The set of traces Tr is defined by the grammar: t ::= ǫ | α.t, where α ∈ EAct =
{āx, ā(x), a〈x〉, a(x), a :, a(x) : |a, x ∈ Chb}. The set of traces of a process p, denoted by

tr(p) is: tr(p)
def
= {w ∈ EAct∗|∃p′ such that p

w
=⇒1 p′}.

a(x), a(x) : and ā(x) bind the occurrences of x in the traces. We will call an action or
a trace ”harmless” with respect to a particular statement, if the bound names (channels)
are different than any of the name appearing in the rest of the statement.

Next lemma admits a similar proof to Proposition 2.7 from [10].

Lemma 5. If p ≡α q and p
s

=⇒1 p′, for any harmless trace s′ such that s ≡α s′, there

exists q′ such that q
s′

=⇒1 q′, p′ ≡α q′[bn(s)/bn(s′)] and q′ ≡α p′[bn(s′)/bn(s)].

For a trace t, the set of complementary traces Comp(t) is defined as follows: Comp :
Tr −→ 2Tr

Comp(t) =































{ǫ} if t = ǫ,

{āx.s1 | s1 ∈ Comp(s)} if t = a : .s or t = a〈x〉.s, a, x ∈ Ch,

{ā(x).s1 | s1 ∈ Comp(s)} if t = a(x) : .s or t = a(x).s, a, x ∈ Ch,

{a : .s1, a〈x〉.s1 | s1 ∈ Comp(s)} if t = āx.s, a ∈ Ch,

{a(x) : .s1, a(x).s1 | s1 ∈ Comp(s)} if t = ā(x).s, a ∈ Ch.

(9)
Lemma 1 and Lemma 2 remain true for bπ-calculus, and they allow us to restrict in the

Theorem 3 just to harmless traces (for any successful execution (or unsuccessful execution)
of p ‖ o, there exists a successful execution (respectively a unsuccessful execution) of p ‖ o
such that the contributions s of p and t of o are harmless).

The trace-based characterization of ≪may for bπ-calculus looks like that one from CBS
without message passing:

Theorem 3. For all processes p and q, p ≪may q iff tr(p) ⊆ Comp(Comp(tr(q))).

The alternate characterization of ”must testing” for bπ-calculus is a natural extension
of that one from CBS. The definitions of p ⇑⊘ and p ⇓⊘

s remain the same. In the definition
of Conv(p, s) we take also into account the alpha conversion. Conv(p, s) iff p ⇓⊘

s′ , ∀s′ such
that s′ ≡α s” and s” ∈ Comp(Comp(s)).

Next lemma admits a similar proof to Lemma 3.4 from [10].

11

Lemma 6. If bn(s)∩fn(p) = ∅ then Conv(p, s) iff p ⇓⊘
s′, ∀s′ such that s′ ∈ Comp(Comp(s)).

Lemmas 1, 5 and 6 allow us to restrict everywhere in the sequel just to harmless traces.

We will denote by Stab(p, s) the set of processes p′, which are accessible from p through
a trace s′ (”equivalent” of s) and that cannot evolve autonomously afterwards.

Stab(p, s)
def
= {p′ | p

s′
=⇒ p′, s′ ≡α s”, s” ∈ Comp(Comp(s)), p 6

⊘
−→}.

The trace-based characterization of ≪must for bπ-calculus is given by the relation ≤.

Definition 8. (alternate characterization of ≪must) p ≤ q iff ∀s ∈ EAct∗, Conv(p, s)
implies

– Conv(q, s);

– Stab(q, s) 6= ∅ implies Stab(p, s) 6= ∅.

As in the Section 4.2, we can prove the next theorem.

Theorem 4. For all processes p and q, p ≪must q iff p ≤ q.

6 Related work and conclusions

In this paper, we presented trace-based characterizations for ”may testing” and ”must
testing” for CBS without message passing and bπ-calculus. These characterizations do not
depend of observers. As far as the authors are aware, all testing theories in the literature
are only for point-to-point process calculi.

The first works for synchronous point-to-point models, is the seminal paper [4] where
Hennessy and De Nicola introduce the definitions of ”may testing” and ”must testing” and
give characterizations for these preorders together with complete proof systems. For mobile
point-to-point systems (π-calculus or other versions), characterizations are presented in
[1] and [10]. These characterizations are based on inclusions between traces sets (for ”may
testing”), and on the so-called ”acceptance sets” (for ”must testing”).

Recently, these results were extended to asynchronous models.

The preorders ”may testing” and ”must testing” have been studied for an asynchronous
version of CCS (enriched with intern and external choice operators) called TACCS [3].
The authors give afterwards an equational characterization of ”must testing” for the finite
fragment of TACCS (without recursion).

In [2], the authors present characterizations of ”may testing” and ”must testing” for
another asynchronous version of CCS called ACCS (a more restrictive calculus w.r.t.
TACCS - the external choice can be applied only to prefixed processes). The characteriza-
tion for ”may testing” is afterwards generalized to asynchronous π-calculus. We emphasize
that all these characterizations (given in point-to-point calculi) are very different w.r.t.
characterizations given in this paper for broadcasting calculi.

As a possible continuation of our study, it remains to provide equational characteriza-
tions for the congruences induced by ≪must and ≪may.

12

References

[1] M. Boreale and R. De Nicola. Testing Equivalence for Mobile Systems. In Information and Computa-

tion, volume 120, pages 279–303, 1995.
[2] M. Boreale and R. De Nicola and R. Pugliese. Trace and Testing Equivalence on Asynchronous Pro-

cesses. In Lecture Notes in Computer Science, volume 1578, pages 165–179. Springer Verlag, 1999.
[3] I. Castellani and M. Hennessy, Testing Theories for Asynchronous Processes. In Lecture Notes in

Computer Science, volume 1530, pages 90–108. Springer Verlag, 1998.
[4] R. de Nicola and M. Hennessy. Testing Equivalences for Processes. In Theoretical Computer Science,

volume 34, pages 83–133, 1984.
[5] C. Ene and T. Muntean. Expressiveness of point-to-point versus broadcast communications. In Fun-

damentals of Computation Theory, 12th International Symposium, Lecture Notes in Computer Science,
volume 1684. Springer Verlag, 1999.

[6] C. Ene. A formal model for broadcasting mobile systems. PhD thesis, Laboratoire d’Informatique de
Marseille, 2001 (in french). Available at http://www.esil.univ-mrs.fr/ cene/teza.ps.gz

[7] C. Ene and T. Muntean. A broadcast-based calculus for communicating systems. Research Report.
Extended version of [8], 2001. Available at http://www.esil.univ-mrs.fr/ cene/FMPPTA.ps.gz

[8] C. Ene and T. Muntean. A broadcast-based calculus for communicating systems. In 6th International

Workshop on Formal Methods for Parallel Programming: Theory and Applications, San Francisco, 2001.
[9] A. Geist, A. Beguelin, J. Dongarra, R. Manchek, W. Jiang, and V. Sunderam. PVM: A Users’ Guide

and Tutorial for Networked Parallel Computing. MIT Press, 1994.
[10] M. Hennessy. A model for the π-calculus. Report 8/91, School of Cognitive and Computer Science,

University of Sussex, 1991.
[11] M. Hennessy and J. Rathke. Bisimulations for a calculus of broadcasting systems. In CONCUR 95,

Lecture Notes in Computer Science, volume 962. Springer Verlag, 1995.
[12] C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[13] N. Lynch and M. Tuttle. An introduction to input/output automata. Technical report, Centrum voor

Wiskunde en Informatica, Amsterdam, The Netherlands. Also, Technical Memo MIT/LCS/TM-373,
Laboratory for Computer Science, Massachusetts Institute ofTechnology, 2000.

[14] R. Milner. Communication and concurrency. Prentice-Hall, 1989.
[15] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I/II. Journal of Information

and Computation, 100:1–77, 1992.
[16] K. Prasad. A calculus of broadcasting systems. In In TAPSOFT’91, Volume 1: CAAP, Lecture Notes

in Computer Science, volume 493. Springer Verlag, 1991.
[17] K. V. S. Prasad. A calculus of broadcasting systems. Science of Computer Programming, 25, 1995.

13

7 Syntax and semantics of CBS without message passing

p ::= nil | π.p | νxp | p1 + p2 | p1 ‖ p2 | X | rec X.p

where π belongs to the set of prefixes π ::= τ | x | x̄, with x, y ∈ Chb.

Table 5. Processes in CBS without message passing

(1)
nil

a:
−→

(2)
τ.p

a:
−→

(3)
b̄.p

a:
−→

(4) b 6=a

b.p
a:
−→

(5) p
a:
−→ ∨ x=a

νxp
a:
−→

(6) p1
a:
−→∧p2

a:
−→

p1+p2
a:
−→

(7) p1
a:
−→ ∧ p2

a:
−→

p1‖p2
a:
−→

(8) p[(rec X.p)/X]
a:
−→

rec X.p
a:
−→

Table 6. The ”discard” relation

(1)
τ.p

τ
−→p

(2)
a.p

a
−→p

(3)
ā.p

ā
−→p (4) p

ā
−→p′

νap
τ

−→νap′

(5) p
α

−→p′ ∧ x 6∈n(α)

νxp
α

−→νxp′
(6) p1

α
−→p′ ∨ p2

α
−→p′

p1+p2
α

−→p′
(7)

p1
a

−→p′
1 ∧ p2

a
−→p′

2

p1‖p2
a

−→p′
1‖p′

2

(8)
p1

ā
−→p′

1 ∧ p2
a

−→p′
2

p1‖p2
ā

−→p′
1‖p′

2

(9)
p1

α
−→p′

1 ∧ p2
sub(α):
−→

p1‖p2
α

−→p′
1‖p2

(10) p[(rec X.p)/X]
α

−→p′ ∧ α6∈Chb:

(rec X.p)
α

−→p′

Table 7. Operational semantics of CBS without message passing

8 Proofs relative to Section 4

Remark 1.
– s1 ∈ Comp(s2) implies |s1| = |s2|.
– The relation Comp is symmetrical: ∀s1, s2 ∈ Tr it holds (s1 ∈ Comp(s2) if and only if

s2 ∈ Comp(s1)).

Proof By induction on |s2|. � Remark 1

Lemma 1

– Let p1, p2 ∈ Pb be two processes such that p1 ‖ p2
⊘

=⇒ r. Then, there exist two processes

q1, q2 and two traces si ∈ tr(pi), i = 1, 2, such that r = q1 ‖ q2, pi
si=⇒ qi, i = 1, 2 and

s1 ∈ Comp(s2).

14

– Conversely, if si ∈ tr(pi), i = 1, 2, such that r = q1 ‖ q2, pi
si=⇒ qi, i = 1, 2 and

s1 ∈ Comp(s2), then p1 ‖ p2
⊘

=⇒ r.

Proof

We prove the first implication by induction on the length of the derivation p1 ‖ p2
⊘

=⇒ r
using the fact the rule applied lastly must be (8) or (9) (or their symmetrical) from the
Table 7

- if the length of the derivation is 0, then there exist processes q1 = p1 and q2 = p2,
and the traces ǫ ∈ tr(pi), i = 1, 2, such that r = p1 ‖ p2. Evidently ǫ ∈ Comp(ǫ).

- the hypothesis is true for any p1, p2, r ∈ Pb such that p1 ‖ p2
⊘

=⇒ r, by a derivation
of length at most n. Let suppose that the length of the derivation is n + 1. Then it must

look like: p1 ‖ p2
α

−→ r1
⊘

=⇒ r, where α is either τ or ā, with a ∈ Ch. For the first step
p1 ‖ p2

α
−→ r1 we have a transition obtained either by the rule (8) or by the rule (9) (or

by one of their symmetrical).

- if α = τ , then the transition is obtained by the rule (9) and we obtain p1
τ

−→ p′1,

p2
τ :
−→ p2 and p1 ‖ p2

τ
−→ p′1 ‖ p2. Then r1 = p′1 ‖ p′2, and p′1 ‖ p′2

⊘
=⇒ r by a derivation

of length at most n, where p′2 = p2. By hypothesis of induction, there exists processes

q1, q2 and traces si ∈ tr(pi), i = 1, 2, such that r = q1 ‖ q2, p′i
si=⇒ qi, i = 1, 2 and

s1 ∈ Comp(s2). Since p1
τ

−→ p′1, we infer p1
s1=⇒ q1 and p2

s2=⇒ q2.

- if α is ā and the transition is obtained by the rule (8), then we obtain p1
ā

−→ p′1,

p2
a

−→ p2 and p1 ‖ p2
ā

−→ p′1 ‖ p2. Then r1 = p′1 ‖ p′2, and p′1 ‖ p′2
⊘

=⇒ r by a derivation
of length at most n, where p′2 = p2. By hypothesis of induction, there exist processes

q1, q2 and traces s′i ∈ tr(p′i), i = 1, 2, such that r = q1 ‖ q2, p′i
s′i=⇒ qi, i = 1, 2 and

s′1 ∈ Comp(s′2). Since p1
τ

−→ p′1, we infer p1
s1=⇒ q1, where s1 = ā.s′1. Also, we obtain

p2
s2−→ p′2, where s2 = a.s′2. It remains to prove s1 ∈ Comp(s2). Using the definition,

Comp(s2) = Comp(a.s′2) = {ā.s | s ∈ Comp(s′2)}. But, by hypothesis of induction we
have that s′1 ∈ Comp(s′2), i.e. s1 = ā.s′1 ∈ Comp(s2).

The other cases are similar.

We prove the converse by induction on |s2|.
- s2 = ǫ.

s1 ∈ Comp(s2) = {ǫ} implies s1 = ǫ, thus pi = qi, i = 1, 2, and since r = q1 ‖ q2 we

obtain p1 ‖ p2
⊘

=⇒ r.

s2 = α.s′2, where α ∈ {ā, a}.
- s2 = a.s′2.

s1 ∈ Comp(s2) = {ā.s | s ∈ Comp(s′2)}, then s1 = ā.s′1, s
′
1 ∈ Comp(s′2). By hypothesis

of induction, pi
si=⇒ qi, i = 1, 2, i.e. p1

ā
=⇒ p′1

s′1=⇒ q1 and p2
a

=⇒ p′2
s′2=⇒ q2. We also have

r = q1 ‖ q2. Using the hypothesis of induction, we obtain p′1 ‖ p′2
⊘

=⇒ r. Applying once the
rule (8) and zero or several times the rule (9) (depending on the number of τ contained

in p1
ā

=⇒ p′1 and p2
a

=⇒ p′2), we obtain p1 ‖ p2
ā

=⇒ p′1 ‖ p′2
⊘

=⇒ r, and thus p1 ‖ p2
⊘

=⇒ r.

- s2 = ā.s′2.

s1 ∈ Comp(s2) = {a.s, a : .s | s ∈ Comp(s′2)}, then s1 = a.s′1 or s1 = a : .s′1, such that

s′1 ∈ Comp(s′2). By hypothesis, pi
si=⇒ qi, i = 1, 2, i.e. p1

a
=⇒ p′1

s′1=⇒ q1 or p1
a:

=⇒ p′1
s′1=⇒ q1

15

and p2
ā

=⇒ p′2
s′2=⇒ q2. We also have r = q1 ‖ q2. Using the hypothesis of induction we have

p′1 ‖ p′2
⊘

=⇒ r. By applying the symmetrical of the rule (8) or of the rule (9), and zero

or several times the rule (9) (depending on the number of τ contained in p1
ā

=⇒ p′1 and

p2
a

=⇒ p′2),we obtain p1 ‖ p2
ā

=⇒ p′1 ‖ p′2
⊘

=⇒ r, and hence p1 ‖ p2
⊘

=⇒ r.
The case s2 = a : .s′2 is similar as the case s2 = a.s′2. � Lemma 1

Lemma 2
For any traces s0, s1 and s2, if s0 ∈ Comp(Comp(s1)) and s2 ∈ Comp(s1), then

s2 ∈ Comp(s0).
Proof
By induction on |s1|.
- s1 = ǫ Comp(ǫ) = {ǫ}. Comp(Comp(ǫ)) = {ǫ}.
s0 ∈ Comp(Comp(s1)) implies s0 = ǫ. s2 ∈ Comp(s1) implies s2 = ǫ. Thus s2 ∈

Comp(s0).
- s1 = a.s′1
Comp(a.s′1) = {ā.s′2 | s′2 ∈ Comp(s′1)}. Comp(Comp(a.s′1)) = Comp({ā.s′2 | s′2 ∈

Comp(s′1)}) = {a : .s′0, a.s′0 | s′0 ∈ Comp(Comp(s′1))}. s0 ∈ Comp(Comp(a.s′1)) implies
s0 = a : .s′0 or s0 = a.s′0 with s′0 ∈ Comp(Comp(s′1))}.

s2 ∈ Comp(s1) implies s2 = ā.s′2 with s′2 ∈ Comp(s′1)}.
Thus we obtain s′2 ∈ Comp(s′1), s′0 ∈ Comp(Comp(s′1)), and by the hypothesis of

induction we have, s′2 ∈ Comp(s′0).
Hence s2 = ā.s′2 ∈ Comp(s0).
The other cases are similar. � Lemma 2

Lemma 3 If p ≪must q, then ∀s ∈ RAct∗, Conv(p, s) implies

1. Conv(q, s);
2. Comp(Comp(s)) ∩ tr(q) 6= ∅ implies Comp(Comp(s)) ∩ tr(p) 6= ∅.

Proof Let p ≪must q.

1. Let suppose that there exists s ∈ RAct∗ such that Conv(p, s) and ¬Conv(q, s).
¬Conv(q, s) implies that there exist a prefix s1 of s, a trace t1 ∈ Comp(Comp(s1))

and a processes q1 such that q
t1=⇒ q1 and q1 ⇑⊘.

For a finite set of channels X ∈ Chb, let in′(X) and o1(t, X) be two processes defined
as follows:

in′(X)
not
=

{

nil if X = ∅,

a.ω̄ + in′(X \ {a}) otherwise, with a ∈ X.
(10)

o1(t, X) =











τ.ω̄ if t = ǫ,

τ.ω̄ + ā.o1(s, X) + in′(X) if t = a : .s or t = a.s, a ∈ Chb,

τ.ω̄ + a.o1(s, X) + in′(X) if t = ā.s, a ∈ Chb.

(11)

By construction (and using Lemma 1) we obtain q ‖ o1(s1, fn(p, q))
⊘

=⇒ q1 ‖ τ.ω̄ and
since q1 ⇑⊘ we have q m6 ust o1(s1, fn(p, q)).
Since Conv(p, s) and s1 ∈ pre(s) we obtain Conv(p, s1) and hence p must o1(s1, fn(p, q)),
contradiction with p ≪must q.
in′(X) assure that any deviation from the trace s leads to a successful execution.

16

2. Let suppose that there exists s ∈ RAct∗ such that Conv(p, s), Comp(Comp(s)) ∩
tr(q) 6= ∅ and Comp(Comp(s)) ∩ tr(p) = ∅.

For a finite set of channels X ∈ Chb, let o2(t, X) be the observer defined as follows:

o2(t, X) =











nil if t = ǫ,

τ.ω̄ + ā.o2(s, X) + in′(X) if t = a : .s or t = a.s, a ∈ Chb,

τ.ω̄ + a.o2(s, X) + in′(X) if t = ā.s, a ∈ Chb.

(12)

By construction (and using the Lemma 1) we have q ‖ o2(s, fn(p, q))
⊘

=⇒ q1 ‖ nil
(without emitting on the channel ω) and we obtain q m6 ust o2(s, fn(p, q)).

Since Conv(p, s) and Comp(Comp(s)) ∩ tr(p) = ∅ we obtain p must o2(s, fn(p, q)) ,
contradiction with p ≪must q.

in′(X) assure that any deviation from the trace s leads to a successful execution.

� Lemma 3

Lemma 4 If p ≤ q, and Conv(p, s) then

Comp(Comp(s)) ∩ tr(q) 6= ∅ implies Comp(Comp(s)) ∩ tr(p) 6= ∅.

Proof

Let suppose that there exists s ∈ RAct∗ such that Conv(p, s), Comp(Comp(s)) ∩
tr(q) 6= ∅.

Since p ≤ q, and Conv(p, s) , from the definition 7 we obtain Conv(q, s).

Comp(Comp(s)) ∩ tr(q) 6= ∅ implies that there exists q1 and s1 ∈ Comp(Comp(s)) ∩

tr(q) such that q
s1=⇒ q1.

Conv(q, s) implies q1 ⇓⊘.

q
s1=⇒ q1 and q1 ⇓⊘ imply that there exists an extension t1 of the trace s1 (obtained

from s1 by adding a maximal finite sequence of autonomous actions that q1 can make)
such that t1 ∈ tr(q), Conv(q, t1), and Stab(q, t1) 6= ∅.

Since Conv(p, s) and s1 ∈ pre(t1) ∩ Comp(Comp(s)) and t1 is obtained from s1 by
adding to the end only autonomous, we obtain Conv(p, t1).

From the definition 7, p ≤ q, and Conv(p, t1) and Stab(q, t1) 6= ∅ imply Stab(p, t1) 6= ∅,
and thus tr(p) ∩ Comp(Comp(t1)) 6= ∅, which involve Comp(Comp(s)) ∩ tr(p) 6= ∅.

� Lemma 4

9 Proofs relative to Section 5

Lemma 7.

– Let p1, p2 ∈ Pb be two processes such that p1 ‖ p2
⊘

=⇒ r. Then, there exist two processes

q1, q2 and two traces si ∈ tr(pi), i = 1, 2, such that r = q1 ‖ q2, pi
si=⇒ qi, i = 1, 2 and

s1 ∈ Comp(s2).

– Conversely, if si ∈ tr(pi), i = 1, 2, such that r = q1 ‖ q2, pi
si=⇒ qi, i = 1, 2 and

s1 ∈ Comp(s2), then p1 ‖ p2
⊘

=⇒ r.

17

Proof
We prove the first implication by induction on the length of the derivation p1 ‖ p2

⊘
=⇒ r

using the fact that the last applied rule is (12) or (13) (or their symmetrical) from Table
3

- if the length of the derivation is 0, then there are processes q1 = p1 and q2 = p2, and
traces ǫ ∈ tr(pi), i = 1, 2), such that r = p1 ‖ p1. Evidently ǫ ∈ Comp(ǫ).

- let suppose that the assertion is true for any p1, p2, r ∈ Pb such that p1 ‖ p2
⊘

=⇒ r,
by a derivation of length at most n. Let suppose that the length of the derivation is n+1.

Then we have: p1 ‖ p2
α

−→ r1
⊘

=⇒ r, where α is τ or āx or ā(x), with a, x ∈ Ch. For the
first step p1 ‖ p2

α
−→ r1 we have a transition obtained either by the rule (12) or by the

rule (13) (or by one or their symmetrical).
- if α is τ the transition is obtained by the rule (14) and we have p1

τ
−→ p′1, p2

τ :
−→ p2

and p1 ‖ p2
τ

−→ p′1 ‖ p2. Then r1 = p′1 ‖ p′2, and p′1 ‖ p′2
⊘

=⇒ r by a derivation of length at
most n, where p′2 = p2.

By the hypothesis of induction, there are processes q1, q2 and traces si ∈ tr(p′i), i = 1, 2,

such that r = q1 ‖ q2, p′i
si=⇒1 qi, i = 1, 2 and s1 ∈ Comp(s2). Since p1

τ
−→ p′1, we obtain

that p1
s1=⇒ q1 and p2

s2=⇒ q2.

- if α is āx the transition p1 ‖ p2
āx
−→ p′1 ‖ p2 is obtained by one of the rules (12) or

(13). We have p1
āx
−→ p′1 and either p2

a〈x〉
−→ p2, or p2

a:
−→ p2.

Then r1 = p′1 ‖ p′2, and p′1 ‖ p′2
⊘

=⇒ r by a derivation of length at most n, where p′2 = p2.
By the hypothesis of induction, there are processes q1, q2 and traces s′i ∈ tr(p′i), i = 1, 2,

such that r = q1 ‖ q2, p′i
si=⇒1 qi, i = 1, 2 and s′1 ∈ Comp(s′2). Since p1

āx
−→ p′1, we

have that p1
s1=⇒1 q1, where s1 = āx.s′1. We also have p2

s2=⇒1 p′2, where s2 = a : .s′2 or
s2 = a〈x〉.s′2. It remains to prove that s1 ∈ Comp(s2). From the definition, Comp(s2) =
Comp(a : .s′2) = Comp(a〈x〉.s′2) = {āx.s | s ∈ Comp(s′2)}. But using the hypothesis of
induction, we have that s′1 ∈ Comp(s′2), i.e. s1 = ā〈x〉.s′1 ∈ Comp(s2).

- if α is ā(x) the transition p1 ‖ p2
ā(x)
−→ p′1 ‖ p2 is obtained by one of the rules (12) or

(13). We have p1
ā(x)
−→ p′1, x 6∈ fn(q) and either p2

a〈x〉
−→ p2, either p2

a:
−→ p2.

Applying the rules of the Table 4 we obtain p2
a(x)
−→1 p2, or p2

a(x):
−→ p2.

Then r1 = p′1 ‖ p′2, and p′1 ‖ p′2
⊘

=⇒ r by a derivation of length at most n, where p′2 = p2.
By the hypothesis of induction, there are processes q1, q2 and traces s′i ∈ tr(p′i), i = 1, 2,

such that r = q1 ‖ q2, p′i
si=⇒1 qi, i = 1, 2 and s′1 ∈ Comp(s′2). Since p1

ā(x)
−→1 p′1, we have

that p1
s1=⇒1 q1, where s1 = ā(x).s′1. We also have p2

s2=⇒1 p′2, where s2 = a(x) : .s′2 or
s2 = a(x).s′2. It remains to prove that s1 ∈ Comp(s2). From the definition, Comp(s2) =
Comp(a(x) : .s′2) = Comp(a(x).s′2) = {ā(x).s | s ∈ Comp(s′2)}. But using the hypothesis
of induction, we have that s′1 ∈ Comp(s′2), i.e. s1 = ā(x).s′1 ∈ Comp(s2).

The other cases are similar.

We prove the converse by induction on |s2|.
- s2 = ǫ.
s1 ∈ Comp(s2) = {ǫ} implies s1 = ǫ, then pi = qi, i = (1, 2), and since r = q1 ‖ q2 we

obtain p1 ‖ p2
⊘

=⇒ r.
s2 = α.s′2, where α ∈ {āx, ā(x), a〈x〉, a(x), a :, a(x) :}.

18

- s2 = a〈x〉.s′2.
s1 ∈ Comp(s2) = {āx.s | s ∈ Comp(s′2)}, then s1 = āx.s′1, s

′
1 ∈ Comp(s′2). By the

hypothesis, pi
si=⇒1 qi, i = 1, 2, i.e. p1

āx
−→1 p′1

s′1=⇒1 q1 and p2
a〈x〉
=⇒1 p′2

s′2=⇒ q2. We also
have r = q1 ‖ q2.

p1
āx

−→1 p′1 and p2
a〈x〉
=⇒1 p′2 implies p1

āx
−→ p′1 and p2

a〈x〉
=⇒ p′2

Using the hypothesis of induction, we have that p′1 ‖ p′2
⊘

=⇒ r. By applying the rule

(12), p1 ‖ p2
āx
−→ p′1 ‖ p′2

⊘
=⇒ r, thus p1 ‖ p2

⊘
=⇒ r

- s2 = ā(x).s′2.

s1 ∈ Comp(s2) = {a(x).s, a(x) : .s | s ∈ Comp(s′2)}, then s1 = a(x).s′1 or s1 = a(x) :
.s′1, such that s′1 ∈ Comp(s′2).

By the hypothesis, pi
si=⇒1 qi, i = 1, 2, i.e. p1

a(x)
−→1 p′1

s′1=⇒1 q1 or p1
a(x):
−→1 p′1

s′1=⇒1 q1

and p2
ā(x)
=⇒1 p′2

s′2=⇒1 q2. We also have r = q1 ‖ q2.

p1
a(x)
−→1 p′1 (respectively p1

a(x):
−→1 p′1, p2

ā(x)
=⇒1 p′2) implies p1

ax
−→ p′1 (respectively

p1
a:
−→ p′1, p2

ā(x)
=⇒ p′2) and x 6∈ fn(p1).

Using the hypothesis of induction, we have that p′1 ‖ p′2
⊘

=⇒ r. By applying the

symmetric of the rule (12) or of the rule (13), we obtain p1 ‖ p2
ā

−→ p′1 ‖ p′2
⊘

=⇒ r, and

hence p1 ‖ p2
⊘

=⇒ r.

The other cases are similar. � Lemma 7

Theorem 3 For all processes p and q, p ≪may q iff tr(p) ⊆ Comp(Comp(tr(q))).

Proof

Firstly, we will define a special set of observers. For a finite set of channels M ⊆ Chb,
we shall define:

in(M)
not
=

{

nil if M = ∅,

a.nil + in(M \ {a}) otherwise, with a ∈ M.
(13)

〈x 6∈ M〉p
not
=

{

p if M = ∅,

〈x = a〉nil, 〈x 6∈ M \ {a}〉p otherwise, with a ∈ M.
(14)

Let t be a trace and let M ⊆ Chb be a finite set of channels. Let oM (t) be an observer
defined by

oM (t) =































ω̄.nil + in(M) if t = ǫ,

āx.oM∪{x}(s) + in(M) if t = a : .s or t = ax.s, a, x ∈ Ch,

ā(x).oM∪{x}(s) + in(M) if t = a(x) : .s or t = a(x).s, a, x ∈ Ch,

a(y).〈x = y〉oM (s) + in(M) if t = āx.s, a, x ∈ Ch,

a(y).〈y 6∈ M〉oM∪{y}(s) + in(M) if t = ā(x).s, a, x ∈ Ch.

(15)

Now the proof follows as in the proof of the Theorem 1. Disposing in bπ-calculus of
the operator ”if then else” in its complete form (and not only in the form ”if then” as in
π-calculus) allow us to distinguish a bound output from a free one. � Theorem 3

19

Theorem 4 For all processes p and q, p ≪must q iff p ≤ q.
Proof
The proof follows as for the Theorem 2; the observers used this time are defined below.
For a finite set of channels X ∈ Chb, let o1(t, X) o2(t, X) o3(t, X) be the processes

defined as follows:

o1(t, X) =































τ.ω̄ if t = ǫ,

τ.ω̄ + āx.o1(s, X) + in′(X) if t = a : .s or t = a〈x〉.s, a, x ∈ Chb,

τ.ω̄ + ā(x).o1(s, X ∪ {x}) + in′(X) if t = a(x) : .s or t = a(x).s, a, x ∈ Chb,

τ.ω̄ + a(y).〈x = y〉o1(s, X), ω̄ + in′(X) if t = āx.s, a, x ∈ Chb,

τ.ω̄ + a(y).〈y 6∈ X〉o1(s, X ∪ {y}) + in′(X) if t = ā(x).s, a, x ∈ Chb.

(16)

o2(t, X) =































nil if t = ǫ,

τ.ω̄ + āx.o2(s, X) + in′(X) if t = a : .s or t = a〈x〉.s, a ∈ Chb,

τ.ω̄ + ā(x).o2(s, X ∪ {x}) + in′(X) if t = a(x) : .s or t = a(x).s, a, x ∈ Chb,

τ.ω̄ + a(y).〈x = y〉o2(s, X), ω̄ + in′(X) if t = āx.s, a, x ∈ Chb,

τ.ω̄ + a(y).〈y 6∈ X〉o2(s, X ∪ {y}) + in′(X) if t = ā(x).s, a, x ∈ Chb.

(17)

o3(t, X) =































in′(X) if t = ǫ,

τ.ω̄ + āx.o3(s, X) + in′(X) if t = a : .s or t = a〈x〉.s, a ∈ Chb,

τ.ω̄ + ā(x).o3(s, X ∪ {x}) + in′(X) if t = a(x) : .s or t = a(x).s, a ∈ Chb,

τ.ω̄ + a(y).〈x = y〉o3(s, X), ω̄ + in′(X) if t = āx.s, a, x ∈ Chb,

τ.ω̄ + a(y).〈y 6∈ X〉o3(s, X ∪ {y}) + in′(X) if t = ā(x).s, a, x ∈ Chb.

(18)
where

〈x 6∈ X〉p
not
=

{

p if X = ∅,

〈x = a〉ω̄, 〈x 6∈ X \ {a}〉p otherwise, with a ∈ X.
(19)

� Theorem 4

20

