
Computationally sound typing for
Non-Interference: The case of deterministic

encryption

J. Courant, C. Ene, and Y. Lakhnech

VERIMAG - University Joseph Fourier - CNRS - INPG
2, av. de Vignates, 38610 Gières - FRANCE

{name}@imag.fr

Abstract. Type systems for secure information flow aim to prevent a
program from leaking information from variables that hold secret data to
variables that hold public data. In this work we present a type system to
address deterministic encryption. The intuition that encrypting a secret
yields a public value, that can be stored in a public variable, is faithful for
probabilistic encryption but erroneous for deterministic encryption. We
prove the computational soundness of our type system in the concrete
security framework.

1 Introduction

The notion of non-interference has been introduced in [3], with the aim of cap-
turing unwanted information flow in programs. Non-interference assumes a sep-
aration between secret (high, private) variables and public (low) variables and
requires that executing the program in two initial states that coincide on the
public variables leads to final states that coincide on the public variables. In
Dennings’ seminal paper [2], an expression is classified H if it contains a secret
variable; otherwise, it is classified L. The paper introduces two basic principles to
avoid information flow: first, to prevent explicit flow, a H expression may not be
assigned to a L variable; second, to prevent implicit flows, an H guarded condi-
tional or loop may not affect L variables. Later, Volpano, Smith, and Irvine [13]
casted these principles as a type system and showed that they suffice to en-
sure non-interference. Since this early work, information flow analysis has been
extended to deal with other issues such as nontermination, concurrency, nonde-
terminism, and exceptions; see [9] for a survey. In many applications, however,
it is desirable to allow information to flow from secret to public variables in a
controlled way. This is called declassification in the literature. In a useful sur-
vey, Sabelfeld & Sands [10] classify declassification techniques according to the
following dimensions: ”what”, ”who”, ”where” and ”when”.

In this paper, we are interested in cryptography-based declassification, where
encrypted secret data can be published without leaking information about the
secrets. The non-interference setting has been extended in [12] to cope with one-
way functions and in [5, 6, 11] to cope with probabilistic encryption. We consider

length-preserving deterministic encryption, i.e., block ciphers. These are widely
used in practice (DES, AES, Idea, etc.). Non-interference type systems developed
for probabilistic encryption are not applicable for deterministic encryption. To il-
lustrate some of the subtleties of deterministic encryption, let us consider the fol-
lowing examples where l, l′, l′′ are public variables and h, h′ are secret variables,
νl assigns a value sampled from the uniform distribution to the variable l, + is a
bijective operator and Enc(k, e) denotes the encryption of e with the symmetric
key k. We assume that the encryption function Enc(k, ·) is a pseudo-random
permutation. A simple program is the following: l := Enc(k, h); l′ := Enc(k, h′).
The equality Enc(k, h) = Enc(k, h′) is almost never true in case of probabilistic
encryption, independently whether h = h′. Hence, this program does not leak
information in case of probabilistic encryption. This is not true in the case of
deterministic encryption as we have h = h′ if and only if l = l′ at program termi-
nation. Indeed, deterministic encryption is not repetition concealing in contrast
to probabilistic encryption. Consider now, the program νl; l′ := Enc(k, l + h),
where the value of l is randomly sampled. It does not leak information, even if
the attacker is given the value of l. Yet, we have to be careful concerning how the
value of l is used. Indeed, the execution of the command l′′ := Enc(k, l + h′) at
the end of this program would leak information. However, the following slightly
modified program : νl; l′ := Enc(k, l + h); l′′ := Enc(k, l′ + h′) does not leak in-
formation. Notice that this version corresponds to a simplified block encryption,
using the CBC mode: (l, l′, l′′) can be seen as the cipher text obtained by en-
crypting the secret (h, h′). Let us consider an example that shows the subtelties
that may arise when deterministic encryption is used.

Example 1. In this example (inspired from [11]), ‘+” is the bitwise-xor operation
over blocks of p bits; the other operations are: “|” the bitwise-or operation, “�”
the shift-left operation and “=” the test for equality. Consider the following
command, where h is a private variable and l, m, l1, l2 and lr are public variables.

l := 0p;m := 0p−11;
whilep 1 do l1 := Enc(k, h|m); l2 := Enc(k, h);

if (l1 = l2) then l := l|m else skip fi ;
m := m� 1 od

Since encryption is deterministic, this command completely leaks the value
of h: it copies h into l. Consider now the following modified command.

l := 0p;m := 0p−11;
whilep 1 do νlr; l1 := Enc(k, (h|m) + lr); l2 := Enc(k, h + lr);

if (l1 = l2) then l := l|m else skip fi ;
m := m� 1 od

As the same “random lr” is reused in the second encryption, the obtained
code is insecure: it still copies h into l. However, if we re-sample lr in the second
encryption, the command becomes secure.

l := 0p;m := 0p−11;
whilep 1 do νlr; l1 := Enc(k, (h|m) + lr); νlr; l2 := Enc(k, h + lr);

if (l1 = l2) then l := l|m else skip fi ;
m := m� 1 od

1.1 Contributions

In this paper, we design a type system for information flow for an imperative
language that includes block ciphers and show its soundness under the assump-
tion that the encryption scheme is a pseudo-random permutation. Our soundness
proof is carried in the concrete (exact) security framework that aims at providing
concrete estimates about the security of the considered system.

This is to our knowledge the first time that a type system for non-interference
is proven correct in the concrete security framework. One can distinguish three
security proof settings: first, the symbolic setting, also called formal and Dolev-
Yao, where cryptographic primitives are operators on formal expressions (terms)
and security proofs are reachability or observational equivalence proofs; second,
the computational setting where cryptographic primitives are algorithms and
security proofs are asymptotic based on poly-time reductions; third, the con-
crete security setting where proofs are also by reduction but no asymptotics are
involved and reductions are as efficient as possible.

1.2 Related work

A few works on information flow study computationally sound type systems for
non-interference. Peeter Laud has pioneered the area of computationally secure
information flow analysis in the presence of encryption. In his first works [4, 5]
the analysis was in the form of static analysis and encryption is probabilistic. In
more recent work [6] co-authored with Varmo Vene, he presents a type system
for information flow in presence of probabilistic encryption. Geoffrey Smith and
Rafael Alṕızar present in [11] a computationally sound type system for prob-
abilistic encryption. In this work, as in ours, the generation and manipulation
of keys is not considered. The main difference, however, to our work is that the
above cited works assume probabilistic encryption. Volpano in [12] considers one-
way functions. His definition of non-interference is, however, weaker than ours
as it essentially means that a well-typed program that leaks information can be
used to invert the one-way function. But this does not imply that no information
about secret data is learned. Malacaria presents in [7] an information-theoretic
definition of non-interference applied to imperative languages with random as-
signment, and gives an algorithm to approximate the information leaked in a
loop. It is easy to prove that for programs that do not use encryption our defi-
nition is stronger that his definition. Extending his technique for programs that
use encryption does not seem to be immediate.

1.3 Paper structure

In section 2 we introduce some preliminaries including some terminology con-
cerning probabilities, indistinguishability and pseudo-random permutations. In
section 3, we present the syntax and semantics for an imperative language build
that includes random assignment and deterministic encryption. In section 4 we

introduce a type system for randomized expressions, and justify its computa-
tional soundness. In section 5, we give a type system for the language presented
in section 3 and we prove its computational soundness. The soundness of the
type system for this language is proved by two successive reductions: first to a
language where the encryption function is interpreted as a random permutation,
and then to language where there is no encryption function. Finally, we conclude,
and give some possible extensions.

2 Preliminaries

A finite probability distribution D = (U ,Pr) over U is a finite non-empty set U
equipped with a function Pr : U → [0, 1] such that

∑
u∈U Pr[u] = 1. Distr(U)

is the set of distributions on U . The probability of an event A ⊆ U is Pr[A] =∑
u∈A Pr[u]. A property P over U can be seen as the event {x ∈ U | P (x)}.

The uniform distribution on U is such that Pr[u] = 1
|U| , for any u ∈ U . [x1

r←
X1; . . . xn

r← Xn : e(x1, . . . , xn)] denotes the distribution Y such that Pr[Y =
e] =

∑
x1,...,xn|e(x1,...,xn)=e Pr[X1 = x1] . . .Pr[Xn = xn] (thus [: u] is Dirac’s

point mass δu) and Pr[x1
r← X1; . . . xn

r← Xn : P (x1, . . . , xn)] denotes the prob-
ability of the event P over the distribution [x1

r← X1; . . . xn
r← Xn : (x1, . . . , xn)].

Computational indistinguishability Given two distributions D and D′, and
an algorithm A, we define the advantage of A in distinguishing D and D′ as
Adv(A,D,D′) = |Pr[x r← D : A(x) = 1] − Pr[x r← D′ : A(x) = 1]| (Informally,
this advantage quantifies the success of an adversary trying to guess whether
some x has been drawn from D or from D′ and output its guess as a boolean 0/1.)
Two distributions D and D′ are (t, ε)-indistinguishable, denoted by D ∼(t,ε) D′,
if Adv(A,D,D′) ≤ ε, for any adversary A running in time bounded by t.

A function f from a set A to the Distr(B) can be canonically extended to a
function f̂ from Distr(A) to Distr(B) as follows: f̂(X) = [a r← X; b r← f(a) : b].
We shall tacitly identify f : A→ Distr(B) with its canonical extension f̂ .

A block cipher is a family of permutations Π : Keys(Π) × U → U , where
Keys(Π) is the key space of Π, and for any k ∈ Keys(Π), Π(k, ·) is a permuta-
tion onto U . We use Enc(k, ·) (resp. Dec(k, ·)) instead of Π(k, ·) (resp. Π−1(k, ·)).
Pseudo-randomness. The usual security notion for ciphers (cf.[8]), states that an
adversary accessing an oracle Ob — either O0, a random permutation, or O1,
the encryption function — has a bounded advantage to guess which one it has
been given (or equivalently the value of b). Formally, consider the following ex-
periments parameterized by b, where Perm is the set of all permutations on U :

Experiment PRPb(A) :
k

r← Keys(Π); P
r← Perm;

O0 = P;O1 = Enc(k, ·);
b′ ← AOb()

The PRP advantage of A is defined as
Advprp

Π (A) = |Pr[PRP1(A) = 1]− Pr[PRP0(A) = 1]|.

An encryption scheme Π is a (t, ε)-pseudo-random permutation, denoted
(t, ε)-PRP, if for any adversary A running in time t, Advprp

Π (A) ≤ ε.

3 An imperative language with random assignment and
deterministic encryption

In this section, we present a simple while-language extended with a random
assignment command and deterministic encryption. We then present in following
section type systems for its underlying expressions and commands.

3.1 Expressions

We consider a signature with a sort S, a countable set of constant symbols de-
noted by n, n0, n1, · · · and two binary function symbols + : S × S → S and
g : S × S → S. We restrict the presentation to two function symbols for sim-
plicity. We consider an interpretation for this signature given by a structure
(U , I(·), I+(·, ·), Ig(·, ·)) such that:

1. U = {0, 1}p, where p is an integer. We use u
r← U as an alternative notation

for u
r← D, where D is the uniform probability distribution on U .

2. I(·) is a deterministic algorithm that takes as input a constant symbol n
and computes an element I(n) in U .

3. I+(u, v) is the bitwise exclusive or of u and v. (Actually, this can be gen-
eralized to any deterministic algorithm such that [u r← U : I+(u, v)] and
[u r← U : I+(v, u)] coincide with the uniform distribution on U .)

4. Ig(·, ·) is a deterministic algorithm that given two elements of U , computes
an element in U . We denote the function λ(u, v) · Ig(u, v) by I(g).

The set Exp of expressions is given by the following BNF, where metavariable
x ranges over a countable set Var of identifiers (variables):

e ::= x | n | e1 + e2 | g(e1, e2)
A memory (or state) is a mapping that associates to each variable a value in

U . The set of memories is denoted by Σ. Given a memory σ, we can associate a
value I(e)σ ∈ U to each expression e in the usual way.

3.2 Commands

The syntax of the eWhile language we consider is defined in Figure 1.

c :: = x := e | x := Enc(k, e) | skip | νx | if e then c1 else c2 fi |
whilen e do c od | c1; c2

Fig. 1. Language syntax of eWhile

The loop construct is indexed with an integer number n that specifies the
maximal number of permitted unfolding of the loop statement. In other words,
a loop statement either terminates because the loop condition becomes false
or because the limit n is reached. The reason for adding this is that we are
only interested in commands whose running time is bounded. The command
x := Enc(k, e) encrypts the value of e with the key k and stores the result in x.

To a command c, we associate as meaning a function from states to distri-
butions on states: [[c]] : Σ → Distr(Σ). The equations defining [[c]] are given in
Figure 2. In the sequel, we will assume given a function T(c) that bounds the
running time of the program c.

[[x := e]](σ) = [: σ[I(e)σ/x]] [[c1; c2]] = d[[c2]] ◦ [[c1]]

[[νx]](σ) = [u
r← U ; σ′ := σ[u/x] : σ′] [[skip]](σ) = [: σ]

[[x := Enc(k, e)]](σ) = [: σ[Enc(k, I(e)σ)/x]]
[[if e then c1 else c2 fi]](σ) = if (I(e))σ = 1 then [[c1]](σ) else [[c2]](σ) fi

[[whilen e do c od]](σ) =

8<:
[[if e then c;whilen−1 e do c od else skip fi]](σ)

if n > 0
[: σ]; otherwise

Fig. 2. Language semantics of eWhile

4 Typing expressions

The expressions introduced so far are deterministic in the sense that the value
of an expression is determined once σ is fixed. In order to reason about expres-
sions involving random nonces, we introduce randomized expressions defined as
follows: re ::= e | νx · re. For x = (x1, · · · , xn), we write νx · e instead of
νx1 · · · νxn · e. Consider a randomized expression re and let σ be a memory. We
define [[re]] : Σ → Distr(U ×Σ) as follows:

1. [[e]](σ) = [: (I(e)σ, σ)] and
2. [[νx · re]](σ) = [u r← U ;σ′ := σ[u/x]; (v, σ′′) r← [[re]](σ′) : (v, σ′′)].
Henceforth, let T(re) be an upper-bound on the time needed to evaluate

[[re]](σ), for any σ. Given an expression re, let fvar(re) denote the set of variables
that occur free in re, i.e. fvar(νx1 · · · νxn · e) = var (e) \ {x1, · · · , xn}. In the
following, we write x#re to mean x /∈ fvar(re), and x1, . . . , xn#re1, . . . , rek to
mean xi#rej for all (i, j) and xi 6= xj for all (i, j).

4.1 Typing expressions

The set TypeExp of expression types consists of pairs (τs, τr) with τs ∈ {L,H}
and τr ∈ {>, Lr,Hr}. Intuitively, τs is the security type; while τr is the ran-
domness type. That is, > means that the expression can be deterministic or

randomized; Hr means that it is randomized and contains a ”random seed” that
is secret; and Lr means that it is randomized and the ”random seed” might be
public. For instance, consider the expression hr + l with hr a secret variable
whose value is random and l a public variable. Then, it will be typed (H,Hr)
as the random seed hr is secret. On the other hand, lr + l will be typed (L,Lr)
as it does not depend on a secret variable and the random seed is public. Why
should we type these expressions differently? The reason is that the expression
(hr + l) + h can be typed public (low) but the expression (lr + l) + h must be
typed secret (high).

A type environment maps each variable in Var to a security type in {L,H}.
Our type judgements are of the form Γ ` e : τ , where e ∈ Exp and τ ∈
TypeExp. We give our typing and sub-typing rules in Figure 3. A few intu-
ition: the sub-typing rule (H,Hr) v (L,Lr) says that an expression that is
randomized with a secret “random seed”, can be downgraded (and in this case,
its randomness is made public); the rule (+) takes into account the good prop-
erties of +, if one of the arguments is randomized (and the random seed is not
reused), then their sum is randomized too.

L v H Hr v Lr v > τ v τ

τs v τ ′s, τr v τ ′r

(τs, τr) v (τ ′s, τ
′
r)

τ1 v τ2, τ2 v τ3

τ1 v τ3 (H, Hr) v (L, Lr)

Subtyping rules

Γ (x) = τs

Γ ` x : (τs,>)
(var)

Γ (x) = τs

Γ ` νx · x : (τs, τ
r
s)

(R-var)

−
Γ ` n : (L,>)

(int)
Γ ` re : τ, τ v τ ′

Γ ` re : τ ′
(Subt)

Γ ` νx1 · e1 : (τs, τr)
Γ ` νx2 · e2 : (τs, τ

′
r)

xi#rej , xj , for i 6= j

Γ ` νx1 · νx2 · (e1 + e2) : (τs, τr u τ ′r)
(+)

Γ ` νx1 · e1 : (τs,>)
Γ ` νx2 · e2 : (τs,>)
xi#rej , xj , for i 6= j

Γ ` νx1 · νx2 · g(e1, e2) : (τs,>)
(exp)

Typing rules

Γ ` re : τ
Γ ` νx · re : τ

(ν-Intr)
Γ ` νy · νx · re : τ

Γ ` νx · νy · re : τ
(ν-Comm)

Structural rules

Fig. 3. Typing rules for Expressions

Example 2. Let Γ be a type environment such that Γ (hr) = Γ (h) = H. Then,
we have:

Γ (hr) = H

Γ ` νhr · hr : (H, Hr)
(R-var)

Γ (h) = H

Γ ` h : (H,>)
(var)

Γ ` νhr · (hr + h) : (H, Hr)
(+)

Γ ` νhr · (hr + h) : (L, Lr)
(Sixth subtyping rule)

Soundness of the type system We now undertake the endeavor to show that
expressions typed (L,Lr) do not leak information. In order to rigorously define
information leakage, we first introduce Γ -equivalent distributions.

Definition 1. Let X be a distribution on Σ and Γ a type environment. Let
Γ−1(L) = {x | Γ (x) = L} be the set of low variables and assume that this set
is finite. We denote by Γ (X) the distribution [σ r← X : σ|Γ−1(L)]. Moreover,
we write X =Γ Y , if Γ (X) = Γ (Y), and X ∼Γ

(t,ε) Y , if Γ (X) ∼(t,ε) Γ (Y).
Similarly, for a distribution X on U × Σ, we denote by Γ (X) the distribution
[(v, σ) r← X : (v, σ|Γ−1(L))].

The following theorem expresses soundness of our type system for expressions.

Theorem 1. Let re be an expression, Γ be a type environment and let X, Y ∈
Distr(Σ) arbitrary distributions.

– If X =Γ Y and Γ ` re : (L,>), then [[re]](X) =Γ [[re]](Y).
– If X ∼Γ

(t,ε) Y and Γ ` re : (L,>), then [[re]](X) ∼Γ
(t−T(re),ε) [[re]](Y).

5 A type system for commands

5.1 The typing system

In this section, we present a computationally sound type system for the eWhile
language of Section 3.2 . We consider programs where applications of Enc have
been annotated by r, in case its argument has type (τ, τ r), and by >, in case it
has type (τ,>). Recall the following examples from Section 1:

1. ν`r; ` := Encr(k, h + `r); `′ := Enc>(k, h′ + `r),
2. ν`r; `′ := Encr(k, h + `r); `′′ := Encr(k, h′ + `′).

The first program is not secure since h = h′ iff ` = `′. The problem here is
that the same random value assigned to `r is used twice. The second program is
secure since the value assigned to `′ after the first assignment is indistinguishable
from a randomly sampled value. This is due to the properties of the encryption
function that we assume to be a pseudo-random permutation. Thus, in order
to have a sound type system, we need to forbid the reuse of the same sampled
value in two different encryptions; and in order to have a not too restrictive type
system, we need to record the variables that are assigned pseudo-random values
as a result of the encryption function. This motivates the introduction of the

functions F , resp. G, used to compute the propagation of the set of variables
that should not be used inside calls of Enc annotated with >, resp. that can
be used as random seeds. Informally, variables in the latter set all follow the
uniform distribution, and are all independent together and from all variables
but the ones in the former set.

F(skip)(F) = F
F(νx)(F) = F \ {x}
F(x := e)(F) = F \ {x} if fvar(e) ∩ F = ∅
F(x := e)(F) = F ∪ {x} otherwise
F(x := Encr(k, e))(F) = F ∪ fvar(e) \ {x}
F(x := Enc>(k, e))(F) = F
F(c1; c2)(F) = F(c2)(F(c1)(F))
F(if e then c1 else c2 fi)(F) = F(c1)(F) ∪ F(c2)(F)
F(whilen e do c od)(F) = F(c)∞(F)
where F(c)∞(F) is defined as

⋂
{M | F(c)(M) ⊆M and F ⊆M}.

G(skip)(G) = G
G(νx)(G) = G ∪ {x}
G(x := e)(G) = G \ ({x} ∪ fvar(e))
G(x := Encr(k, e))(G) = (G \ fvar(e)) ∪ {x}
G(x := Enc>(k, e))(G) = G \ ({x} ∪ fvar(e))
G(c1; c2)(G) = G(c2)(G(c1)(G))
G(if e then c1 else c2 fi)(G) = G(c1)(G \ fvar(e)) ∩ G(c2)(G \ fvar(e))
G(whilen e do c od)(G) = G(c)∞(G \ fvar(e))
where G(c)∞(G) is defined as

⋃
{M | M ⊆ G(c)(M) and M ⊆ G}.

Our type judgements have the form Γ, F, G ` c : τ, where τ ∈ {L,H} is a
security type. The intuitive meaning is the following: in the environment Γ ,
where the variables in G are assigned random values, and the variables in F are
forbidden, c (detectably) affects only variables of type greater than or equal to
τ ; after its execution, variables in G(c)(G) have random values, and variables
in F(c)(F) are forbidden. We give the typing and subtyping rules in Figure 4.
Our type system ensures that encryption downgrades the security level only in
case of random expressions. In other words, Enc>(k, h) has the security level
H, and hence, cannot be stored into a low variable, while Encr(k, h + lr) has
security level L, because lr is a random value that is not used elsewhere. It might
appear surprising that the Rule (Enc>), which does not allow downgrading, is
more restrictive than Rule (Encr). To understand this consider the command
ν`r; ` := Encr(k, h + `r); `′ := Enc>(k, `r). Leaking the encryption of the low
variable `r allows to check whether h = 0, and hence, should be forbidden.

Example 3. This example shows that our system is able to show the security of
a cipher block chaining implementation. For simplicity reasons (and because we
do not consider arrays yet) we illustrate the case of encrypting two blocks.

Γ, F, G ` νx : Γ (x)
nu-var

Γ, F, G ` skip : H
skip

Γ ` νG · e : (Γ (x),>)

Γ, F, G ` x := e : Γ (x)
ass

Γ, F, G ` c : τ
G ⊆ G′ F ′ ⊆ F τ ′ v τ

Γ, F ′, G′ ` c : τ ′
weak

Γ ` νG · e : (Γ (x),>)
fvar(νG · e) ∩ F = ∅

Γ, F, G ` x := Enc>(k, e) : Γ (x)
Enc>

Γ ` νG · e : (H, Lr)

Γ, F, G ` x := Encr(k, e) : Γ (x)
Encr

Γ, F, G \ fvar(e) ` c1 : τ
Γ, F, G \ fvar(e) ` c2 : τ
Γ ` νG · e : (τ,>)
fvar(νG · e) ∩ F = ∅

Γ, F, G ` if e then c1 else c2 fi : τ
if

Γ,F(c)∞(F),G(c)∞(G) ` c : τ
Γ ` νG(c)∞(G) · e : (τ,>)
fvar(νG(c)∞(G) · e) ∩ F(c)∞(F) = ∅

Γ, F, G ` whilen e do c od : τ
while

Γ, F1, G1 ` c1 : τ Γ,F(c1)(F1),G(c1)(G1) ` c2 : τ

Γ, F1, G1 ` c1; c2 : τ
seq

Fig. 4. Type systems for commands in eWhile

νl0;
l1 := Enc(k, l0 + h1);
l2 := Enc(k, l1 + h2);

Let Γ be a type environment such that Γ (h0) = Γ (h1) = H and Γ (l0) =
Γ (l1) = Γ (l2) = L. This program can be typed in our system as follows:

Γ, ∅, ∅ ` νl0 : L

Γ (l0) = L

Γ ` νl0 · l0 : (L, Lr)
(R-var)

Γ ` νl0 · (l0 + h1) : (H, Lr)
(+)

Γ, ∅, {l0} ` l1 := Enc(k, l0 + h1) : L
(ass)

Γ (l1) = L

Γ ` νl1 · l1 : (L, Lr)
(R-var)

Γ ` νl1 · (l1 + h2) : (H, Lr)
(+)

Γ, {l0, h1}, {l1} ` l2 := Enc(k, l1 + h2) : L
(ass)

Γ, ∅, {l0} ` l1 := Enc(k, l0 + h1); l2 := Enc(k, l1 + h2) : L
(seq)

Γ, ∅, ∅ ` νl0; l1 := Enc(k, l0 + h1); l2 := Enc(k, l1 + h2) : L
(seq)

5.2 Soundness of the typing system of eWhile

In this section, we state the soundness of the type system of the eWhile language
and sketch its proof. The detailed proof is given in [1].

Let T (c) denote an upper bound on the number of Encr and Enc> calls that
can be executed during any run of c. Notice that because the running time of c
is bounded such a bound exists. Then, we can state the following theorem:

Theorem 2. Let c be a program, let Γ be a type environment and let Π be an
encryption scheme. Moreover, let X and Y be two distributions.

If Π is (t′, ε′)-PRP, X ∼Γ
(t,ε) Y and Γ, ∅, ∅ ` c : τ then [[c]](X) ∼Γ

(t′′,ε′′) [[c]](Y)

with t′′ = min(t−T(c), t′ −T(c)) and ε′′ = ε + 2ε′ + 2T (c)2

|U| .

Proof. (Sketch). Let rWhile denote the set of programs without any call to
Enc(k, ·) and pWhile denote the set of programs where the encryption function

Enc(k, ·) is interpreted as a random permutation. The main idea of the soundness
proof is as follows. Consider a command c with Γ, ∅, ∅ ` c : τ . Then, let [[c]]π

denote its interpretation in pWhile and let cr obtained from c by replacing
x := Encr(k, e) by νx and x := Enc>(k, e) by g(e). Then, we can prove the
following statements:

Proposition 1. For any distribution Z, we have

1. [[c]]π(Z) ∼(t′−T(c),ε′) [[c]](Z) and

2. [[c]]π(Z) and [[cr]](Z) are T (c)2

|U| -statistically close.

We can also prove the following soundness result of our type system for rWhile:

Proposition 2. Let c be a command in rWhile, let Γ be a type environment
and let X, Y ∈ Distr(Σ) be arbitrary distributions.

If X ∼Γ
(t,ε) Y and Γ, ∅, ∅ ` c : τ then [[c]](X) ∼Γ

(t−T(c),ε) [[c]](Y).

From Propositions 1 and 2, we obtain the theorem by transitivity.

Proof sketch of Proposition 1 Let us consider the first item. Let A be an ad-
versary trying to distinguish [[c]](Z) and [[c]]π(Z). We construct an adversary B
against the encryption scheme Π, that runs in time t′ +T(c) and whose advan-
tage is the same as A’s advantage. The adversary B runs an experiment for A
against [[c]](Z) and [[c]]π(Z) using his oracles. First, B executes the command c
using its encryption oracle. That is, whenever a command x := Enc(k, e) is to be
executed in the command c, B computes the value of e and calls its encryption
oracle. After termination of the command c in some state σ, B runs A on σ and
gives the same answer as A. Formally:

Adversary BOb

b
r← {0, 1}; σ

r← [[c]]Ob(Z); A(σ).
Now it is clear that Advprp

Π (B) = Adv(A, [[c]](Z), [[c]]π(Z)). Moreover, the
running time of B is A’s running time augmented with the time need for com-
puting [[c]](Z), i.e. T(c). We conclude that [[c]]π(Z) ∼(t′−T(c),ε′) [[c]](Z).

Consider now the second item. Roughly speaking, the bound T (c)2

|U| corre-
sponds to the probability of collisions between arguments of Encr among them-
selves and with with arguments of Enc>; and collisions among values returned
by ν. Moreover, we can then prove that cr is a well-typed rWhile program. ut

6 Conclusion

This extended abstract introduces a type system for an imperative language
that includes deterministic encryption and random assignment. It establishes
soundness of the type system under the assumption that the encryption scheme
is a pseudo-random permutation. The proof is carried in the concrete security
setting, thus providing concrete security estimates. Our work can be extended in
several directions. First, we could consider encryption as ”first class” expressions.

This is not a substantial extension as any such program can be easily translated
into our language and refining the type of variables to (τs, τr) as for expressions.
Second, we could consider decryption. An easy way to do this is to type the
result of any decryption with H. This may not, however, be satisfactory as the
so-obtained type system would be too restrictive. An other extension consists
in considering generation and manipulation of keys - it is not difficult to extend
the type system to deal with this, we need, however, to introduce conditions
on the expressions (acyclicity) and to apply hybrid arguments; data integrity -
which are in some sense dual to non-interference. Some of these extensions are
considered in the full paper [1], which also contains the detailed proofs of the
results presented in this extended abstract. In the full paper, we also show that
our notion of non-interference implies semantic security and Laud’s notion.

References

[1] J. Courant, C. Ene, and Y. Lakhnech. Computationally sound typing for
non-interference: The case of deterministic encryption. Technical report,
VERIMAG- University of Grenoble and CNRS, 2007.

[2] Dorothy E. Denning and Peter J. Denning. Certification of programs for
secure information flow. Commun. ACM, 20(7):504–513, 1977.

[3] Joseph A. Goguen and José Meseguer. Security policies and security models.
In IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[4] Peeter Laud. Semantics and program analysis of computationally secure
information flow. In ESOP, pages 77–91, 2001.

[5] Peeter Laud. Handling encryption in an analysis for secure information
flow. In ESOP, pages 159–173, 2003.

[6] Peeter Laud and Varmo Vene. A type system for computationally secure
information flow. In Maciej Liskiewicz and Rüdiger Reischuk, editors, FCT,
volume 3623 of LNCS, pages 365–377. Springer, 2005.

[7] Pasquale Malacaria. Assessing security threats of looping constructs. In
Martin Hofmann and Matthias Felleisen, editors, POPL. ACM, 2007.

[8] Duong Hieu Phan and David Pointcheval. About the security of ciphers
(semantic security and pseudo-random permutations). In Helena Handschuh
and M. Anwar Hasan, editors, Selected Areas in Cryptography, volume 3357
of LNCS, pages 182–197. Springer, 2004.

[9] A. Sabelfeld and A. Myers. Language-Based Information-Flow Security.
IEEE Journal on Selected Areas in Comunications, 21:5–19, January 2003.

[10] Andrei Sabelfeld and David Sands. Declassification: Dimensions and prin-
ciples. Journal of Computer Security, 2007.

[11] Geoffrey Smith and Rafael Alpzar. Secure information flow with random
assignment and encryption. In FMSE, pages 33–44, 2006.

[12] Dennis M. Volpano. Secure introduction of one-way functions. In CSFW,
pages 246–254, 2000.

[13] Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. A sound type
system for secure flow analysis. Journal of Computer Security, 4(2/3):167–
188, 1996.

