
On the Existence and Decidability of Unique
Decompositions of Processes in the Applied π-Calculus

Jannik Dreiera,b,c,∗, Cristian Ened, Pascal Lafourcadee,f, Yassine Lakhnechd

aUniversité de Lorraine, Loria, UMR 7503, Vandoeuvre-lès-Nancy, F-54506, France
bInria, Villers-lès-Nancy, F-54600, France

cCNRS, Loria, UMR 7503, Vandoeuvre-lès-Nancy, F-54506, France
dLaboratoire VERIMAG, Université Joseph Fourier, Grenoble, France

eClermont Université, Université d’Auvergne, LIMOS, Clermont-Ferrand, France
fCNRS, UMR 6158, LIMOS, Aubière, France

Abstract

Unique decomposition has been a subject of interest in process algebra for a long
time (for example in BPP [1] or CCS [2, 3]), as it provides a normal form and
useful cancellation properties. We provide two parallel decomposition results for
subsets of the applied π-calculus: we show that every closed normed (i.e. with
a finite shortest complete trace) process P can be decomposed uniquely into
prime factors Pi with respect to strong labeled bisimilarity, i.e. such that P ∼l
P1| . . . |Pn. Moreover, we prove that closed finite processes can be decomposed
uniquely with respect to weak labeled bisimilarity. We also investigate whether
efficient algorithms that compute the unique decompositions exist. The simpler
problem of deciding whether a process is in its unique decomposition form is
undecidable in general in both cases, due to potentially undecidable equational
theories. Moreover, we show that the unique decomposition remains undecidable
even given an equational theory with a decidable word problem.

Keywords: Applied π-Calculus, Unique Decomposition, Normal Form, Weak
Bisimilarity, Strong Bisimilarity, Cancellation, Decidability, Equational
Theory, Word Problem, Process Calculus, Behavioural Equivalence

1. Introduction

Process algebras or calculi are used to formally model and analyze dis-
tributed systems. Famous examples include the Calculus of Communicating
Systems (CCS) due to Milner [4], or Basic Parallel Processes (BPP) [1]. These
calculi contain basic operations such as emission and reception of messages as

∗Corresponding author
Email addresses: jannik.dreier@loria.fr (Jannik Dreier), cristian.ene@imag.fr

(Cristian Ene), pascal.lafourcade@udamail.fr (Pascal Lafourcade),
yassine.lakhnech@imag.fr (Yassine Lakhnech)

Preprint submitted to Elsevier May 7, 2016

well as parallel composition or interleaving. As an extension to CCS, Milner,
Parrow and Walker developed the π-calculus [5], which also features channel
passing and scope extrusion. Abadi and Fournet [6] subsequently proposed the
applied π-calculus, a variant of the π-calculus designed for the verification of
cryptographic protocols. It additionally features user-defined equational theo-
ries to model cryptographic primitives and active substitutions.

In a process algebra the question of process decomposition naturally arises:
given an equivalence relation ' on processes, can we rewrite a process P as P '
P1|P2| . . . |Pn, where each Pi is prime in the sense that it cannot be rewritten
as the parallel composition of two non-zero processes?

More formally, we say that a process P is prime w.r.t. ' if for all processes
Q and R such that P ' Q|R we have that Q ' 0 or R ' 0 (where 0 is
the empty process). Then we can state the decomposition problem as follows:
given an equivalence relation ' and a process P , return P1, . . . , Pn such that P
' P1|P2| . . . |Pn and all Pi are prime. We say that the decomposition w.r.t. ' is
unique, if for all processes P its decomposition is unique up to ' and reordering
of the prime processes Pi (due to the associativity and commutativity of “|”).

Such a decomposition provides a maximally parallelized version of a given
process P . Additionally, if the decomposition is unique, it provides a normal
form, and a cancellation result in the sense that P |Q ' P |R implies Q ' R for
all P , Q and R. This is convenient in proofs, for example when proving the
equivalence of different security notions in electronic voting [7].

Moreover, if there is a procedure to transform a process into its normal form,
such a unique decomposition can also be used to verify the equivalence of two
processes [8]: it suffices to verify whether the factors on both sides are identical
up to equivalence, associativity and commutativity.

Our Contributions. We provide two decomposition results for subsets of the
applied π-calculus. In a first step, we prove that closed normed processes (i.e.
with a finite shortest complete trace) can be uniquely decomposed with respect
to strong labeled bisimilarity. In the second step we show that every closed finite
process (i.e. with a finite longest complete trace) can be uniquely decomposed
with respect to weak labeled bisimilarity, the standard notion of bisimilarity in
the applied π-calculus. Note that although we require the processes to be finite
or normed, no further hypothesis is needed, i.e. they may use the full power
of the calculus including channel passing and scope extrusion. As a direct
consequence of the uniqueness of the decomposition, we also obtain cancellation
results for both cases.

Moreover, we show that in both cases computing the unique decomposition
of a process is undecidable in general, due to potentially undecidable equational
theories. We also prove that the problem remains undecidable in both cases
even if the word problem in the equational theory is decidable.

Outline of the Paper. In Section 2, we recall the syntax and semantics of the
applied π-calculus. In Section 3 we present several notions of equivalence and
bisimilarity, and then define the depth and norm of a process in Section 4. In the

2

M , N ::= terms
a, b, c, n,m, k names
x, y, z variables
f(M1, . . . ,Ml) function application

Figure 1: Grammar for terms

following we present our unique decomposition for strong and weak bisimilarity
in Section 5 and 6, respectively. Finally we discuss the (un)decidability of
computing the unique decomposition for a process in Section 7. In Section 8
we review related work concerning unique decomposition of processes, before
concluding the paper in Section 9.

2. The applied π-calculus

The applied π-calculus relies on a type or sort system for terms. It includes
a set of base types such as Integer, Key or Data. Additionally, if τ is a type,
then Channel〈τ〉 is a type (intuitively the type of a channel transmitting terms
of type τ).

We suppose a signature Σ of functions, which consists of a finite set of func-
tion symbols with the associated arities and sorts. For example enc(message,
key), dec(message, key) are of arity two with two parameters of sorts Data and
Key, returning a value of type Data. A function with arity zero is a constant.

Terms in the applied π-calculus are built of names (which typically corre-
spond to basic units of data or channels), variables (which can represent more
complex expressions) and function symbols from the signature Σ following the
grammar depicted in Figure 1. These terms have to be correct with respect to
arities and sorts of the function symbols, variables and names. Variables and
names can have every type, and functions take and return only values of base
types. We assume infinite sets of names and variables.

Functions typically include encryption and decryption, hashing, signing and
so on. Equalities are modeled using an equational theory E which defines a
relation =E . A classical example, which describes the correctness of symmetric
encryption, is dec(enc(message, key), key) =E message. To simplify the nota-
tion we sometimes omit the subscript E if this is clear from the context that E
is the equational theory defining the equality.

n-tuples can be implemented e.g. using a function tuplen(M1, . . . ,Mn) and
the equations

∀i : proji(tuplen(M1, . . . ,Mn)) = Mi

To simplify notation we also write (M1, . . . ,Mn) for tuplen(M1, . . . ,Mn), this
assumes the function tuplen and the destructors proji with the equations as
defined above.

There are two types of processes in the applied π-calculus: plain processes
and extended or active processes. Plain processes are constructed using the

3

P , Q ::= plain processes
0 null process
P |Q parallel composition
!P replication
νn.P name restriction (“new”)
if M = N then P else Q conditional (M , N terms)
in(u, x).P input on channel u assigned to x
out(u,M).P output of term M on channel u

Figure 2: Grammar for Plain Processes

A, B, P , Q ::= extended processes
P plain process
A|B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

Figure 3: Grammar for Extended Processes

grammar depicted in Figure 2. The null process 0 does nothing, the parallel
composition P |Q executes P and Q in parallel, and the replication !P executes
an unbounded number of copies of P in parallel. The process νn.P creates a
new, private name n and continues as P . The process if M = N then P else

Q behaves as P if N =E M and as Q otherwise. Note the equality with respect
to the equational theory, and that we require M and N to have the same type.
The process in(u, x).P inputs a message on channel u, assigns it to the variable
x of type τx and continues as P . We assume that u is of type Channel〈τx〉.
Finally out(u,M).P outputs M (of type τM) on channel u and continues as P .
Again, u has to be of type Channel〈τM 〉.

Extended processes are plain processes or active substitutions as shown in
Figure 3. This distinction between extended and plain processes ensures that
active substitutions can only occur on the top level or under restrictions, but not
under replication (to avoid multiple substitutions defining the same variable),
conditionals or input and output. According to the semantics, active substi-
tutions are only created when terms are output, but not when two processes
synchronize, and will thus only appear at the top level (see Example 2).

Note that the applied π-calculus does not include the “+”-operator which
implements a nondeterministic choice, yet we can implement something similar
using a restricted channel (see Example 8). For more details on encoding the
operator with respect to different semantics, see [9, 10].

The active substitution {M/x} replaces all free occurrences of the variable
x inside all parallel processes with the term M . We do not allow two active
substitutions to define the same variable, as this might lead to situations with
unclear semantics. We also require substitutions to be well-sorted (i.e., respect-

4

ing the sorts of the variables, names and functions) and cycle-free (i.e., a variable
cannot occur inside the substitution defining it; moreover, if y occurs in a sub-
stitution defining x, then x cannot occur in the substitution defining y, and so
on), and only allow active substitutions on variables of base sorts (this ensures
that labeled bisimilarity and observational equivalence coincide, see Section 3).
An occurrence of a name n is bound if it is in the scope of a restriction νn, an
occurrence of a variable x is bound if it is in the scope of a restriction νx or
of an input in(u, x). All unbound occurrences of names and variables are free.
A name or variable is bound or free in a process A if it has a bound or free
occurrence in A. We denote by fv(A), bv(A), fn(A), bn(A) the free variables,
bound variables, free names or bound names of A respectively.

As an additional notation we write νS.A for νs1.νs2 . . . νsn.A where s1, . . . sn
are the elements of a set S of variables and names. By abuse of notation we
sometimes leave out “.0” at the end of a process. We also write Ak for A| . . . |A (k
times), in particular A0 = 0 as 0 is the neutral element of parallel composition.

To avoid unnecessary parentheses and improve readability of processes, we
assume that all operators take precedence over parallel composition, for example
we write 0 | in(u, x).out(u,M) for 0 | (in(u, x).out(u,M)).

The frame Φ(A) of an extended process A is obtained by replacing all plain
processes in A by 0. This frame can be seen as a representation of what is
statically known to the environment about a process. The domain dom(Φ) of
a frame Φ is the set of free variables for which Φ defines a substitution. By
abuse of notation, we also write dom(A) to denote the domain of the frame
Φ(A) of an extended process A. Note that dom(A) ⊆ fv(A), and that as we
cannot have two active substitutions for the same variable, P = Q|R implies
dom(P) = dom(Q) ∪ dom(R) and dom(Q) ∩ dom(R) = ∅. A frame or process
is closed if all variables are bound or defined by an active substitution. An
evaluation context C[] denotes an extended process with a hole for an extended
process. This implies that the hole is not under replication, a conditional, an
input or an output, according to the syntax. A context C[] closes A when C[A]
is closed.

The semantics of the calculus presupposes a notion of structural equiva-
lence (≡), which is defined as the smallest (w.r.t. subset inclusion) equivalence
relation on extended processes that is closed under application of evaluation
contexts, α-conversion on bound names and bound variables such that the rules
in Figure 4 hold.

Note the contagious nature of active substitutions: they apply to every par-
allel process using rule SUBST. The process {M/x} on the left hand side of the
parallel composition in rule SUBST denotes the active substitution {M/x}, and
on the right hand side A 〈M/x〉 denotes the process A where all occurrences of
x have been replaced with M . We call 〈M/x〉 an implicit substitution.

Example 1. Consider the following running example, where x and y are vari-
ables, and c, d, k, l, m and n are names:

Pex = νk.νl.νm.νd. ({l/y} |out(c, enc(n, k))|out(d,m)|in(d, x).out(c, x))

5

PAR-0 A|0 ≡ A
PAR-A A|(B|C) ≡ (A|B)|C
PAR-C A|B ≡ B|A
NEW-0 νn.0 ≡ 0
NEW-C νu.νv.A ≡ νv.νu.A
NEW-PAR A|νu.B ≡ νu.(A|B) if u /∈ fn(A) ∪ fv(A)
REPL !P ≡ P |!P
REWRITE {M/x} ≡ {N/x} if M =E N
ALIAS νx. {M/x} ≡ 0
SUBST {M/x} |A ≡ {M/x} |A 〈M/x〉

Figure 4: Structural Equivalence

We have fv(Pex) = {y}, bv(Pex) = {x}, fn(Pex) = {n, c}, bn(Pex) = {k, l,m, d}
and

Φ(Pex) = νk.νl.νm.νd. ({l/y} |0|0|0) ≡ νk.νl.νm.νd. ({l/y}) ,

thus dom(Pex) = {y}.

Internal Reduction (
τ−→) is the smallest relation on extended processes closed

by structural equivalence (i.e., if P
γ−→ P ′ then Q

γ−→ Q′ for all processes Q ≡ P
and Q′ ≡ P ′) and application of evaluation contexts (i.e., if P

γ−→ P ′ then

C[P]
γ−→ C[P ′] for all evaluation contexts C) such that the rules in Figure 5 hold.

Note that in accordance with the original notations [6], we sometimes omit the

labels τc, τt and τe, and write P → P ′ for P
γ−→ P ′ with γ ∈ {τc, τt, τe}. We

also write P →∗ P ′ for P → . . . → P ′. Moreover, let Int = {τc, τt, τe} denote
the set of labels corresponding to internal reductions or silent transitions.

COMM out(a, x).P | in(a, x).Q
τc−→ P | Q

THEN if M = M then P else Q
τt−→ P

ELSE if M = N then P else Q
τe−→ Q

for all ground terms such that M 6=E N

Figure 5: Internal Reduction

Interactions of extended processes are described using labeled operational
semantics (

α−→, see Figure 6), where α can be an input or an output of a
channel name or variable of base type1. More precisely, for all channel names
a, terms M , and variables of base type or names of any type u, let Act =
{in(a,M), out(a, u), νu.out(a, u)}, denote the set of labels of possible external

1Disallowing variables of channel type is not a limitation. In outputs, variables are only
used to represent more complex terms. As we cannot apply functions on names and variables
of channel type, a channel variable can only be instantiated using a channel name, which can
be output directly.

6

or visible transitions, i.e., α ∈ Act. The free and bound names and variables
fn, bn, fv, bv of a transition α are defined analogously to processes, i.e. we
obtain the sets by considering α as a process and then applying the function.
By construction we have Act ∩ Int = ∅.

IN in(a, x).P
in(a,M)−−−−−→ P 〈M/x〉

OUT-ATOM out(a, u).P
out(a,u)−−−−−→ P

OPEN-ATOM
A

out(a,u)−−−−−→ A′ u 6= a

νu.A
νu.out(a,u)−−−−−−−→ A′

SCOPE
A

α−→ A′ u does not occur in α

νu.A
α−→ νu.A′

PAR
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

STRUCT
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

Figure 6: Labeled semantics

Labeled external transitions are not closed under evaluation contexts. Note
that a term M (except for channel names and variables of base type) cannot be
output directly. Instead, we have to assign M to a variable, which can then be
output. The condition bv(α)∩ fv(B) = bn(α)∩ fn(B) = ∅ in rule PAR ensures
that a bound name or variable in A can only be output if it does not occur in
B freely, as otherwise after the transition the name or variable in A would be
the same as in B.

Example 2. Consider our running example process.

Pex = νk.νl.νm.νd. ({l/y} |out(c, enc(n, k))|out(d,m)|in(d, x).out(c, x))

Using an internal reduction, we can derive the following transition2:

Pex = νk.νl.νm.νd. ({l/y} |out(c, enc(n, k))|out(d,m)|in(d, x).out(c, x))
≡ νk.νl.νm.νd.({l/y} |out(c, enc(n, k))|νx.({m/x})|out(d,m)|

in(d, x).out(c, x)) by PAR-0, ALIAS
≡ νk.νl.νm.νd.({l/y} |out(c, enc(n, k))|νx.({m/x} |out(d,x)|

in(d, x).out(c, x))) by NEW-PAR, SUBST
τc−→ νk.νl.νm.νd. ({l/y} |out(c, enc(n, k))|νx. ({m/x} |out(c, x)))
≡ νk.νl.νm.νd. ({l/y} |out(c, enc(n, k))|out(c,m))

by SUBST, ALIAS, NEW-PAR, PAR-0

2Here and throughout the rest of the paper we mark the differences between the steps in
bold for better readability.

7

Similarly, we can also derive an external transition:

Pex ≡ νk.νl.νm.νd.({l/y} |νz. ({enc(n,k)/z} |out(c, z)) |out(d,m)|in(d, x).out(c, x))
νz.out(c,z)−−−−−−−→ νk.νl.νm.νd. ({l/y} | {enc(n,k)/z} |out(d,m)|in(d, x).out(c, x))

3. Observational Equivalence and Labeled Bisimilarity

The applied π-calculus has two notions of equivalence between processes:
observational equivalence and labeled bisimilarity. They can be used to ex-
press strong secrecy or privacy properties. For example, one can express vote
secrecy in electronic voting as an observational equivalence between two situa-
tions where two voters swap their votes [7, 11]. We now discuss multiple notions
of equivalence, which are all defined modulo observational equivalence.

Let A ⇓ a denote that A can send a message on the channel a, i.e. when
A →∗ C[out(a,M).P] for some evaluation context C[] that does not bind a.
Note that C can include other processes parallel to the hole.

Definition 1 (Observational Equivalence [6]). Observational equivalence (≈)
is the largest symmetric relation R between closed extended processes with the
same domain such that A R B implies:

1. if A ⇓ a, then B ⇓ a,

2. if A→∗ A′, then B →∗ B′ and A′ R B′ for some B′,

3. C[A] R C[B] for all closing evaluation contexts C[].

The intuition is that two processes are observationally equivalent if each
output or internal transition of one process can be simulated by the other, and
this holds for all contexts.

Example 3. Consider the following processes, where f is a function of arity
one:

P0 = νa.out(c, a)
P1 = νa.νd. (out(d, a) | in(d, y).out(c, y))
P2 = νa.νd. (out(d, a) | in(d, y).out(c, (y, f(y))))

Then we have P0 ⇓ c, P1 ⇓ c and P2 ⇓ c, however P0 6≈ P2 and P1 6≈ P2 as P2

outputs the tuple instead of a single value, which can be tested by a context, for
example:

C[] = in(c, z).if f(proj1(z)) = projz(z) then out(e, z) else out(f, z)|

Yet we have P1 → νa.νd.out(c, a) ≡ P0, hence P0 ≈ P1.

As observational equivalence can be difficult to prove because of the all-
quantified context, one often uses labeled bisimilarity instead. Labeled bisim-
ilarity is defined using the notion of static equivalence, which is based on the
equivalence of two terms in a given frame. Note that every frame φ can be
written as νñ.σ modulo structural equivalence, i.e., using rule NEW-PAR.

8

Definition 2 (Equivalence in a Frame [6]). Two terms M and N are equal
in the frame φ, written (M = N)φ, if and only if for all names ñ and every
substitution σ such that φ ≡ νñ.σ and ñ ∩ (fn(M) ∪ fn(N)) = ∅ we have
Mσ =E Nσ.

Note that M and N cannot contain variables that are restricted in the frame.
In the applied π-calculus, restricted names model values that are unknown to the
environment, for example keys or fresh random values. In static equivalence, we
only consider terms that do not contain restricted values as free names, because
otherwise one could use e.g. a secret key to decrypt a value inside M or N ,
although the key was never output.

Definition 3 (Static Equivalence (≈s) [6]). Two closed frames φ and ψ are
statically equivalent, written φ ≈s ψ, when dom(φ) = dom(ψ) and when for all
terms M and N we have (M = N)φ if and only if (M = N)ψ. Two extended
processes A and B are statically equivalent (A ≈s B) if their frames are statically
equivalent.

The intuition behind this definition is that two processes are statically equiv-
alent if the previously output terms cannot be distinguished with respect to the
equational theory, i.e., all equalities of terms instantiated with the outputs have
the same value (true or false) on both sides. Note that this only concerns what
is statically known about the process via the active substitutions, but not the
possible interactions: we can have two statically equivalent processes where one
can do multiple transitions, but the other one none at all.

Example 4 (from [6]). Consider the following frames, where f and g are two
functions of arity one with no equations:

φ0 = νk. {k/x} |νs. {s/y}
φ1 = νk. {f(k)/x, g(k)/y}
φ2 = νk. {k/x, f(k)/y}

Then φ0 ≈s φ1, but φ1 6≈s φ2 and φ1 6≈s φ2 as (f(x) = y)φ2, but neither
(f(x) = y)φ0 nor (f(x) = y)φ1.

We can then define (weak)3 labeled bisimilarity.

Definition 4 ((Weak) Labeled Bisimilarity (≈l) [6]). (Weak) labeled bisimilar-
ity is the largest symmetric relation R on closed extended processes, such that
A R B implies:

1. A ≈s B,

2. if A→ A′, then B →∗ B′ and A′ R B′ for some B′,

3Originally this notion of bisimilarity was only called “labeled bisimilarity” by Abadi and
Fournet [6], however we also call it “weak labeled bisimilarity” to distinguish it from “strong
labeled bisimilarity”.

9

3. if A
α−→ A′ and fv(α) ⊆ dom(A) and bn(α)∩fn(B) = ∅, then B →∗ α−→→∗

B′ and A′ R B′ for some B′.

As hinted above, labeled bisimilarity is often easier to prove than observa-
tional equivalence since there is no quantification over all contexts. However
observational equivalence and labeled bisimilarity do not coincide if active sub-
stitutions are allowed on variables of channel type [12, 13], as in that case obser-
vational equivalence is not closed under the application of evaluation contexts,
as the following example illustrates.

Example 5 (From [13]). Consider A = νc.(out(c, n).out(a, n)| {c/x}) and B =
νc.(0| {c/x}). Then A ≈l B as A and B are statically equivalent and both have
no transitions, but not A ≈ B as A|in(x, y) ⇓ a but B|in(x, y) 6⇓ a.

Here we restricted active substitutions to variables of base sort (see Sec-
tion 2). Hence (weak) labeled bisimilarity coincides with observational equiva-
lence [12, 14], and is thus closed under the application of evaluation contexts.
Note that this implies also that static equivalence is closed under the application
of contexts.

Corollary 1. For all closed extended processes A and B, and all closing eval-
uation contexts C, A ≈s B implies C[A] ≈s C[B].

Proof. Suppose A ≈s B. Then Φ(A) ≈l Φ(B) as Φ(A) ≈s Φ(B), but neither
Φ(A) nor Φ(B) can do a transition. Then for all closing evaluation contexts C we
have C[Φ(A)] ≈l C[Φ(B)] as weak observational equivalence is closed under the
application of closing evaluation contexts, which implies C[Φ(A)] ≈s C[Φ(B)]
and C[A] ≈s C[B].

In our work on unique decomposition of processes we also consider a stronger
version of labeled bisimilarity.

Definition 5 (Strong Labeled Bisimilarity (∼l)). Strong labeled bisimilarity is
the largest symmetric relation R on closed extended processes, such that A R B
implies:

1. A ≈s B,
2. if A→ A′, then B → B′ and A′ R B′ for some B′,
3. if A

α−→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B
α−→ B′

and A′ R B′ for some B′.

This notion is stronger than weak labeled bisimilarity in the sense that each
step on one side has to be matched by exactly one on the other side, whereas
in the case of weak labeled bisimilarity a single transition could be simulated
using several (internal) transitions.

Example 6. Consider again the processes from Example 3, where f is a func-
tion of arity one:

P0 = νa.out(c, a)
P1 = νa.νd.(out(d, a)|(in(d, y).out(c, y)))
P2 = νa.νd.(out(d, a)|(in(d, y).out(c, (y, f(y)))))

10

Then we have P0 ≈l P1 as P0
νa.out(c,a)−−−−−−−→ 0 and P1 → νa.νd.out(c, a)

νa.out(c,a)−−−−−−−→
0 (using STRUCT to rewrite P1 at the beginning and to remove νd in the second
step) and P1 → νa.νd.out(c, a) ≈l P0.

Yet we neither have P0 ≈ P2 nor P1 ≈ P2 as

P2 → νa.νd.out(c, (a, f(a))) ≡ νa.νd.νz. {a,f(a)/z} out(c, z)
νz.out(c,z)−−−−−−−→ νa.νd. {(a,f(a))/z}

but neither P0 nor P1 can produce a frame that is statically equivalent, i.e. a
frame where for example f(proj1(z)) = proj2(z) holds.

Note also that P0 6∼l P1 and P0 6∼l P2 as P0
νa.out(c,a)−−−−−−−→ 0 but P1 and P2

cannot do an external transition without a previous internal reduction. Similarly
to weak labeled bisimilarity above, we have P1 6∼l P2 as the final frames are not
statically equivalent.

Strong labeled bisimilarity is closed under the application of contexts as the
following lemma shows.

Lemma 1. For all closed extended processes A and B, and all closing evaluation
contexts C, A ∼l B implies C[A] ∼l C[B].

Proof. Let R′ denote the strong bisimilarity relation of A ∼l B. Consider now
the following relation R:

R = {(C[A], C[B])|(A,B) ∈ R′, C evaluation context}

We now prove that R satisfies the three conditions of strong labeled bisimilarity.
Let (P,Q) ∈ R.

1. P ≈s Q by Corollary 1.

2. Suppose P = C[A]→ P ′. We need to show that Q→ Q′ and P ′ R Q′ for
some Q′.

If P
τt−→ P ′ or P

τe−→ P ′, we have either C[A]
τ{t,e}−−−→ C ′[A] or A

τ{t,e}−−−→
A′ as applications of structural equivalence cannot introduce or remove
processes of the form if M = M then P else Q, and A is closed (thus
no active substitution in C can influence A).

If C[A]
τ{t,e}−−−→ C ′[A] then Q = C[B]

τ{t,e}−−−→ C ′[B] and (P ′, Q′) ∈ R as
A ≈s B. Static equivalence is important since the transition might depend
on active substitutions in A or B.
If A

τ{t,e}−−−→ A′ then B → B′ for some B′ by (A,B) ∈ R′, and thus
Q = C[B]→ C[B′] and (P ′, Q′) ∈ R.

If P
τc−→ P ′, we have to distinguish three cases:

• If C[A]
τc−→ C ′[A], then Q = C[B]

τc−→ C ′[B] and (P ′, Q′) ∈ R for
Q′ = C ′[B].

11

• If A
τc−→ A′ then B → B′ for some B′ by (A,B) ∈ R′, and thus

Q = C[B]→ C[B′] and (P ′, Q′) ∈ R for Q′ = C[B′].

• If the transition is a consequence of a synchronization between two
processes in C and A, i.e. P = C[A]

τc−→ C ′[A′] = P ′: In this case we

have A
α−→ A′ for α = in(a, x) or α = out(a, x), as active substitu-

tions cannot be defined on variables of channel type. This prevents
that their application using structural equivalence operations makes
a transition, which is not available using labeled semantics, available
for internal reduction (as in Example 5).

Thus, by (A,B) ∈ R′, we have B
α−→ B′ for some B′, and thus

Q = C[B]
τc−→ C ′[B′] = Q′ and (P ′, Q′) ∈ R.

Note that there cannot be any other case: by the semantics, all labeled
transitions have to originate in an in(a, x) and an out(a, u). Since these
processes cannot be added or removed by structural equivalence, each such
process used in a transition P

τc−→ P ′ must be either part of C or A.

3. Now suppose P
α−→ P ′ and fv(α) ⊆ dom(P) and bn(α) ∩ fn(Q) = ∅. We

need to show that Q
α−→ Q′ and P ′ R Q′ for some Q′.

In a first step, we show that such a transition has to originate either in C
or in A: if C[A]

α−→ P ′, then either

• C[A]
α−→ C ′[A] or

• A α−→ A′ or

• A α′

−→ A′ and α = νu.α′.

By the semantics, all labeled transitions have to originate either in an
in(a, x) or in an out(a, u). Since these processes cannot be added or
removed by structural equivalence, any such process used in a transition
C[A]

α−→ P ′ must be either part of C or A.

If it is part of C, it is easy to see that C[A]
α−→ C ′[A] holds: by the se-

mantics, only restrictions might influence the transition, and by structural
equivalence restrictions from A can only be extended around processes in
C if the restricted values are not free in C.
If it is part of A, there are two cases: either no restrictions in C are
relevant, and we have A

α−→ A′. Or, we have an output of a value restricted

in C, in which case we have A
α′

−→ A′ and α = νu.α′.
Note that we have fv(α) ⊆ dom(A) and fv(α′) ⊆ dom(A), respectively:
suppose there exists a free variable x in α or α′, respectively, which is
not in the domain of A. As A is closed and x occurs in A, it must thus
be bound. As x cannot be bound using an in (then the transition would
not be possible according to the semantics), x can only be bound using
a restriction. But then, according to the semantics, the restriction must
also be part of α or α′, contradicting the assumption that x was free.

12

Now we consider the above cases:

• If C[A]
α−→ C ′[A] then also Q = C[B]

α−→ C ′[B] = Q′, and (P ′, Q′) ∈
R.

• If A
α−→ A′ then B

α−→ B′ for some B′ by (A,B) ∈ R′, and thus

Q = C[B]
α−→ C[B′] = Q′ with (P ′, Q′) ∈ R.

• If A
α′

−→ A′ and α = νu.α′ then P = C[A]
α−→ C ′[A′]. Moreover, B

α′

−→
B′ for some B′ by (A,B) ∈ R′, and thus Q = C[B]

α−→ C ′[B′] = Q′

with (P ′, Q′) ∈ R.

Restrictions can only forbid transitions, but not create new ones, as the
following lemma shows.

Lemma 2. Let A be a closed extended process and X ⊆ dom(A). Then νX.A
µ−→

νX.A′ implies A
µ′

−→ A′ where µ can be a silent or a visible transition, and we
have either

• µ′ = µ or

• for x ∈ X and µ = νx.out(a, x), µ′ = out(a, x)

Proof. Suppose νX.A
µ−→ νX.A′. µ can be the result of a SCOPE or a OPEN-

ATOM rule. If µ is the result of a SCOPE-rule, we have A
µ−→ A′. Otherwise

we have µ = νx.out(a, x), and A
µ−→ A′ for µ′ = out(a, x).

4. Depth and Norm of Processes

In the following we prove unique decomposition results for different subsets
of processes, namely finite and normed processes. This requires to formally
define the length of process traces.

The visible depth is defined as the length of the longest trace of visible
actions, i.e. labeled transitions, not counting internal reductions. Note that this
may be infinite for processes including replication. We write P 6→ if P cannot

execute a transition, and P
µ1µ2...µn−−−−−−→ P ′ for P

µ1−→ P1
µ2−→ P2

µ3−→ . . .
µn−−→ P ′.

Moreover, we denote by ε the empty word, and by ab the concatenantion of
traces a and b.

Definition 6 (Visible Depth). Let lengthv : (Act ∪ Int)∗ → N be the function

defined by lengthv(ε) = 0 and lengthv(µw) =

{
1 + lengthv(w) if µ ∈ Act

lengthv(w) otherwise

Then the visible depth |P |v ∈ (N ∪ {∞}) of a closed process P is defined as
follows:

|P |v = sup
{

lengthv(w) : P
w−→ P ′, w ∈ (Act ∪ Int)∗

}

13

The total depth is defined as the length of the longest trace of actions (in-
cluding internal reductions).

Definition 7 (Total Depth). Let lengtht : (Act ∪ Int)∗ → N be the function
defined by lengtht(ε) = 0 and lengtht(µw) = 1 + lengtht(w). The total depth
|P |t ∈ (N ∪ {∞}) of a closed process P is defined as follows:

|P |t = sup
{

lengtht(w) : P
w−→ P ′, w ∈ (Act ∪ Int)∗

}
The norm of a process is defined as the length of the shortest complete trace,

including internal reductions, where communications are counted as two. This
is to ensure that the norm of P |Q is the sum of the norm of P and the norm of
Q.

Definition 8 (Norm of a Process). Let lengthn : (Act∪ Int)∗ → N be the func-

tion defined by lengthn(ε) = 0 and lengthn(µw) =

{
1 + lengthn(w) if µ 6= τc

2 + lengthn(w) if µ = τc
The norm N (P) ∈ (N ∪ {∞}) of a closed process P is defined as follows:

N (P) = inf
{

lengthn(w) : P
w−→ P ′ 6→, w ∈ (Act ∪ Int)∗

}
Example 7. Consider the processes from our running example (Example 1).
We have |Pex|v = 2, |Pex|t = 3 and N (Pex) = 4.

The above definitions admit some simple properties.

Lemma 3. For all closed extended processes P , Q and R we have

1. |P |v ≤ |P |t
2. P = Q|R implies |P |v = |Q|v + |R|v
3. P = Q|R implies |P |t = |Q|t + |R|t
4. P = Q|R implies N (P) = N (Q) +N (R)

5. P = Q|R implies |dom(P)| = |dom(Q)|+ |dom(R)|
6. P ≈l Q implies |P |v = |Q|v
7. P ∼l Q implies |P |t = |Q|t
8. P ∼l Q implies N (P) = N (Q)

Proof. See Appendix A.

Now we define two important subclasses of processes: finite processes, i.e.
processes with a finite longest complete trace, and normed processes, i.e. pro-
cesses with a finite shortest complete trace.

Definition 9 (Finite and normed processes). A closed process P is called finite
if |P |t is finite (which implies |P |v is finite). A closed process P is called normed
if N (P) is finite.

It is easy to see that every finite process is normed, but not all normed
processes are finite, as the following example illustrates.

14

Example 8. Consider P = νa.(out(a,m)|(in(a, x).(!in(b, y)))|in(a, x)). Note
that this process can choose between two possible behaviors: we have P → P ′ ∼l
0 (hence P is normed), but also P → P ′′ ∼l!in(b, y) (which has infinite traces).
Hence P is normed, but not finite.

It is also clear that not all processes are normed. Consider the following
example.

Example 9. Consider P =!(νx.out(c, x)). It is easy to see that for no sequence

of transitions s we have P
s−→ P ′ 6→, i.e. P has no finite traces.

Note however that all processes without replication (“!”) are finite, as no
other syntactic element allows to construct infinite traces.

5. Decomposition w.r.t. Strong Labeled Bisimilarity

We begin with the simpler case of strong labeled bisimilarity. Note that
P ∼l Q implies |P |t = |Q|t and N (P) = N (Q) for all closed processes P and Q
by Lemma 3.

We define strong parallel primeness as follows: a process is prime if it cannot
be decomposed into non-trivial subprocesses (w.r.t. strong labeled bisimilarity).
We require the processes to be closed, which is necessary as our bisimulation
relation is only defined on closed processes.

Definition 10 (Strongly Parallel Prime). A closed process P is strongly parallel
prime if

• P 6∼l 0 and

• for all two closed processes Q and R such that P ∼l Q|R, we have Q ∼l 0
or R ∼l 0.

Example 10. Consider our running example:

Pex = νk.νl.νm.νd. ({l/y} | out(c, enc(n, k)) | out(d,m) | in(d, x).out(c, x))

We can decompose Pex as follows:

Pex ∼l νl. {l/y} | νk.out(c, enc(n, k)) | νd.(νm.out(d,m)|in(d, x).out(c, x))

Suppose the first factor S1 = νl. {l/y} was not prime. Since it allows for no
transitions and only defines a variable in the frame, all decompositions of S1

must be composed of factors consisting of active substitutions and restrictions
(modulo ∼l). However, as we cannot have two substitutions defining the same
variable, and S1 defines only one variable, no such decomposition is possible.
Hence S1 is prime.

It is easy to see that the second factor S2 = νk.out(c, enc(n, k)) is prime, as
it can only perform one external transition, and has an empty domain. Note that

15

every process with empty domain which cannot do any transition is equivalent
to 0 (see also Lemma 4 below).

The third factor

S3 = νd.(νm.out(d,m)|in(d, x).out(c, x))

can only do two transitions, namely S3 → νm.out(c,m)
νm.out(c,m)−−−−−−−−→ 0. Suppose

S3 was was not prime, and we could decompose it into two factors, i.e. such that
S3 ∼l S′3|S′′3 . Such a decomposition would imply that both factors can execute
at least one transition each – otherwise they would be equivalent to 0 as they
have an empty domain, since S3 has an empty domain (again, see Lemma 4
below). However in that case the transitions of S′3|S′′3 can be executed in every
order, whereas in S3 we have to start with the internal reduction. Hence no
such decomposition exists, and S3 is prime.

Remark 1. Note also that within a prime factor we can recursively apply the
decomposition as our notion of bisimilarity is closed under the application of
contexts. For example if we have a prime factor P = νa.P ′, we can bring P ′ into
normal form, i.e. P ′ ∼l P ′1|...|P ′n, and rewrite P = νa.P ′ as P ∼l νa.(P ′1|...|P ′n).

It is clear that not all processes can be written as a unique decomposition
of parallel primes according to our definition.

Example 11. Consider !P for a process P 6∼l 0. By definition we have
!P = P |!P , hence !P is not prime. At the same time every such decompo-
sition contains again !P , a non-prime factor, which needs to be decomposed
again. Thus there is no decomposition into prime factors.

However we can show that every closed normed process has a unique decom-
position with respect to strong labeled bisimilarity. To achieve this, we need
some preliminary lemmas about transitions and the domain of processes. The
first lemma captures the fact that every process that cannot perform a transition
and has an empty domain, is bisimilar to 0 (the empty process).

Lemma 4. For every closed process A with dom(A) = ∅ and N (A) = 0, we
have A ∼l 0.

Proof. Consider the relation R = {(A, 0), (0, A)}. We show that it fulfils the
conditions of strong labeled bisimilarity:

1. We have dom(A) = ∅ = dom(0), hence A ≈s 0.

2. Let (A, 0) ∈ R. Obviously 0 cannot do a transition. Since N (A) = 0,
there exists a complete trace of length 0. Thus we have A 6→, i.e. A
cannot do a transition either and the remaining conditions are trivially
satisfied. The same is true for (0, A) ∈ R.

As we have (A, 0) ∈ R, this gives A ∼l 0, which we wanted to show.

We also need to show that if a normed process can execute a transition, it
can also execute a norm-reducing transition.

16

Lemma 5. Let A be a closed normed process with A
µ−→ A′ where µ is an

internal reduction or visible transition. Then A
µ′

−→ A′′ with N (A′′) < N (A).

Proof. As A is normed, we have∞ > N (A). Moreover, A
µ−→ A′ impliesN (A) >

0, as this transition contradicts a complete trace of length 0. Hence the shortest
complete trace w satisfies ∞ > lengthn(w) > 0. Hence there is a transition µ′

with w = µ′w′ which reduces norm, i.e. A
µ′

−→ A′′ with N (A′′) < N (A).

In a first step, we prove the existence of a decomposition.

Theorem 1 (Existence of Decomposition). Every closed normed process P can
be expressed as the parallel composition of strong parallel primes, i.e., P ∼l
P1| . . . |Pn where for all 1 ≤ i ≤ n, Pi is strongly parallel prime.

Proof. By induction on the norm of P , and on the size of the domain dom(P).

• If N (P) = 0:

– If |dom(P)| = 0, then P ∼l 0 (by Lemma 4), hence the decomposition
is the empty decomposition.

– If |dom(P)| > 0, then P 6∼l 0, hence P is either strongly paral-
lel prime itself (in which case we are done), or it can be written
as P ∼l Q|R, by the definition of strongly parallel prime. As we
have dom(P) = dom(Q) ∪ dom(R) with dom(Q) ∩ dom(R) = ∅
and |dom(Q)| > 0, |dom(R)| > 0 (since Q 6∼l 0 and R 6∼l 0),
we have |dom(Q)| < |dom(P)|, |dom(R)| < |dom(P)|, hence we
can use the induction hypothesis. Using the induction hypothesis
we know that Q and R can be expressed as the parallel composi-
tion of strong parallel primes, i.e., we have Q ∼l Q1| . . . |Qn and
R ∼l R1| . . . |Rn where all Qi and Ri are parallel prime. Hence we
have P = Q1| . . . |Qn|R1| . . . |Rn, which is a parallel composition of
strong parallel primes.

• If N (P) > 0:

– Suppose |dom(P)| = 0: P is either strongly parallel prime itself, or
can be written as P ∼l Q|R. Then we have dom(P) = dom(Q) =
dom(R) = ∅, and N (Q) > 0, N (R) > 0 by Lemma 4, hence N (Q) <
N (P), N (R) < N (P) by Lemma 3. Using the induction hypothesis
we can conclude as above.

– If |dom(P)| > 0, then P 6∼l 0, hence P is either strongly parallel
prime itself, or can be written as P ∼l Q|R. Suppose N (Q) > 0 and
N (R) > 0, hence N (Q) < N (P), N (R) < N (P) and we can apply
the induction hypothesis. Suppose w.l.o.g. N (Q) = 0 < N (P), then
N (R) = N (P) by Lemma 3. Since Q 6∼l 0 this implies |dom(Q)| >
0 by Lemma 4, hence |dom(R)| < |dom(P)|, and we can use the
induction hypothesis to conclude as above.

17

We now show the uniqueness of the decomposition. In a first lemma, we
show that the decomposition of all processes with zero norm is unique. As
an additional notation, let exp(A,R) denote the exponent (i.e. the number of
occurrences) of prime A in the unique decomposition4 of R.

Lemma 6 (Uniqueness of Decomposition for Processes with Zero Norm). The
strong parallel decomposition of a closed normed process P with N (P) = 0 is
unique up to ∼l and permutation of the prime factors.

Proof. By induction on the size of the domain dom(P).

• If |dom(P)| = 0, then P ∼l 0 (by Lemma 4), hence the decomposition is
the unique empty decomposition. Note that by Lemma 3 any decomposi-
tion into factors would imply that these factors also have norm 0 and an
empty domain, hence they would also be bisimilar to 0 by Lemma 4.

• If |dom(P)| > 0, then P 6∼l 0. Suppose P is in its decomposition form,
and we have a second, different decomposition Q with P ∼l Q:

P = Ak11 |A
k2
2 | . . . |Aknn

Q = Al11 |A
l2
2 | . . . |Alnn

where the Ai’s are distinct (i.e. for i 6= j we have Ai 6∼l Aj) and ki ≥ 0,
li ≥ 0 (w.l.o.g. we can rewrite P and Q this way).

Note that since all factors Ai are prime we have ∀i Ai 6∼l 0, and since we
also know N (P) = 0 we have ∀i N (Ai) = 0 by Lemma 3. By Lemma 4
we then have dom(Ai) 6= ∅, which implies ki, li ≤ 1 as we cannot have two
substitutions defining the same variable.

Let m be such that km 6= lm. Without loss of generality we assume
1 = km > lm = 0.

Obviously we have dom(P) = dom(Q). Let ṽ = dom(P)\dom(Am). Then
we have (by Lemmas 3 and 4 and rules NEW-PAR, PAR-0, PAR-C and
PAR-A):

νṽ.P ≡ Am|νṽ.P ′ ∼l Am
where P ′ is P without the factorAm, sinceN (νṽ.P ′) = 0 and dom(νṽ.P ′) =
∅ by Lemma 3. Similarly

νṽ.Q ≡ |i∈I νṽi.Ai | |i/∈I νṽi.Alii ∼l |i∈I νṽi.Ai

where I = {i|dom(Ai) ∩ dom(Am) 6= ∅ and li = 1}, and where ṽi =
dom(Ai) ∩ ṽ.

4This notation only makes sense if we know that R has a unique decomposition, which
however holds in the cases where we employ it during the proof and later on.

18

By νṽ.P ∼l νṽ.Q we have Am ∼l |i∈I νṽi.Ai. If |I| = 0, we have Am ∼l 0
which contradicts the hypothesis that Am is prime. Similarly for |I| >
1, we have a decomposition for Am into several processes, which also
contradicts Am prime.

For |I| = 1 we have the following cases: Let i denote the only index in
I. If ṽi = ∅, we have a contradiction to the distinctness hypothesis of the
Aj ’s since Am ∼l Ai with m 6= i as lm = 0 6= li = 1.

If ṽi 6= ∅ we have dom(Am) ⊂ dom(Ai), but dom(Am) 6= dom(Ai). Now
consider ṽ′ = dom(Q) \ dom(Ai). Then - as above - we have:

νṽ′.Q ≡ Ai|νṽ′.Q′ ∼l Ai

where Q′ is Q without the factor Ai. Similarly

νṽ′.P ≡ |j∈I′ νṽ′j .Aj | |j /∈I′ νṽ′j .A
lj
j ∼l |j∈I′ νṽ

′
j .Aj

where I ′ = {j|dom(Aj)∩dom(Ai) 6= ∅ and kj = 1} and ṽ′j = dom(Aj)∩ṽ′.
By dom(Am) ⊂ dom(Ai) we have m ∈ I ′, but also dom(Am) 6= dom(Ai)
and dom(Ai) = dom(|j∈I′ νṽ′j .Aj). This gives us |I ′| > 1 as there must be
other factors than m to cover the entire domain, hence Ai ∼l |j∈I′ νṽ′j .Aj
gives a decomposition of Ai, which contradicts the hypothesis that it is
prime.

We now show the uniqueness for all normed processes.

Theorem 2 (Uniqueness of Decomposition). The strong parallel decomposition
of a closed normed process P is unique up to ∼l and permutation of the prime
factors.

Proof. By induction on N (P), and on the size of the domain dom(P). In the
case N (P) = 0, we are done by Lemma 6.

Case N (P) > 0:

• If |dom(P)| = 0: Suppose P is in its decomposition form, and we have a
second, different decomposition Q with P ∼l Q:

P = Ak11 |A
k2
2 | . . . |Aknn

Q = Al11 |A
l2
2 | . . . |Alnn

where the Ai’s are distinct (i.e. for i 6= j we have Ai 6∼l Aj) and ki ≥ 0,
li ≥ 0 (w.l.o.g. we can rewrite P and Q this way).

By induction hypothesis for every process R with N (R) < N (P) the
decomposition is unique.

Let m be such that km 6= lm, and that N (Aj) > N (Am) implies kj = lj
(i.e. Am has the maximal norm among the factors in which P and Q
differ). Without loss of generality we assume km > lm.

We now analyze different cases:

19

– If P = Akmm , i.e. P is the power of a prime:

By assumption, Am is the maximal (w.r.t. norm) prime factor in
which P and Q differ. Then Q cannot contain any prime factor Ar
(r 6= m) with a greater norm than Am. Now, if km = 1 (i.e., P is
prime), then Q is prime as well. It follows that Q is bisimilar to Am
and hence km = 1 = lm, contradicting our assumption that km > lm.

If km > 1:

∗ Assume lm = 0. As km > 1 we have dom(Am) = ∅, as we
cannot have multiple substitutions for the same variables. As

Am is prime, we must have a transition µ such that Am
µ−→ R,

P
µ−→ P ′ with exp(Am, P

′) = km−1 > 0. Moreover, we also have
N (P ′) < N (P) by Lemma 5.
If possible, we choose µ 6= τc. Then, since P ∼l Q, there exists

a Q′ with Q
µ−→ Q′. For every such Q′ we have exp(Am, Q

′) = 0
since lm = 0, and Q cannot contain any prime factor with greater
norm that Am, i.e. lr = 0 for all Ar with N (Ar) > N (Am).
As P ′ and Q′ have a unique prime decomposition by induction
hypothesis, we have a contradiction with exp(Am, P

′) = km−1 >
0 = exp(Am, Q

′).
If no norm-reducing µ 6= τc exists, we take a norm-reducing

µ = τc. Then, since P ∼l Q, there exists a Q′ with Q
µ−→ Q′.

µ must be simulated by one of the factors inside Q, and not by
a synchronization of two factors, as the latter would imply the
existence of a µ 6= τc (also norm-reducing, as it was part of a
norm-reducing τc), contradicting the assumption that no µ 6= τc
exists. Thus we can conclude as before.

∗ Hence assume lm > 0: If Am
µ−→ R with N (R) < N (Am) for

µ 6= τc, we have Q
µ−→ Q′ and since P ∼l Q there exists P ′ with

P
µ−→ P ′. We have exp(Am, P

′) ≥ km−1 > lm−1 = exp(Am, Q
′)

which contradicts P ∼l Q using the induction hypothesis.
If no such transition µ exists, we have Am

τc−→ R, hence Q
τc−→ Q′

and since P ∼l Q there exists P ′ with P
τc−→ P ′ and such that

P ′ ∼l Q′. We know that P cannot simulate this transition using
synchronization between the different copies of Am as this would
imply the existence of a visible norm-reducing transition µ (as
the transition τc is norm-reducing as well). Hence we have again
exp(Am, P

′) ≥ km − 1 > lm − 1 = exp(Am, Q
′). Moreover we

have P ′ ∼l Q′, and by the induction hypothesis P ′ and Q′ have
the same unique decomposition, contradicting exp(Am, P

′) >
exp(Am, Q

′).

– If there exists j 6= m such that kj > 0:

Let µ, T be such that P
µ−→ T and N (T) < N (P) and for all ν

such that P
ν−→ P ′ with N (P ′) < N (P) we have exp(Am, P

′) ≤
exp(Am, T). We now show that such µ, T exist. Note that because

20

of Lemma 3 and N (P) <∞ we have N (Ai) <∞ for all i with ki > 0.

This gives that if Ai
µ−→ A′i then Ai

µ′

−→ A′′i with N (A′′i) < N (Ai) by
Lemma 5. Suppose no such µ, T exist. Hence for no Ai with ki >

0, i 6= m we have Ai
µ−→ A′i, otherwise this would allow a transition

that would fulfill the above conditions. Hence (by Lemma 4) we
have dom(Ai) 6= ∅ for every i with ki > 0, i 6= m, which contradicts
|dom(P)| = 0. Hence such µ, T exist.

Note that exp(Am, T) ≥ km, as every transition by a factor different
from Am does not decrease the number of Am’s.

∗ Assume a µ and T satisfying the requirements above. If possible,

we select a µ 6= τc, then - as P ∼l Q - there existsQ′ withQ
µ−→ Q′

and Q′ ∼l T . Hence N (Q′) < N (Q) and there exists At with

At
µ−→ R.

If N (At) ≤ N (Am), then we have exp(Am, Q
′) ≤ lm < km ≤

exp(Am, T), which gives the contradiction to the induction hy-
pothesis.
If N (At) > N (Am) then exp(Am, Q

′) = lm + exp(Am, R), t 6= m
and kt = lt > 0 as Am is maximal. Consider now

P
µ−→ P ′ = Ak11 | . . . |A

kt−1
t | . . . |Aknn |R

with exp(Am, P
′) = km+exp(Am, R). Hence exp(Am, Q

′) = lm+
exp(Am, R) < km + exp(Am, R) = exp(Am, P

′) ≤ exp(Am, T).
This contradicts Q′ ∼l T using the induction hypothesis.

∗ If µ = τc for all µ and T satisfying the requirements above,
we distinguish two different cases: If the transition is matched
by only one factor, we can argue as above. If the transition is
matched by the synchronization of two factors (Ar

α−→ A′r and

As
ᾱ−→ A′s, where α is an output and ᾱ is an input), this implies

that we have two visible actions on two different factors, and at
least one of them (w.l.o.g. α) is norm-reducing. As all transitions
that maximize the number of Am’s are τc-transitions, α can only
be matched by Am, thus Am

α−→ A′m. Hence Q
α−→ Q′ with

exp(Am, Q
′) = lm−1 and for all P

α−→ P ′ we have exp(Am, P
′) ≥

km− 1 > lm− 1 = exp(Am, Q
′), which contradicts the induction

hypothesis using P ′ ∼l Q′.

• If |dom(P)| > 0: This is essentially the same proof as above. In the first
case (P is a power of a prime), we only have to consider the case km = 1 as
dom(Am) 6= ∅. Hence P is prime, and then Q is prime as well, and since
1 = km > lm we have Q ∼l Aj for some j 6= m, which gives Am ∼l Aj ,
which contradicts the distinctness of the prime factors.

In the second case we have to be more careful when proving that µ and
T with the desired properties exist. Once again, we suppose that they do

not exist, hence for no Ai with ki > 0, i 6= m we have Ai
µ−→ A′i, otherwise

21

this would allow a transition that would fulfill the conditions. Hence for
every i with ki > 0, i 6= m we have N (Ai) = 0, and by Lemma 4 we have
dom(Ai) 6= ∅. Let ṽ = dom(P) \ dom(Am) and consider

νṽ.P ≡ Akmm |νṽ.P ′ ∼l Akmm
where P ′ is P without the factor Akmm . Similarly

νṽ.Q ≡ |1≤i≤n νṽi.Alii
where ṽi = dom(Ai) ∩ ṽ.

As |dom(Akmm)| < |dom(P)| by induction hypothesis the decomposition of
Akmm is unique. We cannot have ṽi = ∅ for some i 6= m, as this contradicts
the uniqueness of the decomposition as Ai 6∼l Am. Hence dom(Ai) 6= ∅
and li = 1.

As Am is prime, for all i 6= m with li > 0 we have that νṽi.Ai ∼l Am|Ri
for some Ri. More precisely, we have νṽi.Ai ∼l Alm for some l ≥ 1, as
every other decomposition of Ri would contradict the primeness of Am as
we could rewrite Akmm using the Ri. In fact, since Am is the biggest (w.r.t.
to norm) factor in which P and Q differ, and there are no bigger factors
in P , all the factors in Q must have smaller norm. By Lemmas 2 and 4,
this gives l = 1.

We cannot have Q ∼l Ai as this would directly give a decomposition of
Ai. Hence there has to be another factor Ar which – by Lemma 4 – has
either dom(Ar) 6= ∅ or can execute a norm-reducing transition (or both).

– If dom(Ar) 6= ∅, consider ṽ′ = dom(Q) \ dom(Ai). Then – as above
– we have:

Q1 = νṽ′.Q ≡ Ai|νṽ′.Q′ ∼l νṽ′.P = P1

where Q′ is Q without the factor Ai.

– If Ar
η−→ A′r, we have

Q ∼l Ai|Ar|S
η−→ Ai|A′r|S = Q1

where S is Q without Ai and Ar. By P ∼l Q there exists P1 with

P
η−→ P1 ∼l Ai|A′r|S.

In both cases, we have a unique decomposition of Q1 and P1 by induction
hypothesis. Additionally exp(Ai, Q1) = 1 (since dom(Ai) 6= ∅), and by
the uniqueness of the decomposition exp(Ai, P1) = exp(Ai, Q1) = 1. Let
s be such that dom(As) ∩ dom(Ai) 6= ∅, ks > 0. Such s exists because
of dom(Am) (dom(Ai) and dom(P) = dom(Q). Then by hypothesis
As cannot do a transition, and exp(As, P1) = exp(As, P) = 1, which
contradicts exp(Ai, P1) = 1 because of the conflicting domains.

Hence µ and T with the desired properties exist, and the rest of the proof
is the same as above.

22

As a direct consequence, we have the following cancellation result.

Lemma 7 (Cancellation Lemma). For all closed normed processes A, B and
C, we have

A|C ∼l B|C ⇒ A ∼l B

Proof. As A, B and C are closed and normed, there exists a unique parallel
decomposition for each of them, i.e.

A ∼l A1| . . . |Ak,
B ∼l B1| . . . |Bl and
C ∼l C1| . . . |Cm.

Thus we have
A|C ∼l A1| . . . |Ak|C1| . . . |Cm and
B|C ∼l B1| . . . |Bl|C1| . . . |Cm.

These are prime decomposition, and by Theorem 2 they are unique. As A|C ∼l
B|C, they have to be identical. Hence k +m = l +m, thus k = l. This implies
that the decompositions of A and B have to be identical (up to ∼l), which
implies A ∼l B.

6. Decomposition w.r.t. Weak Labeled Bisimilarity

In this part, we discuss unique decomposition with respect to (weak) labeled
bisimilarity. Note that P ≈l Q implies |P |v = |Q|v for all closed processes P
and Q (cf. Lemma 3).

To obtain our unique decomposition result for weak labeled bisimilarity, we
need to define parallel prime with respect to weak labeled bisimilarity.

Definition 11 (Weakly Parallel Prime). A closed extended process P is weakly
parallel prime, if

• P 6≈l 0 and

• for all two closed processes Q and R such that P ≈l Q|R, we have Q ≈l 0
or R ≈l 0.

This definition is analogous to strongly parallel prime. However, as the
following example shows, in contrast to strong bisimilarity, not all normed pro-
cesses have a unique decomposition w.r.t. to weak bisimilarity.

Example 12. Consider P = νa.(out(a,m)|(in(a, x).(!in(b, y)))|in(a, x)). Then
we have P ≈l P |P , hence we have no unique decomposition. Note that this
example does not contradict our previous result, as we have P 6∼l P |P , as P →
P ′ ∼l 0, but P |P → P ′′ ∼l P and P |P 6→ P ′′′ for all P ′′′ ∼l 0. Hence, w.r.t.
strong labeled bisimilarity, P is prime.

23

If however we consider normed processes that contain neither restriction
(“ν”) nor conditionals, we have that every such normed process is finite (and
hence has a unique decomposition, as we show below).

Lemma 8. For every process P that does not contain restriction (“ν”) or con-
ditionals (“if then else”), we have that P is finite if and only if P is normed.

Proof. It is easy to see that every finite process is normed. To show the converse,
we use induction on the structure of P .

• P = 0: P is obviously finite and normed.

• P = {M/x}: P is finite and normed.

• P = Q|R: If N (P) < ∞ then N (Q) < ∞ and N (R) < ∞. By induction
hypothesis |Q|t <∞ and |R|t <∞, hence |P |t <∞.

• P = !Q: If N (P) <∞ then |Q|t = 0, hence |P |t <∞.5

• P = in(u, x).Q or P = out(u,M).Q: If N (P) < ∞ then N (Q) < ∞. By
induction hypothesis |Q|t <∞, hence |P |t <∞.

Similarly all processes that do not contain replication are finite.
In the following we show that all finite processes have a unique decomposition

w.r.t. to (weak) labeled bisimilarity. To prove this, we need some preliminary
lemmas about transitions and the domain of processes.

Lemma 9. For every closed process A with A →∗ A′, we have dom(A) =
dom(A′).

Proof. The domain of a process is the set of free variables from its frame for
which it defines a substitution. No transition can destroy an existing active
substitution. Similarly, if A executes only internal reductions, the only pos-
sibility for A to create a new active substitutions is under restrictions (using
rule ALIAS) Yet these restrictions cannot be removed as that would require a
labeled transition (rule OPEN-ATOM). Hence dom(A) = dom(A′).

Lemma 10. For every closed process A for which no sequence of transitions
A→∗ α−→ A′ exists, we have A ≈l A′ for all A′ with A→∗ A′.

Proof. Consider the relation R = {(X,Y)|A →∗ X and A →∗ Y }. We show
that it fulfills the conditions of labeled bisimilarity:

1. Obviously we have A ≈s A, which is closed under internal reductions
(Lemma 9). Hence for every (C,D) ∈ R we have C ≈s D.

5Moreover, Q ≈l 0 as dom(Q) = ∅.

24

2. Let (C,D) ∈ R. Hence A →∗ C and A →∗ D. If C → C ′, we have
A→∗ C ′, hence (C ′, D) ∈ R (and symmetrically for D → D′).

3. The last condition is trivially true. Suppose there exists (C,D) ∈ R such

that C
α−→ C ′, then we have A→∗ α−→ C ′, which contradicts the hypothesis.

The symmetrical case is analogous.

Obviously we have (A,A′) ∈ R for all A′ with A→∗ A′.

The next lemma captures the fact that every process which cannot perform a
visible transition and has an empty domain, is weakly bisimilar to 0 (the empty
process).

Lemma 11. If for a closed process A with dom(A) = ∅ there does not exist a

sequence of transitions A→∗ α−→ A′, then we have A ≈l 0.

Proof. Consider the relation R = {(A′, 0), (0, A′)|A →∗ A′}. We show that it
fulfills the conditions of labeled bisimilarity:

1. By hypothesis for all (C,D) ∈ R we have ∅ = dom(A) = dom(C) (as
internal reductions do not change the active substitutions, Lemma 9) and
dom(D) = dom(0) = ∅, hence C ≈s D.

2. Let (C,D) ∈ R. Assume w.l.o.g. A →∗ C and D = 0. If C → C ′, we
have A →∗ C ′, hence (C ′, 0) ∈ R with 0 →∗ 0. Note that symmetrically
0 cannot perform a transition, hence the condition is trivially true.

3. The last condition is trivially true. Suppose there exists (C,D) ∈ R such

that C
α−→ C ′, then we have A→∗ α−→ C ′, which contradicts the hypothesis.

Symmetrically by definition 0 cannot perform any transitions at all.

As we have (A, 0) ∈ R, this gives A ≈l 0, which we wanted to show.

As a direct consequence, this gives us that every non-zero process with empty
domain can do a visible transition.

Corollary 2. For every closed process A with dom(A) = ∅ and A 6≈l 0 there

exists a sequence of transitions A→∗ α−→ A′.

Now we can show in a first step that a decomposition into prime factors
exists.

Theorem 3 (Existence of Decomposition). Every closed finite extended process
P can be expressed as the parallel product of parallel primes, i.e. P ≈l P1| . . . |Pn
where for all 1 ≤ i ≤ n Pi is weakly parallel prime.

Proof. By induction on the visible depth of P , and on the size of the domain
dom(P).

• If |P |v = 0:

– If |dom(P)| = 0, then P ≈l 0 (by Lemma 11), hence the decomposi-
tion is the empty product.

25

– If |dom(P)| > 0, then P 6≈l 0, hence P is either parallel prime itself
(in which case we are done), or can be written as P ≈l Q|R with
Q 6≈l 0 and R 6≈l 0 (by the definition of parallel prime). As we
have dom(P) = dom(Q) ∪ dom(R) with dom(Q) ∩ dom(R) = ∅ and
|dom(Q)| > 0, |dom(R)| > 0 (by Lemmas 3 and 11 since Q 6≈l 0 and
R 6≈l 0), we have |dom(Q)| < |dom(P)| and |dom(R)| < |dom(P)|,
hence we can use the induction hypothesis to conclude.

• If |P |v > 0:

– If |dom(P)| = 0: P is either parallel prime itself, or can be written
as P ≈l Q|R. Then we have dom(P) = dom(Q) = dom(R) = ∅, and
|Q|v > 0, |R|v > 0 (by Corollary 2), hence |Q|v < |P |v, |R|v < |P |v
and we can apply the induction hypothesis.

– If |dom(P)| > 0: P is either parallel prime itself, or can be written
as P ≈l Q|R. We distinguish cases:

Suppose |Q|v > 0, |R|v > 0, hence |Q|v < |P |v, |R|v < |P |v by
Lemma 3 and we can apply the induction hypothesis.

Suppose w.l.o.g. |Q|v = 0 < |P |v, then |R|v = |P |v. Since Q 6≈l 0 by
Lemma 11 this implies |dom(Q)| > 0, hence |dom(R)| < |dom(P)|,
and we can use the induction hypothesis to conclude.

To prove uniqueness we use the following relation on processes.

Definition 12 (“�”). For two finite processes P and Q we have P � Q iff

• |P |v > |Q|v or

• |P |v = |Q|v and P →∗ Q

i.e. P has either a longer visible trace than Q or P can be reduced to Q using
internal reductions.

This is a partial order on finite processes modulo static equivalence. The
relation is reflexive as we have P →∗ P , and transitive. It is also antisymmetric:
Suppose P � Q and Q � P , then |P |v = |Q|v, P →∗ Q and Q →∗ P . Since P
and Q are finite, we cannot have P →∗ Q →∗ P for P 6≡ Q as this allows to
construct an infinite trace.

Now we can show the uniqueness of the decomposition. Again, we start by
considering only processes that cannot do transitions.

Lemma 12 (Uniqueness of Decomposition for Processes with Zero Depth). The
parallel decomposition of a closed finite process P with |P |t = 0 is unique (up
to ≈l).

Proof. The proof is analogous to the proof of Lemma 6, except that we argue
modulo weak labeled bisimilarity. For details, see Appendix B.

26

Theorem 4 (Uniqueness of Decomposition). The parallel decomposition of a
closed finite process P is unique (up to ≈l).

Proof. Again, we suppose that we have two different decompositions of P ,
namely

P = Ak11 |A
k2
2 | . . . |Aknn

Q = Al11 |A
l2
2 | . . . |Alnn

where P ≈l Qf , the Ai’s are distinct (i.e. for i 6= j we have Ai 6≈l Aj) and
ki, li ≥ 0.

We show that this leads to a contradiction by induction on a = |P |t + |Q|t,
and inside each case by induction on the size of the domain b = |dom(P)| =
|dom(Q)|. In case a = 0 we are done using Lemma 12. Case a > 0:

• If b = 0: If P ≈l 0 then the (empty) decomposition is unique. Hence
suppose 0 6≈l P ≈l Q.

Let m be such that Am is a maximal (w.r.t. �) Ai with ki 6= li (hence
km 6= lm). Such m exists as we assume two different decompositions, and
� is a partial order. Without loss of generality we assume km > lm.

In the following we use multiple times the fact that P ≈l Q and hence Q
can simulate each transition of P and vice versa. Moreover, for our proof

it is important that if P →∗ µ−→ P ′ such that |P |v = |P ′|v + 1, then the

labeled bisimilarity gives us Q →∗ µ−→→∗ Q′ with P ′ ≈l Q′, and in Q the
prime factors cannot communicate.

Suppose two prime factors Ar
β−→ R and As

β̄−→ S communicated (through
an internal reduction), then this has consumed at least two visible actions,
hence |Q′|v ≤ |Q|v−2 = |P |v−2 = |P ′|v−1 < |P ′|v (cf. Lemma 3). Thus
P ′ and Q′ do not have the same visible depth, which contradicts that fact
that they are bisimilar.

We now analyze different cases:

– If P ≈l Akmm , i.e. P is the power of a prime:

Note that Q cannot contain a prime factor Ar, r 6= m with Ar � Am:
Suppose lr > 0. By assumption, Am is a maximal (w.r.t. �) prime
factor in which P and Q differ, hence kr = lr > 0. This contradicts
P ≈l Akmm .

If km = 1 (i.e. P is prime), then Q is prime as well, and since 1 =
km > lm we have Q ≈l Aj for some j 6= m, which gives Am ≈l Aj ,
which contradicts the distinctness of the prime factors.

If km > 1:

∗ Assume lm = 0. We have Am →∗
µ−→ R for some µ ∈ Act (by

Am 6≈l 0 and Corollary 2) with |R|v = |Am|v − 1, so P →∗ µ−→ P ′

with exp(Am, P
′) = km − 1 > 0. Since P ≈l Q, there ex-

ists a Q′ with Q →∗ µ−→→∗ Q′. For every such Q′ we have

27

exp(Am, Q
′) = 0 since Am is maximal (w.r.t. �), li = 0 for

all Ai with |Ai|v > |Am|v and since communication between dif-
ferent prime factors – which could through the exchange of secret
channels lead to bigger (in the sense of visible depth) new prime
factors – is not possible. As P ′ and Q′ have a unique prime
decomposition by induction hypothesis, we have a contradiction
with exp(Am, P

′) = km − 1 > 0 = exp(Am, Q
′).

∗ Hence assume lm > 0:
Suppose lm < km − 1:

As Am →∗
µ−→ R, we have P →∗ µ−→ P ′ with exp(Am, P

′) = km−1

and since P ≈l Q there exists Q′ with Q→∗ µ−→→∗ Q′. Hence we
have exp(Am, P

′) = km − 1 > lm ≥ exp(Am, Q
′) which contra-

dicts P ≈l Q using the induction hypothesis.
Hence assume lm = km − 1:
We can write Q ≡ S|Almm , where S is composed of prime factors.
We now show that S ≈l Am.
First, since ∅ = dom(Am) = dom(P) = dom(Q) = dom(S) we
have S ≈s Am.
Second, suppose S

µ−→ S′. Since we have P ≈l Q, S|Almm
µ−→

S′|Almm = Q′ gives us that P →∗ µ−→→∗ P ′ (w.l.o.g., when µ = τ
we have P →∗ P ′). Since P ′ and Q′ have smaller total depth,
we can apply the induction hypothesis and both Q′ and P ′

have a unique prime decomposition, hence P ′ = R|Akm−1
m where

Am →∗
µ−→→∗ R (or Am →∗ R respectively). By the uniqueness

of the decomposition we have R ≈l S′, which is what we wanted
to show.
Third, suppose Am

µ−→ R. As we have P ≈l Q, P = Akmm
µ−→

R|Akm−1
m = P ′ gives us that Q →∗ µ−→→∗ Q′ (w.l.o.g., other-

wise Q →∗ Q′). Since P ′ and Q′ have smaller total depth, we
can apply the induction hypothesis and both Q′ and P ′ have
the same unique prime decomposition, hence R|Akm−1

m = P ′ ≈l
Q′ = S′|Akm−1

m for some S′. Thus R ≈l S′, as we can apply
cancellation since the induction hypothesis gives us unique de-
composition. Since Am is the biggest factor in which P and Q
differ, all other factors in S cannot be reduced to Am, and we

have S →∗ µ−→→∗ S′ (or S →∗ S′ respectively), which allows to
conclude.
Hence S ≈l Am, which contradicts either the distinctiveness of
the prime factors or the fact that Am is prime, and thus concludes
this case.

– If P is not the power of a prime, there exists j 6= m such that kj > 0.

Let µ ∈ Act, i and T be such that ki > 0, Ai →∗
µ−→ A′i, P →∗

µ−→
Ak11 | . . . |A

ki−1
t | . . . |Aknn |A′i = T and |P |v = |T |v + 1 and for all ν

such that P →∗ ν−→ P ′ with |P |v = |P ′|v + 1 we have exp(Am, P
′) ≤

28

exp(Am, T). We now show that such µ, T exist.

By b = 0 we know that for all Ai with ki > 0 or li > 0 we have
dom(Ai) = ∅. Hence, by Corollary 2 we have Ai →∗

α−→ A′i for all
such Ai. We then choose i such that ki > 0 and the transition
Ai →∗

α−→ A′i maximizes exp(Am, T). Note that exp(Am, T) ≥ km,
as a transition by a factor different from Am does not decrease the
number of Am’s, and by the argument above there are other factors
which can execute visible transitions.

As P ≈l Q there exists Q′ with Q→∗ µ−→→∗ Q′ and Q′ ≈l T . Hence

|Q|v = |Q′|v +1 and there exists At with At →∗
µ−→→∗ R as there can

be no communication between the Ai’s (as shown above).

∗ If |At|v ≤ |Am|v then exp(Am, Q
′) ≤ lm < km ≤ exp(Am, T),

which gives the contradiction to the induction hypothesis. Note
that as Am is the maximal prime factor in which P and Q dif-
fer, Aj →∗ Am implies kj = lj , hence Q′ cannot contain addi-
tional Am as a result of internal reductions - this would imply
exp(Aj , Q

′) 6= exp(Aj , T).

∗ If |At|v > |Am|v then t 6= m, and kt = lt > 0 (as Am is maxi-

mal). Consider P →∗ µ−→→∗ P ′ = Ak11 | . . . |A
kt−1
t | . . . |Aknn |R with

exp(Am, P
′) = km + exp(Am, R). Hence exp(Am, Q

′) = lm +
exp(Am, R) < km + exp(Am, R) = exp(Am, P

′) ≤ exp(Am, T).
This contradicts Q′ ≈l T using the induction hypothesis.

• If b > 0: This is essentially the same proof as above. In the first case
(P is a power of a prime), we only have to consider the case km = 1 as
dom(Am) 6= ∅. Hence P is prime, and then Q is prime as well, and since
1 = km > lm we have Q ≈l Aj for some j 6= m, which gives Am ≈l Aj ,
which contradicts the distinctness of the prime factors.

In the second case we have to be more careful when proving that µ and
T with the desired properties exist. Once again, we suppose that they

do not exist, hence for no Ai with ki > 0, i 6= m we have Ai →∗
µ−→ A′i,

otherwise this allows a transition that would fulfill the conditions. Hence
(by Lemma 11) we have dom(Ai) 6= ∅ for all i with ki > 0, i 6= m. Let
ṽ = dom(P) \ dom(Am) and consider

νṽ.P ≡ Akmm |νṽ.P ′ ≈l Akmm

where P ′ is P without the factor Akmm . Similarly

νṽ.Q ≡ |i νṽi.Alii

where ṽi = dom(Ai) ∩ ṽ.

As |dom(Akmm)| < |dom(P)| by induction hypothesis the decomposition of
Akmm is unique. We cannot have ṽi = ∅ for all i 6= m, as this contradicts
the uniqueness of the decomposition as Ai 6≈l Am. Hence dom(Ai) 6= ∅
and li = 1 for i 6= m.

29

As Am is prime, we have that νṽi.Ai ≈l Am|R for some i 6= m and
R. More precisely, we have νṽi.Ai ≈l Alm for some l ≥ 1, as all other
decompositions of R would contradict the primeness of Am. In fact, since
Am is the biggest (w.r.t. to �) factor in which P and Q differ, and there
are no bigger factors in P , all the factors in Q must be smaller. Using
Lemmas 2 and 11, this gives l = 1.

We cannot have Q ≈l Ai as this would directly give a decomposition of
Ai. Hence there has to be another factor Ar which – by Lemma 11 – has
either dom(Ar) 6= ∅ or can execute a visible transition (or both).

– If dom(Ar) 6= ∅, consider ṽ′ = dom(Q) \ dom(Ai). Then – as above
– we have:

νṽ′.Q ≡ Ai|νṽ′.Q′ = Q1 ≈l νṽ′.P = P1

where Q′ is Q without the factor Ai.

– If Ar →∗
η−→ A′r, we have

Q ≈l Ai|Ar|S →∗
η−→ Ai|A′r|S = Q1

where S is Q without Ai and Ar. By P ≈l Q there exists P1 such

that P →∗ η−→→∗ P1 ≈l Ai|A′r|S.

In both cases, we have a unique decomposition by induction hypothesis.
Additionally exp(Ai, Q1) = 1, and by the uniqueness of the decomposition
exp(Ai, P1) = exp(Ai, Q1) = 1. Let s be such that dom(As) ∩ dom(Ai) 6=
∅, ks > 0. Such s exists because of dom(Am) (dom(Ai) and dom(P) =
dom(Q). Then by hypothesis As cannot do a visible transition, and by
Lemma 10 exp(As, P1) = exp(As, P) = 1, which contradicts exp(Ai, P1) =
1 because of the conflicting domains.

Hence µ and T with the desired properties exist, and the rest of the proof
is the same as above.

Again we have a cancellation result using the same proof as above.

Lemma 13 (Cancellation Lemma). For all closed finite processes A, B and C,
we have

A|C ≈l B|C ⇒ A ≈l B

Proof. Similar to the proof of Lemma 7.

30

7. (Un)decidability of the decomposition

Although we proved in the previous sections that unique decompositions ex-
ist, it is not clear whether there are algorithms that compute the decomposition
given a process P as input. As the following example shows, it turns out that
the problem is at least as difficult as deciding the word problem in an equational
theory, i.e. whether an equality holds.

Example 13. Consider the following process

P = νd. ((if a = b then out(c, d) else νe.out(c, e)) |out(c, d))

where a and b are ground terms, and c is a free name. P is obviously finite and
normed. We can see that its unique decomposition depends (in both cases) on
the equation a = b.

• Consider weak labeled bisimilarity:

– If a = b is true, then the unique decomposition P ′ is

P ≈l P ′ = νd. (out(c, d)|out(c, d)) ,

i.e. we have one prime factor. A further decomposition is impossible,
since the restricted name d is used in both parts.

– If a = b is false, then the unique decomposition P ′ is

P ≈l P ′ = (νe.out(c, e))| (νd.out(c, d)) ,

i.e. we have two prime factors. Here, we can decompose further as
the left factor does not rely on d any more.

• Similarly, consider strong labeled bisimilarity:

– If a = b is true, then the unique decomposition P ′ is

P ∼l P ′ = νd. ((if a = b then out(c, d) else 0) |out(c, d)) ,

i.e. we have one prime factor. Note that although we can simplify
the else-case to 0, we cannot leave out the if entirely as it results
in an internal transition, and we are reasoning up to strong labeled
bisimilarity.

– If a = b is false, then the unique decomposition P ′ is

P ∼l P ′ = (if a = b then 0 else νe.out(c, e)) |νd. (out(c, d)) ,

i.e. we have two prime factors.

Hence the decomposition depends in both cases on whether a = b is true, which
is undecidable in general (see [15] for an example of an equational theory with
an undecidable word problem).

31

However in most practical applications in protocol verification the equational
theories are decidable. Unfortunately the problem remains undecidable even if
the word problem in the equational theory is decidable. To prove this we now
define the Unique Decomposition Decision Problem (UDDP) for weak (UDDP-
W) and strong labeled bisimilarity (UDDP-S).

Problem 1 (Unique Decomposition Decision Problem for Weak Labeled Bisim-
ilarity (UDDP-W)).
Input: An equational theory, a finite closed processes P = P1| . . . |Pn
Question: Is P in the unique decomposition form w.r.t. to weak labeled

bisimilarity?

Problem 2 (Unique Decomposition Decision Problem for Strong Labeled Bisim-
ilarity (UDDP-S)).
Input: An equational theory, a normed closed processes P =

P1| . . . |Pn
Question: Is P in the unique decomposition form w.r.t. to strong labeled

bisimilarity?

Remark 2. An algorithm A computing the unique decomposition of a process
P can be used to solve the above problems as follows. Given the algorithm A, we
construct the following algorithm B: Given a process P = P1| . . . |Pn as input to
the UDDP problem, execute A on each factor Pi to obtain Qi = A(Pi). If all
Qi consist of only one factor, return true, false otherwise.

We now show that this algorithms return true if and only if the answer to
the UDDP problem is true.

• If P1| . . . |Pn is the unique decomposition of P into prime factors, then the
algorithm cannot decompose any of the factors P1, . . . , Pn any more, and
hence returns true.

• If each Qi = A(Pi) consists of only one factor, we know that all Pi are
prime. If P contains only prime factors, by the uniqueness of the decom-
position (Theorems 2 and 4, respectively), we have that P is in the unique
decomposition form.

Although these problems might appear easier than actually computing the
normal form, it turns out that UDDP-S/W is undecidable in most cases, as we
show below. In a first step, we now show that the UDDP is undecidable even if
the word problem of the equational theory is decidable using a reduction from
the Post Correspondence Problem (PCP) [16].

Problem 3 (Post Correspondence Problem (PCP) [16]).
Input: Two lists of words α1, . . . , αn and β1, . . . , βn over an alphabet

A with at least two distinct symbols, and which is disjoint to
the set of indices I

Question: Is there a finite list of indices i1, . . . , in ∈ I such that
αi1 . . . αin = βi1 . . . βin?

32

The assumption that A and I are disjoint simplifies our proofs, but is not
essential as the applied π-calculus supports sorts.

Theorem 5 (Undecidability for Decidable Equational Theories). The Unique
Decomposition Decision Problem for Weak Labeled Bisimilarity (UDDP-W) and
the Unique Decomposition Decision Problem for Strong Labeled Bisimilarity
(UDDP-S) are undecidable even if the word problem in the equational theory
is decidable.

Proof. We show that an algorithm A deciding the UDDP-W (or UDDP-S re-
spectively) can be used to construct an algorithm B that decides the PCP.

Assume that we have an instance α1, . . . , αn and β1, . . . , βn of the PCP. Let

α1
iα

2
i . . . α

kαi
i = αi denote the kαi letters of the word αi. Consider the following

equational theory, where the equations are oriented (from left to right):

transα(nil) = nil

∀1 ≤ i ≤ n : transα(cons(i, x)) = cons(α1
i , cons(α2

i , cons(. . .

cons(α
kαi
i , transα(x)) . . .)))

transβ(nil) = nil

∀1 ≤ i ≤ n : transβ(cons(i, x)) = cons(β1
i , cons(β2

i , cons(. . .

cons(β
kβi
i , transβ(x)) . . .)))

Now consider the following processes:

PSol = in(c, x).if x = nil then 0 else

if transα(x) = transβ(x) then out(d, a) else νf.out(d, f)
P = νa. (PSol|out(d, a))

The idea is the following: the process PSol receives a string x on c, and checks if
it is not nil. It then checks using the equational theory whether x is a solution
to the PCP. The rules of the equational theory contain two functions, transα
and transβ , which allow to translate a list of indices into a list of characters
(the concatenation of the corresponding words αi and βi, respectively). PSol
then simply has to check if these concatenations of words are equal. Hence, if
and only if the initial PCP has a solution x, PSol is able to receive it on channel
c, and to output a on channel d (otherwise it outputs f).

Note now that P is finite, and that transα(x) = transβ(x) is decidable: we
only have a finite set of rules, and at each instance only one of them can be
applied. The last rule then allows to translate transx(nil) to nil, which then
allows to compare transα and transβ .

The algorithm B then works as follows: Given the input of the PCP, con-
struct the equational theory and processes as above, and return A(P).

If the instance of the PCP has a solution, there is a trace where PSol inputs
this solution on channel c, and hence outputs a. In such a case the process P
cannot be decomposed further due to the shared restricted name a, and hence
is in its unique decomposition form. Hence, A outputs true, which is also the
answer to the PCP.

33

However, if PSol is unable to output a on channel d as there is no solu-
tion which could be input, we have a decomposition with at least two factors,
since the restriction can be moved to the out(d, a) only (as in the above exam-
ple). Thus, if the instance of the PCP has no solution, P is not in its unique
decomposition form, and A outputs false, which is also the answer to the PCP.

Hence, B can be used to decide the PCP, which is undecidable [16].

Note that in the above equational theory equality (i.e. the word prob-
lem) is decidable, but unification is not: by unifying transα(cons(x, y)) with
transβ(cons(x, y)) we could find a solution for the PCP. Yet at least for the
UDDP-S, we have undecidability also for equational theories where the word
problem and unification are decidable.

Theorem 6. The Unique Decomposition Decision Problem for Strong Labeled
Bisimilarity (UDDP-S) is undecidable in general even if unification and the word
problem in the equational theory are decidable.

Proof. We show again that an algorithm A deciding UDDP-S can be used to
construct an algorithm B that decides PCP.

Assume that we have an instance α1, . . . , αn and β1, . . . , βn of the PCP. Let

α1
i , . . . , α

kαi
i denote the kαi letters of the word αi. Now consider the following

processes.

Pi = in(c, (x, y)).out(c, (cons(α1
i , cons(α2

i , cons(. . . , cons(α
kαi
i , x) . . .))),

cons(β1
i , cons(β2

i , cons(. . . , cons(β
kβi
i , y) . . .))))

Pnil = out(c, (nil, nil))
Pf = νf.out(d, f)

PSol = in(c, (x, y)).if x = nil then Pf else

if x = y then out(d, a) else Pf
PPCP = νc. (Pnil|!P1| . . . |!Pn|PSol)

P = νa. (νb.(out(b, e)|in(b, z)|in(b, z).PPCP)|out(d, a))

Here nil is a constant (i.e. function of arity zero) symbolizing the empty string,
and cons a function of arity two allowing to construct tuples. Note that we do
not associate any equations, hence unification is syntactic and decidable.

The idea is the following. The process Pnil outputs two empty strings on
the channel c, which is restricted in PPCP . Then the processes Pi encode the
possible words: they receive strings x and y on channel c, add their words, and
output the result again on c. Finally the process PSol receives two strings on c,
and checks if they are equal. Hence, if and only if the initial PCP has a solution,
PPCP is able to output a on channel d (otherwise it will output f).

Note now that P is normed, since there is the transition P → P ′ where
P ′ ∼l νa.out(d, a).

The algorithm B then works as follows: Given the input of the PCP, con-
struct the processes as above, and return A(P).

If the instance of the PCP does not have a solution, PPCP is unable to
output a on channel d and outputs f . Hence we have a decomposition of P

34

with at least two factors, since the restriction can be moved to the out(d, a)
only (as in the above proof). In this case P is not in its unique decomposition
form, hence A(P) and B return false.

If the instance of the PCP has a solution, then PPCP is able to output a.
In this case the process cannot be decomposed further, and P is in its unique
decomposition form. Hence A(P) and B return true.

Thus, if and only if the instance of the PCP has a solution, B returns true.
Hence, B solves the PCP, which is undecidable.

Note that we cannot use the same proof technique for UDDP-W as the
process PPCP is not finite.

However, it remains open whether under the same hypothesis the Unique
Decomposition Decision Problem w.r.t. Weak Labeled Bisimilarity (UDDP-W)
is decidable. A main issue is that deciding weak labeled bisimilarity for finite
processes given a decidable equational theory is still an open problem. Recently
Cheval, Cortier and Delaune [17] showed that observational equivalence for de-
terminate processes without replication (hence finite) and a subterm-convergent
equational theory is decidable. In the same direction, Liu and Lin [18] developed
a proof system for observational equivalence in the applied π-calculus. Their
system is sound and complete on finite processes which admit finite partition,
for example simple processes [17]. Yet it is open whether a similar result can be
obtained for all finite processes.

Even though the decomposition might not or not efficiently be computable
in general, its existence still holds, and can be used e.g. in proofs. Moreover, in
practical applications – that rarely use the full expressive power of the applied
π-calculus –, a decomposition might still be computable.

8. Related Work

Unique decomposition has been a field of interest in process algebra for
a long time. The first results for a subset of CCS were published by Moller
and Milner [2, 3]. They showed that finite processes with interleaving can be
uniquely decomposed with respect to strong bisimilarity. The same is true for
finite processes with parallel composition, where – in contrast to interleaving –
the parallel processes can synchronize. They also proved that finite processes
with parallel composition can be uniquely decomposed w.r.t. weak bisimilarity.

Later on Christensen [1] proved a unique decomposition result for normed
processes (i.e. processes with a finite shortest complete trace) in BPP with
interleaving or parallel composition w.r.t. strong bisimilarity.

Luttik and van Oostrom [19] provided a generalization of the unique decom-
position results for ordered monoids. They show that if the calculus satisfies
certain properties, the unique decomposition result follows directly. Recently
Luttik also extended this technique for weak bisimilarity [20].

However, these existing results focus on “pure” calculi such as CCS or BPP
or variants thereof. The applied π-calculus, as an “impure” variant of the π-
calculus designed for the verification of cryptographic protocols, has a more

35

P Q

R

x

y τc−→

P ′ Q′

R

x

y

Figure 7: Channel/Link Passing in the applied π-calculus. Note that after the transition P ′

does not contain y any more, hence there is no link to R.

P Q

R

x

y

scope of y

τc−→

P ′ Q′

R

x

y

scope of y

Figure 8: Scope extrusion in the applied π-calculus

complex structure and semantics. The main differences are the equational the-
ory to model cryptographic primitives and the active substitutions.

In particular, we cannot apply the general results by Luttik et al. [20, 19].
For their results to hold, it is necessary that all minimal elements (with respect
to the transition relation) are equivalent to 0 (the empty process). Yet, in the
applied π-calculus, active substitutions are minimal elements with respect to
the transition relation, which are different from 0. Thus we cannot apply their
results.

Additionally, the applied π-calculus inherits the expressive power of the π-
calculus including channel or link passing (sometimes also called mobility) and
scope extrusion. Consider three parallel processes P , Q and R, where P and
Q synchronize using an internal reduction τc, i.e. P |Q|R τc−→ P ′|Q′|R (see
Figures 7 and 8). Channel passing allows a process P to send a channel y he
shares with R to process Q (Figure 7). Scope extrusion arises for example when
P sends a restricted channel y he shares with R to Q, since the scope after
the transition includes Q′ (Figure 8). It is of particular importance for unique
decomposition since two parallel processes sharing a restricted channel might
not be decomposable and hence a simple reduction might “fuse” two prime
factors, which is not possible in BPP or CCS.

An extended abstract presenting the results of Sections 5 and 6 without the
detailed proofs was presented at FoSSaCS 2013 [21].

36

Type of Process Strong Bisimilarity (∼l) Weak Bisimilarity (≈l)
finite unique cf. Thm. 1 unique cf. Thm. 3

normed unique cf. Thm. 1 (Counter-)Example 8
general (Counter-)Example 11 (Counter-)Example 11

Table 1: Summary of unique decomposition results for the applied π-calculus

Equational Theory UDDP-W UDDP-S
word prob. undecidable undecidable, Thm. 5 undecidable, Thm. 5
word prob. decidable undecidable, Thm. 5 undecidable, Thm. 5
unification decidable open undecidable, Thm. 6

Table 2: Summary of decidability results for unique decomposition

9. Conclusion

We started by recalling the applied π-calculus, in particular its syntax, se-
mantics and notions of equivalence. We then presented two unique decomposi-
tion results for subsets of the applied π-calculus. We showed that every closed
finite process can be decomposed uniquely with respect to weak labeled bisimi-
larity, and that every normed process can be decomposed uniquely with respect
to strong labeled bisimilarity. Table 1 sums up our results.

Unfortunately it turned out that in general the problem of deciding whether
a process is in its unique decomposition form (and thus also computing the
unique decomposition) is undecidable. This is due to the complexity of the
equational theories (which can be undecidable), yet even for equational theories
where the word problem is decidable we were able to prove undecidability using
a reduction from the Post correspondence problem, relying now on restrictions.
Moreover, we showed that the unique decomposition decision problem remains
undecidable for normed processes even if unification is decidable in the equa-
tional theory, again using a reduction from the PCP. It remains open if the
problem is decidable for finite processes w.r.t. weak labeled bisimilarity in the
same setting. However, the mere existence of the decomposition remains useful
in proofs as it provides a normal form with useful properties, even if it might
not be computable in general. Moreover, for typical applications in practice,
we still expect the computation of the decomposition to be feasible – as future
work we would like to identify such decidable subclasses. Table 2 sums up our
results.

As the concept of parallel prime decomposition has its inherent limitations
with respect to replication (“!”, see Example 11), a natural question is to find
an extension to provide a normal form even in cases with infinite behavior. A
first result in this direction has been obtained by Hirschkoff and Pous [22] for
a subset of CCS with top-level replication. They define the seed of a process
P as the process Q, Q bisimilar to P , of least size (in terms of prefixes) whose
number of replicated components is maximal (among the processes of least size),
and show that this representation is unique. They also provide a similar normal

37

form result for the restriction-free-π-calculus (i.e. no “ν”). It remains however
open if a similar result can be obtained for calculi with restriction such as the
applied π-calculus, or even the π-calculus.

Acknowledgements. We would like to thank Bruno Blanchet, Cédric Fournet,
Steve Kremer, Olivier Pereira and the anonymous referees for their valuable
comments, and Ralf Sasse and José Meseguer for the helpful discussions on
the decidability of various equational theories. This work was partly supported
by the ANR project ProSe (decision ANR 2010-VERS-004), and conducted
with the support of the ”Digital trust” Chair from the University of Auvergne
Foundation.

References

[1] S. Christensen, Decidability and decompostion in process algebras, Ph.D.
thesis, School of Computer Science, University of Edinburgh (1993).

[2] R. Milner, F. Moller, Unique decomposition of processes, Theoretical Com-
puter Science 107 (2) (1993) 357–363.

[3] F. Moller, Axioms for concurrency, Ph.D. thesis, School of Computer Sci-
ence, University of Edinburgh (1989).

[4] R. Milner, Communication and Concurrency, International Series in Com-
puter Science, Prentice Hall, 1989.

[5] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, part i,
Information and Computation 100 (1) (1992) 1–40.

[6] M. Abadi, C. Fournet, Mobile values, new names, and secure communica-
tion, in: Proceedings of the 28th Symposium on Principles of Programming
Languages (POPL’01), ACM, New York, 2001, pp. 104–115.

[7] J. Dreier, P. Lafourcade, Y. Lakhnech, Defining privacy for weighted votes,
single and multi-voter coercion, in: Proceedings of the 17th European Sym-
posium on Research in Computer Security (ESORICS’12), Vol. 7459 of
LNCS, Springer, Pisa, Italy, 2012, pp. 451–468.

[8] J. F. Groote, F. Moller, Verification of parallel systems via decomposition,
in: Proceedings of the Third International Conference on Concurrency The-
ory (CONCUR’92), Springer-Verlag, London, UK, 1992, pp. 62–76.

[9] U. Nestmann, B. C. Pierce, Decoding choice encodings, Information and
Computation 163 (1) (2000) 1–59.

[10] C. Palamidessi, O. M. Herescu, A randomized encoding of the pi-calculus
with mixed choice, Theoretical Computer Science 335 (2-3) (2005) 373–404.

[11] S. Delaune, S. Kremer, M. Ryan, Verifying privacy-type properties of elec-
tronic voting protocols, Journal of Computer Security 17 (2009) 435–487.

38

[12] J. Liu, A proof of coincidence of labeled bisimilarity and observational
equivalence in applied pi calculus, Tech. Rep. ISCAS-SKLCS-11-05, Lab-
oratory for Computer Science, Institute of Software, Chinese Academy of
Sciences, available at http://lcs.ios.ac.cn/ jliu/ (2011).

[13] J. Liu, H. Lin, A complete symbolic bisimulation for full applied pi calculus,
Theoretical Computer Science 458 (2012) 76–112.

[14] M. Arapinis, J. Liu, E. Ritter, M. Ryan, Stateful applied pi calculus, in:
Principles of Security and Trust - Third International Conference, POST
2014, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceed-
ings, Vol. 8414 of Lecture Notes in Computer Science, Springer, 2014, pp.
22–41.

[15] C. Marché, The word problem of acd-ground theories is undecidable, Inter-
national Journal of Foundations of Computer Science 3 (1) (1992) 81–97.

[16] E. L. Post, A variant of a recursively unsolvable problem, Bulletin of the
American Mathematical Society 52 (1946) 264–268.

[17] V. Cheval, V. Cortier, S. Delaune, Deciding equivalence-based properties
using constraint solving, Theoretical Computer Science 492 (2013) 1–39.

[18] J. Liu, H. Lin, Proof system for applied pi calculus, in: C. Calude, V. Sas-
sone (Eds.), Theoretical Computer Science, Vol. 323 of IFIP Advances in
Information and Communication Technology, Springer Berlin Heidelberg,
2010, pp. 229–243.

[19] B. Luttik, V. van Oostrom, Decomposition orders – another generalisation
of the fundamental theorem of arithmetic, Theoretical Computer Science
335 (2-3) (2005) 147–186.

[20] B. Luttik, Unique parallel decomposition in branching and weak bisim-
ulation semantics, in: J. C. M. Baeten, T. Ball, F. S. de Boer (Eds.),
Theoretical Computer Science - 7th IFIP TC 1/WG 2.2 International Con-
ference, TCS 2012, Amsterdam, The Netherlands, September 26-28, 2012.
Proceedings, Vol. 7604 of Lecture Notes in Computer Science, Springer,
2012, pp. 250–264.

[21] J. Dreier, C. Ene, P. Lafourcade, Y. Lakhnech, On unique decomposition
of processes in the applied pi-calculus, in: Proceedings of the 16th In-
ternational Conference Foundations of Software Science and Computation
Structures (FOSSACS’13), Vol. 7794 of LNCS, Springer, Rome, Italy, 2013,
pp. 50–64.

[22] D. Hirschkoff, D. Pous, On bisimilarity and substitution in presence of
replication, in: Proceedings of the 37th International Colloquium on Au-
tomata, Languages and Programming (ICALP’10), Vol. 6199 of LNCS,
Springer, 2010, pp. 454–465.

39

Appendix A. Proof of Lemma 3

Let P , Q and R be closed extended processes.

1. By definition of the lengtht and lengthv functions.

2. Suppose P = Q|R. Let wP denote a maximal (with respect to lengthv)
complete (i.e. no further transitions are possible) sequence of transitions
of P , i.e. lengthv(wP) = |P |v. By definition of the function lengthv we
only count external transitions in w, which by rule PAR can originate
either from Q or R, hence |P |v ≤ |Q|v + |R|v. Similarly, let wQ and wR
denote maximal (with respect to lengthv) complete sequence of transitions
of Q and R respectively, i.e. lengthv(wQ) = |Q|v and lengthv(wR) = |R|v.
Then wP = wQwR is a complete sequence of transitions of P , hence |P |v ≥
|Q|v + |R|v, thus |P |v = |Q|v + |R|v.

3. Suppose P = Q|R. Let wP denote a maximal (with respect to lengtht)
complete sequence of transitions of P , i.e. lengtht(wP) = |P |t. As the
length is maximal, there can be no synchronizations between Q and R,
as otherwise we can build a longer trace by replacing this synchronization
with two external reductions. Hence all transitions originate either from Q
or R, hence |P |v ≤ |Q|t + |R|t. Similarly, let wQ and wR denote maximal
(with respect to lengtht) complete sequences of transitions of Q and R
respectively, i.e. lengtht(wQ) = |Q|t and lengtht(wR) = |R|t. Then wP =
wQwR is a complete sequence of transitions of P , hence |P |t ≥ |Q|t+ |R|t,
thus |P |t = |Q|t + |R|t.

4. Suppose P = Q|R. Let wQ and wR denote (one of) the smallest (with
respect to lengthn) complete (i.e. no further transitions are possible) se-
quence of transitions of Q and R respectively. Then wP = wQwR is a
complete sequence of transitions of P , hence N (P) ≤ N (Q) +N (R). By
contradiction, assume N (P) < N (Q) +N (R). Then there is a complete
trace w′P with lengthn(w′P) < lengthn(wP). If w′P contains no synchro-
nizations between Q and R, each transition originates either from Q or
R, hence giving shorter complete traces for Q and/or R, contradicting the
minimality of wQ and wR. If w′P contains a synchronization between Q
and R, this can be rewritten into two external transitions of Q and R,
resulting in a complete trace of the same length (by definition of lengthn),
leading to a contradiction. Hence N (P) = N (Q) +N (R).

5. Suppose P = Q|R. Then dom(P) = dom(Q) ∪ dom(R) and dom(Q) ∩
dom(R) = ∅ as we cannot have two substitutions defining the same vari-
able. Hence |dom(P)| = |dom(Q)|+ |dom(R)|.

6. Assume P ≈l Q, but by contradiction w.l.o.g. |P |v > |Q|v. Let ws be a
sequence of transitions of P with maximal number of visible transitions,
i.e. lengthv(ws) = |P |v. By the definition of ≈l each visible transition of
P can be matched by a visible transition by Q, giving a trace with more
visible transitions than |Q|v, leading to a contradiction. Hence |P |v =
|Q|v.

40

7. Assume P ∼l Q, but by contradiction w.l.o.g. |P |t > |Q|t. Let ws be
a sequence of transitions of P with maximal number of transitions, i.e.
lengtht(ws) = |P |t. By the definition of ∼l each transition of P can be
matched by a transition by Q, giving a trace with more transitions than
|Q|t, leading to a contradiction. Hence |P |t = |Q|t.

8. Assume P ∼l Q but by contradiction w.l.o.g. N (P) < N (Q). Let wi
be a sequence of transitions of P with minimal number of transitions, i.e.
lengthn(wi) = N (P), and ending in a state P ′ 6→. By the definition of ∼l
each transition of P can be matched by a transition by Q, giving a trace
with less transitions than N (Q) and ending in a state Q′ 6→ as Q′ ∼l P ′
by definition, leading to a contradiction. Hence N (P) = N (Q).

Appendix B. Proof of Lemma 12

Again, we suppose that we have two different decompositions of P , namely

P = Ak11 |A
k2
2 | . . . |Aknn

Q = Al11 |A
l2
2 | . . . |Alnn

where P ≈l Qf , the Ai’s are distinct (i.e. for i 6= j we have Ai 6≈l Aj) and
ki, li ≥ 0.

We show that this leads to a contradiction by induction on the size of the
domain b = |dom(P)| = |dom(Q)|.

• If b = 0, then P ≈l 0 (by Lemma 11), hence the decomposition is the
unique empty product.

• If b > 0, then P 6≈l 0.

Note that since ∀i Ai 6≈l 0 and a = |P |t + |Q|t = 0, we have dom(Ai) 6= ∅
by Lemma 11, which implies ki, li ≤ 1 as we cannot have two substitutions
defining the same variable.

Let m be such that km 6= lm. Without loss of generality we assume
1 = km > lm = 0.

Obviously we have dom(P) = dom(Q). Let ṽ = dom(P)\dom(Am). Then
we have (by Lemma 3 and rules ALIAS and NEW-PAR):

νṽ.P ≡ Am|νṽ.P ′ ≈l Am

where P ′ is P without the factor Am. Similarly

νṽ.Q ≡ |i∈I νṽi.Ai | |i/∈I νṽi.Alii ≈l |i∈I νṽi.Ai

where I = {i|dom(Ai) ∩ dom(Am) 6= ∅ and li = 1}, and where ṽi =
dom(Ai) ∩ ṽ.

By νṽ.P ≈l νṽ.Q we have Am ≈l |i∈I νṽi.Ai. If |I| = 0, we have Am ≈l 0
which contradicts the hypothesis that Am is prime. Similarly for |I| >

41

1, we have a decomposition for Am into several processes, which also
contradicts Am prime.

For |I| = 1, i.e. Am ≈l νṽi.Ai for the only index i in I, we have the
following cases: If ṽi = ∅, we have a contradiction to the distinctness
hypothesis of the Aj ’s since Am ≈l Ai with m 6= i as lm = 0 6= li = 1.

If ṽi 6= ∅ we have dom(Am) (dom(Ai). Now consider ṽ′ = dom(Q) \
dom(Ai). Then - as above - we have:

νṽ′.Q ≡ Ai|νṽ′.Q′ ≈l Ai

where Q′ is Q without the factor Ai. Similarly

νṽ′.P ≡ |j∈I′ νṽ′j .Aj | |j /∈I′ νṽ′j .A
lj
j ≈l |j∈I′ νṽ

′
j .Aj

where I ′ = {j|dom(Aj)∩dom(Ai) 6= ∅ and kj = 1} and ṽ′j = dom(Aj)∩ṽ′.
Note now that since dom(Am) (dom(Ai), and as dom(Ai) = dom(|j∈I′ νṽ′j .Aj)
(by dom(P) = dom(Q)) we have |I ′| > 1, hence Ai ≈l |j∈I′ νṽ′j .Aj gives
a decomposition of Ai, which contradicts the hypothesis that it is prime.

42

