Probabilistic Self-stabilizing Vertex Coloring in
Unidirectional Anonymous Networks

Samuel Bernard*, Stéphane Devismes®, Katy Paroux!, Maria
Potop-Butucaru*, and Sébastien Tixeuil*

* Université Pierre et Marie Curie - Paris 6
° Université Grenoble I
T INRIA Bretagne Atlantique

Abstract. A distributed algorithm is self-stabilizing if after faults and
attacks hit the system and place it in some arbitrary global state, the
system recovers from this catastrophic situation without external inter-
vention in finite time. Unidirectional networks preclude many common
techniques in self-stabilization from being used, such as preserving local
predicates. The focus of this work is on the classical vertex coloring prob-
lem, that is a basic building block for many resource allocation problems
arising in wireless sensor networks.

In this paper, we investigate the gain in complexity that can be obtained
through randomization. We present a probabilistically self-stabilizing al-
gorithm that uses k states per process, where k is a parameter of the
algorithm. When k = A + 1, the algorithm recovers in expected O(An)
actions. When k may grow arbitrarily, the algorithm recovers in expected
O(n) actions in total. Thus, our algorithm can be made optimal with
respect to space or time complexity. Our case study hints that random-
ization could help filling the complexity gap between bidirectionnal and
unidirectionnal networks.

Keywords: Wireless sensor networks, distributed algorithms, self-stabilization,
unidirectional anonymous networks, lower and upper bounds, coloring problem,
randomization.

1 Introduction

Wireless sensor networks are already used in a variety of fields, like home ap-
pliances, irrigation, medicine, monitoring, real-time control systems, military
defense applications, etc. Recent advances in hardware design and manufactur-
ing, computing and storage capabilities of the sensing devices themselves, have
made it practically possible to envision very large size sensor networks compris-
ing hundreds of thousands or even millions of autonomous sensor nodes. The
scalability requirements of future wireless sensor networks drives new problems
to application designers. For example, it becomes unrealistic to ensure human
maintainance of such networks, to assume unique identifiers will be available, or

to expect every sensor node to have exactly the same communication capabili-
ties as its neighbors. Moreover, when sensor networks are deployed in unattended
environments, it is likely that faults and attacks will hit the system.

One of the most versatile technique to ensure forward recovery of distributed
systems is that of self-stabilization [6,7]. A distributed algorithm is self-stabilizing
if after faults and attacks hit the system and place it in some arbitrary global
state, the system recovers from this catastrophic situation without external (e.g.
human) intervention in finite time. Self-stabilization makes no hypotheses about
the extent or the nature of the faults and attacks that may harm the system, yet
may induce some overhead (e.g. memory, time) when there are no faults, com-
pared to a classical (i.e. non-stabilizing) solution. Computing space and time
bounds for particular problems in a self-stabilizing setting is thus crucial to
evaluate the impact of adding forward recovery properties to the system.

The vast majority of self-stabilizing solutions in the literature [7] considers
bidirectional communications capabilities, i.e. if a process u is able to send in-
formation to another process v, then v is always able to send information back
to u. This assumption is valid in many cases, but cannot capture the fact that
asymmetric situations may occur, e.g. in wireless sensor networks, it is possible
that u is able to send information to v yet v cannot send any information back
to u (u may have a wider range antenna than v). Asymmetric situations, that
we denote in the following under the term of unidirectional networks, preclude
many common techniques in self-stabilization from being used, such as preserv-
ing local predicates (a process v may take an action that violates a predicate
involving its outgoing neighbors without v knowing it, since u cannot get any
input from them).

Related works. Investigating the possibility of self-stabilization in unidirectional
networks such as those resulting from wireless communication medium was re-
cently emphasized in several papers [1, 3-5,8-10]!. In particular, [4] shows that in
the simple case of acyclic unidirectional networks, nearly any recursive function
can be computed anonymously in a self-stabilizing way. Computing global tasks
in a general topology requires either unique identifiers [1,3, 8] or distinguished
processes [5,9,10].

The paper most related to our work [2] studies deterministic solutions to the
self-stabilizing vertex coloring problem in unidirectional networks. To satisfy the
vertex coloring specification in unidirectional networks, an algorithm must ensure
that no two neighboring nodes (i.e. two nodes u and v such that either u can send
information to v, or v can send information to u, but not necessarily both) have
identical colors. When deterministic solutions are considered, [2] proves a lower
bound of n states per process (where n is the network size) and a recovery time
of at least n(n — 1)/2 actions in total (and thus §2(n) actions per process). [2]
also presents a deterministic algorithm for vertex coloring with matching upper
bounds that performs in arbitrary graphs.

! 'We do consider here the overwhelming number of contributions that assume a uni-
directional ring shaped network, please refer to [7] for additional references

Those high lower bounds results contrast with the many low upper bounds
existing in the litterature about bidirectional networks. Indeed, both determin-
istic and probabilistic solutions to the vertex coloring problem [11,13] in bidi-
rectional networks require only a number of states that is proportional to the
network maximum degree A, and the number of actions per process in order
to recover is O(A) (in the case of a deterministic algorithm) or expected O(1)
(in the case of a probabilistic one). Moreover, since the length of the chain of
causality after a correcting action is executed is only one, strict Byzantine con-
tainement can be achieved [14].

Our contribution. In this paper, we investigate the possibility of lowering com-
plexity results for the vertex coloring problem in unidirectional networks by
means of randomization. We first observe that at least A + 1 states per process
and a recovery time of {2(n) actions in total (and thus £2(1) actions per process)
are required. We present a probabilistically self-stabilizing algorithm for vertex
coloring that uses k states per process, where k is a parameter of the algorithm.
When k = A+1 (i.e. when the number of used colors is optimal), the algorithm
recovers in expected O(An) actions in total. When k may grow arbitrarily, the
algorithm recovers in expected O(n) actions in total (i.e. an optimal — constant
— number of actions per node). Thus, our algorithm can be made optimal with
respect to space or time complexity. This results solves the open question of [2]
with respect to the computing power of probabilistic protocols. Our results are
particularly well suited to dynamic wireless sensor networks as we make no hy-
pothesis about the availability of unique identifiers for the various nodes, i.e. the
participants are completely anonymous.

Outline. The remaining of the paper is organized as follows: Section 2 presents
the programming model and problem specification, while Section 3 presents our
randomized solution to the problem. Section 4 gives some concluding remarks
and open questions.

2 Model

Distributed Program model. A distributed program consists of a set V of n
processes which may not have unique identifiers. Therefore, processes will be
referred in the following as anonymous. A process maintains a set of variables
that it can read or update, that define its state. Each variable ranges over a fixed
domain of values. We use small case letters to denote singleton variables, and
capital ones to denote sets. A process contains a set of constants that it can read
but not update. A binary relation F is defined over distinct processes such that
(i,7) € E if and only if j can read the variables maintained by i; i is a predecessor
of 7, and j is a successor of i. The set of predecessors (resp. successors) of i is
denoted by P.i (resp. S.i), and the union of predecessors and successors of i
is denoted by N.i, the neighbors of i. In some case, we are interested in the
iterated notions of those sets, e.g. S.i° =i, S.i' = S.i, ..., S.i% = UjeS,iS.jk_l.

The values 8.1, dout.i, and 0.0 denote respectively |P.i|, |S.i|, and |N.i|; Ajn,
Aout, and A denote the maximum possible values of d;,,.7, 0.7, and 0.7 over all
processes in V.

An action has the form (name) : (guard) — (command). A guard is a
Boolean predicate over the variables of the process and its communication neigh-
bors. A command is a sequence of statements assigning new values to the vari-
ables of the process. We refer to a variable v and an action a of process ¢ as
v.4 and a.i respectively. A parameter is used to define a set of actions as one
parameterized action.

A configuration of the distributed program is the assignment of a value to
every variable of each process from its corresponding domain. Each process con-
tains a set of actions referred in the following as algorithm. In the following we
consider that processes are uniform. That is, all the processes contain the exact
same set of actions. An action is enabled in some configuration if its guard is
true in this configuration. A computation is a maximal sequence of configura-
tions such that for each configuration +;, the next configuration ~; 1 is obtained
by executing the command of at least one action that is enabled in ;. Maxi-
mality of a computation means that the computation is infinite or it eventually
reaches in a terminal configuration where none of the actions are enabled. silent.

A scheduler is a predicate on computations, that is, a scheduler is a set
of possible computations, such that every computation in this set satisfies the
scheduler predicate. The unfair distributed scheduler, that we use in the sequel,
corresponds to predicate true (that is, all computations are allowed).

A configuration conforms to a predicate if this predicate is true in this con-
figuration; otherwise the configuration violates the predicate. By this definition
every configuration conforms to predicate true and none conforms to false. Let
R and S be predicates over the configurations of the program. Predicate R is
closed with respect to the program actions if every configuration of the computa-
tion that starts in a configuration conforming to R also conforms to R. Predicate
R converges to S if R and S are closed and any computation starting from a
configuration conforming to R contains a configuration conforming to S. The
program deterministically stabilizes to R if and only if true converges to R. The
program probabilistically stabilizes to R if and only if true converges to R with
probability 1.

Problem specification. Consider a set of colors ranging from 0 to k — 1, for
some integer k > 1. FEach process ¢ defines a function color.i that takes as
input the states of ¢ and its predecessors, and outputs a value in {0,...,k — 1}.
The unidirectional vertex coloring predicate is satisfied if and only if for every
(i,7) € E, color.i # color.j.

3 Probabilistic self-stabilizing unidirectional coloring

We first observe two lower bounds that hold for any kind of program that is
self-stabilizing or probabilistically self-stabilizing for the unidirectional coloring
specification:

1. The minimal number of states per process is A+ 1. Consider a bidirectional
clique network (that is (A +1)-sized), and assume the output of the coloring
protocol is now fixed (that is, the network is vertex colored). Suppose that
only A states per process are used, then at least two processes i and j have
the same state, and have the same view of their predecessors. As a result
color.i = color.j, and i and j being neighbors, the unidirectional coloring
predicate does not hold in this terminal configuration.

2. The minimal number of moves overall is £2(n). Consider a unidirectional
chain of processes which are all initially in the same state. For every process
but one, the color is identical to that of its predecessor. Since a change of
state may only resolve two conflicts (that of the moving node and that of
its successor), a number of overall moves at least equal to |n/2] is required,
thus £2(n) moves.

The algorithm presented as Algorithm 1 can be informally described as fol-
lows. If a process has the same color as one of its predecessors then it chooses a
new color in the set of available colors (i.e. the set of colors that are not already
used by any of its predecessors), or retains its current color.

The algorithm is only slightly different from its classical self-stabilizing bidi-
rectional counterpart [11] by the fact that a node may retain its own color (the
random color is always changed in [11]). This is due to the fact that some partic-
ular networks could drive the classical probabilistic protocol into a deterministic
behavior. The example presented in Figure 1.a depicts an execution of a two
nodes network such that boths nodes are both predecessor and successor of one
another. With our definition, each node has d.i = 1, and thus only two colors are
available for each of them. If node may not reuse their own color, then they must
choose a different one. Only one such color is available, and unfortunately this
color is the same for both of them. As a result, when both nodes start with the
same color 0, and are always scheduled for execution simultaneously, they both
choose the same (different form 0) color 1. The argument can then be repeated
to induce an infinite loop that never stabilizes. Such a scenario may not happen
with our scheme, since there always exists a positive probability that even if
selected simultaneously, two neighboring such node choose different colors (see
execution in Figure 1.b).

The colors are chosen in a set of size k, where k is a parameter of the al-
gorithm, using uniform probability 1/k. In the following, we show that Algo-
rithm 1 is probabilistically self-stabilizing for the unidirectional coloring problem
if k > A. To reach that goal we proceed in two steps: first we show that any
terminal configuration satisfies the unidirectional coloring predicate (Lemma 1);
secondly, we show that the expected number of steps to reach a terminal config-
uration starting from an arbitrary one is bounded (Lemma 6).

Lemma 1. Any terminal configuration satisfies the unidirectional coloring pred-
cate.

(a) Degenerate deterministic execution (b) Still probabilistic execution

Fig. 1. Executions of coloring process in degenerate networks

Algorithm 1 A uniform probabilistic coloring algorithm for general unidirec-

tional networks

process ¢

const
k : integer
P.i : set of predecessors of i
C.i : set of colors of nodes in P.i

parameter
p : node in P.g

var
c.i : color of node 7

function
random(S : set of colors) : color
// returns a color in S chosen with uniform probability

action
p€ Pai,ci=cp—
c.t :=random (({0,...,k — 1} \ C.i) U{c.i})

Proof. In a terminal configuration, every process i satisfies Vj € P.i,c.i # c.j
and Vj € S.i,c.i # c.j. Hence, in a terminal configuration, every process i has a
color that is different from those of its neighbors, which proves the lemma.

Definition 1 (Conflict). Let p be a process and vy a configuration. The tuple
(p,y) is called a conflict if and only if there exists g € P.p (the predecessors of
p) such that c.q = c.p in 7.

Lemma 2. Assume k > A. The number X1 of conflicts created by the color
change of Process p is equal to a sum of a.p Bernoulli random variables with
common parameter 3.p, where a.p = 6.p — d;n.p and

1 1
— <)
k—|Cp| " k—0in.p

B.p (1)

Proof. The idea of the proof is illustrated in Figure 2 for k = 5, d.p = 4, and
Oin-p = 1 = |C.p|, where process p is denoted in dark gray. The random variable
X is the sum of 3 Bernoulli random variables [12] with common parameter 1/4.

o
O— @&0{8
O,)

(a) A case where p may (b) A case where p may (c) A case where p may
create 0 or 3 conflicts create at most 2 conflicts create at most 1 conflict

() () ()
O—@-0 O—¢ @
() O o

(d) A case where p may (e) A case where p may (f) A case where p may
not create any conflict create 0 or 2 conflicts create at most 1 conflict

Fig. 2. Illustrating the number of conflicts with color change, for k = 5, J.p = 4, and

When a process p actually changes its color, this new color is chosen in a set
of k — |C.p| colors which contains at least k — d;,,.p colors. That is, there are k
colors and it cannot choose a color chosen by one of its predecessors, therefore

|C.p| colors are removed from the set of possible choices, which means that at
most J;,.p colors are removed.

Let ¢ be a successor of p which is not a predecessor of p. After p changes its
color, p and ¢ are in conflict if and only if p chooses the color of g. The probability
that p chooses the color of ¢ is equal to one over the number of choices for the
color of p: 1/(k — |C.p|).

Since the number of successors of p not in the set of predecessors of p is
6.p— 0;n.p, the number of conflicts created by p is a sum of «..p Bernoulli random
variables taking value one with probability 1/(k — |C.p|), where a.p = d.p —
din-p- Since these Bernoulli random variables are in general not independent, one
cannot expect their sum to follow the binomial law. However, their dependence
does not impact the expectation of their sum.

Lemma 3. Assume k > A. The probability of the event CCp that the Process
p does change its color is equal to:

k — |C.p|

POCY) = e+ 1

(2)
As a consequence, the number Y1 of conflicts (same or new) induced by the
activation of Process p admits the following bound for its expectation:

op—Oinp+1

(1) k—0inp+1

®3)
Proof. Since all colors have the same probability to appear, the probability that
Process p changes its color is the number k — |C.p| of choices for change over the
total number of choices k — |C.p| + 1. Thus the probability of this event is:

k —[C.p|

P =
(CCp) k—|Cp|+1

(4)

The number of conflicts induced by the activation of Process p is equal to the
number of new conflicts created if it changes its color and to one (still itself) if
it keeps its color. Using conditonnal expectation [16] (which corresponds in such
discrete case to standard expectation with respect to a conditionnal probability),
we have that

E(Y1) = E(Y1|CCp) x P(CCp) + E(Y1|CCp°) x P(CCP?), (5)
where CCp® denotes the complementary of the event CCp. Thus we obtain

E(Y1) =E(X;) x P(CCp) + 1 x P(CCp°), (6)

where X7 has the same meaning as in Lemma 2, and thanks to lemma 2 we
obtain

_0p—0inpt1 < 0.p—binp+1

k- |Cpl+1 T k—6ipp+1

E(Y1) (7)

Lemma 4. Assume k > A. The expected number of conflicts induced by an
activation of Process p is less than or equal to:

A
M_£<1. (8)

Proof. Observe that for all p € V, A > §.p, therefore for all p € V,

k—0ipnp+1 ~ k—0pmp+1-

In order to find an upper bound for this value, let the function f be

A—z+1

: 1,A _— 10
freel Al (10)
Its derivative exists and is equal to
A—k
)= —— = 11
@)= Gt (11)

By hypothesis, we have that k > A, so f'(x) < 0 for all x € [1,A] and f is
decreasing. Therefore, f(x) is maximal when z = 1, which leads to

< < —. 12
k—(5m.p+1 k—5m.p+1 k ()

Lemma 5. Assume k > A. Let (p,v) be a conflict. The expected number of
steps necessary to solve this conflict is less than:

1k
1-M k—A

(13)

Proof. The expected number of conflicts created by a single process is given by
Lemma 4. Let us explain how we deal with the second stage when resolving con-
flicts, then any further stage follows by induction. Our idea is to introduce the
following probabilistic tool. We consider a branching tree which is a generalisa-
tion of a Galton-Watson tree [15], where the number of offsprings are dependant
random variables. As previously mentioned, this dependency does not matter
when computing the expectation.

Recall that Y7 is the number of conflicts induced by an activation of a Process
p. We will denote by Y5 the number of conflicts created at the second stage. As
observed above,

— either process p changes its color and then the number Y5 of conflicts induced
by the activation of the associated Y; Processes is equal to a sum of Y;
random variables T; where g is a successor of p not in the set of predecessors
of p and in conflict with p;

— or process p keeps its color, and Y7 = 1, the number Y5 of conflicts created
will be equal in law to Y.

In the first case, each T}, has the same behaviour as Y7 = T, (with different
parameters) and is independant from Y;. Then we have the following:

Y1 a.p Y
E(Y:) SE(Y Ty | =D [EQ_T,)P(Yi=1y)
j=1 y=1 j=1
< Z <y[mng(Tq)]P(Y1 = y)> =E(Y1) M < M?.
y=1

By induction, the expected number of conflicts E(Y;) created at stage ¢ is
less than
E(Yy) Mt < M.

Since M < 1, we have a convergent geometric series. Thus the expected total
number of conflicts is less than 1/(1 — M).

Lemma 6. Assume k > A. Starting from an arbitrary configuration, the ex-
pected number of color changes to reach a configuration verifying the unidirec-
tional coloring predicate is less than or equal to:

nk
k— A

(14)

Proof. In the worst case the number of initial conflicts is n. Then the proof is a
direct consequence of Lemma 5.

Theorem 1. Algorithm 1 is a probabilistic self-stabilizing solution for the uni-
directional coloring when k > A.

Proof. The proof is a direct consequence of Lemmas 1 and 6.

Notice that with a minimal number of colors (i.e., k = A + 1), the expected
number of steps to reach a terminal configuration starting from an arbitrary
configuration is less than n(A+1). Moreover, when the number of colors increases
(i.e., k — 00), the expected number of steps to reach a terminal configuration
starting from an arbitrary configuration converges to n.

4 Conclusion

We investigated the intrinsic complexity of performing local tasks in unidirec-
tional anonymous networks in a self-stabilizing setting. Contrary to “classical”
bidirectional networks, local vertex coloring now induces global complexity (n
states per process at least, n moves per process at least) for deterministic solu-
tions. By contrast, we presented asymptotically optimal solutions for the prob-
abilistic case (that actually match the bounds obtained for bidirectional net-
works). This work raises several important open questions:

1.

Our probabilistic solution can be tuned to be optimal in space (and is then
with a A multiplicative penalty in time), or optimal in time, but not both.
However, our lower bounds do not preclude the existence of probabilistic
solutions that are optimal for both complexity measures.

Our lower bound on the number of colors is generic (it should hold for
graphs of any shape), while the chromatic number of a graph denote the
actual number of colors that are needed to color a particular graph. It is
worth investigating whether our protocol can color particular graphs with a
lower number of colors.

References

10.

11.

12.

13.

. Yehuda Afek and Anat Bremler-Barr. Self-stabilizing unidirectional network algo-

rithms by power supply. Chicago J. Theor. Comput. Sci., 1998, 1998.

. Samuel Bernard, Stéphane Devismes, Maria Gradinariu Potop-Butucaru, and

Sébastien Tixeuil. Optimal deterministic self-stabilizing vertex coloring in uni-
directional anonymous networks. In Proceedings of the IEEE International Con-
ference on Parallel and Distributed Processing Systems (IPDPS 2009), pages 1-8,
Rome, Italy, May 2009. IEEE Press.

. Jorge Arturo Cobb and Mohamed G. Gouda. Stabilization of routing in directed

networks. In Ajoy Kumar Datta and Ted Herman, editors, WSS, volume 2194 of
Lecture Notes in Computer Science, pages 51-66. Springer, 2001.

. Sajal Das, Ajoy Kumar Datta, and Sébastien Tixeuil. Self-stabilizing algorithms

in dag structured networks. Parallel Processing Letters (PPL), 9(4):563-574, De-
cember 1999.

. Sylvie Delaét, Bertrand Ducourthial, and Sébastien Tixeuil. Self-stabilization with

r-operators revisited. Journal of Aerospace Computing, Information, and Commu-
nication (JACIC), 3(10):498-514, 2006.

. Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Com-

mun. ACM, 17(11):643-644, 1974.

. Shlomi. Dolev. Self-stabilization. MIT Press, March 2000.
. Shlomi Dolev and Elad Schiller. Self-stabilizing group communication in directed

networks. Acta Inf., 40(9):609-636, 2004.

. Bertrand Ducourthial and Sébastien Tixeuil. Self-stabilization with r-operators.

Distributed Computing (DC), 14(3):147-162, July 2001.

Bertrand Ducourthial and Sébastien Tixeuil. Self-stabilization with path algebra.
Theoretical Computer Science (TCS), 293(1):219-236, February 2003.

Maria Gradinariu and Sébastien Tixeuil. Self-stabilizing vertex coloring of arbi-
trary graphs. In Proceedings of International Conference on Principles of Dis-
tributed Systems (OPODIS 2000), pages 55—70, Paris, France, December 2000.
Anders Hald. A history of probability and statistics and their applications before
1750. Wiley Series in Probability and Mathematical Statistics: Probability and
Mathematical Statistics. John Wiley & Sons Inc., New York, 1990. A Wiley-
Interscience Publication.

Nathalie Mitton, Eric Fleury, Isabelle Guérin-Lassous, Bruno Séricola, and
Sébastien Tixeuil. On fast randomized colorings in sensor networks. In Proceedings
of ICPADS 2006, pages 31-38. IEEE Press, July 2006.

14.

15.

16.

Mikhail Nesterenko and Anish Arora. Tolerance to unbounded byzantine faults. In
21st Symposium on Reliable Distributed Systems (SRDS 2002), pages 22-29. IEEE
Computer Society, 2002.

J. R. Norris. Markov chains, volume 2 of Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, Cambridge, 1998. Reprint
of 1997 original.

Sheldon M. Ross. Introduction to probability models. Harcourt/Academic Press,
Burlington, MA, seventh edition, 2000.

