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Abstract The maximum leaf spanning tree (MLST) is a good candidate for constructing a
virtual backbone in self-organized multihop wireless networks, but is practically intractable
(NP-complete). Self-stabilization is a general technique that permits to recover from catas-
trophic transient failures in self-organized networks without human intervention. We pro-
pose a fully distributed self-stabilizing approximation algorithm for the MLST problem in
arbitrary topology networks. Our algorithm is the first self-stabilizing protocol that is specifi-
cally designed to approximate an MLST. It guarantees that the number of its leaves is at least
1/3 of the maximum possible in arbitrary graphs. The time complexity of our algorithm is
O(n2) rounds.

Keywords self-stabilization · approximation ·maximum leaf spanning tree · fault-tolerance

1 Introduction

Multihop wireless ad hoc or sensor networks have neither fixed physical infrastructure nor
central administration. They typically operate in a self-organizing manner permitting them
to autonomously construct routing and communication primitives that are used by higher
level applications. The construction of virtual backbones infrastructures usually makes use
of graph related properties over the graph induced by communication capabilities (i.e. nodes
represent machines, and edges represent the ability for two machines within wireless range
to communicate) of the network. For example, a connected dominating set (CDS) is a good
candidate for a virtual backbone since it guarantees reachability of every node yet preserves
energy. The maximum leaf spanning tree (MLST) problem consists in constructing a span-
ning tree with the maximum number of leaves. Finding the MLST is tantamount to finding
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the minimum CDS: let G = (V,E) be a graph and cds(G) be the size of the minimum CDS
of G, then |V | − cds(G) is the number of leaves of the MLST of G [1].

One of the most versatile techniques to ensure forward recovery of distributed systems
and networks is that of self-stabilization [2–4]. A distributed algorithm is self-stabilizing if
after faults and attacks hit the system and place it in some arbitrary global state, the system
recovers from this catastrophic situation without external (e.g. human) intervention in finite
time. As self-stabilization makes no hypothesis about the nature or the extent of the faults
(self-stabilization only deals with the effect of the faults), it can also be used to deal with
other transient changes while the network is being operated (topology change, message loss,
spontaneous resets, etc.).

1.1 Related Works

In [5], Galbiati et al. proved that the MLST problem is MAX-SNP-hard, i.e., there exists
ε > 0 such that finding approximation algorithm1 with approximation ratio 1+ε is NP-hard.
In [1], Solis-Oba proposed a 2-approximation algorithm, and in [6], Lu et al. proposed a
3-approximation algorithm. Note that none of these algorithms is distributed, not to mention
self-stabilizing.

Spanning tree construction is one of the main studied problems in self-stabilizing liter-
ature [7]. One of the main recent trends in this topic is to provide self-stabilizing protocols
for constrained variants of the spanning tree problem, e.g. the minimum degree spanning
tree [8], the minimum weight spanning tree [9], the minimum diameter spanning tree [10],
etc. Nevertheless, none of these metrics gives guarantees on the number of leaves.

Finding the MLST is equivalent to finding the minimum CDS [1]. There exist self-
stabilizing approximation algorithms for finding the minimum CDS. In [11], Kamei et
al. proposed a self-stabilizing 7.6-approximation algorithm for the CDS problem in unit
disk graphs. However, this algorithm does not guarantee any approximation ratio for arbi-
trary networks. The subsequent work of Raei et al. [12] proposed a self-stabilizing 20bln
R/ ln(2 cos(π/5)) c-approximation algorithm in generalized disk graphs where R = rmax

/ rmin and rmax (resp. rmin) is the maximum (resp. minimum) transmission range. Again,
this algorithm does not guarantee any approximation ratio for arbitrary networks.

1.2 Contribution

We propose a fully distributed self-stabilizing approximation algorithm for the MLST prob-
lem in arbitrary networks. Its time complexity is O(n2) rounds. To our knowledge, our
algorithm is the first self-stabilizing protocol that is especially designed to approximate a
MLST. Namely, it constructs a spanning tree whose number of leaves is greater or equal to
1/3 of the maximum possible.

Our algorithm can be used to construct a virtual backbone in multihop wireless ad hoc
or sensor networks. Its effective approximation ratio permits to significantly improve the
load and the energy consumed by the virtual backbone.

Moreover, our scheme being designed for arbitrary topologies, it is useful even in net-
works that cannot be modeled by (generalized) disk graphs such as wired networks.

1 An approximation algorithm for the MLST problem is an algorithm that guarantees approximation ratio
|Topt|/|Talg |, where |Talg | is the number of leaves obtained by the approximation algorithm in the worst
case and |Topt| is the number of leaves of the optimal solution.
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1.3 Roadmap

This paper is organized as follows: In Section 2, we formally describe the system model and
the distributed MLST problem. In Section 3, we present our self-stabilizing approximation
algorithm for the distributed MLST problem, we prove its correctness, and analyze its time
complexity. Concluding remarks can be found in Section 4.

2 Preliminaries

Let V = {P1, P2, ..., Pn} be a set of n processes and E ⊆ V × V be a set of bidirectional
communication links in a distributed system. Each links is an unordered pair of distinct
processes. The system topology is represented by the undirected graph G = (V,E). We
assume that G is connected and simple. In this paper, we use “graphs” and “distributed
systems” interchangeably. We assume that each process has unique identifier. By Pi, we
denote the identifier of process Pi for each process Pi.

We call subgraph ofG any graphG′ = (V ′, E′) such that V ′ ⊆ V ,E′ ⊆ E, and ∀Pi, Pj ,
(Pi, Pj) ∈ E′ ⇒ Pi, Pj ∈ V ′. By Ni, we denote the set of neighboring processes of Pi.
For each process Pi, the set Ni is assumed to be a constant. We define the degree of Pi as
the number of its neighbors. The degree of Pi in the subgraph G′ is the number of edges
of E′ incident to Pi. We assume that the maximum degree of G is at least 3. We define the
distance between Pi and Pj as the number of the edges of the shortest path between them.

The local state of a process is defined by the values of all its local variables. A con-
figuration of the system is an instance of the local states of all processes. The set of all
configurations is denoted by Γ .

As communication model, we assume that each process can read the local state of its
neighboring processes. This model is called the state reading model. Although a process can
read the local state of its neighbors, it cannot update them; it can only update its local state.

We say that Pi is privileged in a configuration γ if and only if at least one of the condi-
tions of the algorithm is true and Pi want to change its local state in γ. An atomic step of
each process Pi consists of following three sub-steps: (1) read the local states of all neigh-
bors and evaluate the conditions of the algorithm, (2) compute the next local state, and (3)
update the local state.

Executions of processes are scheduled by an external (virtual) scheduler called daemon.
That is, the daemon decides which processes to execute in the next step. Here, we assume
a distributed weakly fair daemon. Distributed means that, at each step, the daemon selects
an arbitrary non-empty set of privileged processes to execute tan atomic step in parallel.
Weakly fair means that any continuously privileged process is eventually selected by the
daemon.

For any configuration γ, if γ ′ can be obtained from γ (according to the algorithm
and the daemon), then we denote this transition by γ → γ ′. For any configuration γ0, a
computation E starting from γ0 is a maximal (possibly infinite) sequence of configurations
E = γ0, γ1, γ2, ... such that γt → γt+1 for each t ≥ 0.

Definition 1 (Self-Stabilization) A system S is self-stabilizing with respect to Λ such that
Λ ⊆ Γ if and only if it satisfies the following two conditions:

– Convergence: Starting from an arbitrary configuration, a configuration eventually be-
comes one in Λ, and
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– Closure: For any configuration λ ∈ Λ, any configuration γ that follows λ is also in Λ as
long as the system does not fail.

Each γ ∈ Λ is called a legitimate configuration. Conversely, any configuration that is not
legitimate is said illegitimate. 2

A spanning tree T = (V ′, E′) is an acyclic connected subgraph of G such that V ′ = V

and E′ ⊆ E. A leaf of a spanning tree is any process of degree one. Generally, the MLST
problem is defined as follows.

Definition 2 The maximum leaf spanning tree is a spanning tree whose number of leaves is
maximum. 2

We consider the MLST problem in distributed systems, so we assume that each process
does not know global information on the network. Under this assumption, we defined the
distributed MLST problem as follows:

Definition 3 LetG = (V,E) be a graph that represents a distributed system. The distributed
maximum leaf spanning tree problem is defined as follows:

– Each process Pi selects a neighbor in G or itself as its father in a spanning tree Tml (if
the father of Pi is Pi, then Pi is a root) and output it, and

– The spanning tree Tml is a maximum leaf spanning tree of G. 2

3 The Algorithm

Our algorithm SSMLST is based on a sequential approximation algorithm proposed in [6].
We call tree any connected acyclic subgraph T of G containing more than one process.

We construct disjoint trees T1, T2, · · · , where Ti = (Vi, Ei), V = V1 ∪ V2 ∪ · · · , |Vi| > 1,
and Vi ∩Vj = ∅ for any i and j. We call forest any set of trees {T1, T2, · · · }. Note that some
process Pi can be alone and does not join the forest, i.e., Si = ({Pi}, ∅), in this case Pi is
called singleton.

Let dk(G) be the set of nodes having degree k in G, and d̄k(G) be the set of nodes
having degree at least k in G.

Definition 4 ([6]) Let T be a tree of G. If d̄3(T ) is not empty and every node in d2(T ) is
adjacent in T to exactly two nodes in d̄3(T ), then T is said to be leafy. Let T1, T2, · · · be
disjoint trees on G. If each T1, T2, · · · is leafy, then F = {T1, T2, · · · } is a leafy forest. If F
is not a subgraph of any other leafy forest of G, then F is called a maximal leafy forest. 2

In [6], Lu et al. showed the following theorem.

Theorem 1 ([6]) Let F be a maximal leafy forest of G, and Tml be a spanning tree of G
such that F is a subgraph of Tml. Let Tspan be any spanning tree of G. Then, |d1(Tml)| ≥
|d1(Tspan)|/3.

Our algorithm SSMLST first constructs a maximal leafy forest (MLF) of G, and then,
constructs a spanning tree Tml of G that is a supergraph of the MLF. Hence, Tml is an
approximation of the MLST with ratio 3 by Theorem 1.

Fig. 1 shows an example of a legitimate configuration obtained using SSMLST. Each
circle represents a process, and the number in the circle is the process ID. The arrows rep-
resent the MLF, and white circles represent singletons. Each number out of a circle gives
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Fig. 1 Example of the MLST

the distance from the process to the root of its tree. The dashed edges are edges of Tml

connecting trees of the MLF. Finally, each circle with double effect is leaf of the MLST.
The proposed algorithm is a fair composition [3] of four layers:

1. In the first layer, each process Pi computes its degree Di in G and the maximum couple
degree/ID in G noted MAX = (Dk, Pk). This couple is evaluated according to the
following order relation: for each process Pi and Pj , (Di, Pi) > (Dj , Pj) ≡ [Di >

Dj ∨ (Di = Dj ∧ Pi > Pj)]. For this layer, we can use any self-stabilizing leader
election algorithm for arbitrary networks, for example [13].2 In such an algorithm, the
process with the minimum or the maximum ID is elected as a leader. It can be modified
to elect the process with the maximum value degree/ID for our purpose.

2. The second layer SSMLF (presented in Subsection 3.1) computes an MLF of G.
3. The third layer SSTN (presented in Subsection 3.2) modifies the cost of each link based

on the MLF.
4. The last layer computes a minimum cost spanning tree Tml based on the costs computed

by SSTN. Such costs force Tml to include the MLF. For this layer, we can use one of
existing self-stabilizing algorithms, e.g., [9].3

3.1 The Second Layer: Construction of the Maximal Leafy Forest

We now propose a self-stabilizing algorithm called SSMLF that constructs of a maximal
leafy forest (MLF) of G. The formal description of SSMLF is shown in Fig. 2.

In SSMLF, we assume that the following inputs are available at each process Pi:

2 The time complexity of this latter algorithm is O(n) rounds.
3 The time complexity of this algorithm is O(n2) rounds.
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Constant (Input)
Ni: the set of neighbors of Pi on G.
Di: the degree of Pi on G (an output from the first layer).
MAX: the maximum couple of degree and ID on G (an output from the first layer).
Variable (Output)
rooti = (Dr, Pr)(∅ ≤ rooti ≤MAX): Pr is the root of tree T to which Pi belongs.
father i: the couple (Dj , Pj) of the father Pj of Pi on T .
rank i: the distance from the root to Pi on T .
MaxChildreni: the number of children and child-candidates on T .
Macro
MaxRooti = max{rootj , (Di, Pi) | Pj ∈ Ni}

MinRank i =

{
−1 (In case that MaxRooti = (Di, Pi))
min{rankj | Pj ∈ Ni ∧ rootj = MaxRooti}(otherwise)

CCandi =
{Pj ∈ Ni | rootj = ∅ ∨ rootj < MaxRooti ∨ (rootj = MaxRooti ∧ rankj > MinRank i + 2)}

CountMaxChildreni =

{
Di (In case that (Di, Pi) = MAX)
|{Pj ∈ Ni | fatherj = (Di, Pi)}|+ |CCandi|(otherwise)

FCandi = {Pj ∈ Ni | rankj + 1 ≤ n ∧ (MaxChildrenj ≥ 3∨
(MaxChildrenj = 2 ∧ fatherj 6= (Dj , Pj) ∧ rootj > (Dj , Pj)))}

Algorithm for process Pi:
do forever{
1 if (rooti > MAX){
2 rooti := ∅;
3 } elseif (MaxChildreni 6= CountMaxChildreni){
4 MaxChildreni := CountMaxChildreni;
/* For the roots. */
5 } elseif (MaxChildreni ≥ 3 ∧MaxRooti = (Di, Pi)){
6 rooti := (Di, Pi); rank i := 0; father i := (Di, Pi);
/* For other nodes in tree.*/
7 } elseif (∃Pj ∈ FCandi, [rootj = MaxRooti ∧ rankj = MinRank i]){
8 rooti := MaxRooti;
9 rank i := MinRank i + 1;
10 father i := max{(Dj , Pj) | Pj ∈ FCandi ∧ rootj = rooti ∧ rankj = rank i − 1};
11 } elseif (MinRank i + 1 ≤ n ∧MaxChildreni ≥ 2 ∧MaxRooti 6= (Di, Pi)){
12 rooti := MaxRooti;
13 rank i := MinRank i + 1;
14 father i := max{(Dj , Pj) | Pj ∈ Ni ∧ rootj = rooti ∧ rankj = rank i − 1};
15 } elseif (∃Pj ∈ FCandi, [rootj = MaxRooti]){
16 rooti := MaxRooti;
17 rank i := min{rankj | Pj ∈ FCandi ∧ rootj = rooti}+ 1;
18 father i := max{(Dj , Pj) | Pj ∈ FCandi ∧ rootj = rooti ∧ rankj = rank i − 1};
19 } elseif (|FCandi| ≥ 1){
20 rooti := max{rootj | Pj ∈ FCandi};
21 rank i := min{rankj | Pj ∈ FCandi ∧ rootj = rooti}+ 1;
22 father i := max{(Dj , Pj) | Pj ∈ FCandi ∧ rootj = rooti ∧ rankj = rank i − 1};
23 } else {
/* For singleton.*/
24 rooti := ∅; rank i := 0; father i := (Di, Pi);
25 }
}

Fig. 2 SSMLF: Self-stabilizing algorithm for construction of the maximal leafy forest



7

– Ni, the set of Pi’s neighbors in G,
– Di, the degree of Pi in G (an output from the first layer), and
– MAX, the maximum couple degree/ID in G (an output from the first layer).

Based on these inputs, each process Pi computes the following outputs:
– root i is set to ∅ if Pi is a singleton. Otherwise, Pi belongs to some tree T and root i is

set to the couple (Dr, Pr), where Pr is the root of the tree of Pi.
– father i is set to the couple (Dj , Pj) where Pj is the father of Pi. If Pi is neither a root

nor a singleton, then Pj ∈ Ni. In this case, we say that “Pj is a father of Pi” and “Pi is a
child of Pj”. In either cases (Pi is a singleton or the root of its tree), Pj = Pi. Note that,
in SSMLF, each process Pi distinguishes its outgoing link to father i as its parent-link
in its tree.

– rank i is set to the distance from Pi to the root of its tree.
– MaxChildreni is set to the expected number of children of Pi in its tree. (We shall

explain that later.)
We now explain how we compute these outputs. In the explanations, we call large tree any
tree rooted at a process with a large couple of degree in G and ID. Also, we call a child-
candidate of process Pi any neighbor of Pi that may become a child of Pi in the future,
e.g., singleton, any process belonging to a tree that is not larger than the tree of Pi, or any
process belonging to the tree of Pi that can minimize its rank by changing its father to Pi.
The expected number of children is the number of its children and child-candidates. Each
process Pi counts the expected number of children to make the tree leafy, and joins a tree as
large as possible. That is, if Pi is the root and its tree is larger than the one of its neighbors,
then all its neighbors will join its tree.

According to Definition 4, SSMLF constructs of a maximal leafy forest (MLF) of G by
assigning its outputs following Definitions 5 and 6.

Definition 5 Let sdegi be the degree Pi in its tree, i.e., sdegi ≡ |{Pj ∈ Ni | fatherj =

(Di, Pi)}|+ |{Pj ∈ Ni | father i = (Dj , Pj)}|. 2

Definition 6 Let Tk = (Vk, Ek) be a tree rooted at some process Pr such that sdegr ≥ 3

and Ek is a set of links represented by the value of father i of each process Pi of Vk ⊆ V .

– Consider each process Pi such that sdegi = 2 in Tk. If sdegf ≥ 3 and sdegj ≥ 3 where
father i = (Df , Pf ) and fatherj = (Di, Pi), then Tk is leafy tree.

– If each tree T1, T2, · · · is disjoint and leafy in G, then the set {T1, T2, · · · } is a leafy
forest F .

– If F is not a subgraph of any other leafy forest, then F is maximal leafy forest. 2

In order to evaluate its output variables, a process Pi uses several macros:
– MaxRoot i returns the largest value among the root-variables of Pi and its neighbors.
– CCand i returns the set of child-candidates of Pi.
– CountMaxChildreni returns the expected number of children of Pi.
– FCand i returns the father candidates of Pi, that is, the neighbors that Pi can choose as

father in order to make its tree leafy, i.e., process Pj such that rankj is not obviously
inconsistent (rankj ≤ n− 1) and that has a chance of holding sdegj ≥ 3.

– MinRank i returns the rank -value of the (current or future) father of Pi. (If Pi is the root
of its tree, then MinRank i returns -1 so that Pi sets rank i to 0.)

Now, we give more details about SSMLF. Consider a process Pi. In Lines 1-2, if the value
of root i is obviously inconsistent (i.e., root i > MAX), then Pi resets its value to ∅. In Lines
3-4, Pi updates MaxChildreni, if necessary. In Lines 5-24, if root i and MaxChildreni are
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correctly evaluate, Pi chooses its status among root, internal node or leaf of a tree and
singleton, and updates its variables root i, rank i, and father i in consequence.

We now give more detail about Lines 5-24. Our explanations are based on Fig. 3. In this
figure, bold arrows represent father pointers, dashed arrows represent child-candidates, and
dashed curve lines represents border of trees. Moreover, we assume that the tree T is a larger
tree than T ′. Below, we detail Lines 5-24:

– In Lines 5-6, if MaxChildreni ≥ 3 and Pi can become a root of large tree, then Pi

becomes a root. (See Fig. 3(a).)
– In Lines 7-10, Pi selects as father i a neighbor Pj in a largest tree whose distance to the

root is minimum only if Pj has a chance of holding sdegj ≥ 3. That is, Pj ∈ FCand i.
(See Fig. 3(b).)

– In Lines 11-14, if Pi has a chance of holding sdegi ≥ 3, then Pi selects as father i a
neighbor Pj in a largest tree whose distance to the root is minimum (even if sdegj < 3)
in order to make the tree leafy. Note that, by the condition of MinRank i+1 ≤ n, Pi does
not select a process Pj whose value of rankj is obviously inconsistent. (See Fig. 3(c).)

– In Lines 15-18, if Pi does not have a chance of holding sdegi ≥ 3, Pi selects as father i
a neighbor Pj in a largest tree only if Pj has a chance of holding sdegj ≥ 3 by the
condition Pj ∈ FCand i. (See Fig. 3(b).)

– In Lines 19-22, if Pi cannot belong to a largest tree, Pi belongs to another tree. (See
Fig. 3(d).)

– In Line 24, if Pi cannot belong to any tree, Pi becomes a singleton.
We now show the correctness of our algorithm. The proof of correctness is based on the
definition of the legitimate configurations of SSMLF. Such a definition is given in Definition
7 below:

Definition 7 A configuration of SSMLF is legitimate if and only if each process Pi satisfies
the following conditions:

– The connection by father i represents the maximal leafy forest.
– If Pi is in a tree T of the maximal leafy forest, then the value of root i is the ID of the

root of T .
– If Pi is not in any tree of the maximal leafy forest, then Pi is a singleton, that is father i =

(Di, Pi) and root i = ∅.
By Λf , we denote a set of legitimate configuration. 2

We now prove the correctness of SSMLF. The first part of the proof consists in proving
that any terminal configuration of SSMLF is legitimate. So, in the following, we consider a
configuration γ′ where no process is privileged.

In the following lemmas, we use the notions of singleton and root defined below:

Definition 8 Let a singleton be any process Pi such that father i = (Di, Pi) ∧ root i = ∅.
Let a root of a tree be any process Pi such that root i = father i = (Di, Pi). 2

According to the algorithm, in γ′, if some process Pi is a root or a singleton, then rank i = 0.
In either cases, rank i = rankj + 1 and father i = (Dj , Pj), which means that the rank of Pi

is the rank of its father plus one. This property prevents the existence of father-link cycle in
γ′, as proven in the following lemma:

Lemma 1 Each connected component T represented by the value of father i is a tree or a
singleton in G in γ′.
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(a) Lines 5-6

(b) Lines 7-10, 15-18

(c) Lines 11-14

(d) Lines 19-22

Fig. 3 Outline of the proposed algorithm

Proof: By the definition of the algorithm, each value of father i is a self-loop or a neighbor.
So, to show that processes construct trees or singletons, we prove that there is no loop of
length at least 2 in γ′.

Suppose that there exists a loop P0, . . . , Pk of length at least two in γ′. Then, for each
process Pi with 0 ≤ i ≤ k, father i = (D(i+1)mod(k+1), P(i+1)mod(k+1)) holds. By Lines
10, 14, 18 and 22, each process selects the neighbor father i which satisfies rank fatheri

=

rank (i+1)mod(k+1) = rank i − 1 in γ′. Therefore, if there exists such a loop, at least one
process in the loop is privileged by one of these lines, a contradiction. Therefore, in γ′, there
exists no loop of lenght at least 2.

Therefore, each connected component is a singleton or a tree in G in γ′. 2

According to the algorithm, if rank i > n− 1, then Pi is privileged. Hence follows:

Lemma 2 In γ′, for each process Pi, rank i ≤ n− 1 holds.

Proof: By Lemma 1, each connected component by the value of father i is a tree or a single-
ton.
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Consider first any tree T in γ′. Let Pi be the root of T . The value of rank i is 0 due to
Line 6. Additionally, by Lines 10, 14, 18 and 22, the value of rankj of each other process
Pj of T is the number of edges in the path from Pi to Pj . Therefore, we have rankj ≤ n−1.

Consider now a singleton Pi in γ′. The value of rank i is 0 due to Lines 24. 2

The following lemma can be deduced from the definition of FCand i.

Lemma 3 Let P0 the process such that MAX = (D0, P0). Let Pi ∈ N0. In γ′, father i =

(D0, P0) and sdeg0 = D0 hold.

Proof: As we assume that the maximum degree is at least 3 in G, D0 ≥ 3 holds. By Lines
3 and 4, MaxChildren0 = D0 ≥ 3 holds because (D0, P0) = MAX. By the definition
of MaxRoot0, MaxRoot0 = (D0, P0) holds because root i ≤ MAX = (D0, P0) for any
process Pi ∈ N0 by Lines 1 and 2. Thus, the condition of Line 5 is true at P0. Therefore,
by Line 6, root0 = (D0, P0), rank0 = 0 and father0 = (D0, P0) hold. Moreover, P0 ∈
FCand i holds for any neighbor Pi ∈ N0 because rank0 +1 = 0+1 ≤ n∧MaxChildren0 ≥
3.

Suppose that there exists a neighbor Pi ∈ N0 such that father i 6= (D0, P0) in γ′. By
the definition of MaxRoot i, MaxRoot i = root0 = (D0, P0) = MAX. As MaxRoot i =

MAX > (Di, Pi), the condition of Line 5 is false at Pi. For the same reason and by
the definition of MinRank i, MinRank i = 0. As P0 ∈ FCand i, MaxRoot i = root0, and
MinRank i = rank0 = 0, the condition of Line 7 is true at Pi. So, Pi is privileged in Line
10 because father i 6= (D0, P0) = MaxRoot i, a contradiction.

Therefore, each neighbor Pi of P0 in G satisfies father i = (D0, P0). Finally, as the
number of neighbors of P0 in G is D0, sdeg0 = D0 by Definition 5. 2

In the algorithm, a process becomes a singleton only if it has no chance to belong to any
leafy tree, thus:

Lemma 4 In γ′, for each process Pi such that root i = ∅ holds (i.e., a singleton), MaxChildreni

< 3 ∧ sdegi = 0 holds.

Proof: Suppose by contradiction that MaxChildreni ≥ 3 or sdegi 6= 0 hold in γ′.
First, suppose that father i = (Di, Pi) holds at Pi. The value of father i becomes (Di, Pi)

only at Lines 6 and 24. As root i = ∅, Line 24 is the only possibility, i.e., the conditions of
Lines 5, 7, 11, 15 and 19 are false at Pi. By Lemma 2, rankj ≤ n−1 holds at each neighbor
Pj ∈ Ni. Thus, MinRank i + 1 ≤ n holds by the definition of MinRank i.

– Case 1: Assume that MaxChildreni ≥ 3. As the condition of Line 5 is false and
MaxChildreni ≥ 3 holds, MaxRoot i 6= (Di, Pi) holds at Pi. As MinRank i + 1 ≤
n ∧MaxChildreni ≥ 3 ∧MaxRoot i 6= (Di, Pi), the condition of Line 11 is true at Pi.
This is a contradiction because the condition of Line 11 is false at Pi by assumption.
Thus, this case does not occur and we have MaxChildreni < 3.

– Case 2: Assume that sdegi 6= 0.
– Suppose that sdegi ≥ 3 holds. As father i = (Di, Pi), MaxChildreni ≥ 3 by Defi-

nition 5. This is a contradiction because MaxChildreni < 3 by Case 1.
– Suppose that 0 < sdegi ≤ 2 holds. As father i = (Di, Pi), there exists at least one

process Pj ∈ Ni such that fatherj = (Di, Pi) by Definition 5. The value of fatherj
takes (Di, Pi) by Lines 10, 14, 18 and 22, but not Lines 6 and 24. By these lines,
rootj = ∅ holds because root i = ∅. As fatherj = (Di, Pi), Pi ∈ FCandj holds
by execution of Lines 10, 18 and 22, or the condition of Line 11 is true at Pj by
execution of Line 14.
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• Suppose that Pi ∈ FCandj holds. As father i = (Di, Pi) holds, MaxChildreni ≥
3 holds at Pi by the definition of FCandj . However, by Case 1, MaxChildreni <

3 holds, a contradiction.
• Suppose that the condition of Line 11 is true at Pj . Then, MaxChildrenj ≥ 2∧

MaxRootj 6= (Dj , Pj) holds. Thus, by the definition of MaxRootj , MaxRootj >

(Dj , Pj). By Line 12, rootj = MaxRootj . As rootj = ∅ holds, rootj = ∅ =

MaxRootj > (Dj , Pj), a contradiction.
Therefore, for each Pi such that father i = (Di, Pi) and root i = ∅, MaxChildreni < 3 ∧
sdegi = 0 holds.

Next, suppose that father i 6= (Di, Pi) holds at Pi, i.e., father i = (Dj , Pj) for some
Pj ∈ Ni. This case occurs at Lines 10, 14, 18 and 22 but not Lines 6 and 24. Then, by
Lines 10, 14, 18 and 22, root i = rootj holds. Therefore, we have root i = rootj = ∅.
Consider a maximal path Pi, Pj , Pk, · · · , Pl, Pm where father i = (Dj , Pj), fatherj =

(Dk, Pk), · · · , father l = (Dm, Pm). By Lemma 1, there exists no loop by the values of
fathers whose length is greater or equal to 2. Therefore, fatherm = (Dm, Pm) and rootm =

∅ holds at Pm. However, from the above discussion for the case of fatherm = (Dm, Pm)

and rootm = ∅, sdegm = 0 holds. By Definition 5, because sdegm = 0 and fatherm =

(Dm, Pm), there exists no process Pl ∈ Nm such that father l = (Dm, Pm). Therefore,
there exists no such a path, and there exists no process Pi such that father i 6= (Di, Pi) and
root i = ∅ in γ′, a contradiction. 2

Assume that there exists a process Pi such that father i = (Di, Pi) 6= MAX ∧ root i 6=
∅ ∧MaxChildreni 6= sdegi. Then, there is a process in MaxChildreni that is privileged to
become a child of Pi. As a consequence, we have:

Lemma 5 In γ′, for each process Pi such that father i = (Di, Pi) 6= MAX ∧ root i 6= ∅
holds, MaxChildreni = sdegi holds.

Proof: First, we observe some properties on the local variables of Pi. The value of father i
becomes (Di, Pi) only at Line 6 and 24. As root i 6= ∅, Line 6 is the only possibility
so that this case occurs. Thus, the condition of Line 5 must be true so that father i =

(Di, Pi) ∧ root i 6= ∅ holds (otherwise, the values of the two variables take other values).
Thus, MaxChildreni ≥ 3 and MaxRoot i = (Di, Pi) hold. Then:

– MinRank i = −1

holds by the definition of MinRank i. By the definition of MaxRootj for every Pj ∈ Ni and
Line 6, we have:

– MaxRootj ≥ root i = (Di, Pi) = MaxRoot i and
– rank i = 0.

As rank i + 1 = 0 + 1 ≤ n and MaxChildreni ≥ 3, by the definition of FCandj , we have:
– Pi ∈ FCandj at every Pj ∈ Ni, i.e.,
– |FCandj | ≥ 1.

Assume that the condition of Line 5 is true at every Pj ∈ Ni. Then, MaxChildrenj ≥
3∧MaxRootj = (Dj , Pj) = rootj by Line 6 in γ′. However, by the definitions of MaxRootj
and MaxRoot i, MaxRootj ≥ root i = (Di, Pi) = MaxRoot i and MaxRoot i ≥ rootj =

(Dj , Pj) = MaxRootj holds, i.e., (Di, Pi) = (Dj , Pj), a contradiction. Therefore, the
condition of Line 5 is false at every Pj ∈ Ni.

Based on these observation, we show the lemma by the contradiction: Assume that
MaxChildreni 6= sdegi for some process Pi such that root i = father i = (Di, Pi) in γ′.
By Definition 5, the value of sdegi is the number of children if father i = (Di, Pi). By Line
4, the value of MaxChildreni is the number of children of Pi plus the size of the set CCand i.



12

Therefore, by assumption MaxChildreni 6= sdegi, |CCand i| > 0 holds, which implies that
there exists Pj ∈ CCand i such that Pj ∈ Ni and rootj = ∅ ∨ rootj < (Di, Pi) ∨ (rootj =

(Di, Pi) ∧ rankj > 1) because MaxRoot i = (Di, Pi) and MinRank i = −1 hold. Below,
we check this condition.

– Case 1: Assume that rootj = ∅.
– Suppose that the conditions of Lines 7, 11 or 15 are true at Pj . Then, Pj is privileged

in Lines 8, 12 or 16 because MaxRootj 6= rootj = ∅, a contradiction.
– Suppose otherwise, then the condition of Line 19 is true because |FCandj | ≥ 1.

Then, max{rootk | Pk ∈ FCandj} 6= ∅ holds because root i 6= ∅ and Pi ∈ FCandj .
Therefore, Pj is privileged in Line 20 because rootj = ∅, a contradiction.

Thus, this case does not occur, and we have rootj 6= ∅.
– Case 2: Assume that rootj < (Di, Pi). As MaxRootj ≥ (Di, Pi) = root i holds, we

have rootj < (Di, Pi) = root i ≤ MaxRootj , which implies that rootj 6= MaxRootj
and rootj < root i.

– Assume that the conditions of Lines 7, 11 or 15 are true at Pj . Then, Pj is privileged
in Lines 8, 12 or 16, a contradiction.

– Assume otherwise, i.e., the conditions of Lines 7, 11 and 15 are false at Pj . Then,
as Pi ∈ FCandj and rootj < root i, rootj < root i ≤ max{root l | Pl ∈ FCandj}
holds. Thus, we have rootj 6= max{root l | Pl ∈ FCandj} and Pj is privileged in
Line 20, a contradiction.

– Case 3: Assume that rootj = (Di, Pi) ∧ rankj > 1. By assumption root i = (Di, Pi) ≤
MaxRootj and rootj = (Di, Pi), we have rootj = root i = (Di, Pi) ≤ MaxRootj .

– Assume that MaxRootj = rootj , i.e., root i = rootj = MaxRootj holds. Then,
MinRankj ≡ min{rankk | Pk ∈ Nj ∧ rootk = MaxRootj} = rank i = 0. Thus,
rankj > 1 = MinRankj + 1 holds, i.e., we have rankj 6= MinRankj + 1. As
Pi ∈ FCandj ∧ root i = MaxRootj ∧ rank i = MinRankj , the condition of Line 7
is true at Pj and Pj is privileged in Line 9, a contradiction.

– Assume that MaxRootj 6= rootj , i.e., root i = rootj < MaxRootj holds.
• Suppose that the condition of Lines 7, 11 or 15 are true at Pj . Then, Pj is

privileged in Lines 8, 12 or 16, a contradiction.
• Suppose otherwise, i.e., the condition of Lines 7, 11 and 15 are false at Pj . As
|FCandj | ≥ 1, the condition of Line 19 is true at Pj . By Line 21, rankj =

min{rankk | Pk ∈ FCandj ∧ rootk = rootj} + 1 holds. However, as Pi ∈
FCandj ∧ rootj = root i, we have rankj = min{rankk | Pk ∈ FCandj ∧
rootk = rootj}+ 1 ≤ rank i + 1 = 1 < rankj , a contradiction.

Therefore, the lemma holds. 2

As for the previous lemma, in γ′, MaxChildreni is exactly the set of child of process Pi.
Hence, according to Definition 5, we have the following lemma:

Lemma 6 In γ′, for each process Pi such that father i 6= (Di, Pi) and MaxChildreni ≥
3 ∨ (MaxChildreni = 2 ∧ root i > (Di, Pi)) holds, MaxChildreni = sdegi − 1 holds.

Proof: First, we observe some properties on the local variables of Pi. As MaxChildreni ≥
3 ∨ (MaxChildreni = 2 ∧ root i > (Di, Pi) ∧ father i 6= (Di, Pi)), by the definition of
FCandj , we have:

– Pi ∈ FCandj at every Pj ∈ Ni, i.e.,
– |FCandj | ≥ 1.

If MaxChildreni ≥ 3, then as father i 6= (Di, Pi), the condition of Line 5 must be
false. Thus, MaxRoot i 6= (Di, Pi). Consider the case where MaxChildreni = 2 ∧ root i >



13

(Di, Pi). Assume that MaxRoot i = (Di, Pi) holds. Then, rootj ≤ MaxRoot i = (Di, Pi)

for every Pj ∈ Ni by the definition of MaxRoot i. However, as father i 6= (Di, Pi), by
Lines 10, 14, 18 and 22, father i = (Dj , Pj) and rootj = root i where Pj ∈ Ni. Thus,
root i > (Di, Pi) = MaxRoot i ≥ rootj = root i, a contradiction. Therefore, in both cases
(MaxChildreni ≥ 3 and MaxChildreni = 2 ∧ root i > (Di, Pi)), MaxRoot i 6= (Di, Pi)

holds.
As rankj ≤ n− 1 holds for any Pj ∈ Ni by Lemma 2, MinRank i + 1 ≤ n holds in γ′

by the definition of MinRank i. Thus, we have MinRank i + 1 ≤ n, MaxChildreni ≥ 2, and
MaxRoot i 6= (Di, Pi). Therefore, the conditions of Lines 7 or 11 are true. By the definition
of MaxRoot i, MaxRoot i ≥ (Di, Pi) > ∅. By the definition of MaxRootj for every Pj ∈ Ni,
MaxRootj ≥ root i holds. Therefore, by Lines 8-9 or 12-13, for every Pj ∈ Ni, we have:

– MaxRootj ≥ root i = MaxRoot i > (Di, Pi) > ∅ and
– rank i = MinRank i + 1 ≥ 0.

Based on these observation, we now prove the lemma by the contradiction: Assume
that MaxChildreni 6= sdegi − 1 for some process Pi such that father i 6= (Di, Pi) ∧
(MaxChildreni ≥ 3 ∨ (MaxChildreni = 2 ∧ root i > (Di, Pi))) in γ′. By Definition 5,
the value of sdegi − 1 is the number of children if father i 6= (Di, Pi). By Line 4, the value
of MaxChildreni is the number of children of Pi plus the size of the set CCand i. Therefore,
by assumption MaxChildreni 6= sdegi − 1, |CCand i| > 0 holds, which implies that there
exists Pj ∈ CCand i such that Pj ∈ Ni and rootj = ∅ ∨ rootj < MaxRoot i ∨ (rootj =

MaxRoot i ∧ rankj > MinRank i + 2). Below, we check this condition.
– Case 1: Assume that rootj = ∅.

– Suppose that the condition of Line 5 is true at Pj . Then, Pj is privileged in Line 6
because rootj 6= (Dj , Pj), a contradiction.

– Suppose that the conditions of Lines 7, 11 or 15 are true. Then, Pj is privileged in
Lines 8, 12 or 16 because MaxRootj 6= rootj = ∅, a contradiction.

– Otherwise, the condition of Line 19 is true because |FCandj | ≥ 1. Then, max{rootk | Pk ∈
FCandj} 6= ∅ holds because root i 6= ∅ and Pi ∈ FCandj . Therefore, Pj is privi-
leged in Line 20 because rootj = ∅, a contradiction.

Thus, this case does not occur, and we have: rootj 6= ∅.
– Case 2: Assume that rootj < MaxRoot i.

– Suppose that the condition of Line 5 is true at Pj . Then, MaxRootj = (Dj , Pj)

holds at Pj . However, then Pj is privileged in Line 6 because rootj < MaxRoot i =

root i ≤ MaxRootj = (Dj , Pj) which implies rootj 6= (Dj , Pj), a contradiction.
– Suppose otherwise that the condition of Line 5 is false at Pj . As MaxRootj ≥

root i = MaxRoot i holds, we have rootj < MaxRoot i = root i ≤ MaxRootj , which
implies rootj 6= MaxRootj and rootj < root i.
• If the conditions of Lines 7, 11 or 15 are true at Pj , Pj is privileged in Lines 8,

12 or 16.
• Otherwise (i.e., the conditions of Lines 7, 11 and 15 are false), as Pi ∈ FCandj

and rootj < root i, we have rootj < root i ≤ max{rootk | Pk ∈ FCandj}.
Thus, we have rootj 6= max{rootk | Pk ∈ FCandj} and Pj is privileged in
Line 20, a contradiction.

– Case 3: Assume that rootj = MaxRoot i ∧ rankj > MinRank i + 2.
Suppose that the condition of Line 5 is true at Pj . Then, we have rankj = 0 by Line

6. However, this contradicts the assumption rankj > MinRank i + 2 > 0.
Suppose otherwise that the condition of Line 5 is false at Pj .

– Assume that MaxRootj = rootj . As rootj = MaxRootj ≥ root i = MaxRoot i =

rootj by the assumption, rootj = MaxRootj = root i = MaxRoot i holds.
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• Consider the case where MinRankj > rank i. As the condition of Line 5 is
false at Pj , MaxChildrenj < 3 ∨MaxRootj 6= (Dj , Pj).
· Assume that MaxRootj 6= (Dj , Pj) holds. Then, we have MinRankj ≡

min{rankk | Pk ∈ Nj ∧ rootk = MaxRootj} > rank i. This is a contradic-
tion because Pi ∈ Nj ∧ root i = MaxRootj .
· Assume that MaxRootj = (Dj , Pj) holds. Then, we have MinRankj ≡
−1 > rank i. This is a contradiction because rank i ≥ 0.

• Consider the case where MinRankj = rank i. As rank i = MinRank i+1 holds,
rankj > MinRank i + 2 = rank i + 1 = MinRankj + 1 holds, i.e., we have
rankj 6= MinRankj + 1. As Pi ∈ FCandj ∧ root i = MaxRootj ∧ rank i =

MinRankj , the condition of Line 7 is true at Pj , and Pj is privileged in Line 9,
a contradiction.

• Consider the case where MinRankj < rank i. By assumption rankj > MinRank i+

2, we have MinRankj < rank i = MinRank i + 1 < rankj − 1. This implies
that rankj 6= MinRankj + 1 and rank i + 1 < rankj .
· Suppose that the condition of Lines 7 or 11 are true at Pj . Then, Pj is

privileged in Lines 9 or 13 because rankj 6= MinRankj+1, a contradiction.
· Suppose that the condition of Lines 7 and 11 are false at Pj . Then, the

condition of Line 15 is true at Pj because Pi ∈ FCandj and root i =

MaxRootj = rootj . As rank i + 1 < rankj , min{rankk | Pk ∈ FCandj ∧
rootk = rootj} + 1 ≤ rank i + 1 < rankj . Thus, Pj is privileged in Line
17, a contradiction.

– Assume that MaxRootj 6= rootj .
• Suppose that the condition of Lines 7, 11 or 15 are true at Pj . Then, Pj is

privileged in Lines 8, 12 or 16, a contradiction.
• Suppose that the condition of Lines 7, 11 and 15 are false at Pj . As |FCandj | ≥

1, the condition of Line 19 is true at Pj . By assumption MaxRoot i = root i ≤
MaxRootj , MaxRootj 6= rootj and rootj = MaxRoot i, we have rootj =

MaxRoot i = root i < MaxRootj . Therefore, rootj = root i holds.
As rank i = MinRank i + 1 and rankj > MinRank i + 2 by assumption, we

have rankj > rank i + 1. By Line 21, rankj = min{rankk | Pk ∈ FCandj ∧
rootk = rootj}+ 1 holds. However, as Pi ∈ FCandj ∧ root i = rootj , we have
rankj = min{rankk | Pk ∈ FCandj∧rootk = rootj}+1 ≤ rank i+1 < rankj ,
a contradiction.

Therefore, the lemma holds. 2

Consider any process Pi such that father i 6= (Di, Pi) ∧ ((MaxChildreni = 2 ∧ root i <

(Di, Pi)) ∨MaxChildreni < 2) holds. If sdegi < 1 ∨ sdegi > 2 holds, then we can prove
that Pi is privileged in Line 4. Hence, follows:

Lemma 7 In γ′, for each process Pi such that father i 6= (Di, Pi) ∧ ((MaxChildreni =

2 ∧ root i < (Di, Pi)) ∨MaxChildreni < 2) holds, 1 ≤ sdegi ≤ 2 holds.

Proof: Suppose contrary that father i 6= (Di, Pi)∧((MaxChildreni = 2∧root i < (Di, Pi))∨
MaxChildreni < 2) and sdegi = 0 ∨ sdegi ≥ 3 holds at Pi in γ′ and let derive a contradic-
tion.

As father i 6= (Di, Pi), by Lines 10, 14, 18 and 22, father i = (Df , Pf ) holds with
Pf ∈ Ni. Thus, sdegi ≥ 1 holds by Definition 5. Therefore, sdegi ≥ 3, i.e., there exist at
least two children Pj and Pk of Pi where fatherj = (Di, Pi) and fatherk = (Di, Pi).
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First, suppose that MaxChildreni < 2 holds. As fatherj = (Di, Pi) and fatherk =

(Di, Pi), we have |{Pj ∈ Ni | fatherj = (Di, Pi)}| ≥ 2. Thus, Pi is privileged in Line 4
because MaxChildreni < 2, a contradiction.

Next, suppose that MaxChildreni = 2 ∧ root i < (Di, Pi) holds. As root i < (Di, Pi),
root i < (Di, Pi) ≤ MaxRoot i holds by definition of MaxRoot i. By Lines 10, 14, 18 and 22,
rootf = root i = rootj = rootk holds. Then, Pi has at least three neighbors Pf , Pj and Pk

such that rootf = rootj = rootk = root i < MaxRoot i. That is, {Pj , Pk, Pf} ⊆ CCand i.
Then, Pi is privileged in Line 4 because MaxChildreni = 2, a contradiction. 2

The next lemma is deduced from the previous ones:

Lemma 8 In γ′, each tree T represented by the values of fathers is leafy, that is, each T
contains at least one process Pl with sdeg l ≥ 3, and each process Pi with sdegi = 2 is
adjacent in T to two processes Pj and Pk with sdegj ≥ 3 and sdegk ≥ 3.

Proof: By Lemma 1, each connected component represented by the values of father i of
every process Pi is a tree or a singleton in γ′. Then, by Lemma 1 and Lines 5-6, each tree
is rooted at a process Pl with father l = root l = (Dl, Pl) and rank l = 0. By the condition
of Line 5, the root process Pl satisfies MaxChildrenl ≥ 3. By Lemma 5, MaxChildrenl =

sdeg l ≥ 3 because father l = (Dl, Pl) and root l 6= ∅. Therefore, each tree contains at least
one process Pl with sdeg l ≥ 3.

Now, we observe properties on the local variables of any process Ph such that 1 ≤
sdegh < 3. From the above discussion, the condition of Line 5 is false at Ph, and Ph does
not execute Line 6. By Lemma 4, if rooth = ∅ holds, sdegh = 0 holds and this is contradicts
the assumption. Thus, we have:

– rooth 6= ∅.
As rooth 6= ∅, Ph does not execute Line 24 either. Thus, we have:

– fatherh 6= (Dh, Ph).
By Lemmas 6 and 7, because fatherh 6= (Dh, Ph) holds, we have:

– MaxChildrenh < 2 ∨ (MaxChildrenh = 2 ∧ rooth < (Dh, Ph)).
By Lemma 2, rankk ≤ n−1 holds for every Pk ∈ Nh. Thus, by the definition of MinRankh,
MinRankh + 1 ≤ n. Assume that the condition of Line 11 is true at Ph. Then, we have
MaxChildrenh = 2 ∧ rooth < (Dh, Ph) and MaxRooth 6= (Dh, Ph). By the definition of
MaxRooth, rooth < (Dh, Ph) < MaxRooth holds, i.e., rooth 6= MaxRooth. Thus, Ph is
privileged in Line 12, a contradiction. Therefore, Ph executes one of Lines 10, 18 or 22 but
not Line 14 to assign the values of fatherh.

To prove this lemma, we now suppose by the contradiction that some process Pi with
sdegi = 2 is adjacent to a process Pj with sdegj < 3 in T in γ′, and we will derive a
contradiction.

As Pj is a neighbor of Pi in T , sdegj ≥ 1. Thus, 1 ≤ sdegj < 3 holds. Therefore, the
above observations on Ph applies to Pi and Pj because 1 ≤ sdegi = 2 < 3 and 1 ≤ sdegj <

3. There are two cases to consider: Pj is a father or a child of Pi, i.e., father i = (Dj , Pj) or
fatherj = (Di, Pi).

Assume that father i = (Dj , Pj). Then, as father i = (Dj , Pj) and by Lines 10, 18
and 22, Pj ∈ FCand i holds, i.e., by the definition of FCand i, MaxChildrenj ≥ 3 ∨
(MaxChildrenj = 2 ∧ rootj > (Dj , Pj) ∧ fatherj 6= (Dj , Pj)) holds. However, this predi-
cate is false by assumption and the above observations for any Ph such that 1 ≤ sdegh < 3, a
contradiction. That is, Pi such that 1 ≤ sdegi < 3 does not select Pj such that 1 ≤ sdegj < 3

as its father in γ′.
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Assume that fatherj = (Di, Pi). This is a contradiction. Indeed, from the above dis-
cussion, Pj , which satisfies 1 ≤ sdegj < 3, does not select Pi as its father because
1 ≤ sdegi = 2 < 3.

Therefore, the degrees of a father and a child of Pi are greater or equal to 3 in T , i.e.,
each tree T is leafy in γ′. 2

According to the conditions of the algorithm, if we add some processes to a tree in γ′, then
the tree is no more leafy, that is the forest we obtain is maximal:

Lemma 9 In γ′, the leafy forest F is maximal.

Proof: By Lemmas 1-8, each connected component represented by the values of father i of
every process Pi is a leafy tree or a singleton in γ′.

First, we observe some properties. If Pi is a singleton, by Lemma 4, sdegi = 0 holds. If
Pi is a root of a tree, by Lemma 5, sdegi = MaxChildreni holds. Otherwise, i.e., father i 6=
(Di, Pi) by Lines 10, 14, 18 and 22, and Pi is said to be “a non-root process in a tree”. As
father i 6= (Di, Pi), sdegi ≥ 1 holds. By Lemmas 4-7, root i 6= ∅ holds because sdegi ≥ 1.

Suppose that the leafy forest F is not maximal in γ′. That is, there exists two connected
components which can be connected each other in γ′. Assume that Pi and Pj ∈ Ni belong
to different connected components, and the link between Pi and Pj is not in F but can be
added to F . That is, Pi can select Pj as its father or Pj can select Pi as its father.

Assume that both of Pi and Pj are singletons. Then root i = rootj = ∅ holds by Line
24. By Lemma 4, each singleton has MaxChildreni < 3. However, by Definition 6, each
tree must have at least one process such that the degree is greater or equal to 3 in the tree,
i.e., there must exist a singleton Pi neighboring to three other singletons in order to make
leafy tree only by singletons, then, MaxChildreni ≥ 3 must holds by Line 4. This is a
contradiction. Therefore, we need not to consider the case where both of Pi and Pj are
singletons.

Assume otherwise, that is, Pi or Pj (or both) is in a tree. We consider the case where Pi

is in a tree. Then, by Lines 6, 10, 14, 18 and 22, root i = root fatheri
holds in γ′. That is, the

value of root i is the name of the tree to which Pi belongs to. Then, we have root i 6= rootj
because Pi and Pj belong to different connected components. Assume that, if these two con-
nected components are connected by the link (Pi, Pj), then the new connected component
is a leafy tree. Let sdegi be the degree of Pi in the new connected component, and sdeg ′i be
the degree of Pi in the old connected components. Then, sdeg ′i = sdegi − 1. As sdegi or
sdegj (or both) is greater or equal to 3 in γ′ by Definition 6, sdeg ′i ≥ 2 or sdeg ′j ≥ 2 holds.

– Suppose that Pj is a singleton, i.e., rootj = ∅ and fatherj = (Dj , Pj). Then, sdeg ′j =

0 ∧ MaxChildrenj < 3 holds in γ′ by Lemma 4. As sdeg ′j = 0, sdeg ′i ≥ 2 holds.
That is, Pi has at least one child Pk in the old connected component. As rootj = ∅,
Pj ∈ CCand i holds. Therefore, MaxChildreni ≥ 2 holds.

If father i = (Di, Pi), the condition of Line 5 is true because Pi is in a tree by Lines
6, 10, 14, 18 or 22, and thus, MaxChildreni ≥ 3 holds.

If father i 6= (Di, Pi), root fatheri
= root i = rootk holds by Lines 10, 14, 18 and 22.

By the definition of MaxRoot i, (Di, Pi) ≤ MaxRoot i holds. Therefore, if father i 6=
(Di, Pi)∧ root i < (Di, Pi) hold, father i ∈ CCand i holds. Thus, Pi counts father i, Pj

and Pk as MaxChildreni. Then, if MaxChildreni = 2 ∧ father i 6= (Di, Pi) ∧ root i <

(Di, Pi), Pi is privileged in Line 4, a contradiction.
Therefore, (MaxChildreni = 2∧father i 6= (Di, Pi)∧root i > (Di, Pi))∨MaxChildreni ≥

3. Thus, by the definition of FCandj , Pi ∈ FCandj holds, and the condition of Line 7,
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15 or 19 are true at Pj . Then, Pj is privileged in Lines 10, 18 or 22 because fatherj =

(Dj , Pj) does not represent a neighbor of Pj , a contradiction.
– Assume that Pj is in a tree. Without loss of generality, we assume that root i > rootj in
γ′. By the definition of MaxRootj , we have MaxRootj ≥ root i. Therefore, MaxRootj ≥
root i > rootj holds, which implies that MaxRootj 6= rootj .

– Suppose that Pj is a root of a tree. By Line 6, rootj = (Dj , Pj) holds. Then, rootj =

(Dj , Pj) = MaxRootj ≥ root i by the condition of Line 5 and the definition of
MaxRootj . This contradicts the assumption root i > rootj .

– Consider the case where Pj is a non-root process in a tree.
If the conditions of Lines 7, 11 or 15 are true at Pj , Pj is privileged in Lines 8,

12 or 16 because MaxRootj 6= rootj , a contradiction.
Consider the case where the conditions of Lines 7, 11 or 15 false at Pj .
• Consider the case where sdeg ′i ≥ 2.

By Lines 6, 8, 12, 16, 20 and 24, MaxRoot i ≥ root i > rootj holds be-
cause root i > rootj . By the definition of CCand i, Pj ∈ CCand i holds. As
sdeg ′i ≥ 2 and fatherj 6= (Di, Pi), if father i = (Di, Pi), then Pi has at
least two children in the old tree, and MaxChildreni ≥ 3 holds. Otherwise,
i.e., father i 6= (Di, Pi), then Pi has at least one child on the old tree, and
MaxChildreni ≥ 2 holds.

Suppose that MaxChildreni = 2 ∧ father i 6= (Di, Pi) ∧ root i < (Di, Pi)

holds. Then, we have rootj < rootk = root fatheri
= root i < (Di, Pi) ≤

MaxRoot i where Pk is a child of Pi in the old tree by the definition of MaxRoot i.
Then, {Pj , Pk, father i} ⊆ CCand i holds, and Pi is privileged in Line 4 be-
cause MaxChildreni = 2, a contradiction.

Therefore, MaxChildreni ≥ 3 ∨ (MaxChildreni = 2 ∧ father i 6= (Di, Pi) ∧
root i > (Di, Pi)) holds. As rank i + 1 ≤ n by Lemma 2, Pi ∈ FCandj holds.
· Suppose that MaxRootj = root i holds. Then, the conditions of Lines 7 or

15 are true at Pj because Pi ∈ FCandj , a contradiction.
· Suppose that MaxRootj > root i holds. Then, Pj is privileged in Line

20 because Pi ∈ FCandj and rootj 6= max{rootk | Pk ∈ FCandj} ≥
root i > rootj hold, a contradiction.

• We consider otherwise, i.e., sdeg ′j ≥ 2 ∧ sdeg ′i < 2. As sdeg ′j ≥ 2 and
fatherj 6= (Dj , Pj), Pj has at least one child Pk. By Line 10, 14, 18 and
22, root fatherj

= rootj = rootk holds. As MaxRootj ≥ root i > rootj =

root fatherj
= rootk, {fatherj , Pk} ⊆ CCandj by the definition of CCandj ,

i.e., MaxChildrenj ≥ 2 by Line 4. By Lemma 2, rank l + 1 ≤ n for each
process Pl, i.e., MinRankj + 1 ≤ n. As the condition of Line 11 is false,
MaxChildrenj < 2 ∨ MaxRootj = (Dj , Pj) holds. Therefore, MaxRootj =

(Dj , Pj) holds because MaxChildrenj ≥ 2. Then, we have root fatherj
=

rootj = rootk < root i ≤ MaxRootj = (Dj , Pj).
· Suppose that root i = MaxRootj = (Dj , Pj) holds. Then, rootj must be

(Dj , Pj) because the value of root i is a copy of the value of a neighbor by
Lines 8, 12, 16, 20, except the case where root i = (Di, Pi) by Line 6. This
is a contradiction because root i 6= rootj .
· Suppose that root i < MaxRootj = (Dj , Pj) holds. Then, we have {Pi} ⊆
CCandj . Then, MaxChildrenj ≥ 3 holds, and the condition of Line 5 is
true. This is a contradiction because Pj is a non-root process.

Therefore, the leafy forest F is maximal in γ′. 2
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By Lemmas 1-9, we have the following lemma:

Lemma 10 The configuration γ′ is legitimate.

Proof: In γ′, each connected component T represented by the value of father i is a tree or a
singleton in G (Lemma 1). Additionally, there exists no process such that the value of rank i
is obviously inconsistent in γ′, i.e., for each process Pi, rank i ≤ n− 1 holds (Lemma 2).

Then, each tree is rooted at a process Pi such that father i = root i = (Di, Pi) and
sdegi = MaxChildreni = Di, and P0 such that (D0, P0) = MAX is a root of a tree
(Lemmas 3 and 5). Additionally, each singleton Pi has father i = (Di, Pi), root i = ∅,
and sdegi = 0 (Lemma 4). Other processes Pi selects a process Pj such that sdegj ≥ 3

as its father if sdegi < 3, i.e., each tree T represented by the values of fathers is leafy
(Lemmas 6, 7 and 8), and the leafy forest is maximal (Lemma 9). 2

The second part of the proof consists in proving that eventually the configuration becomes
γ′ using the algorithm SSMLF. By Lines 1-2 and 5-6 of the algorithm, we have:

Lemma 11 For any configuration γ and any computation starting from γ, the value of
root i of each process Pi in G eventually becomes less or equal to MAX, and P0 such
that MAX = (D0, P0) decides the values of its variables as a root of a tree, i.e. root0 =

father0 = (D0, P0) and rank0 = 0.

Proof: By Lines 1-2, it is clear that root i ≤MAX holds for each process Pi. By Lines 3-4,
MaxChildren0 = D0 ≥ 3 eventually holds. Then, as MaxChildren0 ≥ 3 ∧MaxRoot0 =

MAX, the condition of Line 5 is true at P0. Then, P0 eventually becomes a root by Line 6;
root0 = father0 = MAX, rank0 = 0, and P0 does not change the values of each variable
in the following steps by definition of the algorithm. 2

Definition 9 For each k(≥ 0), let γk be a configuration such that, in any computation start-
ing from γk:

– Tt = (Vt, Et)(0 ≤ t < k) is a leafy tree, and
– each process in Vt(0 ≤ t < k) never changes its variable in any configuration in the

computation.
For each k, let Gk = (V k, Ek) be an induced subgraph of G by V \ {V0 ∪V1 ∪ · · · ∪Vk−1}.
2

Let Pi ∈ V k be a process that is neighbor of some process in V \ V k. As Pi does not join
any tree, the conditions of Lines 5, 7, 11 and 15 are false. Hence, we have the following
lemma:

Lemma 12 For each k and any computation starting from γk, each process Pi ∈ V k which
is neighbor of some process in V \ V k does not become a root of a tree.

Proof: Consider each process Pi ∈ V k which is neighbor of any process in V \ V k. As
Pi is neighbor of some trees T0, T1, · · · , Tk−1, we have MaxRoot i = (Dl, Pl) > (Di, Pi),
where Pl is one of the roots of trees T0, T1, · · · , Tk−1. If one of the conditions of Lines
5, 7, 11 or 15 is true, Pi joins the tree rooted at MaxRoot i. As Pi does not join any trees,
these conditions are false. As the condition of Line 11 is false, MaxChildreni < 2 holds.
Therefore, by Line 5, Pi does not become a root of a tree because of MaxChildreni < 2. 2

By Lemma 12, we consider the processes that are not neighbor of any process in V \ V k as
candidates of roots of leafy trees.
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Definition 10 For each k (> 0), let (Dk̄, Pk̄) be the maximum couple in processes in V k

that are not neighbor of any process in V \ V k, i.e.,
(Dk̄, Pk̄) = max{(Dj , Pj) | Pj ∈ V kand Pj is not a neighbor of any process in V \ V k}.2

If there exists a process Pi in Gk such that root i is larger than (Dk̄, Pk̄) in any configuration
in the computation, then such Pi eventually executes Line 24, and root i < (Dk̄, Pk̄) holds.
Hence, we have the following lemma:

Lemma 13 For each k and any computation starting from γk, the value of root i of each
process Pi in Gk eventually becomes less or equal to (Dk̄, Pk̄).

Proof: Let L ⊂ V k be a set of processes Pi such that root i is larger than (Dk̄, Pk̄) in
any configuration in the computation. If each Pi ∈ L executes Line 6, we have root i =

(Di, Pi) < (Dk̄, Pk̄) because, by Lemma 12, Pi is not neighboring to any process in V \V k.
If each Pi ∈ L executes Line 24, we have root i = ∅ < (Dk̄, Pk̄). Therefore, each Pi ∈ L
never executes Lines 6 and 24, but Pi executes Lines 8-10, 12-14, 16-18 or 20-22 to change
the value of root i, rank i and father i. By execution of these lines, each Pi ∈ L satisfies
root i = root fatheri

, rank i = rank fatheri
+ 1, and father i ∈ Ni.

Therefore, there exists no process Pi such that father i = (Di, Pi) in L. For each
Pi ∈ L, there exists a loop P0, P1, · · · , Pi, · · · , Pm−1, P0 whose length is m ≥ 2 such
that father0 = (D1, P1), father1 = (D2, P2), · · · , fatherm−1 = (D0, P0) by Lines 10, 14,
18 or 22. Then, however, there exists a process Pl such that rank l 6= rank father l

+ 1 in the
loop, and Pl is privileged in Lines 9, 13, 17 or 21. Then, Pl executes one of these lines, and
the value of rank l increases. Thus, as the computation continues, for each Pi ∈ L, the value
of rank i eventually becomes greater or equal to n. Then, the conditions of Lines 7, 11, 15
and 19 become false at Pi, Pi executes Line 24, and we have root i ≤ (Dk̄, Pk̄). After that,
every Pi ∈ L eventually holds root i ≤ (Dk̄, Pk̄), and L eventually becomes an emptyset.

Therefore, each value of root i in Gk eventually becomes less or equal to the maximum
(Dk̄, Pk̄) in Gk, and root i ≤ (Dk̄, Pk̄) is maintained forever. 2

As MaxChildren k̄ ≥ 3 eventually holds and remains so forever, in the condition of Line
5, MaxRoot k̄ = (Dk̄, Pk̄) ∧ MaxChildren k̄ ≥ 3 eventually holds and remains so forever.
Hence, we have:

Lemma 14 For each k and any computation starting from γk, if Dk̄ ≥ 3, Pk̄ eventually
decides the values of its variables as a root.

Proof: First, suppose that Pk̄ does not become a root forever. By Lemma 13, for any neighbor
Pi of Pk̄, root i ≤ (Dk̄, Pk̄) eventually holds. As Dk̄ ≥ 3, there exist at least 3 neighbors of
Pk̄, such as Pi, in Gk. By the definition of MaxRoot k̄, MaxRoot k̄ = (Dk̄, Pk̄) holds, and by
the definition of MinRank k̄, MinRank k̄ = −1 holds. Then, because Pk̄ does not become a
root by assumption, MaxChildren k̄ < 3 holds forever by the condition of Line 5. Thus, by
Lines 3-4, Pi 6∈ CCand k̄∧father i 6= (Dk̄, Pk̄) must hold. Putting things together and by the
definition of CCand k̄, root i = MaxRoot k̄ = (Dk̄, Pk̄) ∧ rank i ≤ 1 ∧ father i 6= (Dk̄, Pk̄)

holds.
As root i = (Dk̄, Pk̄) hold, Pi does not execute Line 6 and 24. If Pi executes Line 6, we

have root i = (Di, Pi) < (Dk̄, Pk̄). If Pi executes Line 24, we have root i = ∅ < (Dk̄, Pk̄).
Therefore, Pi executes Lines 8-10, 12-14, 16-18 or 20-22 to change the value of root i,
rank i and father i. By executing these lines, root i = root fatheri

= (Dk̄, Pk̄), rank i =

rank fatheri
+ 1, and father i ∈ Ni hold. As rootj = root fatherj

for each process Pj , we
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consider the set of processes with rootj = (Dk̄, Pk̄). Let L be such a set. As Pk̄ does not
become a root by assumption, there eventually exists no process Pj with fatherj = (Dj , Pj)

in L. Therefore, there exists a loop P0, P1, · · · , Pi, · · · , Pm−1, P0 whose length is m ≥ 2

such that father0 = (D1, P1), father1 = (D2, P2), · · · , fatherm−1 = (D0, P0) in L by
Lines 10, 14, 18 or 22. Then, there exists a process Pl such that rank l 6= rank father l

+ 1

in the loop, and Pl is privileged in Lines 9, 13, 17 or 21. Then, Pl executes one of these
lines, and the value of rank l increases. Then, as the computation continues, each value of
rank i eventually becomes larger than 1 by Lines 9, 13, 17 or 21. Then, because root i =

(Dk̄, Pk̄) = MaxRoot k̄ and rank i > MinRank k̄ +2 = −1+2 = 1 holds, i.e. Pi ∈ CCand k̄
holds, Pi is eventually counted in MaxChildren k̄. As there are three such a process Pi,
MaxChildren k̄ eventually becomes greater or equal to 3. Then, because the condition of
Line 5 becomes true, Pk̄ becomes a root by Line 6.

Next, suppose that Pk̄ does not fix the values of its variables as a root forever in Gk.
This case implies that, Pk̄ repeats becoming and resigning a root of a tree alternately forever.
When Pk̄ becomes a root, by the condition of Line 5, Pk̄ must satisfy MaxChildren k̄ ≥ 3 ∧
MaxRoot k̄ = (Dk̄, Pk̄). When Pk̄ resigns the root, then MaxChildren k̄ < 3∨MaxRoot k̄ 6=
(Dk̄, Pk̄) must hold. As (Dk̄, Pk̄) is the maximum couple, the value of root k̄ is the max-
imum value in Gk. Therefore, MaxRoot k̄ = (Dk̄, Pk̄) does not change forever. That is,
MaxChildren k̄ ≥ 3 and MaxChildren k̄ < 3 must hold alternately forever so that Pk̄ repeats
becoming and resigning a root.

By the definition of MaxRoot i for any Pi ∈ Nk̄ and by Lemma 13, root i ≤ MaxRoot i =

root k̄ = (Dk̄, Pk̄) = MaxRoot k̄ holds, and this relation is maintained forever.
– If root i < MaxRoot i, then root i < MaxRoot k̄ holds, i.e., Pi ∈ CCand k̄ holds.
– If root i = MaxRoot i, then root i = root k̄ = MaxRoot i holds.

– If father i = (Dk̄, Pk̄), then Pi ∈ {Pj ∈ Nk̄ | fatherj = (Dk̄, Pk̄)} holds.
– If father i = (Dj , Pj) 6= (Dk̄, Pk̄), then rootj = root i = MaxRoot i = root k̄ =

(Dk̄, Pk̄). However, rankj > 0 holds by Lines 9, 13, 17 and 21 because rootj 6=
(Dj , Pj). Then, rank i = rankj + 1 > 1 holds. Thus, rank i > MinRank k̄ + 2 = 1

holds, i.e., Pi ∈ CCand k̄ holds.
Therefore, in any case, because Pi is counted in CountMaxChildren k̄ by Pk̄, Pi is counted
in MaxChildren k̄ by Pk̄ in Line 4. As Dk̄ ≥ 3, there exists at least 3 such processes, and
MaxChildren k̄ ≥ 3 holds and remains so forever. Thus, Pk̄ eventually stops resigning a root
of a tree. Therefore, Pk̄ eventually decides the values of its variables as a root. 2

By Lemmas 13 and 14, any root of trees can be discuss by the same way as the root P0 such
that MAX = (D0, P0) in the following lemma. In ascending order of the value of rank i
from rank k̄ = 0 of the root Pk̄, each process Pi fixes the value of each variable if it joins
Tk.

Lemma 15 For each k and any computation starting from γk, let γp be a configuration
such that Pk̄ decides the values of its each variable as a root of a tree in Gk. Then, for any
computation starting from γp, some processes eventually form a leafy tree Tk = (Vk, Ek)

rooted at Pk̄ and never change the values of their variables.

Proof: We prove that, for any computation starting from γp, in ascending order of the value
of rank from the root Pk̄, each process fixes the value of each variable if it joins Tk.

Suppose that there exists a computation c in which there exists a process in Gk which
repeatedly joins and leaves Tk forever. Let Pi be such a process which is the nearest from
Pk̄ in Tk, i.e., the value of rank i is the smallest value when Pi is in Tk. Let h(> 0) be the
value of rank i.
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– Let Z be a set of processes Pz such that its value of each variable rankz < h − 1,
fatherz , MaxChildrenz and rootz = (Dk̄, Pk̄) are fixed in c.

– Let J be a set of processes Pj such that its value of each variables rankj = h − 1,
fatherj and rootj = (Dk̄, Pk̄) are fixed, and MaxChildrenj ≥ 2 or MaxChildrenj < 2

are not fixed.
– Let W be a set of processes Pw ∈ V k \ {Z ∪ J} such that its value of each variables are

changed forever.
– Let I ⊆ W be a set of processes which are neighboring to any member of J . Then,
Pi ∈ I holds.

The value of MaxChildrenj where Pj ∈ J is changed based on the value of father i of
Pi ∈ I in Line 4. As Pj ∈ Ni, MaxRoot i = (Dk̄, Pk̄) holds by the definition of MaxRoot i,
and MinRank i = h− 1 holds by the definition of MinRank i.

Consider the case where h = 1. Then, because Pk̄ never change its value, the root
process Pk̄ is in J . By the definition of MaxRoot i, MinRank i and FCand i, MaxRoot i =

(Dk̄, Pk̄)(> (Di, Pi)), MinRank i = 0 and Pk̄ ∈ FCand i hold. Therefore, the condition of
Line 7 is true at Pi, and Pi executes Lines 8-10; root i = father i = (Dk̄, Pk̄), and rank i = 1

hold. After that, Pi does not change the values of its these variables by the definition of the
algorithm. Therefore, this case does not occur.

Consider the case where h ≥ 2. If Pi joins Tk, by Lines 10, 14, 18 and 22, root i =

(Dk̄, Pk̄), rank i = h and father i represents one of its neighbors Ni ∩ J . Then, the con-
dition for which Pi joins Tk is the following by Lines 7, 11 and 15: MaxChildreni ≥
2 ∨ ∃Pj ∈ J ∩ Ni, [Pj ∈ FCand i]. The condition for which Pi leaves Tk is following:
MaxChildreni < 2 ∧ ∀Pj ∈ J ∩Ni, [Pj 6∈ FCand i]. Thus, MaxChildreni or FCand i must
change their values forever. By the definition of FCand i, MaxChildrenj must change its
value forever, since fatherj and rootj = (Dk̄, Pk̄) are fixed by the assumption. Therefore,
MaxChildreni or MaxChildrenj must change their values forever. That is, MaxChildrenj ≥
2 and MaxChildrenj < 2 hold at Pj alternately forever or MaxChildreni ≥ 2 and MaxChildreni <

2 hold at Pi alternately forever.
First, we suppose that MaxChildrenj ≥ 2 and MaxChildrenj < 2 hold alternately

forever. Let (Dl, Pl) be the largest couple among processes in J with MaxChildrenl ≥ 2.
Then, for each Pm ∈ I ∩ Nl, Pl ∈ FCandm holds. As root l = MaxRootm = (Dk̄, Pk̄)

and rank l = MinRankm = h − 1 hold for each Pm ∈ I ∩ Nl and (Dl, Pl) is the largest
couple, by Line 10, Pm selects Pl as its father. Then, MaxChildrenl ≥ 2 is maintained
forever, and Pl eventually leaves the set J . Therefore, Pj eventually leaves J and decides
MaxChildrenj ≥ 2 or MaxChildrenj < 2.

Next, we suppose that MaxChildreni ≥ 2 and MaxChildreni < 2 hold alternately for-
ever. For each Pa ∈ I, if MaxChildrena ≥ 2 and MaxChildrena < 2 hold alternately, by
the definition of MaxChildrena and CCanda, there exists a process Pa′ ∈ Na such that
roota′ = ∅ ∨ roota′ < (Dk̄, Pk̄) ∨ {roota′ = (Dk̄, Pk̄) ∧ (ranka′ > h + 1 ∨ (ranka′ =

h+ 1∧ fathera′ = (Da, Pa)))} (i.e., Pa′ is a child or a child-candidate of Pa) and roota′ =

(Dk̄, Pk̄) ∧ ranka′ = h + 1 ∧ fathera′ 6= (Da, Pa) (i.e., Pa′ becomes a child of a pro-
cess that is not Pa, we call such event “Pa is bereaved its children and child-candidates
by other process”) hold alternately. When the latter holds, there exists Pb ∈ Na′ ∩ I such
that Pb bereaves Pa′ from Pa. Then, Pb ∈ FCanda′ and (Db, Pb) > (Da, Pa) hold by
the condition of Line 7 and Lines 8-10. When the former holds, there exists no such pro-
cess in Na′ ∩ I, i.e. Pb 6∈ FCanda′ . That is, Pb ∈ FCanda′ and Pb 6∈ FCanda′ must
hold alternately, i.e., MaxChildrenb ≥ 2 and MaxChildrenb < 2 must hold alternately by
the definition of FCanda′ . Then, there must exists a process Pc by which Pb is bereaved its
children and child-candidates Pb′ , and (Dc, Pc) > (Db, Pb) holds. Then, MaxChildrenc ≥ 2
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and MaxChildrenc < 2 must hold alternately. By following such a relation, we have a list
of processes Pa, Pa′ , Pb, Pb′ , Pc, · · · , P(x−1), P(x−1)′ , Px such that (Dx, Px) is the largest
couple in I, and MaxChildrenx ≥ 2 and MaxChildrenx < 2 hold alternately forever.
When MaxChildrenx ≥ 2, there exists no process which bereaves the children and child-
candidates of Px because (Dx, Px) is the largest. Thus, its children P(x−1)′ never change the
value of father (x−1)′ , and MaxChildrenx ≥ 2 is maintained forever. This is a contradiction.
Therefore, MaxChildreni ≥ 2 or MaxChildreni < 2 is eventually fixed.

Therefore, Pi in Tk does not change the values of each of its variables, then, the members
of Tk do not change forever. 2

By Lemmas 11- 15, we have the following lemma.

Lemma 16 For any configuration γ and any computation starting from γ, eventually no
process is privileged.

Proof: For any configuration γ and any computation starting from γ, each value of root i of
each process Pi in G eventually become less or equal to MAX, and P0 such that MAX =

(D0, P0) decides the values of its each variable as a root of a tree and never changes
(Lemma 11). After that, some processes Pi eventually form the tree T0 = (V0, E0) rooted
at P0 and never change the values of their each variable (Lemma 15).

Consider G1 = (V 1, E1) and (D1̄, P1̄). If D1̄ ≥ 3, P1̄ eventually decides the values
of its each variable as a root and never changes (Lemma 14). After that, some processes Pi

eventually form the tree T1 = (V1, E1) rooted at P1̄ and never change the values of their
each variable (Lemma 15).

By repeating this discussion, we have a series of trees T0 = (V0, E0), T1 = (V1, E1),
· · · , Tk = (Vk, Ek), where each process in V0, V1, · · · , Vk fixes the value of its each variable.
Let Gk be an induced subgraph by V \ {V0 ∪ V1 ∪ .. ∪ Vk}. If Dk̄ < 3 holds where the
maximum couple in Gk among the processes which are not neighboring to any process in
{V0∪V1∪· · ·∪Vk}, processes inGk cannot form any leafy tree, and they become singletons.
Then, no process is privileged. 2

By Lemmas 10 and 16, we have the following theorem.

Theorem 2 The algorithm SSMLF is self-stabilizing with respect to Λf .

We consider the term of round under weakly fair scheduler. We define a round as a minimal
period in which each privileged process Pi at the start of the round either executes once or
becomes non-privileged. Additionally, we analyze the time complexity in terms of rounds.
In real distributed networks, it is more natural to evaluate time complexity in terms of round.

Theorem 3 The time complexity of algorithm SSMLF is O(n2) rounds.

Proof: In the first round, each process Pi with root i > MAX executes Line 2, and the
process P0 such that MAX = (D0, P0) executes Line 4 and MaxChildren0 = D0 ≥ 3

holds. In the second round, P0 executes Line 6 and becomes a root by Lemma 11. In the
third round, the neighbors Pi of P0 execute Line 8-10 and fix the value of father i, root i and
rank i (See the case that h = 1 in the proof of Lemma 15.).

According to the proof of Lemma 15, we consider the time which are needed to construct
a tree T0 rooted at P0. Note that h is the distance from P0 on T0. From the forth round, the
neighbors Pi of P0, i.e. processes in the case of h = 1, decides the value of MaxChildreni.
After that, processes in the case of h = 2 decides the value of their valuables. In the as-
cending order of h, each process fixes the value of its valuables. Additionally, in each h,
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each process executes Line 4 to decide the value of MaxChildreni, and executes Lines 8-10,
12-14, 16-19, 20-22 or 24 to decide the value of father i, root i and rank i. In each round, at
least one process Pi decides the value of MaxChildreni or the values of its other variables.
Therefore, the tree T0 rooted at P0 are constructed by O(n) rounds.

After that, by the proof of Lemma 13, in each round, each process Pi with root i >

(D1̄, P1̄) counts up the value of rank i by at least 1 to n. After each value of rank i becomes
greater or equal to n, in each round, at least one process with root i > (D1̄, P1̄) executes
Line 24. Therefore, such reset of the value of root i as mentioned in Lemma 13 needs O(n)

rounds. At the same time, each value of rank i of each process with root i = (D1̄, P1̄) be-
comes greater than 1 if P1̄ is not a root. After that, in the next round, P1̄ executes Line 4 and
Line 6 and becomes a root by Lemma 14.

The execution of algorithm repeats building a tree Tk and reset the value of root in
V \ {V0 ∪ V1 ∪ · · · ∪ Vk}. Each building of a tree needs O(n) rounds, and each reset needs
O(n) rounds. Since the algorithm builds at most n trees, the total time complexity of SSMLF
is O(n2) rounds. 2

3.2 The Third Layer: Modification of Edge Cost

Formal description of the third layer SSMLF is shown in Fig. 4. This layer, called SSTN,
computes a network cost from the MLF computed by the second layer. In the fourth layer,
the minimum spanning tree is computed based on this cost. The minimum spanning tree is
the approximate solution of the MLST problem. That is, all tree edges of the MLF must
be tree-edges of the minimum spanning tree, and all intra-tree edges, that is non-tree-edges
having both endpoints in the same tree of the MLF, must not be in the minimum spanning
tree. Additionally, we would like to make the number of the connector edges between each
tree as small as possible. The connector edges are selected from inter-tree edges, that is
non-tree-edges having their endpoints not in the same tree.

In SSTN, the inputs of each process Pi are:
– root i: ID of the root of leafy tree T to which Pi belongs, and
– father i: ID of the father of Pi in T .

Based on these inpouts, the output of each process Pi is the cost W (Pi)[Pj ] of each edge
between Pi and its neighbors Pj .

Definition 11 A configuration of SSTN is legitimate if and only if each edge satisfies the
following three conditions.

– If e is a tree edge, then W (Pi)[Pj ] is 0,
– If e is an intra-tree edge, then W (Pi)[Pj ] is∞, and
– If e is an inter-tree edge, then W (Pi)[Pj ] is 1.

By Λt, we denote a set of legitimate configuration. 2

We now prove the correctness of SSTN.

Lemma 17 Let γ′ be a configuration. No process is privileged in γ′ if and only if γ′ is
legitimate.

Proof: Consider any illegitimate configuration. Let e = (Pi, Pj) be an edge.
– Suppose that e is a tree edge, but W (Pi)[Pj ] is not 0. Then, W (Pi)[Pj ] 6= 0, root i =

rootj , and father i = Pj ∨ fatherj = Pi. Thus, Pi is privileged in Lines 5-6.
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Constant (Input)
Ni: the set of neighbors on G.
rooti: ID of the root of tree T to which Pi belongs on the MLF (an output from the second layer).
father i: ID of the father of Pi in T (an output from the second layer).

Variable (Output)
W (Pi)[Pj ]: new cost of the edge between Pi and Pj ∈ Ni.

Algorithm for process Pi:
do forever{
1 if (∃Pj ∈ Ni[rooti 6= rootj ∧W (Pi)[Pj ] 6= 1]){
2 W (Pi)[Pj ] := 1; /* For Inter-tree edge */
3 } elseif (∃Pj ∈ Ni[rooti = rootj ∧ (father i 6= Pj ∧ fatherj 6= Pi) ∧W (Pi)[Pj ] 6=∞]){
4 W (Pi)[Pj ] :=∞; /* For Intra-tree edge */
5 } elseif (∃Pj ∈ Ni[rooti = rootj ∧ (father i = Pj ∨ fatherj = Pi) ∧W (Pi)[Pj ] 6= 0]){
6 W (Pi)[Pj ] := 0; /* For Tree edge */
7 }
}

Fig. 4 SSTN: Self-stabilizing algorithm for transforming the network

– Suppose that e is an intra-tree edge, but W (Pi)[Pj ] is not ∞. Then, W (Pi)[Pj ] 6= ∞,
root i = rootj , and father i 6= Pj ∧ fatherj 6= Pi. Thus, Pi is privileged in Lines 3-4.

– Suppose that e is an inter-tree edge, but W (Pi)[Pj ] is not 1. Then, W (Pi)[Pj ] 6= 1 and
root i 6= rootj . Thus, Pi is privileged in Lines 1-2.

Therefore, at least one process is privileged in illegitimate configuration. Moreover, it is
clear that no process is privileged if the configuration is legitimate. 2

Lemma 18 For any configuration γ and any computation starting from γ, eventually no
process is privileged.

Proof: Let e = (Pi, Pj) be any edge. Pi executes Lines 2, 4 or 6 for e at most once. Thus,
there is no infinite computation. 2

By Lemmas 17 and 18, we have the following theorem:

Theorem 4 The algorithm SSTN is self-stabilizing with respect to Λt.

Theorem 5 The time complexity of algorithm SSTN is O(n) rounds.

Proof: Each process executes at most once for each incident edge. Therefore, each process
Pi executes at most δi rounds where δi is the degree of Pi. Time complexity of this algorithm
is then bounded by O(maxi δi) = O(n). 2

Each of the four layers stabilize in at most O(n2) rounds, hence we can conclude:

Theorem 6 The algorithm SSMLST is a self-stabilizing approximation algorithm for the
MLST problem with approximation ratio 3. Its time complexity is O(n2) rounds.

4 Conclusion

In this paper, we proposed a self-stabilizing distributed approximation algorithm for the
MLST problem in arbitrary networks. Its approximation ratio is 3. However, there exists a
sequential solution [1] proposed by Solis-Oba that has approximation ratio 2. Investigating
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the trade-off between approximation ratio and complexity of the self-stabilizing mechanism
to achieve it is an immediate future work.

Also, we would like to mention the importance to complement the self-stabilizing abil-
ities of a distributed algorithm with some additional safety properties that are guaranteed
when the permanent and intermittent failures that hit the system satisfy some conditions.
In addition to being self-stabilizing, a protocol could thus also tolerate a limited number of
topology changes [14], crash faults [15,16], nap faults [17,18], Byzantine faults [19,20],
and sustained edge cost changes [21,22]. Investigating the possibility to add such properties
to our MLST protocol is an intriguing open question.
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