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Abstract

In this paper, we give a distributed silent self-stabilizing algorithm, DISJ, for the disjunction problem
in a connected network. In this problem, each process x has an input bit x.in, assigned by the application
layer, and each process must compute the disjunction of the input bits of all processes. DISJ is uniform,
and works in an anonymous network under the distributed unfair daemon. The stabilization time of
DISJ is O(n) rounds, where n is the size of the network, and the memory requirement per process is
O(logD + ∆) where D and ∆ are, respectively, the diameter, and the maximum degree of the network.

keywords: anonymous network, disjunction, self-stabilization, silence, unfair daemon.

1 Introduction

We consider self-stabilization [2] in the composite atomicity model of computation [3]. A distributed algorithm
is said to be self-stabilizing if, after any finite sequence of transient faults, it will eventually recover, without
external (e.g., human) intervention, provided that those faults do not corrupted its code. In particular, a
self-stabilizing algorithm, starting from an arbitrary configuration, eventually behaves correctly.

A particular class of self-stabilizing algorithms is that of silent algorithms. A self-stabilizing algorithm
is silent [4] if it converges to a global state where the values of the registers used by the algorithm remain
fixed. In the composite atomicity model, a self-stabilizing algorithm is silent if and only if all its executions
are finite. Silent self-stabilizing algorithms can be used to build fault-tolerant distributed data structures,
such as spanning trees [5, 6, 7, 8] or clustering [9, 10, 11].

1.1 Contribution

In this paper, we study a new problem, which we call the disjunction problem. Given a network of processes,
where each process x has a fixed input bit , x.in, the disjunction problem consists in computing Output =∨

x∈V x.in, where V is the set of all processes of the network, and for each process to know the value of
Output . In other words, each process should compute the disjunction of all input bits in the network.

In this paper we give a distributed solution to the disjunction problem, the algorithm DISJ, which is
self-stabilizing and silent, and works under the distributed unfair daemon, the weakest scheduling assumption
of the model.

DISJ is uniform, meaning that every process has the same program, and is anonymous, meaning that
processes are not required to have distinguished IDs. Moreover, for each process x and each neighbor y of
x, we assume that x has an area of its memory of size O(1) dedicated to y, and that y can query this area
specifically. The stabilization time of DISJ is O(n) rounds, where n is the size of the network.

To evaluate the space complexity of DISJ, we introduce the silent overflow model, which allows to evaluate
the minimal space requirement of an algorithm, provided that a mechanism preventing variable overflow is
available. Such a mechanism simply consists in forbidding a process to execute an action that would cause
its memory to overflow. In this model, the memory requirement can depend on global parameters like
the number of processes n or the network diameter D, although processes are not assumed to know these

∗A preliminary version of this paper was presented at the international conference ICDCN’2013 [1].
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Figure 1: Examples of solutions computed by Algorithm DISJ: double circles represent nodes with input bit
1 (others have input bit 0); output bits are shown inside circles; arrows represents tree-edges.

parameters. In the silent overflow model, the space complexity of DISJ is O(logD + ∆) bits per process,
where ∆ is the degree of the network.

Additionally, when Output = 1, DISJ builds a breath-first search spanning forest of the network. Each
process with input bit 1 is the root of its own tree. Each other process joins the tree rooted at the closest
process whose input bit is 1, and each of those trees is a local BFS tree.

Examples of solutions computed by DISJ are given in Figure 1. In the leftmost network, there is no
process with input 1; thus, all processes compute the output 0. In the rightmost network, all processes have
input 1. So, they all compute output 1 and are all roots of their own trees. In the middle network, two
processes have input 1. All processes have output 1. Moreover, two BFS trees are built.

1.2 Related Work

1.2.1 Shortest-Path Tree Construction with Disconnection Detection

Our proposal is close to the work of Glacet et al [12]1. In [12], the authors give a silent self-stabilizing
algorithm — in the composite atomicity model assuming a distributed unfair daemon — to maintain a
shortest-path rooted tree and detect disconnected components. Roughly speaking, they consider a so-called
rooted network, where there is a distinguished process, called root. Due to the dynamic nature of the network,
the topology may become disconnected; in that case, starting from an arbitrary configuration, their algorithm
converges to a terminal configuration where a shortest-path tree spans the component containing the root
and where all processes in other components are in a state which indicates that they are isolated, meaning
that they do not belong to the root component. Whenever all edges have weight one, a shortest-path tree is
a BFS tree and so the problem solved by their algorithm can be seen as a particular case of our work, where
only one process (the root) has input 1. Indeed, in this case, our algorithm also builds a BFS tree which
spans the component of the root; all processes in other components stabilize to the output 0, meaning that
they are isolated. Notice that complexities of the Glacet et al. algorithm are of the same order of magnitude
as our algorithm DISJ.

1.2.2 The Count-To-Infinity Problem

The disjunction problem and the problem solved in [12] are closely related to preventing the count-to-infinity
problem [13] in distance-vector routing protocols, where the distances to some unreachable process keep
growing in routing tables because no process is able to detect the issue.

1Notice that this latter has been published in SSS’2014, while an earlier version of this paper appears in ICDCN’2013 [1].
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1.2.3 BFS Construction and Leader Election

When exactly one process has input 1, our algorithm consists of a self-stabilizing BFS spanning tree con-
struction. However, when all processes have input 0, the network is fully anonymous and BFS spanning tree
constructions fail to solve the disjunction problem, as they face the count-to-infinity problem. Recall also
that, contrary to the disjunction problem, the BFS spanning tree problem is impossible to solve in anony-
mous networks since leader election is impossible too [14]. However, notice that some techniques appearing
first in self-stabilizing BFS spanning constructions [15] and self-stabilizing leader elections [16, 17] are reused
in the algorithm we propose here.

Many self-stabilizing solutions for the BFS spanning tree construction have been proposed for arbitrary
connected rooted networks [5, 18, 19, 20, 15]. In 1991, Chen et al. [5] presented the first self-stabilizing BFS
tree construction in the composite atomicity model, but assuming a central daemon. In 1992, Huang and
Chen [18] proposed the first self-stabilizing BFS tree construction in the composite atomicity model working
under the distributed unfair daemon, its stabilization time is Θ(n) rounds in the worst case [21]. These two
algorithms [5, 18] require that processes know the exact number of processes in the network. The algorithm
given in [19] is not silent and has a stabilization time in O(n + D2) rounds. The silent algorithm given in
[20] has a stabilization time O(D2) rounds. The Dolev et al’s algorithm [15] is written in the Read/Write
atomicity model. This model is more general than the composite atomicity model. The algorithm does not
assume any knowledge on any global parameter of the network, such as n for example. The counterpart
being that there is no bound on process local memories. The algorithm is proven under the central fair
assumption. However, its straightforward composite atomicity version has been proven to stabilize in D
rounds in the worst case [21], assuming a distributed unfair daemon.

In connected identified networks, spanning tree constructions and Leader Election algorithms are closely
related. Indeed, any BFS spanning tree construction requires a leader to be its root, and most of the
silent self-stabilizing leader election algorithms also builds a spanning tree that is rooted at the leader node.
Self-stabilizing algorithms for arbitrary connected identified networks that both elect a leader and build a
spanning tree have been proposed in the message-passing model [17, 22, 7]. First, the algorithm of Afek and
Bremler [17] stabilizes in O(n) rounds using Θ(log n) bits per process. It assumes that the link-capacity is
bounded by a value B, known by all processes. Two solutions, that stabilize in O(D) rounds, have been
proposed in [22, 7]. Both solutions assume that processes know some upper bound D on the diameter D; and
require Θ(logD log n) bits per process. Several solutions, still for arbitrary connected identified networks,
are also given in the composite atomicity model [23, 24, 25, 26, 27, 8, 28]. The algorithm proposed by Dolev
and Herman [23] is not silent, works under a fair daemon, and assume that all processes know a bound N
on the number of processes n. This solution stabilizes in O(D) rounds using Θ(N logN) bits per process.
The algorithm of Arora and Gouda [24] works under a weakly fair daemon and assume the knowledge of
some bound N on the number of processes n. This solution stabilizes in O(N) rounds using Θ(logN) bits
per process. Datta et al [25] propose the first self-stabilizing leader election algorithm proven under the
distributed unfair daemon. This algorithm stabilizes in O(n) rounds. However, the space complexity of this
algorithm is unbounded. Solutions in [26, 27, 8, 28] have a memory requirement which is asymptotically
optimal, i.e., in Θ(log n) (the proof of optimality is given in [4]). The algorithm proposed by Kravchik and
Kutten [8] assumes a synchronous daemon and the stabilization time of this latter is in O(D) rounds. The
solutions proposed in [26, 27, 28] assume a distributed unfair daemon and have a stabilization time in O(n)
rounds.

1.2.4 k-Dominating Sets and k-Clustering

Our algorithm DISJ finds application in network clustering. Indeed, it can be composed with a self-stabilizing
k-dominating set algorithm to build a k-clustering of a network. In k-dominating set and k-clustering
problems, k is a non-negative integer parameter which is given as constant input to all processes. Hence, in
these two problems, k is a priori known by all processes. A k-clustering of the network is a distributed data
structure which partitions processes into distinct subsets, called clusters, in which a process is distinguished
as clusterhead and such that any member of a cluster is within distance k from its clusterhead. Usually,
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every cluster is organized as a tree rooted at its clusterhead. The k-dominating set problem is related to
the k-clustering problem as it allows designation of the set of clusterheads: a k-dominating set is a subset of
processes S such that every process is within k hops of some member of S. Then, a k-clustering is obtained by
having every process choose the closest member of S as its clusterhead. This latter task can be solved by our
algorithm DISJ. Indeed, let DS be any self-stabilizing (silent) k-dominating set algorithm, e.g., [29, 30, 31].
The output of DS is a bit at each process which states whether the process is in the dominating set, i.e.,
whether it is a clusterhead. If we compose DISJ with DS using, for example, the hierarchical collateral
composition [29] and considering the output of DS as the input bit in DISJ, then once DS has stabilized,
DISJ will cause each non-member of the dominating set (with input bit 0) to join the tree rooted at the
closest process with input 1 (i.e., the tree of the closest clusterhead). Hence, we eventually obtain a spanning
forest where each tree is a cluster of radius at most k, i.e., a clustering of the network. Hence, we can obtain a
self-stabilizing (silent) k-clustering algorithm simply by composing any self-stabilizing (silent) k-dominating
set algorithm with our algorithm DISJ. Notice that self-stabilizing algorithms, written in the composite
atomicity model, that directly build a k-clustering in an arbitrary connected identified network are given
in [32, 9, 33, 10]. The solution in [9] stabilizes in O(k) rounds using O(k log n) space per process. The
algorithm given in [32] stabilizes in O(k n) rounds using O(k log n) space per process. The algorithms given
in [33, 10] stabilizes in O(n) rounds using O(log k+ log n) space per process. Solutions in [32, 9, 33] assume
a distributed unfair daemon, while the algorithm in [10] is proven under a distributed weakly fair daemon.

1.3 Outline of the Paper

In Section 2, we explain our model of computation. In Section 3, we first present an overview of DISJ, and
then give the formal definition. In Section 4, we prove that DISJ is self-stabilizing and silent, and in Section
5 we show that DISJ stabilizes within O(n) rounds. We give concluding remarks in Section 6.

2 Preliminaries

2.1 Distributed systems

We consider distributed systems of anonymous processes. Each process can communicate with a subset of
other processes, called its neighbors. Communication is assumed to be bidirectional. Hence, the topology of
the system can be represented as a simple undirected graph G = (V,E), where V is the set of processes and
E the set of edges, i.e., communication links. We assume G is connected. Every process x can distinguish
its neighbors using a local labeling. All labels of x’s neighbors are stored into the set N(x).

2.2 Composite Atomicity Model

We use the composite atomicity model of computation [2, 3] in which the processes communicate using a
finite number of locally shared registers, called variables. Each process can read its own variables and those
of its neighbors, but can write only to its own variables. The state of a process is the vector of values of all
its variables. A configuration of the system is the vector of states of all processes. We denote by C the set
of all possible configurations.

A distributed algorithm consists of one program per process. A distributed algorithm is called uniform
if every process has the same program. In the present paper, all algorithms are uniform.

The program of a process x is a finite set of actions of the following form:

〈label〉 :: 〈guard〉 → 〈statement〉

The labels are used to identify actions. The guard of an action in the program of process x is a Boolean
expression involving the variables of x and its neighbors. If the guard of some action evaluates to true, then
the action is said to be enabled at x. By extension, x is said to be enabled if at least one action is enabled
at x, We denote by Enabled (γ) the set of processes enabled in configuration γ. The statement of an action
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is a sequence of assignments of the variables of x. An action can be executed only if it is enabled. In this
case, the execution of the action consists of executing its statement.

The asynchronism of the system is represented by an adversary, called the daemon. In a configuration γ,
if Enabled (γ) 6= ∅, then the daemon selects a non-empty subset S of Enabled (γ) to perform an (atomic) step:
each x ∈ S atomically executes one of its actions enabled in γ, leading the system to a new configuration
γ′. We write γ 7→ γ′ if γ′ can be reached from γ in one step. An execution is a maximal sequence of
configurations γ0, γ1, . . . such that γi−1 7→ γi for all i > 0. The term “maximal” means that the execution
is either infinite or ends at a terminal configuration, i.e., a configuration at which no process is enabled.

A daemon is usually defined in terms of distribution and fairness. Concerning the distribution, we assume
here that the daemon is distributed meaning that, at each step, if one or more processes are enabled, then
the daemon chooses at least one (possibly more) of these processes to execute an action. There are many
different fairness refinements. For example, a daemon can be weakly fair, meaning that it eventually chooses
every continuously enabled process. The unfair daemon is the weakest scheduling assumption: it can forever
prevent a process from executing an action unless it is the only enabled process. In this paper, we assume
that the daemon is unfair.

2.3 Rounds

To measure the time complexity of an algorithm, we use the notion of a round [34]. If a process x is enabled
in a configuration γi but not enabled in the next configuration γi+1 and does not execute any action between
γi and γi+1, we say that x is neutralized during the step γi 7→ γi+1. The first round of an execution e, noted
e′, is the minimal prefix of e in which every process that is enabled in the initial configuration either executes
an action or becomes neutralized. Let e′′ be the suffix of e starting from the last configuration of e′. The
second round of e is the first round of e′′, and so forth.

2.4 Self-Stabilization

Let A be a distributed algorithm, and let E be the set of all possible executions of A. A specification S is a
predicate over E .
A is self-stabilizing for S if and only if there exists a non-empty subset of configurations L ⊆ C, called

legitimate configurations, such that:

• Closure: ∀e ∈ E , for each step γi 7→ γi+1 ∈ e, γi ∈ L ⇒ γi+1 ∈ L.

• Convergence: ∀e ∈ E ,∃γ ∈ e such that γ ∈ L.

• Correctness: ∀e ∈ E such that e starts in a legitimate configuration γ ∈ L, e satisfies S.

The stabilization time is the maximum time (in steps or rounds) to reach a legitimate configuration
starting from an arbitrary configuration.

2.5 Silent Overflow of Memory

It is common practice to assume that a given distributed algorithm A does not “know” either the size, n,
or the diameter, D, of the network. In fact, we make that assumption in this paper. On the other hand, it
is common to claim that A has a given space complexity per process, and also that each process x has an
integer variable, say x.var , which has no given upper bound. How can these assumptions be reconciled?

We use what we call the silent overflow model. Each process x has a capacity, say B(x) bits, but no
neighbor of x knows the value of B(x). If there is some action, say Act, such that x is enabled to execute
Act, but that action would cause the memory of x to overflow, and the daemon selects x to execute Act, then
x appears, to its neighbors, to not have been selected. In that case, we say that x is blocked. However, x
could be selected at a later step if, at that step, that selection causes Act to be neutralized. Alternatively, x
becomes unblocked if changes of the neighbors of x allow x to execute Act without overflowing its memory.
In that case, x simply executes Act.
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There is no “signal” readable to A that a process x is blocked, meaning no guard of any action may use
that information. If x is blocked, then it appears to any neighbor of x simply that x is not selected.

We now define space complexity in our model. If C is a function on processes, we say that A has space
complexity C(x) if, with the silent overflow rule A executes correctly provided B(x) ≥ C(x); and if we say
that the space complexity of each process x is O(f(x)) for some function f , we mean that C(x) = O(f(x)).

2.6 Silence

In the composite atomicity model, an algorithm A is silent if and only if all its executions are finite [4]. Let
γ be a terminal configuration. The set of all possible executions starting from γ is the singleton {γ}. Thus, if
A is self-stabilizing and silent, γ must be legitimate. Thus, to prove that an algorithm is both self-stabilizing
and silent for the disjunction problem, it is necessary and sufficient to show that all its execution are finite,
and that there is an output variable x.out at every process x such that x.out =

∨
x∈V x.in in every terminal

configuration. Notice that, in this case, the stabilization time is the maximum time (in steps or rounds) to
reach a terminal configuration starting from an arbitrary configuration.

A configuration at which some process is enabled but all enabled processes are blocked is not a terminal
configuration. Rather, at that configuration, A is deadlocked for lack of space.

3 Algorithm DISJ

We now present our algorithm, DISJ. Recall that the network is connected. DISJ computes Output , the
disjunction of all input bits, and assigns Output to x.out for each process x.

Moreover, if Output = 1, each process with input bit 1 becomes the root of a local BFS tree, and each
process with input bit 0 belongs to the tree rooted at the nearest process with input bit 1. Ties are broken
arbitrarily.

3.1 Overview of our Solution: Working Towards DISJ

We present a sequence of algorithms leading to DISJ.

1. DISJ1 is a non-self-stabilizing asynchronous algorithm which solves the disjunction problem in O(D)
rounds. (DISJ1 implements a principle similar to the BFS spanning tree construction given in [15].)

2. DISJ2 is a modification of DISJ1, which introduces the resetting of invalid processes (inspired by [35]).
DISJ2 always works if Output = 1, but sometimes fails if Output = 0, because it may not be able to
get rid of false trees, sets of processes which appear to be fragments of BFS trees. We show an example
of how DISJ2 can livelock.

3. DISJ3. By introducing color waves, first defined in [16], we retard the growth of false trees, permitting
the reset action to eliminate them if Output = 0. As a side effect, the computation in the case
that Output = 1 is made more difficult. Although DISJ3 has round complexity O(n), it might never
terminate under the distributed unfair daemon; the last round might be infinite since an enabled
process might never be selected.

4. DISJ4 = DISJ. In order to force termination of our final algorithm, we introduce a feature which
eliminates the possibility of endless color waves in a completed BFS tree.

3.1.1 The Non Self-Stabilizing Algorithm DISJ1

We now define our simple non-self-stabilizing algorithm, DISJ1. Recall that x.in is the input bit of a process
x, and that Output is the disjunction of all input bits. Write Ii = {x : x.in = i}, for i = 0, 1. Thus,
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Output = 0 if I1 = ∅, and Output = 1 otherwise. If x, y are processes, let ||x, y|| be the distance (“hop-
distance”) from x to y. If S is a non-empty set of processes, let ||S, y|| = min {||x, y|| : x ∈ S}. We let
||∅, y|| =∞. Finally, let L(x) = ||I1, x||.

In DISJ1, each process x has the following four variables.

x.in ∈ {0, 1}: the input bit of x.

The input bits are given by the application, and not changeable by the algorithm.

x.out ∈ {0, 1}: the output bit of x.

When the execution halts, x.out = Output . We let Oi = {y : y.out = i}, for i = 0, 1. During an
execution the sets Oi may change, but eventually, one will contain all processes and the other will be
empty.

x.par ∈ N(x) ∪ {⊥}: the parent of x.

If Output = 0, then x.par = ⊥ when the execution halts. If Output = 1, then, when the execution
halts, x.par = ⊥ for all x ∈ I1, while x.par is the parent pointer of x in the local BFS tree rooted at
the nearest member of I1 if x ∈ I0.

We assume that for every y ∈ N(x), x has a single bit register dedicated to y, readable by y. This bit
is 1 if y = x.par , and 0 otherwise. Hence, y is able to evaluate whether y = x.par in the guard of its
actions.

x.lvl ≥ 0: integer or ∞, the level of x.

When the execution halts, x.lvl = L(x) (in particular, if Output = 0, x.lvl =∞).

The following explanation is illustrated with Figures 2 and 3. In these figures, double (resp. simple)
circles represent process with input 1 (resp. 0). Numbers inside circles represent outputs. Numbers next to
circles represent level values.

Initially, all processes are assigned to the zero state: in this state, x.out = 0, x.par = ⊥, and x.lvl =∞.
Then, DISJ1 consists of two actions:

Init :: x.in = 1 ∧ x.out = 0 → x.out = 1
x.lvl = 0

Join y :: x.in = 0 ∧ x.lvl 6= Level (x) → x.out = 1
∧y.lvl = Level (x)− 1 x.par = y

x.lvl = Level (x)
where Level (x) = 1 + min {y.lvl : y ∈ N(x)}.

In the case where all input bits are zero (see Figure 2(a)), nothing happens after initialization (see
Figure 2(b)): the initial configuration is also terminal, and all output bits are correct.

Consider now the case where some inputs are 1 (see Figure 3(a)). After initialization (see Figure 3(b)),
every process x such that x.in = 1 changes its output, x.out , to 1 and its level, x.lvl , to 0, becoming a BFS
tree root, see Figure 3(c). In the next round, y.out changes to 1 and y.lvl changes to 1 for any y which is
a neighbor of a member of I1, and y.par changes to point to a neighboring member of I1. (We say that a
process x recruits a process y if y executes an action to choose x as parent. In this case, we also say that y
joins x.)

Continuing, if L(x) = ` for ` > 1, then within ` + 1 rounds, x.out ← 1, x.lvl ← L(x), and x.par ← y,
where y is an arbitrary neighbor of x such that L(y) = ` − 1. See, e.g., Figures 3(d) and 3(e). After at
most D + 1 rounds, the network reaches a terminal configuration, where D is the diameter of the network
(see Figure 3(f)).
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Figure 2: The non-self-stabilizing algorithm DISJ1 when all inputs are zero.
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Figure 3: Execution of DISJ1 when some inputs are 1.
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Figure 4: Execution of DISJ2 when some inputs are 1: nodes in red represent processes enabled to reset;
nodes in green represent processes that are enabled to join. because of the previous rule.
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3.1.2 Local Resets: DISJ2

DISJ1 is not self-stabilizing: given an arbitrary configuration, it may not converge to a solution if Output = 0.
We now consider DISJ2, which is simply DISJ1 with one additional action, Reset.

In DISJ2, we define a process x to be valid if one of the following three conditions holds:

1. x.in = x.out = 1, x.lvl = 0, and x.par = ⊥,

2. x.in = 0, x.out = 1, x.lvl = Level (x), and x.lvl = 1+x.par .lvl , where Level (x) = 1+min {y.lvl : y ∈ N(x)},

3. x is in the zero state, i.e., x.out = 0, x.par = ⊥, and x.lvl =∞.

Any process which is not valid is said to be invalid.
In DISJ2, a process is enabled to execute a reset action if it is invalid. This action changes its state to

the zero state.
DISJ2 converges to a legitimate configuration within O(D) rounds, provided Output = 1. We illustrate

an example execution in Figure 4.
First, assume that γ contains some input bits equal to 1, e.g., in Figure 4(a). Consider any process x

such that x.in = 1. If x.lvl 6= 0 or x.out 6= 1, the state of x is invalid and it resets, as shown in Figure 4(b).
As in DISJ1, by dynamic programming, the system reaches a terminal configuration in D + 1 rounds, as
shown in Figure 4(e).

The case where Output = 0 is more difficult. In fact, DISJ2 may enter a livelock. If not all processes are
in the zero state, the configuration will contain at least one false tree, and each false tree must contain an
invalid process at its root. Invalid processes will eventually reset top-down in the false trees; the problem is
that a false tree can continue to recruit at its leaf end, and the cycle might never end.

We give an example of such a livelock in Figure 5, processes with levels 3 to 6 are arranged in a chain.
We assume that each enabled process executes at each step. While the process at level 3 resets, another
process joins the chain at level 7, and so forth. After six steps, the system reaches the configuration shown
in 5(g), which is similar to the configuration 5(a), except that the levels have increased by six. As processes
do not know any bound on the diameter or the size of the network, the execution continues, theoretically
forever.

3.1.3 Color Waves: DISJ3

We prevent livelock by the introduction of color waves, first given in [16]. We have two kinds of trees:
false trees, i.e., sets of processes which appear to be fragments of BFS trees, and true trees, i.e., sets of
valid processes organized as trees rooted at valid members of I1. Of course, we do not have true trees if
Output = 0. Color waves ensure that false trees eventually stop growing at their leaf end so that they
eventually disappear by propagation of reset from their root end. Moreover, color waves do not prevent true
trees from growing.

We give a more extensive intuitive explanation of color waves in Section 3.5.
To implement color waves, DISJ3 requires an additional variable:

x.color ∈ {0, 1}: the color of x.

True and False Trees From now on we refer to any invalid process x such that x ∈ O1 as a false root.
Then, we split valid processes into two categories: true roots and true children. A true root is any valid
process x such that x.in = 1. Any valid process y which is not a true root satisfies, in particular, y.par 6=⊥.
Then, y is said to be a true child of the process designated by y.par . Such a process y is linked to some
root x (either a true, or a false one) by a path x0 = y, x1, . . . , xk = x such that ∀i ∈ [0..k − 1], xi is a true
child of xi+1. Such a path is acyclic. (We will see in Section 3 that the true child relation implies that
xi.lvl 6= xi+1.lvl + 1, ∀i ∈ [0..k − 1].) So, given a true root (resp. the false root) x, we define the true (BFS)
tree (resp. false (BFS) tree) rooted at x as the set of processes linked to x by such a path.
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Figure 5: Execution of DISJ2, when all inputs are zero: nodes in red represent processes enabled to reset;
nodes in green represent processes that are enabled to join.
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Color Waves in True Trees Waves of alternating colors move from the leaves of a growing true tree
to its true root which absorbs the waves. A process x can join a process y only if y.color = 1, and after
joining, x.color = 0. Thus x cannot recruit until its 0-wave has reached y = x.par and x has also initiated a
new 1-wave. Thus each layer of growth of the tree causes two color waves to move up. Color waves are not
allowed to pass each other.

More precisely:

1. For every process x, x can join y (by, in particular, setting x.par to y), only if x is in the zero state
(i.e., x does not belong to any tree) and y.color = 1. Moreover, if x makes that choice, it sets, in
particular, x.color to 0.

2. A process x can change its color, x.color , only if it satisfies the following three conditions:

(a) x is either a true root, or a true child and x.par .color = x.color .

(b) All true children of x (if any) have the opposite color from x.

(c) Either x.color = 0 or Recruits (x) = ∅. Recruits (x) is the set of neighbors of x that might join x
in the future, as defined in Section 3.2.

Let y be any neighbor of x. Roughly speaking, y might join x in the future if y.out = 0 or
y.lvl > x.lvl + 1. In the former case, y should join a BFS tree maybe by joining x. In the latter
case, y should eventually select a new parent, maybe x, to reduce its level.

An example execution of DISJ3 is given in Figure 6, where the rightmost process x is the sole member
of I1. In the first step, x first initializes to become a true root, and can then recruit its neighbor y. When
y selects x as parent, y takes color 0. Then, process x absorbs the 0-wave, after which y can start a new
1-wave, and so can recruit the next process to its left, and so forth.

Color Waves in False Trees It is necessary to delete all such false trees. This is an easy task if
Output = 1, but is difficult if Output = 0. If a process x is invalid, it will delete itself simply by resetting. In
particular, if x was a false root, then all its true children (if any) become false roots. Thanks to color waves,
two rounds are required for the height of a local BFS tree to increment, while at most one round is necessary
for a false root to reset. In addition, color waves ensure that each false tree eventually stops growing at the
leaf end while it continues to delete itself at root end.

Recall that a process can recruit a new process only if its color is 1, and the recruited process will initially
have color 0. As the color of the color waves in a tree must alternate, color waves must move upward to allow
a new color wave 1 to appear at leaves and so to allow new nodes to be recruited. Colors in a tree cannot
pass each other. To allow the color waves to continue upward, the root of the tree must “absorb” each wave.
Only a true root is allowed to absorb a wave, false roots cannot. Hence, color waves will not be absorbed
in false trees, and, in the worst case, each false tree will eventually be color-locked , meaning that there can
be no further color changes in that tree. In particular, if a tree is color locked, then x.color 6= x.par .color
for any true child in the tree. In such a case, the waves are maximally crowded and cannot move up in the
tree. In DISJ3, because of the phenomenon of color locking, a false tree cannot continue recruiting processes
forever. The processes of the false tree reset top-down, eliminating the tree.

Thanks to resets and color waves, the system reaches a legitimate configuration where all processes have
correct output and a spanning forest is defined (if there at least one input bit equal to 1) within O(n) rounds,
provided the daemon is weakly fair. Under the distributed unfair daemon, DISJ3 might never terminate, as
a true BFS tree can generate color waves at the leaves and absorb them at the root forever. This cycle could
occur even if not all local BFS trees are correct. This drawback is corrected in DISJ4 below.

3.1.4 Silence: DISJ4 = DISJ

To obtain silence, we use an additional boolean variable:

x.done: Boolean.
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This variable is irrelevant if x.out = 0. If Output = 1, and a local BFS tree is correct, all x.done are
changed to 1 in a convergecast wave. When r.done = 1 for r ∈ I1, it stops absorbing color waves, and the
tree becomes color-locked within O(D) rounds. When x.done = 1 for all x, and all local trees are correct
and color-locked, the execution ends.

More precisely:

1. If a leaf process x cannot recruit neighbors anymore, then x.done is set to 1.

2. If a process x with true children cannot recruit neighbors anymore and y.done holds for all its children
y, then x.done is set to 1.

3. If x.done holds at a true root x, then x cannot change its color.

We now give the formal definition of Algorithm DISJ. In Subsection 3.2, we define the variables of DISJ,
and then some functions and sets used by DISJ. We formally define legitimacy of DISJ in Subsection 3.3.
Actions of DISJ are explained in Subsection 3.4.

3.2 Variables, Functions and Sets

We first list the variables for each process x.

1. x.in ∈ {0, 1}, the input bit of x. This bit is given by the application layer, and cannot be changed by
DISJ.

2. x.out ∈ {0, 1}, the output bit of x.

3. x.par ∈ N(x) ∪ {⊥}, the parent of x.

4. x.lvl , non-negative integer or ∞, the level of x.

5. x.color ∈ {0, 1}, the color of x. This variable is taken from [16]. As in that paper, the purpose of the
color variable is to limit the growth of false trees, as defined below.

6. x.done, Boolean.

For convenience, we define the following sets of processes.

7. Ii = {x : x.in = i} and Oi = {x : x.out = i}, for i ∈ 0, 1.

8. Chldrn (x) = {y ∈ N(x) : (y.par = x)}, the children of x.

The following functions can be computed by any given process x by examining its own and its neighbors’
variables.

9. Level (x) =

 0 if x ∈ I1
∞ if N(x) ∩O1 = ∅
1 + min {y.lvl : y ∈ N(x) ∩O1} otherwise

10. True Root (x) ≡ (x ∈ I1 ∩O1) ∧ (x.lvl = 0) ∧ (x.par = ⊥), x is a true root.

11. True Child (x) ≡ (x ∈ O1) ∧ (x.par ∈ O1) ∧ (x.lvl = Level (x) = 1 + x.par .lvl), Boolean, x is a true
child.

12. True Chldrn (x) = {y ∈ Chldrn (x) : True Child (y)}, the true children of x.

13. 0 Valid (x) ≡ (x.out = 0)∧ (x.par = ⊥)∧ (x.lvl =∞), Boolean, x is in a valid state with output bit 0.

14. 1 Valid (x) ≡ True Root (x) ∨ True Child (x), Boolean, x is in a valid state with output bit 1.

15. Valid(x) ≡ 1 Valid (x) ∨ 0 Valid (x), Boolean, x is valid. If ¬Valid(x), we say x is invalid.

16. Recruits (x) = {y ∈ N(x) : (y ∈ O0) ∨ (y.lvl > 1 + x.lvl)}, the neighbors of x that might join x.

17. Done (x) ≡ (x ∈ O1) ∧ (Recruits (x) = ∅) ∧ (∀y ∈ True Chldrn (x) : y.done), Boolean.
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3.3 Legitimate Configurations

There are two kinds of legitimate configurations.

1. We say that a configuration is legitimate of type 0 if V = I0 = O0, i.e., the input and output bits of
every process are zero.

2. We say that a configuration is legitimate of type 1 if the following conditions hold.

(a) I1 6= ∅,
(b) 1 Valid (x) for all x,

(c) x.par .color 6= x.color if x is any true child,

(d) x.done for all x.

3.4 Actions of DISJ

Priorities We list the actions of DISJ in Table 1. The first column of the table gives the name of the
action, as well as its priority . Priorities are used to simplify the design of DISJ, as explained below. The
second column gives an informal name of the action. The fourth column of Table 1 lists the statement of
each action. Note that reverse x.color in Actions A5 and A6 just consists in reversing the value of x.color
(0 becomes 1, and conversely).

The guard of each action is a Boolean function, which we express as a list of clauses in the third column.
Each guard is the conjunction of the clauses. If the priority of an action is not 1, its guard has an additional
unlisted clause; this clause states that no action of higher priority is enabled.

The Spanning Forest F For any configuration, let F be the directed graph whose nodes are all processes,
and whose edges are all ordered pairs (x, y) such that x ∈ True Chldrn (y), i.e., True Child (x) and x.par = y.
F is acyclic since x.par .lvl < x.lvl . Since the out-degree of F is bounded by 1, F must be a forest. For
x ∈ O1 we let Tx be the set of descendants of T . Recursively defined, Tx consists of x and Ty for all
y ∈ True Chldrn (x). F is the disjoint union of rooted trees Tr, where r is either a true root or a false root,
i.e., an invalid process in O1. We call those trees true trees or false trees, accordingly.

Explanations of the Actions of DISJ We now give a detailed explanation of each of the actions of DISJ.
We call Actions A1, A2, and A3, structure actions, because they change the topology of the directed graph
F .

Action A1 (Initialize): If x is a true root at the initial configuration, it will remain a true root for the
remainder of the execution, and will never be enabled to execute any structure action. If x.in = 1 and
x is not initially a true root, then x is enabled to execute Action A1, becoming a true root. Once x is
a true root, it will never again execute any structure action.

Action A2 (Reset): It is mainly through this action that false trees are eventually eliminated. All invalid
processes are enabled. If an invalid process x /∈ I1 is selected, it will execute Action A2, becoming
0-valid.

Action A3 (Join y): If a process x ∈ O0 has a neighbor y ∈ O1, where y.color = 1 and y.lvl = Level (x),
then x is enabled to join y by executing Action A3, provided x has no children. When x joins y,
x.color ← 0. The purpose of the condition Chldrn (x) = ∅ is to prevent an execution of this action
from causing more than one process to join the tree.

Action A4 (Finish): If x ∈ O1, and if it appears to x, by looking at its own and its neighbors’ variables,
that construction of the local BFS trees is done, then x.done is changed to 1. Alternatively, if x ∈ O1
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Table 1: Actions of DISJ

A1 Initialize x.in = 1 → x.out ← 1
priority 1 ¬True Root (x) x.color ← 1

x.lvl ← 0
x.par ← ⊥
x.done ← 0

A2 Reset x.in = 0 → x.out ← 0
priority 2 ¬Valid(x) x.lvl ←∞

x.par ← ⊥
A3 Join y x.in = 0 → x.par ← y

priority 3 y ∈ N(x) x.color ← 0
y.out = 1 x.out ← 1
y.color = 1 x.lvl ← y.lvl + 1
1 + y.lvl = Level (x) x.done ← 0
x.out = 0
Chldrn (x) = ∅

A4 Finish x.out = 1 → x.done ← Done (x)
priority 4 x.done 6= Done (x)

A5 Reverse True Child (x) → reverse x.color
priority 5 Color x.par .color = x.color

∀y ∈ Chldrn (x) : y.color 6= x.color
(Recruits (x) = ∅) ∨ (x.color = 0)

A6 Absorb True Root (x) → reverse x.color
priority 5 Color ∀y ∈ Chldrn (x) : y.color 6= x.color

Wave (Recruits (x) = ∅) ∨ (x.color = 0)
¬x.done
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can determine that the local BFS trees are not finished, x.done is changed to 0. Both changes are
accomplished by the execution of Action A4.

For Output = 1, when construction of local BFS trees is finished, all the done variables change to 1
in a convergecast wave beginning at the leaves. When that wave reaches a true root, that root stop
absorbing colors, causing color-lock to percolate down its tree. When all trees are color-locked, the
configuration is terminal.

Action A5 (Reverse Color): Color waves alternate in color, and no color wave can pass a preceding color
wave. This rule is enforced by the guard of A5. In order for the next color wave to reach x, that wave
must have already reached all children of x (if there are no children, then x initiates a new color wave
by executing A5) and the current color wave of x must already have reached x.par .

Action A6 (Absorb Color): Since color waves alternate colors and cannot pass each other, eventually
every chain would have alternating colors, i.e., x and y would have different colors if y = x.par . This
situation is called color-lock . A color-locked chain can only recruit a process if its last process has color
1, and after it recruits that new process, which then has color 0, no further recruitment is possible.
Thus, in order for the local BFS trees to grow, it is necessary for the root processes to absorb color
waves. Action A6 by a true root x consists of simply allowing the color wave that has reached its
children to move up to x. This then destroys (absorbs) the process’ current color wave.

3.5 Intuitive Explanation of Color Waves and Energy

The purpose of the color wave mechanism is to limit the growth of false trees. Color waves are implemented
by the algorithm itself. Each color wave is initiated at the leaves and moves toward the root. Color waves
alternate colors, and cannot pass each other. A true root can absorb color waves, while a false root cannot.
Thus, a false tree will eventually become color-locked if it is not eliminated first.

We say that a tree T is color-locked if no process in T has the same color as its parent. In a color-locked
tree, color waves cannot move.

The purpose of the notion of energy is to prove that false trees are eliminated. The algorithm itself does
not implement energy; it is only a virtual quantity used during the proof.

Every tree T has a value of energy, Energy (T ), which is defined bottom-up. As T recruits new members
at the leaves, Energy (T ) does not change. As the root of a true tree T absorbs a color wave, Energy (T ) may
increase. As the root of a false tree resets, energy decreases. The maximum possible value of Energy (T ) is
2n, and therefore all false trees will be eliminated within 2n rounds.

We have to prevent color waves from being generated forever in true trees. When a true tree has finished
recruiting processes, the boolean variable done changes to true for all processes in a bottom-up wave. When
r.done is true for the root r of a true tree T , r stops absorbing color waves. Eventually T becomes color-
locked.

If Output = 0, DISJ converges when there are no false trees. If Output = 1, DISJ converges when there
are no false trees, and all true trees are color-locked.

4 Correctness of DISJ

We first prove partial correctness of DISJ, then that there is no infinite execution of DISJ. Combining these
two results, we obtain correctness of DISJ, namely that the algorithm is self-stabilizing and silent.

4.1 Partial Correctness of DISJ

Partial correctness of DISJ means that if any execution of DISJ halts, the output is correct.

Lemma 4.1 In a terminal configuration of DISJ, for any process x

(a) x is valid,
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(b) if True Child (x), then x.par .color 6= x.color,

(c) if x ∈ O1 then Done (x) = x.done = 1.

Proof. If x is not valid, then x is enabled to execute Action A2, contradiction. Therefore (a) holds.
Suppose (b) does not hold. Pick x of maximum level such that x.par .color = x.color . Then y.color 6=

x.color for all y ∈ True Chldrn (x) (since y.lvl = x.lvl + 1, by definition of True Chldrn (x)). If x.color = 1
and Recruits (x) 6= ∅, then any member of Recruits (x) is enabled to execute Action A3, contradiction. If
x.color = 0 or Recruits (x) = ∅, then x is enabled to execute Action A5, contradiction. Thus (b) holds.

We prove (c) by induction of x.lvl . We first note that x.done = Done (x), since otherwise x is enabled.
Suppose x.done = 0. If x.lvl = 0, then x is a true root. If x.color = 0 or Recruits (x) = ∅, then x is enabled
to execute Action A6, contradiction. Otherwise, any member of Recruits (x) is enabled to execute because
x.color = 1, contradiction.

Now suppose x.lvl > 0. By the inductive hypothesis, x.par .done = 1, and thus Done (x.par) = 1, since
otherwise x.par would be enabled. Hence x.done = 1. �

Corollary 4.2 In a terminal configuration of DISJ, Recruits (x) = ∅ if x ∈ O1.

Proof. If Recruits (x) 6= ∅ then Done (x) = 0, contradicting Lemma 4.1. �

Corollary 4.3 In a terminal configuration of DISJ, all output bits are the same.

Proof. If not all output bits are the same, there is some x ∈ O1 which has a neighbor in O0, which implies
that Recruits (x) 6= ∅, contradicting Corollary 4.2. �

Lemma 4.4 Any terminal configuration of DISJ is legitimate.

Proof. We study the two following cases:

• Assume that Output = 0. Then, by Lemma 4.1(a), all processes are valid. Assume, by contradiction,
that there is a process x such that 1 Valid (x) holds. Without loss of generality, assume that x.lvl is
minimum. Then, 1 Valid (x) implies, in this case, that x.par ∈ O1. Let y = x.par . 1 Valid (y) also
holds. Now, 1 Valid (x) implies that y.lvl = x.lvl −1, which contradicts the fact that x.lvl is minimum.
Hence, 0 Valid (p) holds for every process p, which implies that the configuration is legitimate (of type
0).

• Assume that Output = 1. Let x such that x ∈ I1. As, Action A1 is disabled at x, True Root (x) holds,
which in particular means that x ∈ O1. So, all processes are in O1 by Corollary 4.3. Finally, by Lemma
4.1, we are done: the configuration is legitimate (of type 1).

�

4.2 No Infinite Execution

We now know that DISJ is partially correct, but we need to prove that DISJ converges, instead of possibly
entering livelock.

We use the method of color waves to prove that DISJ converges if Output = 0. However, the same color
waves that are useful if Output = 0 make the proof of convergence harder in the case that Output = 1.

Any infinite execution of DISJ must contain a cycle, as we show in Lemma 4.9, and there is no cycle, as
we show in Lemma 4.11. We conclude, in Theorem 4.12, that DISJ is correct.
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We borrow the concept of energy from [16] to handle this problem. At any configuration of DISJ, and
for any process x, let

Energy (x) =



0 if x ∈ O0

1 if (x ∈ O1) ∧ (True Chldrn (x) = ∅) ∧ (x.color = 0)
2 if (x ∈ O1) ∧ (True Chldrn (x) = ∅) ∧ (x.color = 1)

max
{
{1 + Energy (y) : (y ∈ True Chldrn (x)) ∧ (y.color 6= x.color)}

∪{2 + Energy (y) : (y ∈ True Chldrn (x)) ∧ (y.color = x.color)}
otherwise

}
We define Max Energy to be the maximum energy of process in the network.

Lemma 4.5 Max Energy ≤ 2n.

Proof. If x ∈ O0, then Energy (x) = 0. By the definition of energy, and by induction, if x ∈ O1, then
Energy (x) ≤ 2d+ 2 ≤ 2n, where d is the length of the longest directed path in F from a leaf x. �

Lemma 4.6 If x /∈ I1, an action of x does not cause Max Energy to increase.

Proof. Suppose x executes an action at step s. We consider the effect of that action on Max Energy . We
first note that x cannot execute Actions A1 or A6 since x /∈ I1.

Case 1: x executes Action A3. Let y = x.par after step s. Energy (y) ≥ 2 before step s, while Energy (x) =
1 and y.color 6= x.color after step s. Thus, Max Energy does not increase.

Case 2: x executes Action A2. Then Energy (x) = 0 after the step. The energy of any ancestor of x
might decrease as a result of this action, but no value of Energy can be caused to increase.

Case 3: x executes Action A4. This action has no effect on any value of Energy .
Case 4: x executes Action A5. Since x /∈ I1, x is a true child. Before the step, x.par has the same color

as x, while all children of x have the opposite color. Let E = Energy (x) before step s. Then before step s,
Energy (x.par) ≥ E+2 and Energy (y) ≤ E−1 for all y ∈ True Chldrn (x). After the step, Energy (x) = E+1
but x and x.par have now opposite color, so no other values of Energy are changed. In particular, we already
had Energy (x.par) ≥ E + 2. Hence Max Energy does not increase.

In all cases, Max Energy does not increase. �

Let ξ(x) =

{
0 if x ∈ O0

x.lvl + Energy (x) if x ∈ O1

Lemma 4.7 If x is a true child, then ξ(x.par) ≥ ξ(x).

Proof. Energy (x.par) ≥ 1 + Energy (x). �

Write Ξ = max

{
2n
max {ξ(x)}

Lemma 4.8 Ξ does not increase during an execution of DISJ.

Proof. We consider the effect on Ξ of one execution of some process x.
Case 1. If x executes Action A1, then ξ(x)← 2, and ξ(y) remains unchanged for any y 6= x.
Case 2. Suppose x executes Action A3 at step s, and x.par ← y. Let ` = y.lvl and E = Energy (y) before

step s. After step s, Energy (x) = 1 and x.lvl = ` + 1. Thus ξ(x) after the step is not greater than ξ(y)
before the step, since E ≥ 2.

Case 3. Suppose x executes Action A2 at step s. Then ξ(x) ← 0. The effect of this action on other
processes is only to decrease the energy of some processes, and so no value of ξ can increase.

Case 4. Suppose x executes Action A4 at step s. There is no change in any value of ξ.
Case 5. Suppose x ∈ I1, and x executes Action A6 at step s. Then x.lvl = 0 and Energy (x) ≤ 2n by

Lemma 4.5.
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Case 6. Suppose x /∈ I1, and x executes Action A5 at step s. Let y = x.par , let ` = x.lvl , and let
E = Energy (x) before the action, which implies that Energy (y) ≥ E + 2 and Energy (x) = E + 1 after the
action. Before the action, Ξ ≥ ξ(y) ≥ `−1 +E+ 2, while after the action ξ(x) = `+E+ 1. Thus, the action
does not cause Ξ to increase. �

Lemma 4.9 There is no infinite acyclic execution of DISJ.

Proof. By Lemma 4.8, there are only finitely many possible values of ξ(x) starting from any given initial
configuration, and thus there are only finitely many possible values of x.lvl . All other variables have only
finitely many possible values. There are thus only finitely many possible states of any particular process
in that execution, and hence only finitely many reachable configurations of DISJ starting from any given
configuration. It follows that any infinite execution of DISJ must contain a cycle. �

Lemma 4.10 There is no cyclic execution of DISJ.

Proof. By contradiction. Suppose Γ is a computational cycle of DISJ. Then any change of variables at any
step of Γ is reversed (meaning the effect of actions executed in the step is cancelled) by later steps of Γ.

Claim I: Γ contains no execution of Action A1, since that action is irreversible.

Claim II: Γ contains no execution of Action A3.

Proof of Claim II: Suppose the claim is false. Let ` be the minimum value of lvl assigned to any process by
its execution of Action A3, and let x be a process such that x.lvl ← ` at some step of Γ. Since every step is
reversible, x must execute Action A2 as well. Let y = x.par at the step when x executes Action A3. By the
minimality of `, if y.lvl < ` at any step, then y never executes Action A3 or A2. It follows that Level (x) = `
at every step, which makes it impossible for x to execute Action A2, contradiction.

Claim III: Γ contains no execution of Action A2, by Claim II, since all steps must be reversible.

We now know that Γ contains no structure actions.

Claim IV: If x is not in a true tree, then x does not execute Action A5 or A6 during Γ.

Proof of Claim IV: If x ∈ O0, we are done. Otherwise, the proof is by strong induction on x.lvl , which, by
Claim II, never changes.

If x is not a true child, then x is invalid, and hence cannot execute Action A5. Otherwise, by the inductive
hypothesis, x.par never changes its color, which implies that x can change its color at most once. Since Γ is
a cycle, that implies that x never changes color.

Claim V: If x is in a true tree Tr and one member of Tr never changes color, then x never changes color.

Proof of Claim V: If x = y.par , and if one of those two processes never changes color, the other can change
color at most once. Since Γ is a cycle, it never changes color. By induction, no member of Tr can change
color.

Claim VI: If Tr is a true tree and all members of Tr change color during Γ, then x.done = 1 for all x ∈ Tr.

Proof of Claim VI: If x ∈ Tr, then Recruits (x) = ∅ since x changes color twice. By bottom-up induction,
x.done = Done (x) = 1 for all x ∈ Tr.

Claim VII: No process executes Action A5 or A6 during Γ.

Proof of Claim VII: By Claim IV, no process which is not in a true tree can change color. By Claim V, if
any process in a true tree Tr changes color, then r changes color. By Claim VI, r.done = 1, contradiction.

Claim VIII: No process executes Action A4 during Γ.

Proof of Claim VIII: By bottom-up induction on lvl . No neighbor of x changes color (Claim VII), and by the
inductive hypothesis, y.done never changes for any y ∈ True Chldrn (x). Therefore, Done (x) never changes,
hence x.done can change at most once, which implies it never changes.

The statement of the lemma follows immediately from Claims I, II, III, IV, VII, and VIII. �
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Lemma 4.11 There is no infinite execution of DISJ.

Proof. By Lemma 4.9, every infinite execution has a cycle, but by Lemma 4.10, there is no cyclic execution.
�

Theorem 4.12 DISJ is correct.

Proof. By Lemma 4.11, every execution of DISJ reaches a terminal configuration. By Lemma 4.4, that
configuration is legitimate. �

5 Round and Space Complexity

We first consider the case that Output = 1, that is, I1 6= ∅. For all x, let L(x) = ||x, I1||, the value of x.lvl
in a legitimate configuration.

The stabilization time of DISJ is O(n) rounds, as stated in Theorem 5.17. At first glance, that result
appears to be obvious, yet we have not found a simple proof. Color waves, which we use to ensure convergence
if Output = 0, greatly increase the difficulty of proving round complexity when Output = 1.

Initially, the value of x.lvl could be anything. An execution of DISJ in the case that Output = 1 has
three phases. In the first phase, processes where x.lvl < L(x) are eliminated, and in the second phase, all
values of x.lvl are set to L(x). In the third and last phase, x.done ← 1 for all x, and then all trees become
color-locked.

In the case that Output = 0, there is only one phase, during which false trees are eliminated. The root
of a false tree cannot absorb color waves, and thus, if the unfair daemon never selects a false root, the false
roots will eventually be the only enabled processes, since false trees will become color-locked. The daemon
is then forced to select false roots until legitimacy is achieved. This phenomenon is illustrated in Figure 7.

We define the set S recursively:

If True Root (x) then x ∈ S,

if True Child (x) ∧ (p.par ∈ S) ∧ (x.lvl = L(x)) then x ∈ S.

Lemma 5.1 If x ∈ O1 and t rounds have elapsed, then x.lvl ≥ min {L(x), t}.

Proof. By induction on t. If t = 0, the lemma is trivial. Let t > 0.
Let step s be the last previous step at which x executed a structure action, or else the last step of the

previous round, whichever is later.
Case 1. x has not executed a structure action since the end of round t− 1. Then x was valid at the end

of round t− 1, since otherwise x would have executed Action A2 during the round.
Case 2. The most recent structure action of x was Action A3.
In either case, x had a parent at step s; let y be its parent at that step. At step s, x.lvl = 1 + y.lvl ≥

1 + min {L(y), t− 1} ≥ min {L(x), t} by the inductive hypothesis and the triangle inequality; and x.lvl has
not changed since step s. �

Lemma 5.2 If x ∈ S and t ≥ L(x) rounds have elapsed, then x ∈ S for the remainder of the execution.

Proof. By induction on L(x). If L(x) = 0, then x ∈ I1, hence x is a true root and remains a member of S.
Let L(x) > 0. Suppose that x executes a structure action at some step, say step s, after at least L(x)

rounds. Then there is some y ∈ N(x) such that y.lvl < L(x) − 1 at step s. However, by Lemma 5.1,
y.lvl > min {L(y), t} ≥ L(x)− 1 at step s, contradiction. �

We define a process x to be closed if x ∈ S and S ∩ Tx = T ∗x , where T ∗x is the subtree rooted at x in
the terminal configuration (Tx is the set of descendents of x in T , see page 15 for the formal definition).
Otherwise, we say x is open, i.e., there are still processes that need to be recruited by Tx.
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Figure 7: Elimination of a false tree when Output = 0. Numbers near processes indicate their levels. Color
0 for members of O1 is represented by gold. Color 1 for members of O1 is represented by cyan. Colors are
irrelevant for members of O0, so these processes are white. When an arrow is outgoing from a process, it
designates its parent. When no arrow is outgoing from a process x, this means that x.par =⊥. A red circle
indicates that a process is enabled to reset, while a green circle indicates a process is enabled to join. In this
example, all enabled processes are selected at each step, except for the false root, the process at upper left,
which is enabled to execute Action A2. The unfair daemon refuses to select that process, until the false tree
is color-locked at (h). At that point, the false root is the only enabled process, and hence must be selected.
The false tree is then eliminated in six steps.
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The Benchmark Done-Closed We say that an execution satisfies the Done-Closed predicate if every
member of I1 is a true root, and if x.done = 0 for any x ∈ S which is open.

Lemma 5.3 The Done-Closed predicate holds if at least 2D rounds have elapsed.

Proof. By Lemma 5.2, no process can leave S.
Claim I: If 2D − L(x) rounds have elapsed, then x.done = 0.
Proof of Claim I: By backwards induction on L(x). If L(x) = D, then x is closed, contradiction.
Suppose L(x) > 0. Pick y ∈ True Chldrn ∗(x) such that y is open. By the inductive hypothesis, either

y /∈ S or y.done = 0, and hence Done (x) = 0, if 2D − L(y) rounds have elapsed. Within one more round,
x.done = 0.

The lemma follows immediately from Claim I, since L(x) ≤ D for all x. �

To complete the proof of round complexity, we need to define

λ(x) =

 λ(x.par) if True Child (x) ∧ (x.color 6= x.par .color)
1 + λ(x.par) if True Child (x) ∧ (x.color = x.par .color)
0 otherwise

That is, λ(x) is the number of color alternations in the directed chain from x to r, where r the root of
the tree to which x belongs.

Remark 5.4 If x is a true child, then λ(x.par) ≤ λ(x) ≤ 1 + λ(x.par).

Remark 5.5 If x ∈ O1, then λ(x) ≤ x.lvl .

5.1 Achieving Correct Levels

The main problem in proving that levels converge to their correct values is the possibility that, in the initial
configuration, a tree Tr could contain a chain whose length is greater than D, where Ω(n) processes in the
chain have color 0, and none are enabled to reset. The same rules that prevent a false tree from growing
forever cause r to wait Ω(n) rounds, in the worst case, before executing Action A6 for the first time. An
illustrative example is given in Figure 8. In this example, the white node x will eventually join the doubly
circled node y by Action A3. However, this will happen only after y changes its color to 1 by absorbing a
color wave of color 1 with Action A6. Now, this color wave must be initiated by Action A5 at the process
of height 5 and then propagated up following parent pointers, by Action A5, until reaching y.

If Done-Closed holds, let Num Clr Chng (x) be the number of times x has executed Action A3, A5, or
A6 since Done-Closed was first achieved.

If Done-Closed, let π(x) = 4D−2 Num Clr Chng (r)+x.lvl −2λ(x) for any r ∈ I1 and any x ∈ Tr. Then
let Π(r) = max {π(x) : x ∈ Tr} for any r ∈ I1. Note that Π(r) = O(n).

Lemma 5.6 If Done-Closed holds and r ∈ I1, then Π(r) does not increase.

Proof. Suppose Π(r) increases at step s. We can assume that exactly one process, x executes at that
step. If x is not a member of Tr either before or after step s, then the action has no effect on Π(r). Since
Done-Closed holds, x cannot execute Action A1. If x executes Action A4, there is no effect on Π(r). We
now consider the remaining cases. Let N = Num Clr Chng (r) before step s.

Case 1. x executes Action A3 at step s, choosing y to be its parent, where y ∈ Tr. Let ` = y.lvl , and let
Λ = λ(y). Then Π(r) ≥ π(y) = 2D−2N+`−2 Λ before the step. After the step π(x) = 2D−2N+`−2 Λ−1,
and thus the action has no effect on Π(r).

Case 2. x ∈ Tr before the step, and leaves Tr at the step, either by executing Action A2 or by executing
Action A3, choosing a parent not in Tr. The processes which were in Tx are no longer in Tr after the action,
but the values of π(y) are unaffected for y ∈ Tr \ Tx. Thus Π(r) cannot increase.

Case 3. x executes Action A5, and x 6= r. Then π(x) decreases by 2 during the step since λ(x) increases
by 1, while π(y) is unchanged for all other y ∈ Tr. Thus, Π(r) does not increase.
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Figure 8: Example showing that color waves slow the growth of true trees. The doubly circled process is
the sole member of I1. The internal bit is the value of x.out . Numbers near processes indicate their levels.
Color 0 for members of O1 is represented by gold. Color 1 for members of O1 is represented by cyan. Colors
are irrelevant for members of O0. When an arrow is outgoing from a process, it designates its parent. When
no arrow is outgoing from a process x, this means that x.par =⊥.

Case 4. r executes Action A6 at step s. Before the step, π(r) = 2D − 2N , while after the step,
π(r) = 2D − 2N − 2, since Num Clr Chng (r) increments. The value of π(y) is unchanged for all other
y ∈ Tr, since N increments and λ(y) decrements. Thus Π(r) does not increase. �

If Done-Closed holds and r ∈ I1, we define a predicate X (r) as follows.

X (r) =

{
1 if ∃x ∈ Tr : π(x) = Π(r) ∧ x.color = 1 ∧ Recruits (x) 6= ∅
0 otherwise

Lemma 5.7 If Done-Closed holds and r ∈ I1, then Π(r) decreases during the next two rounds.

Proof. Claim I: If X (r) = 0, then Π(r) decreases during the next round.
Proof of Claim I: Let X = {x ∈ Tr : π(x) = Π(r)}. For all x ∈ X, either x = r or x.par .color = x.color ,

since otherwise π(x.par) > π(x), and y.color 6= x.color for all y ∈ True Chldrn (x), since otherwise π(y) >
π(x); furthermore, either x.color = 0 or Recruits (x) = ∅, since X (r) = 0. Each member of X is thus enabled
to execute Action A5, and will do so within one round. The effect of these actions is to cause Π(r) decrease.
By Lemma 5.6, no other actions during that round can cause Π(r) to increase. This proves Claim I.

Claim II: If X (r) = 1, then within one round either Π(r) decreases or X (r) becomes 0.
Proof of Claim II: Suppose Π(r) does not decrease during the next round. Let X be the set of all

x ∈ Tr such that π(x) = Π(r) and x does not execute Action A5 during the next round. If x ∈ X and
y ∈ Recruits (x), y will execute a structure action during the next round, and will no longer be a member of
Recruits (x). Thus, X (r) = 0 after one round. This proves Claim II.

The lemma follows immediately from Claims I and II, and Lemma 5.6. �

Lemma 5.8 If Done-Closed holds, r ∈ I1, and Num Clr Chng > 2D, then T ∗r ⊆ Tr.

Proof. Let x ∈ T ∗r \ Tr. Let x = xk, xk−1, . . . x1, x0 = r be the chain of ancestors of x in T ∗r , and let ` be
maximum such that x` ∈ Tr when the predicate Done-Closed is first achieved, which we say is at step s`.
For each ` < i ≤ k, xi will join Tr at a subsequent step, say step si. For ` ≤ i ≤ k, let λi = λ(xi) at step si,
and let Ni be the value of Num Clr Chng (r) at step si. Note that N` = 0.

Claim I: λi − λi−1 + (Ni +Ni−1) = 2 if ` < i ≤ k, and

λ`+1 − λ` +N`+1 =

{
2 if x`.color = 0 at s`
1 if x`.color = 1 at s`

Proof of Claim I: Refer to the chain of processes, to r from the lowest ancestor of x currently in Tr,
as the current chain. Then λi is the number of color alternations in the current chain at step si. Each
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time r executes Action A5, it absorbs one color wave, hence decrements the number of color alternations
in the current chain. At step si, that number of color changes is incremented as xi joins the string, but
there is another incrementation when xi−1 changes color to 1 before that step by executing Action A5, since
xi−1.color = 0 after step si−1. The net incrementation of the number of color alternations in the chain is
thus 2− (Ni −Ni−1), except for the special case that i = `+ 1 and x`.color = 1 at step s`, in which case it
is 1−N`+1. This proves Claim I.

Claim II: Nk ≤ 2k.
Proof of Claim II: From Claim I, and since λ` ≤ `, we have

Nk ≤ 2k − 2`− λk + λ` ≤ 2k − 2`+ λ` ≤ 2k

By Claim II, Nk ≤ 2D. Thus, x ∈ Tr if r has executed Action A5 more than 2D times. �

Lemma 5.9 If Done-Closed holds, r ∈ I1, and Π(r) < 0, then T ∗r ⊆ Tr.

Proof. Since r.lvl = λ(r) = 0, we have 4D−2 Num Clr Chng (r) = π(r) ≤ Π(r) < 0, hence Num Clr Chng (r) >
2D. We are done by Lemma 5.8. �

We say that levels are correct if all processes are valid and x.lvl = L(x) for all x.
From Lemma 5.9, we immediately have:

Corollary 5.10 If Done-Closed holds and Π(r) ≤ 0 for all r ∈ I1, then levels are correct.

Lemma 5.11 If Output = 1, then levels are correct within O(n) rounds.

Proof. Since Π(r) = O(n) for all r, the result follows from Lemmas 5.7 and 5.9. �

5.2 Achieving Color-Lock

If Output = 1, we say that processes are done if levels are correct and x.done = 1 for all x. In this subsection,
we prove that, once levels are correct, all processes are done within O(D) rounds in a convergecast wave
in each tree, after which all trees are color-locked within O(D) additional rounds, since color waves are
continually initiated at the leaves but never absorbed by the roots, and cannot pass each other.

Lemma 5.12 If Output = 1 and levels are correct, then processes are done within D+ 1 additional rounds.

Proof. Suppose Output = 1 and levels are correct.
Claim: Within t+ 1 additional rounds, x.done if L(x) ≥ D − t.
Proof of Claim I: By induction on t. If t = 0, then True Chldrn (x) = ∅, hence Done (x) = 1 after t

rounds, and thus x.done within t+ 1 rounds.
Let t > 0. After t rounds, by the inductive hypothesis, y.done for all y ∈ True Chldrn (x), and thus

Done (x) = 1. Thus, x.done within t+ 1 rounds. This proves the claim.
The Lemma follows from the claim, by setting t = D. �

Lemma 5.13 If processes are done and x is any process, then at any step

(a) λ(x) increases if x executes Action A5,

(b) λ(x) does not change otherwise.

Proof. Suppose x executes at step s. Since processes are done, x is a true child, and the only action x can
execute is Action A5.

Let y = x.par . By definition λ(y) does not change at the step. Let Λ = λ(x) before the step. By the
guard of Action A5, λ(y) = Λ and λ(z) = Λ + 1 for all z ∈ True Chldrn (x). Neither y nor any child of x is
enabled to execute during the step, and by the statement of Action A5, λ(x) = Λ + 1 after the step. Since
no child of x is affected by the action of x, no other descendant of x is affected, hence no process other than
x is affected. �
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Lemma 5.14 If t rounds have elapsed since processes were done

λ(x) ≥ min
{
x.lvl ,

⌈
(x.lvl + t−D)/2

⌉}
Proof. By double induction on t and x.lvl . Write N = x.lvl + t−D. Recall that x.lvl ≤ D.

If x.lvl = 0 we are done. If t = 0, we are done since x.lvl ≤ D.

Let t > 0 and x.lvl > 0.

Case 1. N is odd. After t− 1 rounds, by the inductive hypothesis,

λ(x) ≥ min
{
x.lvl ,

⌈
(N − 1)/2

⌉}
=
{
x.lvl ,

⌈
N/2

⌉}
We are done by Lemma 5.13.

Case 2. d(N − 1)/2e ≥ x.lvl . By Remark 5.5 and the inductive hypothesis, λ(x) = x.lvl after t − 1 rounds
have elapsed. By Lemma 5.13 and Remark 5.5, we are done.

Case 3. N is even and d(N − 1)/2e < x.lvl , hence N/2 ≤ x.lvl . We need to show that λ(x) ≥ N/2. If
λ(x) ≥ N/2 after t − 1 rounds, we are done by Lemma 5.13. Otherwise, after t − 1 rounds, by Remark 5.4
and the inductive hypothesis, λ(x.par) = λ(x) = N/2 − 1, while λ(y) = N/2 for all y ∈ True Chldrn (x);
thus x is enabled to execute Action A5. Within one more round, x will execute that action, and λ(x) will
increase to N/2. �

Lemma 5.15 If Output = 1, then DISJ reaches a legitimate configuration within O(n) rounds.

Proof. By Lemma 5.11, levels are correct within O(n) rounds. By Lemma 5.12, processes are done within
O(D) additional rounds. By Lemma 5.14 and Remark 5.5, λ(x) = x.lvl for all x within O(D) additional
rounds. At that point, no process is enabled, and hence the configuration is legitimate by Lemma 4.4. The
round complexity of the execution is thus O(n). �

We next consider the case that Output = 0, i.e., that I1 = ∅. The configuration is legitimate if O1 = ∅,
but in the initial configuration, O1 need not be empty. Our goal is to show that O1 becomes empty within
O(n) rounds. We make use of the function Energy , as defined in Section 4.2, as well as Lemma 4.5 from
that section.

The next lemma is, essentially, Lemma 7.7 of [16].

Lemma 5.16 If Output = 0 and Max Energy > 0, then Max Energy decreases during the next round.

Proof. Since I1 = ∅ there are no true roots, but if O1 6= ∅ there must be at least one false root. Furthermore,
if Energy (x) = Max Energy , then x is a false root.

Claim I: Max Energy does not increase.
Proof of Claim I: Consider an execution of a process x. We can assume that no other process executes

at the same step. Since I1 = ∅, x cannot execute Action A1. If x executes Action A4, there is no effect on
Max Energy .

Suppose x executes Action A3, choosing y to be its parent. Before that action, y.color = 1, hence
Energy (y) ≥ 2, while after the action, Energy (x) = 1. Thus, that action does not cause Max Energy to
increase.

Suppose x executes Action A2. Then Energy (y) decreases if y is an ancestor of x; otherwise Energy (y)
is unaffected for any other process y.

Suppose x executes Action A5. Then x is a true child, since there is true root. Let y = x.par , and let
E = Energy (x) before the step. Then Energy (y) ≥ E+2 and Energy (z) ≤ E−1 for all z ∈ True Chldrn (x).
After the step, Energy (x) = E + 1, while the energy of no other process changes.

Thus, in all cases an action does not cause Max Energy to increase. This completes the proof of Claim I.
If Energy (x) = Max Energy , then x is a false root, hence enabled to execute Action A2. Within one

round, all such processes will execute, causing Max Energy to decrease. �
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Theorem 5.17 The stabilization time of DISJ is O(n) rounds.

Proof. If Output = 1, then DISJ converges within O(n) rounds by Lemma 5.15. Otherwise, Max Energy = 0
within O(n) rounds, by Lemmas 4.5 and 5.16, hence O1 = ∅ by the definition of Energy . The configuration
is then legitimate. �

5.3 Space Complexity

For any process x, let δ(x) be the degree of x, i.e., the number of neighbors of x. we define C(x) as follows.
If Output = 0, let C(x) = δ(x) + 5 for all x. If Output = 1, let C(x) = dlog2 (L(x) + 2)e+ δ(x) + 4.

Theorem 5.18 DISJ has space complexity C(x).

Proof. Each process x needs 4 bits to hold the values of x.in, x.out , x.color , and x.done, plus one bit
dedicated to each of its neighbors, to store the value of x.par .

If Output = 1, x must store values of x.lvl up to L(x). Since ∞ is an option the number of possible
values of x.lvl needed is L(x) + 2. On the other hand, if Output = 0, we can store the value of x.lvl with
only one bit.

We need to show that, if the memory of each x consists of at least C(x) bits, there is no configuration of
DISJ which is deadlocked for lack of space. We will show that, if any processes are blocked, there is another
process which is not blocked and is enabled to execute Action A2.

Suppose Output = 1. The only action that could cause a process to overflow its memory is Action A3.
Suppose x is enabled to execute an action which overflows its memory. Then x must have a neighbor y such
that y.lvl > L(y). Pick z such that z.lvl is minimum subject to the condition that z.lvl > L(z). Then z is
invalid, which implies that z is enabled to execute Action A2, and cannot be blocked because A2 has priority
over A3.

On the other hand, suppose there is a configuration at which some process is blocked and Output = 0.
Let x be the process with the smallest value of x.lvl . Then x is enabled to execute Action A2. �

Since C(x) = O(logD + ∆), we can also say that DISJ has space complexity O(logD + ∆).

6 Conclusion

We introduced a new problem, called the disjunction problem. A solution to this problem can be used to
detect disconnected components, or to cluster a network, for example.

We give a silent self-stabilizing algorithm for the disjunction problem, assuming a connected anonymous
bidirectional network. Our algorithm is designed in the composite atomicity model, assuming the distributed
unfair daemon (the most general daemon).

Our algorithm stabilizes in O(n) rounds, where n is the size of the network. Moreover, it requires
O(logD + ∆) bits per process, where D and ∆ are, respectively, the diameter, and the maximum degree of
the network.
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