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Abstract

In this paper, we give a silent self-stabilizing algorithm for constructing a k-clustering of any asyn-
chronous connected network with unique IDs. Our algorithm stabilizes in O(n) rounds, using O(log k +
logn) space per process, where n is the number of processes. In the general case, our algorithm constructs
O(n

k
) k-clusters. If the network is a Unit Disk Graph (UDG), then our algorithm is 7.2552k + O(1)-

competitive, that is, the number of k-clusters constructed by the algorithm is at most 7.2552k+O(1) times
the minimum possible number of k-clusters in any k-clustering of the same network. More generally, if
the network is an Quasi-Unit Disk Graph (QUDG) with approximation ratio λ, then our algorithm is
7.2552λ2k +O(λ)-competitive. In case of tree networks, our algorithm computes a k-clustering with the
minimum number of clusters. Our solution is based on the self-stabilizing construction of a data struc-
ture called an MIS tree, a spanning tree of the network whose processes at even levels form a maximal
independent set of the network. The MIS tree construction we use (called LFMIS) is the time bottleneck
of our k-clustering algorithm, as it takes Θ(n) rounds in the worst case, while the rest of the algorithm
takes O(D) rounds, where D is the diameter of the network. We would like to improve that time to be
O(D), but we show that our distributed MIS tree construction is a P-complete problem.

Keywords:: Self-stabilization, k-clustering, competitiveness, maximal independent set, MIS tree, P-
completeness.

1 Introduction

Consider a simple undirected connected graph G = (V,E), where V is a set of n nodes and E a set of edges.
For any nodes p and q, we define ‖p, q‖, the distance from p to q, to be the length of the shortest path in G
from p to q. Given a non-negative integer k, a k-cluster of G is defined to be a set C ⊆ V , together with a
designated node Clusterhead(C) ∈ C, such that each member of C is within distance k of Clusterhead(C).
A k-clustering of G is a partition of V into distinct k-clusters.

A major application of k-clustering is in the implementation of an efficient routing scheme in a network of
processes. Indeed, we could rule that a process that is not a clusterhead communicates only with processes in
its own k-cluster, and that clusterheads communicate with each other via virtual “super-edges,” implemented
as paths in the network.

Ideally, we would like to find a k-clustering with the minimum number of k-clusters. However, this
problem is known to be NP-hard [2]. Instead, we give here a silent self-stabilizing distributed algorithm to
construct O(nk ) k-clusters in an arbitrary asynchronous network with unique IDs. If the network is a Unit
Disk Graph (UDG), then our algorithm is 7.2552k+O(1)-competitive, that is, it builds a k-clustering which
has at most 7.2552k +O(1) times as many clusters as the minimum cardinality k-clustering.

Related Work: Self-stabilization [3] is a versatile property, enabling an algorithm to withstand transient
faults in a distributed system. Indeed, a self-stabilizing algorithm, after transient faults hit and place the
system in some arbitrary state, enables the system to recover without external (e.g., human) intervention in
finite time.

∗A preliminary version of this work appeared in [1].
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There are several known self-stabilizing distributed algorithms for finding a k-clustering of an asyn-
chronous network, e.g., [4, 5, 6]. The solution in [5] stabilizes in O(k) rounds using O(k log n) space per
process. The algorithm given in [7] stabilizes in O(k.n) rounds using O(k log n) space per process. The
algorithm given in [6] stabilizes in O(n) rounds using O(log k + log n) space per process. Note that, by
definition, the set C of clusterheads for any k-clustering is a k-dominating set, that is, if every vertex of
G is within k hops of some member of C. The k-dominating set computed by the algorithm given in [6]
is also minimal, that is, none of its proper subsets is k-dominating. In the same paper, it is shown that
every minimal k-dominating set contains at most max(1, n/dk+1

2 e) nodes. In [8], an asynchronous silent
self-stabilizing algorithm that computes a minimal k-dominating set of at most d n

k+1e processes is given,
this latter algorithm uses the one in [6] as module. Any k-dominating set can be used to construct a k-
clustering by letting each member of the set be a clusterhead, and others join their nearest clusterhead. The
k-dominating set construction given in [8] stabilizes in O(n) rounds using O(log k+ logn+ k log N

k ) bits per
process, where N is any upper bound on n.

Note that all these aforementioned algorithms (i.e., [5, 6, 7, 8]) are written in the shared memory model
and none of them is competitive. To the best of our knowledge, until now there has been no self-stabilizing
competitive solution to the k-clustering problem.

There are several non self-stabilizing distributed solutions for finding a k-clustering of a network [9, 10,
11, 12]. Of those, only [10] deals with competitiveness. Moreover, they are all written in message-passing
model. Deterministic solutions given in [9, 10] are designed for asynchronous mobile ad hoc networks, i.e.,
they assume networks with a UDG topology. The time and space complexities of the solution in [9] are
O(k) and O(k log n), respectively. Fernandess and Malkhi [10] give a k-clustering algorithm that takes O(n)
steps using O(log n) memory per process, provided a BFS tree of the network is already given. In the
special case that the network is a UDG, their algorithm is 8k+O(1)-competitive.1 Spohn and Garcia-Luna-
Aceves [11] give a distributed solution to a more generalized version of the k-clustering problem. In this
version, a parameter m is given, and each process must be a member of m different k-clusters. The time
and space complexities of this algorithm for asynchronous networks are not given. Ravelomanana [12] gives
a randomized algorithm for synchronous UDG networks whose time complexity is O(D) rounds, where D is
the diameter of the network.

Detailed Contribution and Roadmap: In the present paper, we give a silent self-stabilizing distributed
algorithm for the k-clustering problem. This algorithm is written in the locally shared memory model. When
the network is connected, asynchronous, and has unique node IDs, our algorithm:

• stabilizes in O(n) rounds,

• requires O(log k + log n) space per process, and

• constructs at most d n
k+1e k-clusters.

To simplify the design of our solution, we write it as a hierarchical collateral composition of two sub-
algorithms. That composition technique is defined in Section 2.

• Our first algorithm, proposed in Section 3, is silent and self-stabilizing, and constructs a particular
kind of spanning tree, called an MIS tree. An MIS tree is a spanning tree whose processes at even levels
form an MIS (maximal independent set) of the network. Our MIS tree algorithm is a straightforward
self-stabilizing version of the non self-stabilizing algorithm proposed by Alzoubi et al [13].

• Our second algorithm, given in Section 4, is silent and self-stabilizing, and gives a k-clustering con-
struction which works in any tree topology.

We then show that in several classes of network topologies, the number of k-clusters built by our algorithm
can be more precisely analyzed:

1Actually, in [10], a k-cluster is defined to have diameter at most k, while the definition in this paper uses radius k. They
give competitiveness 4k + O(1), which is equivalent to competitiveness 8k + O(1) using our definition of a k-cluster.
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• we prove in Section 4 that in tree networks, the computed k-clustering is minimum, i.e., has the
minimum possible number of k-clusters,

• in Section 5, we analyze the competitiveness of our k-clustering algorithm in UDGs and QUDGs
because these topologies are commonly used to model wireless sensor networks:

– In a UDG, our algorithm is 7.2552k +O(1)-competitive,

– in an QUDG with approximation ratio λ, our algorithm is 7.2552λ2k +O(λ)-competitive.

We then partially answer the question: “Is it possible to reduce the time complexity of our algorithm
to O(D) rounds (the trivial lower bound) where D is the diameter of the network, while retaining its
competitiveness for the UDG and QUDG cases?”

We show in Section 5 that our competitiveness result for both UDGs and QUDGs depends on the fact
that we use the Alzoubi et al MIS tree. The construction of that tree is the time bottleneck of our k-clustering
algorithm, since that construction takes Θ(n) rounds in the worst case. The remainder of our algorithm
takes O(D) rounds. More precisely:

• our algorithm constructs, in Θ(n) rounds, an MIS spanning tree of height at most 2D, as shown in
Section 3;

• our algorithm constructs, in O(H) rounds, a k-clustering on any tree, where H the height of the
(spanning) tree in which it is deployed, as shown in Section 4.

In Section 6, we show that the time complexity of our self-stabilizing MIS tree algorithm could be hard
to enhance since whether a given process is part of the Alzoubi et al MIS tree is a P-complete problem.

Finally, in Section 7, we give some concluding remarks and perspectives.

2 Preliminaries

Computational Model: We consider networks made of n processes. Each process can directly commu-
nicate with a subset of other processes, called neighbors. We denote by Np the set of neighbors of process p.
Communications are assumed to be bidirectional, that is, for all processes p, q we have: q ∈ Np ⇔ p ∈ Nq.
Hence, as commonly done in the literature, we model a distributed system as a simple undirected connected
graph G = (V,E), where V is the set of processes and E is a set of edges representing (direct) communication
relations.

Processes have unique IDs. By abuse of notation, we shall identify any process with its ID, whenever
convenient. If b bits are used to store each identifier, then the space complexity of our algorithm will be Ω(b)
per process, but henceforth, as is commonly done in the literature, we will assume that b = O(log n).

We assume the shared memory model of computation [3], where a process communicates with its neighbors
using locally shared variables (henceforth called variables). Each process can read its own variables and
those of its neighbors, but can write only to its own variables. Each process operates according to its (local)
program. We call (distributed) algorithm A a collection of n programs, each one operating on a single process.
In the following, we will denote the local program of Process p in the distributed algorithm A by A(p). The
program of each process is a set of actions:

〈label〉 :: 〈guard〉 → 〈statement〉

Labels are only used to identify actions. The guard of an action in the program of a process p is a Boolean
expression involving the variables of p and its neighbors. The statement of an action of p updates one or
more variables of p. An action can be executed only if it is enabled , i.e., its guard evaluates to true. A
process is said to be enabled if at least one of its actions is enabled. The state of a process in A is defined
by the values of its variables in A. A configuration of A is an instance of the states of processes in A.
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Let 7→ be the binary relation over configurations of A such that γ 7→ γ′ if and only if it is possible for
the network to change from configuration γ to configuration γ′ in one step of A. Each step γ 7→ γ′ consists
of one or more enabled processes executing an action. The evaluations of all guards and executions of all
statements of those actions are presumed to take place in one atomic step; this model is called composite
atomicity [14].

An execution of A is a maximal sequence of its configurations e = γ0γ1 . . . γi . . . such that γi−1 7→ γi for all
i > 0. The term “maximal” means that the execution is either infinite, or ends at a terminal configuration
in which no action of A is enabled at any process.

We assume that each step from a configuration to another is driven by a scheduler , also called a daemon.
If one or more processes are enabled, the scheduler selects at least one of these enabled processes to execute
an action. A scheduler may have some fairness properties. Here, we assume a weakly fair scheduler, i.e., it
allows every continuously enabled process to eventually execute an action.

We say that a process p is neutralized in the step γi 7→ γi+1 if p is enabled in γi and not enabled in γi+1,
but does not execute any action between these two configurations. The neutralization of a process represents
the following situation: at least one neighbor of p changes its state between γi and γi+1, and this change
effectively makes the guard of all actions of p false.

To evaluate the time complexity, we use the notion of round [15]. This definition captures the execution
rate of the slowest process in every execution. The first round of an execution e, noted e′, is the minimal
prefix of e in which every process that is enabled in the initial configuration either executes an action or
becomes neutralized. Let e′′ be the suffix of e starting from the last configuration of e′. The second round
of e is the first round of e′′, and so forth.

Self-Stabilization and Silence: Let A be a distributed algorithm and P be a predicate over the config-
urations of A. A is self-stabilizing w.r.t. P if there exists a non-empty subset S of configurations of A such
that:

• ∀γ ∈ S, P (γ). (Correction)

• For each possible step γ 7→ γ′ of A, γ ∈ S ⇒ γ′ ∈ S. (Closure)

• Each execution of A (starting from an arbitrary configuration) contains a configuration of S. (Con-
vergence)

The configurations of S are said to be legitimate, and other configurations are called illegitimate.
We say that an algorithm is silent [16] if each of its executions is finite. In other words, starting from

an arbitrary configuration, the network will eventually reach a configuration where none of its actions is
enabled at any process. In this paper, we are interested in silent self-stabilizing algorithms. To show that
an algorithm A is silent, and self-stabilizing w.r.t. P , it is sufficient to show that (1) every execution of A
is finite and (2) every terminal configuration of A satisfies P .

Composition: To simplify the design of our algorithm, we use hierarchical collateral composition [8] which
is a variant of collateral composition [17]. When we collaterally compose two algorithms A and B, they run
concurrently and B uses the outputs of A in its computations. In the variant we use, we modify the code of
B(p) (for every process p) so that p executes an action of B(p) only when it has no enabled action in A(p).

Definition 1 (Hierarchical Collateral Composition) Let A and B be two (distributed) algorithms such
that no variable written by B appears in A. In the hierarchical collateral composition of A and B, noted
B ◦ A, the (local) program of every process p, B(p) ◦ A(p), is defined as follows:

• B(p) ◦ A(p) contains all variables of A(p) and B(p).

• B(p) ◦ A(p) contains all actions of A(p).

• For every action Gi → Si of B(p), B(p) ◦ A(p) contains the action ¬Cp ∧ Gi → Si where Cp is the
disjunction of all guards of actions in A(p).
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We recall a theorem from [8] that gives sufficient conditions to show the correctness of an algorithm
obtained by hierarchical collateral composition.

Theorem 1 B◦A is self-stabilizing w.r.t. P assuming a weakly fair daemon if the following conditions hold:

• A is a silent (self-stabilizing) algorithm under a weakly fair daemon.

• B is self-stabilizing w.r.t. P assuming a weakly fair daemon starting from any configuration where no
action of A is enabled ever.2

Nick’s Class: NC (stand for Nick’s Class) [18] is defined to be the set of all problems that can be solved
in parallel in polylogarithmic time with polynomially many processors. Thus, there can be no deterministic
polylogarithmic time distributed algorithm for any problem which is not in NC.

Recall that P is the set of all problems that can be deterministically solved in polynomial time. NC ⊆ P
because a polylogarithmic time parallel computation with polynomially many processors can be emulated
by polynomial-time sequential computation. The question, “Is NC = P ?” is still open and considered to be
in the same class of difficulty as the question of whether P = NP. Most researchers suspect that NC 6= P,
meaning believe there to be tractable problems which are “inherently sequential,” and cannot be executed
in polylogarithmic time up by using parallelism.

A problem A ∈ P is said to be P-complete if, given any problem B ∈ P, there is NC-reduction of B
to A, i.e., a reduction that can be computed in parallel in polylogarithmic time with polynomially many
processors. Thus, NC = P if and only if there is any one P-complete problem which is in NC.

Now, if we make the usual assumption that NC 6= P, then any P-complete problem belongs to P \ NC,
meaning that the problem is “inherently sequential.” Hence, just as we can justify giving up the search for
a polynomial time algorithm for any problem that we can prove to be NP-complete, we can justify giving
up the search for a fast parallel algorithm for a problem if we can prove that it is P-complete.

3 The MIS Tree

In this section, we first recall the definition of MIS tree (for Maximal Independent Set tree), introduced in
[13]. Then, we give a silent self-stabilizing algorithm that computes an MIS tree in any arbitrary identified
network within O(n) rounds, this algorithm is a straightforward self-stabilizing version of the non self-
stabilizing algorithm of Alzoubi et al [13]. There could be many different MIS trees for a given network and
a given r; the one we construct has the same specification as that constructed in [13], i.e, it is the lexically
first MIS tree.

3.1 Definition of MIS Tree

The subset I ⊆ V is an independent set of G = (V,E) if no two distinct members of I are neighbors in G.
An independent set I of G is maximal if no proper superset of I is an independent set of G. A spanning tree
of G is any connected graph T = (VT , ET ) such that VT = V , ET ⊆ E and |ET | = |VT | − 1. Any spanning
tree becomes a rooted tree by choosing a distinguished root r; in this paper, all spanning trees are rooted.

Given a rooted spanning tree T , the level of node p, Level(p), is defined to be its distance to the root r
in T . The height of T , noted h(T ), is maxp∈VT

Level(p). Let T (p) be the subtree of T rooted at any given
node p, and define h(T (p)) to be the height of T (p). The parent of p in T is p itself if p = r, otherwise it is
its unique neighbor q in T such that Level(p) = Level(q) + 1.

Definition 2 An MIS tree T of G is a spanning tree of G rooted at some node r such that the set of nodes
at even levels of T is a maximal independent set of G.

Property 1 Let T be an MIS tree of G. Let I be the maximal independent set formed by the nodes at even
levels of T . If σ is a path of T of length ` (i.e., `+ 1 nodes), then σ contains at least d `2e members of I.
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Figure 1: Examples. Process 1 is the root. Arrows represent the parent pointers for each non-root process.
Processes at even levels are in black. The MIS tree given in 1a is a LFMIST. The MIS tree given in 1b is
not lexically first. The tree given in 1c is not an MIS tree.

Assume that an ordering p1, p2, . . . , pn of V is given. Any rooted tree T of G can be encoded as an
n-tuple of numbers in the range 1..n, as follows. The ith entry of the encoding of T is j if pj is the
parent of pi in T . The lexically first MIS tree (LFMIST) of G with root r is then defined to be that
MIS tree of G whose encoding is first in the lexical order of the encodings of all MIS trees of G with root
r. For example, two MIS trees are given in Figures 1a and 1b: their respective sets of processes at even
level (black nodes) form maximal independent sets. However, only the tree given in 1a is a LFMIST. Its
encoding is (1, 1, 2, 1, 3, 5, 8, 4, 6), while the encoding of MIS the tree given in 1b is (1, 1, 4, 1, 3, 7, 8, 4, 6), and
(1, 1, 4, 1, 3, 7, 8, 4, 6) > (1, 1, 2, 1, 3, 5, 8, 4, 6) in the lexical order. The tree given in 1c is not an MIS tree,
indeed the set of processes at even level is not a maximal independent set, as 3 and 5 are neighbors.

3.2 The Algorithm to construct an MIS Tree

We now give a silent self-stabilizing algorithm to construct an MIS tree (actually a LFMIST) in O(n) rounds.
It is defined as the hierarchical collateral compositionMIST ◦BFST , where BFST is a silent self-stabilizing
algorithm that constructs a breadth-first spanning tree (BFS tree), and MIST is an algorithm that uses
the BFS tree to compute an MIS tree of the network.

Algorithm BFST : We define a breadth first spanning tree (BFS tree) rooted at r, for a graph G = (V,E)
to be any spanning tree T rooted at r such that the path, through T , from any node p to r has length ‖p, r‖,
i.e., the distance from p to r in G.

Let BFST be a silent self-stabilizing breadth-first spanning tree algorithm for a network with unique
IDs which works under a weakly fair scheduler. That is, starting from an arbitrary configuration, BFST
converges to a terminal configuration where a root r and a breadth-first spanning tree of the G, rooted at
r, is output. Henceforth, we denote by LevelBFS(p) the level of any process p in the breadth-first spanning
tree computed by BFST .

2Recall that in such a configuration, the specification of A is satisfied.
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Many silent self-stabilizing breadth-first search spanning tree algorithms have been given in the literature.
One of the first silent self-stabilizing algorithm for that problem is given in [19]. However, it was designed
for arbitrary rooted networks. The silent self-stabilizing algorithm for identified networks given in [20] can
be used to implement BFST . Actually, this algorithm is a leader election, but, as do most of the existing
silent self-stabilizing leader election algorithms, it also builds a BFS tree that is rooted at the elected node.
This algorithm stabilizes in O(n) rounds using O(log n) bits per process, and does not require processes to
know any upper bound on the size n or the diameter D of the network.

AlgorithmMIST : Let r be the root of the BFS tree computed by BFST . Let ≺ be an order on processes
defined as follows : p ≺ q if and only if (‖p, r‖, p) is smaller than (‖q, r‖, q) in the lexical ordering of pairs.
Using the outputs of BFST , MIST computes the MIS tree of the network which is lexically first w.r.t. to
≺. The formal description of MIST is given in Algorithm 1. In MIST , the program of each process p
contains two variables:

• The Boolean variable p.dominator , which determines if p is in the independent set or not.

• The pointer variable p.par , which points to the parent of p in the MIS tree.

Every process p such that p.dominator = true is said to be a dominator, otherwise it is said to be
dominated. Eventually, the set {p ∈ V | p.dominator} is fixed and forms a maximal independent set of the
network thanks to Action SetDominator.

To decide its status, dominator or dominated, each process uses a key, noted Key(p), which is defined by
the tuple (LevelBFS(p), p) (n.b., LevelBFS(p) is eventually equal to the distance of p to the root of the BFS
tree). According to the keys and the status of its neighbors, p decides its status as follows: p is a dominator
if and only if each neighbor q is either dominated or satisfies Key(q) > Key(p), where > is the strict lexical
ordering. According to this rule, the root of the BFS tree is the node of minimum key and consequently is
eventually definitely a dominator. All its neighbors becomes dominated, and so on. Hence, eventually, the
set of dominator processes is a maximal independent set.

Each process must choose a parent such that the parent links form a spanning tree, and the set of
processes at even levels is exactly the set of dominators. The root r sets its parent variable to r. All other
processes choose as parent the neighbor having a status different of their own, and of minimum key. This
forces a strict alternation between status dominator/dominating along every path of the tree. As the root is
at level zero and of dominating status, this alternation makes the tree an MIS tree.

Algorithm 1 MIST , code for each process p

Input : LevelBFS(p) ∈ N
Variables: p.dominator : Boolean ; p.par ∈ Np ∪ {p}
Macros:

Key(p) = (LevelBFS(p), p)
Dominator(p) = ∀q ∈ Np,¬q.dominator ∨ Key(q) > Key(p)
Par(p) = if LevelBFS(p) = 0 then p

else q ∈ Np | Key(q) = min{Key(q′) | q′ ∈ Np ∧ q′.dominator 6= p.dominator}
Actions:

SetDominator :: p.dominator 6= Dominator(p) → p.dominator ← Dominator(p)
SetParMIS :: p.dominator = Dominator(p) ∧ p.par 6= Par(p) → p.par ← Par(p)

Correctness and Complexity Analysis: According to Theorem 1, to show the correctness ofMIST ◦
BFST , we show that MIST constructs an MIS tree starting from any configuration where no action of
BFST is enabled. In such a configuration, a BFS tree TBFS rooted at some node is available. In the
following, we denote by r the root of TBFS , which will be also the root of the MIS tree.

The following two lemmas show that MIST stabilizes in O(n) rounds after BFST has stabilized.

Lemma 1 Starting from any configuration where no action of BFST is enabled, all actions SetDominator
are disabled forever after at most n rounds.
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Proof. Let γ be a configuration where no action of BFST is enabled. From γ, Key(p) is fixed forever for
every process p. Let p1,. . . ,pn the list of processes ordered by ≺ (the lexical ordering w.r.t. keys) in γ. We
show the lemma by induction on the rank of every process in the ordering.

• Base case: In γ, p1 = r and Key(p1) = (0, r). So, if p1.dominator 6= true, p1 is continuously enabled
to set p1.dominator = true. Once, p1.dominator = true, action SetDominator is disabled at p1 forever.
So, after at most one round from γ, action SetDominator of p1 is disabled forever.

• Inductive Hypothesis: Let j a positive integer. Assume that for every process pi such that i ≤ j,
action SetDominator is disabled forever at pi after at most i rounds from γ.

• Inductive step: Consider process pj+1 in the first configuration of the (j + 1)st round from γ. Every
neighbor q of pj+1 has key that is fixed forever; moreover if Key(q) < Key(pj+1), then the value
q.dominator is fixed forever by the induction hypothesis. So, either action SetDominator is disabled
at pj+1 or it is continuously enabled. Hence, at the end of the current round, the value of pj+1 is fixed
forever and the induction holds.

The maximum rank being n, the lemma is verified. �

Lemma 2 Starting from any configuration where no action of BFST is enabled, if at least n+ 1 additional
rounds have executed, no action of MIST is enabled.

Proof. Let γ be a configuration where no action of BFST is enabled. By Lemma 1, after at most n rounds
from γ, no action SetDominator is enabled. So, from that point, the values of Key(p) and p.dominator are
fixed forever, for every process p. Now, for all processes, the guard of action SetParMIS only depends on
these values. So, after at most one additional round, no action ofMIST can ever again be enabled, and we
are done. �

We now consider any terminal configuration γ of MIST ◦ BFST . Let I be the set of all dominator
processes in γ, that is, the set of all processes p such that p.dominator = true in γ.

The following three technical lemmas are used in order to prove Lemma 6 which states the correctness
of MIST ◦ BFST .

Lemma 3 In any terminal configuration γ of MIST ◦ BFST , I is a maximal independent set of the
network.

Proof. Suppose the set I is not independent, then there exist two neighbors p and q having their respective
dominator variable equal to true. Then, either Key(p) < Key(q) or Key(q) < Key(p). In the first case,
Action SetDominator is enabled at q, in the latter Action SetDominator is enabled at p, a contradiction.

Suppose the independent set I is not maximal, then there exists a process p such that ¬p.dominator and
for every neighbor q of p, ¬q.dominator . Then Action SetDominator is enabled at p, a contradiction. �

In γ, r is the only process such that LevelBFS(r) = 0. By the definition of Par(p), we then have:

Remark 1 In γ, for every process p, either p = r and p.par = r, or p 6= r and p.par ∈ Np.

Lemma 4 In any terminal configuration γ of MIST ◦ BFST , for every process p 6= r, Key(p.par) <
Key(p).

Proof. We consider two cases, according to the status of p:

• p ∈ I. Then, by Lemma 3, ∀q ∈ Np, q.dominator = false, in particular for q = ParBFS(p). Note that
LevelBFS(ParBFS(p)) = LevelBFS(p) − 1. Thus, by definition of the macro Par(p), LevelBFS(p.par) =
LevelBFS(ParBFS(p)). Consequently, Key(p.par) < Key(p).
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• p /∈ I. Then ¬Dominator(p). Now, as no two processes have equal key, we have ∃q ∈ Np, Key(p)
> Key(q) ∧ q.dominator . So, Key(p.par) ≤ Key(q) by definition of Macro Par(p). Consequently,
Key(p.par) < Key(p).

�

In the following, we denote by TMIS the subgraph induced by the values of the parent pointers ofMIST
in the terminal configuration γ. Formally, TMIS = (V,EMIS), where EMIS is the set {{p, p.par} | p ∈ V \{r}}
defined in γ. (Recall that r is the unique process such that r.par = r in γ, by Remark 1.)

Lemma 5 In any configuration where no action of MIST ◦ BFST is enabled, TMIS is a spanning tree of
the network.

Proof. We show by contradiction that TMIS is connected and acyclic:

• Suppose TMIS is not acyclic. Then, there exists an elementary cycle in C = (c0, c1, . . . , cm = c0) such
that ∀i ∈ [0..m − 1], ci.par = ci+1 and m > 0. By Remark 1, r 6∈ C. By Lemma 4, ∀i ∈ [0..m − 1],
Key(ci) < Key(ci+1) (since ci.par = ci+1). By transitivity, Key(c0) < Key(cm), that is, Key(c0) <
Key(c0), a contradiction.

• Suppose TMIS is not connected, then there exist at least two connected components in TMIS . At least
one component, noted G′, does not contain the root r. Every process p ∈ G′ has a parent in G′, by
Macro Par(p). Hence, there are as many edges as processes in G′, i.e., there is a cycle in G′. As TMIS

is acyclic, we obtain a contradiction.

�

In the following, we denote by LevelMIS(p) the level of any process p in the MIS tree TMIS computed by
algorithm MIST .

Lemma 6 In any configuration where no action of MIST ◦ BFST is enabled, TMIS is an MIS tree of the
network.

Proof. By Lemma 5, TMIS is a spanning tree of the network. By Lemma 3, I is an MIS of the network.
We now show that the even levels of TMIS form I. Formally, we prove that LevelMIS(p) is even if and only
if p.dominator for all p ∈ V , by induction on LevelMIS(p).

First, the root process r is necessarily in I. For the inductive step, let p be a process other than r, and
let L = LevelMIS(p) > 0. By the inductive hypothesis, LevelMIS(q) is even if and only if q.dominator = true
for all q such that LevelMIS(q) = L− 1.

Note that LevelMIS(p.par) = L− 1. By Macro Par(p), p.par .dominator 6= p.dominator . Since L is even
if and only if L− 1 is not even, we are done. �

We can require that BFST stabilize in O(n) rounds and use O(log n) space per process [20]. So, by
Theorem 1, Lemmas 2 and 6, we have:

Theorem 2 MIST ◦BFST is a silent self-stabilizing algorithm that builds an MIS tree within O(n) rounds
using O(log n) space per process.

Height of the MIS Tree: The next property establishes a bound on the height of the MIS tree computed
by MIST ◦ BFST . We then illustrate this property with an example matching the bound. To show the
property, we need the following technical lemma.

Lemma 7 In any terminal configuration of MIST ◦ BFST , if p is a non-root process at an even level of
TMIS, then the process p.par is at level LevelBFS(p)− 1 in TBFS.
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Figure 2: Worst case example for MIS tree height.

Proof. As p is a dominator process, none of its neighbors is a dominator, by Lemma 3. Since p is not
the root, ParBFS(p) is defined. To sum up, ParBFS(p) ∈ Np and LevelBFS(ParBFS(p)) = LevelBFS(p) − 1,
so min{LevelBFS(q) | q ∈ Np ∧ q.dominator 6= p.dominator} = LevelBFS(p) − 1. By definition, for all q,
LevelBFS(q) < LevelBFS(p) implies Key(q) < Key(p). By Macro Par(p), we are done. �

Property 2 In any terminal configuration of MIST ◦ BFST , the height of the computed MIS tree TMIS

of G is at most 2×D, where D is the diameter of G.

Proof. Let H be the height of TBFS . Let σ = (p`, p`−1, . . . , p0 = r) be any path in TMIS from a leaf to
the root. That is, p` is a leaf, and pj = pj+1.par for all j < `.

Since TMIS is 2-colored w.r.t. dominator variables, any path in TMIS is also 2-colored w.r.t. dominator
variables. Moreover, p0.dominator = true, so pj .dominator = true if and only if j is even, for all j < `.

Since Key(pj+1) > Key(pj) (Lemma 4), we have:

(a) LevelBFS(pj+1) ≥ LevelBFS(pj) for all j < `.

By Lemma 7, LevelBFS(p.par) < LevelBFS(p) for any dominator process p 6= r. Thus:

(b) LevelBFS(pj+1) > LevelBFS(pj) for all odd j.

From (a) and (b), it follows that:

(c) At most two processes of σ can be on any one level of TBFS .

By definition of TBFS :

(d) p0 = r is the only process of σ at level 0 in TBFS .

By definition of TBFS and (d), p1 (if defined) is at level 1 in both TBFS and TMIS . Then, by (b), p2 (if
defined) is not at the same level in TBFS as p1. So, p0 and p2 are not at the same level as p1 in TBFS , that
is:

(e) p1 is the only process of σ at level 1 in TBFS .

Hence, among the ` + 1 processes of σ, there are exactly one process at level zero of TBFS , one process at
level 1 of TBFS , and for every other level x of TBFS , there are at most two processes of σ at level x by (c).
Hence, ` ≤ 2× (H − 1) + 2, that is, ` ≤ 2×H ≤ 2×D. �

Figure 2 exhibits the upper bound on the height of TMIS , depending on the diameter D of the network.
Even processes have the same parent in both TBFS and TMIS , whereas the level of the parent in TMIS of
each odd process p is the level of p in TBFS . It is not possible to increase the height of TMIS more than
once per level of TBFS , thus the height of TMIS is at most twice the one of TBFS , that is 2×D.
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4 k-Clustering of at most d n
k+1e k-clusters

In this section, we present a silent self-stabilizing algorithm, called CLR(k), which constructs a k-clustering
in any directed tree T . Its stabilization time is O(H) rounds, where H is the height of T . At the end of
this section we show that this clustering is optimal (i.e., minimum in terms of number of clusters) in T . By
composing CLR(k) with any silent self-stabilizing spanning tree algorithm, we obtain a silent self-stabilizing
k-clustering algorithm that builds at most d n

k+1e distinct k-clusters in any arbitrary network. Moreover, we
will see in Section 5 that the composition between CLR(k) and our spanning tree constructionMIST ◦BFST
is competitive in both UDG and QUDG networks. The stabilization time of CLR(k) ◦MIST ◦ BFST is
O(n) rounds and its memory requirement is O(log k+log n) space per process. We conclude the section with
few experimental results.

4.1 Algorithm CLR(k)

Algorithm 2 CLR(k), code for each process p

Input: Par(p) ∈ Np ∪ {p}
Variables: p.α ∈ [0..2k] ; p.parCLR ∈ Np ∪ {p} ; p.hdCLR ∈ V
Macros:

IsShort(p) ≡ p.α < k
IsTall(p) ≡ p.α ≥ k
IsClusterHead(p) ≡ (p.α = k) ∨ (IsShort(p) ∧ (p = r))
ShortChildren(p) = {q ∈ Np | (Par(q) = p) ∧ IsShort(q)}
TallChildren(p) = {q ∈ Np | (Par(q) = p) ∧ IsTall(q)}
MaxAShort(p) = if ShortChildren(p) = ∅ then −1 else max {q.α | q ∈ ShortChildren(p)}
MinATall(p) = if TallChildren(p) = ∅ then 2k + 1 else min {q.α | q ∈ TallChildren(p)}
MinIDMinATall(p) = if TallChildren(p) = ∅ then p else min {q ∈ TallChildren(p) | q.α = MinATall(p)}
Alpha(p) = if MaxAShort(p) + MinATall(p) ≤ 2k − 2 then MinATall(p) + 1 else MaxAShort(p) + 1
ParCLR(p) = if IsClusterHead(p) then p else if p.α < k then Par(p) else MinIDMinATall(p)
HdCLR(p) = if IsClusterHead(p) then p else p.parCLR.hdCLR

Actions:

SetAlpha :: p.α 6= Alpha(p) → p.α← Alpha(p)
SetParCLR :: p.α = Alpha(p) ∧ p.parCLR 6= ParCLR(p) → p.parCLR ← ParCLR(p)
SetHead :: p.α = Alpha(p) ∧ p.parCLR = ParCLR(p) ∧ p.hdCLR 6= HdCLR(p) → p.hdCLR ← HdCLR(p)

The formal description of CLR(k) is given in Algorithm 2. CLR(k) builds a k-clustering in two phases.
During the first phase, CLR(k) computes the set of clusterheads, Dom, which has cardinality at most d n

k+1e.
The second phase consists of building a spanning forest, where each directed tree is rooted at a clusterhead
and represents the k-cluster of that clusterhead. Hence, we obtain a k-clustering of at most d n

k+1e k-clusters.
CLR(k) uses the following three variables in the code of each process p:

• p.α, an integer in the range [0..2k]. Once correctly computed, the value of p.α is equal to ‖p, q‖,
where q is the furthest process in T (p) (the subtree rooted at p) which is in the same k-cluster as
p. Consequently, in any terminal configuration, the set of clusterheads Dom is defined as the set of
processes p such that p.α = k or p.α < k and p = r, see Predicate IsClusterHead(p). Further details
are given in the next paragraph.

• p.parCLR ∈ Np ∪ {p}. In any terminal configuration, p.parCLR is the parent of p in its k-cluster,
unless p is a clusterhead, in which case p.parCLR = p. These variables are used to define a local BFS
structure for each cluster, rooted at its clusterhead.

• p.hdCLR ∈ V . In any terminal configuration, p.hdCLR is equal to the identifier of the clusterhead in
the k-cluster that p belongs to.
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Building Dom: The first phase of CLR(k) consists of building the set Dom as a k-dominating set of T ,
that is, a subset of processes such that every process is at most at distance k from a process in Dom. Dom is
constructed by dynamic programming, in a bottom-up fashion starting from the leaves of T . As previously
explained, Dom is defined using the values of p.α for all p.

We now give more details about the value and the computation of p.α for all p. Consider any terminal
configuration. We recall that in this configuration, p.α = ‖p, q‖, where q is the furthest process in T (p) that
is in the same k-cluster as p.

We divide processes into short and tall according to the value of their α-variable:

(i) If p satisfies IsShort(p), i.e., p.α < k, then p is said to be short and we have two cases: p 6= r or p = r.

In the former case, p is k-dominated by a process of Dom outside of its subtree, that is, the path from
p to its clusterhead goes through the parent link of p in the tree, and the distance to this process is at
most k − p.α. See, for example, in Configuration (VI) of Figure 4, k = 2 and g.α = 0 mean that the
clusterhead of g is at most at distance k − 0 = 2, now its clusterhead d is at distance 1.

In the latter case (p = r), p may not be k-dominated by any other process of Dom inside its subtree and,
by definition, there is no process outside its subtree, indeed T (p) = T , see the root in Configuration
(VI) of Figure 4. Thus, p must be placed in Dom.

(ii) If p satisfies IsTall(p), i.e., p.α ≥ k, then p is said to be tall and there is a process q at p.α − k hops
below p such that q.α = k. So, q ∈ Dom and p is k-dominated by q. See, for example, in Configuration
(VI) of Figure 4, k = 2 and c.α = 3 mean that the clusterhead of c, here d, is 3− k = 1 hop below c.

Note that, if p.α = k, then p.α− k = 0, that is, p = q and p belongs to Dom.

p.α is computed using macro Alpha(p). This latter is based on the two following macros:

• MaxAShort(p) returns the maximum value of q.α for all short children q of p. If p has no short child,
MaxAShort(p) returns −1.

• MinATall(p) returns the minimum value of q.α for all tall children q of p. If p has no tall child,
MinATall(p) returns 2k + 1.

According to these macros, p.α is computed by Action SetAlpha in a bottom-up fashion in the tree T as
follows:

• If MaxAShort(p) + MinATall(p) > 2k − 2, p.α = MaxAShort(p) + 1.

• If MaxAShort(p) + MinATall(p) ≤ 2k − 2, p.α = MinATall(p) + 1.

Consider a leaf f . Since f has no children, MaxAShort(f) + MinATall(f) = −1 + 2k+ 1 > 2k− 2. Thus,
f.α = −1 + 1 = 0, which corresponds to the distance between f and its furthest descendant that will be in
its cluster (f itself).

Consider now an internal process p and assume that the α-variables of all its children are correctly
evaluated. p should choose a clusterhead that will be either (1) in its subtree (in this case, p will be tall), or
(2) outside its subtree (in this case p will be short). Since the computations are done bottom-up, we should
preferably make the choice (1) to reduce the number of clusterheads.

Let q be a short child of p. From (i), the path from q to its clusterhead goes through p. Thus, to prevent
cycle creation,

(∗) p must not choose a clusterhead which is in the subtree of any of its short children.

From now on, follow the illustrative example given in Figure 3. Let x be the furthest process that is both
in the subtree of some short child of p and in the same cluster as p. Let q be the short child of p such that
x ∈ T (q). Then, from (i), x is at distance MaxAShort(p) + 1 from p. Two cases are then possible:
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Figure 3: Illustrative example: Light grey nodes are short children of p; grey nodes are tall children of p.
The shaded area shows the nodes that already chose the same cluster as p. The light grey area shows the
nodes that already choose the same cluster as z.

• MaxAShort(p) + MinATall(p) > 2k − 2. If p chooses a node y of its subtree as clusterhead, then from
(∗), the path from p to its clusterhead should go through one of its tall children. So, p will be at least
at distance MinATall(p)− k + 1 from that clusterhead, from (ii). Now, in this case, x will be at least
at distance MaxAShort(p) + 1 + MinATall(p) − k + 1 > 2k − 2 − k + 2 = k from the clusterhead y,
this violates the definition of k-clustering. Thus, p should necessarily choose its clusterhead outside
the subtrees of any of its children (that is, either p declares itself as clusterhead or chooses an ancestor
as clusterhead). From (i) and (ii), this means that all nodes in the subtrees of the tall children of p
adopt a different cluster from p, and consequently the node x is then the furthest node that belongs
to both T (p) and the cluster of p. This implies that p.α = ‖p, x‖ = MaxAShort(p) + 1.

• MaxAShort(p) + MinATall(p) ≤ 2k− 2. Let z be a tall child of p such that z.α = MinATall(p). Unlike
the previous case, p can choose a node y in the subtree of z as clusterhead. Indeed, in this case, x will
be at distance MaxAShort(p) + 1 + MinATall(p)−k+ 1 ≤ 2k− 2−k+ 2 = k from y. Hence, the nodes
(other than p) that are both in the subtree of p and in its cluster will be either nodes in subtrees of
short children of p or nodes in T (z). Since by definition, MinATall(p) > MaxAShort(p), the furthest
node that belongs to both T (p) and the cluster of p will be at distance MinATall(p) + 1 from p, i.e.,
p.α = MinATall(p) + 1.

Using Figure 4, we now detail an example of computation of α-values for k = 2. In Figure 4, the root
of the tree network is the rightmost node, node a. Recall that the computation of α-values is bottom-
up. In the following explanation, we only consider at each round the processes that are guaranteed to
take their final α-value, some others may move but these moves have no impact on the reasoning. First,
regardless the initial configuration, our algorithm ensures that every leaf has its final α-value at the end
of the first round (Configuration I): every leaf x ∈ {b, g, i, k} satisfies MaxAShort(x) + MinATall(x) =
−1 + 2k + 1 = 4 > 2k − 2 = 2. Thus, x.α takes value MaxAShort(x) + 1 = −1 + 1 = 0. Of course, the
clusterhead of each leaf will be up in the tree. During the second round (Configuration II), nodes f and j get
their final α-value, 1, as all the α-values of all their respective children are now fixed. Indeed, for example,
MaxAShort(f)+MinATall(f) = 0+2k+1 = 5 > 2, so f satisfies f.α = MaxAShort(f)+1 = 0+1 = 1. f and
j being short, their respective clusterheads will be up in the tree. At the end of the third round (Configuration
III), h and d have their final α-value, 2. For example, MaxAShort(h) + MinATall(h) = 1 + 2k + 1 = 6 > 2,
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so, h.α takes value MaxAShort(h) + 1 = 1 + 1 = 2. Notice that h.α = 2 and d.α = 2 means that both h
and d are clusterheads. In particular, we already know that h (resp. d) is the clusterhead of k and j (resp.
of i, f , and g). At the end of the fourth round (Configuration IV), only e is guaranteed to have its final
α-value: MaxAShort(e) + MinATall(e) = −1 + 2 ≤ 2. So, e.α takes value MinATall(e) + 1 = 2 + 1 = 3. So,
e is tall and its clusterhead is below in the tree: h. At the end of the fifth round (Configuration V), only
c is guaranteed to have its final α-value: MaxAShort(c) + MinATall(c) = −1 + 2 = 1 ≤ 2. So, c.α takes
value MinATall(c) + 1 = 2 + 1 = 3, which means that c is tall. The clusterhead of c is then a clusterhead
already defined in the subtree of its smallest tall children, here d. Finally, a has its final value at the end
of the sixth round (Configuration VI): MaxAShort(a) + MinATall(a) = 0 + 3 = 3 > 2. So a.α takes value
MaxAShort(a) + 1 = 0 + 1 = 1. As a is a short root, a is a clusterhead. Hence, in Configuration (VI), three
2-clusters are defined {c, d, f, g, i}, {e, h, j, k}, and {a, b} with d, h, and a as respective clusterheads.
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Figure 4: Computation of α for k = 2. The root of the tree network is the rightmost node. α-values are
given inside the nodes; when no value is given α is arbitrary. Configuration (VI) is terminal: bold circles
represent clusterheads and arrows represent local spanning tree of each k-cluster.

To help the reader’s intuition, we summarize below the important properties of p.α, for any process p.
These properties can be checked in the examples given in Figure 5, and will be proven in Subsection 4.2.

Property 3 In any terminal configuration, for every process p, we have:

(a) If p.α > 0, then there is some child q of p such that q.α = p.α− 1.

(b) If p.α > k, then there is a proper descendant q of p such that q ∈ Dom and q is p.α− k levels below p.
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Figure 5: Examples of k-Clustering using CLR(3), where k = 3. The root of each tree network is on the
right, values of α are indicated, clusterheads are colored in black, and arrows represent local spanning tree
of each k-cluster.

(c) There is a member of Dom within |p.α− k| hops of p.

Constructing the k-Clustering: The second phase of CLR(k) partitions the processes into distinct
k-clusters, each of which contains one clusterhead. Each k-cluster contains a k-cluster spanning tree, a tree
containing all the processes of that k-cluster. Each k-cluster spanning tree is a subgraph of T rooted at the
clusterhead, possibly with the directions of some edges reversed. Furthermore, the height of the k-cluster
spanning tree is at most k.

Each process of Dom designates itself as clusterhead using Actions SetParCLR and SetHead. Other
processes p designate their parent using Action SetParCLR as follows: (1) if p is short, then its parent
in its k-cluster is its parent in the tree; (2) if p is tall, then p selects as parent in its k-clustering its tall
child in the tree of minimum α value (we use IDs to break ties, see MinIDMinATall(p)). Finally, identifiers
of clusterheads are propagated in a top-down fashion in their k-cluster using Action SetHead, see macro
HdCLR(p).

Two examples of 3-clustering using CLR(3) are given in Figure 5. In Figure 5a, the root is a tall process,
consequently it is not a clusterhead. In Figure 5b, the root is a short process, consequently it is a clusterhead.

4.2 Correctness

We first show the convergence of CLR(k) from any configuration to a terminal one. Since computation of
the p.α is bottom-up in T , the time required for those values to stabilize is O(H) rounds, where H is the
height of T . After that, one additional round is necessary to fix the ParCLR variables, because the values
of these variables only depend on the α variables. Finally, the hdCLR variables are fixed top-down within
the k-cluster spanning trees starting from the clusterheads in O(H) rounds. Hence, it follows that the time
complexity of CLR(k) is O(H) rounds, as shown below.

Lemma 8 For every process p, the variable p.α is fixed forever within H + 1 rounds.

Proof. We prove this lemma by backwards induction on the level Level(p) of processes p in the tree.
As a base case, if Level(p) = H, that is p is a leaf, then p.α is fixed forever within one round.
Assume for every p such that Level(p) = l, the variable p.α is fixed forever within H − l + 1 rounds.
Let q be a process such that Level(q) = l− 1. The value of Alpha(q) depends only on the values of every

p.α where p has level l. By the induction hypothesis, all those values are fixed within H − l+ 1 rounds, thus
q.α is fixed within one additional round, that is within H − l + 2 = H − (l − 1) + 1 rounds.

This complexity is maximum with l = 0 and the lemma follows. �

Lemma 9 For every process p, the variable p.parCLR is fixed forever within H + 2 rounds.
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Proof. The evaluation of both guard and statement of Action SetParCLR only relies, for a process p, on
the variables p.parCLR and q.α for every neighbor q of p. Thus, after all α variables are fixed in the network,
every p.parCLR is fixed within one additional round. By Lemma 8, we are done. �

Lemma 10 In every configuration where all parCLR and α variables are fixed forever, there is no directed
cycle constituted of directed edges of the form (p, p.parCLR) except self-loops.

Proof. The network being a tree, we only need to exclude the existence of cycle of size two. Assume by the
contradiction that such a cycle exists between p and its neighbor q, that is p.parCLR = q and q.parCLR = p.
Without loss of generality, assume that q is a child of p. Then, by definition of Macro ParCLR(q), q.α < k.
By definition of Macro ParCLR(p), q.α ≥ k, a contradiction. �

Lemma 11 For every process p, the variable p.hdCLR is fixed forever within O(H) rounds.

Proof. By Lemmas 8 and 9, the variables p.α and p.parCLR are fixed within H + 2 rounds.
Then, for every process p, the variable p.hdCLR only depends on p.parCLR.hdCLR and some fixed vari-

ables.
For every process p such that p.parCLR = p, p.hdCLR is fixed forever in at most one additional round.

Then, changes on hdCLR can be propagated from node p to its neighbor q only if q.parCLR = p. By Lemma
10, these propagations end after O(H) rounds, and we are done. �

From Lemmas 8 to 11, follows:

Lemma 12 Starting from any configuration, CLR(k) reaches a terminal configuration in O(H) rounds.

We now consider any terminal configuration of CLR(k) and show that such a configuration is legitimate.
The proof begins by formally establishing the three claims given in Property 3 (Remark 2, Lemmas 13, and
14).

Remark 2 Property 3.(a) follows immediately from the definition of α.

Below, we prove Property 3.(b).

Lemma 13 In any terminal configuration of CLR(k), for every process p, if p.α > k, then there is a proper
descendant q of p such that q ∈ Dom and q is p.α− k levels below p.

Proof. We prove this lemma by strong induction on p.α.
As a base case, if p.α = k + 1, then, by Property 3.(a), there is a child q of p such that q.α = k, that is

q ∈ Dom.
Assume the lemma holds for every p such that k < p.α < a and let p′ be a process such that p′.α = a.
By Property 3.(a), there is a child q′ of p′ such that q′.α = p′.α − 1. By the induction hypothesis,

there is a proper descendant q′′ of q′ such that q′′ ∈ Dom and q′′ is q′.α − k levels below q′. So, q′′ is
q′.α− k + 1 = p′.α− 1− k + 1 = p′.α− k below p′, and we are done. �

We now prove Property 3.(c).

Lemma 14 In any terminal configuration of CLR(k), for every process p, there is a process q such that
q ∈ Dom and ‖p, q‖ ≤ |p.α− k|.

Proof. If p.α > k, then, by Lemma 13, we are done.
Consider now any process p such that p.α ≤ k. We prove the lemma by strong backward induction on

p.α.
As a base case, if p.α = k, then p ∈ Dom by definition.
Assume the lemma holds for every p′ such that a<p′.α≤k.
Let q be a process such that q.α = a and q 6= r. Indeed, if r.α ≤ k, then r ∈ Dom by definition. Let q′

be the parent of q. We consider two cases.
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• Assume q′.α = MaxAShort(q′) + 1. As q.α < k, q is short and q.α ≤ MaxAShort(q′). So:

q.α < q′.α ≤ k
a < q′.α ≤ k

By the induction hypothesis, there is a member of Dom which is within k − q′.α hops of q′. This
process is within k − q′.α+ 1 hops from q. Now:

a < q′.α
k − q′.α+ 1 ≤ |q.α− k|

This process is within |q.α− k| hops from q and we are done.

• Otherwise, q′.α = MinATall(q′) + 1 and q′.α > k. By Lemma 13, there is some q′′ ∈ Dom within
q′.α− k hops of q′. Thus, ‖q′′, q‖ ≤ q′.α− k + 1. Then, by definition of α:

MaxAShort(q′) + MinATall(q′) ≤ 2k − 2
MinATall(q′)− k + 2 ≤ k −MaxAShort(q′)
q′.α− k + 1 ≤ k − q.α

Hence:

‖q′′, q‖ ≤ k − q.α
‖q′′, q‖ ≤ |q.α− k|

So, q′′ is within |q.α− k| hops from q and we are done.

�

We now use Property 3 to complete the correctness proof of CLR(k).
Since |p.α− k| ≤ k for every p, we can deduce the following corollary from Property 3.(c).

Corollary 1 In any terminal configuration of CLR(k), Dom is a k-dominating set of T .

The following lemma shows that every process is in the k-cluster of a member of Dom.

Lemma 15 In any terminal configuration of CLR(k), for every process p, there is a path P = (p0 =
p, . . . , pm) such that:

(1) m ≤ |p.α− k| ≤ k,

(2) ∀i ∈ [0..m− 1], pi.parCLR = pi+1,

(3) pm.parCLR = pm,

(4) ∀i ∈ [0..m], pi.hdCLR = pm,

(5) pm ∈ Dom.

Proof. We prove this lemma by strong induction on |p.α−k|. Note that p.α ∈ [0..2k], thus |p.α−k| ∈ [0..k]
always.

As a base case, if p.α = k, then IsClusterHead(p) = true. Thus, by definition, p.parCLR = p and
p.hdCLR = p. The path P = (p) verifies each property stated in the lemma.

Assume the lemma holds for every q such that |q.α−k| < a, and consider a process p such that |p.α−k| = a.
If p.α > k, then, by definition of Alpha(p), p.α = MinATall(p)+1, i.e., there is some neighbor q of p such

that q.α = MinATall(p), hence p.α = q.α+ 1. Consider the process of smallest identifier. Since p.α− k = a,
it follows that q.α + 1 − k = a, that is, q.α − k = a − 1 < a. By the induction hypothesis, there is a path
Q = (p0 = q, . . . , pm) leading to a clusterhead pm such that:

17



• m ≤ |q.α− k| ≤ k,

• ∀i ∈ [0..m− 1], pi.parCLR = pi+1,

• pm.parCLR = pm, and

• ∀i ∈ [0..m], pi.hdCLR = pm.

By definition of ParCLR(p) and HeadCLR(p), p.parCLR = q and p.hdCLR = pm. Then, as q.α ≥ k,
|q.α− k|+ 1 = |q.α− k+ 1| = |p.α− k|. Hence, the path p, p0 = q, . . . , pm has length at most |p.α− k|, and
we are done.

Otherwise, p.α < k. If p = r, then IsClusterHead(p) = true and the lemma holds. Consider now the
case p 6= r and note q = Par(p). By definition of ParCLR(p), p.parCLR = q. By definition of HeadCLR(p),
p.hdCLR = q.hdCLR. We now show that |q.α− k| < a, i.e., |q.α− k| < |p.α− k| in order to make use of the
induction hypothesis as in the previous case, thus completing the proof. Two cases have to be distinguished:

• q.α ≤ k, then, by definition of Alpha(q), q.α = MaxAShort(q) + 1. As p is a short child of q,
q.α ≥ p.α+ 1, and q.α− k > p.α− k. Since p.α < q.α ≤ k, |q.α− k| < |p.α− k|.

• q.α > k, then, by definition of Alpha(q), q.α = MinATall(q) + 1 and:

MaxAShort(q) + MinATall(q) ≤ 2k − 2
(MaxAShort(q) + 1) + (q.α− k) ≤ k

Since p.α ≤ MaxAShort(q), then:

(p.α+ 1) + (q.α− k) ≤ k
q.α− k ≤ k − p.α− 1
|q.α− k| < |k − p.α|
|q.α− k| < |p.α− k|

�

Lemma 16 In any terminal configuration of CLR(k), every k-cluster whose clusterhead is not the root
contains at least a path of k + 1 processes.

Proof. Consider any k-cluster whose clusterhead p is not the root. Then, p.α = k, p.parCLR = p, and
p.hdCLR = p by definition of IsClusterHead(p), ParCLR(p), and HdCLR(p). Moreover, by Property 3.(a),
there is a path (p0, . . . , pk) such that pk = p and for every i ∈ [0..k− 1], pi.α = pi+1.α− 1 = i. By Definition
of Macro ParCLR(pj), for every j ∈ [0..k − 1], pj .parCLR = pj+1. By Definition of Macro HdCLR(pj), for
every j ∈ [0..k − 1], pj .hdCLR = pj+1.hdCLR = pk = p. �

Lemma 17 In any terminal configuration of CLR(k), there are at most d n
k+1e distinct k-clusters.

Proof. By Lemma 16, except for the k-cluster which contains the root , every k-cluster contains at least

k + 1 processes. Thus, there are at most 1 +
⌊
n−1
k+1

⌋
=
⌊
n+k
k+1

⌋
= d n

k+1e k-clusters. �

By Corollary 1 and Lemmas 15 and 17, we have:

Lemma 18 In any terminal configuration of CLR(k), T is partitioned into at most d n
k+1e distinct k-clusters.

From Lemmas 12 and 18, we have:

Theorem 3 In any tree of n processes and height H, CLR(k) is a silent self-stabilizing algorithm that
partitions the tree within O(H) rounds into at most d n

k+1e distinct k-clusters.
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By Theorems 1, 2, and 3, CLR(k) ◦MIST ◦ BFST is self-stabilizing,MIST ◦ BFST stabilizes within
O(n) rounds, and O(H) rounds later CLR(k) ◦MIST ◦ BFST reaches a terminal configuration, where H
is the height of TMIS . Now, by Property 2 (page 10), H is bounded by 2D, where D is the diameter of the
network. Hence, from any initial configuration, CLR(k) ◦MIST ◦ BFST stabilizes in O(n) rounds.

Theorem 4 In any arbitrary network with unique IDs, CLR(k) ◦MIST ◦BFST is a silent self-stabilizing
algorithm that builds at most d n

k+1e distinct k-clusters within O(n) rounds using O(log k + log n) space per
process.

4.3 Optimality of the k-clustering in trees

In this subsection, we show that the set Dom of clusterheads computed by CLR(k) has the minimum
cardinality, for any tree T .

Lemma 19 Let p any process satisfying p.α < k in a terminal configuration γ of CLR(k), every child q of
p satisfies q.α 6= k.

Proof. Assume the contrary. Then, MinATall(p) = k. So:

MaxAShort(p) + MinATall(p) > 2k − 2
MaxAShort(p) + 1 ≥ k
p.α ≥ k

Hence, we obtain a contradiction and consequently q.α 6= k. �

Lemma 20 In any terminal configuration γ of CLR(k), for every process p, for every process q in (T (p) ∩
Dom) \ {p}, we have:

• If p.α ≤ k, then ‖p, q‖ > |p.α− k|.

• If p.α > k, then ‖p, q‖ ≥ |p.α− k|.

Proof. We prove this lemma by backwards induction on the level Level(p) of processes p in the tree.
If Level(p) = H, then p is a leaf and (T (p) ∩Dom) \ {p} = ∅, so the lemma trivially holds.
Assume the lemma holds for every process x such that l < Level(x) ≤ H and let p be a process such

that Level(p) = l. Let q ∈ (T (p) ∩Dom) \ {p}. We have two cases:

q is a child of p: So, ‖p, q‖ = 1. By definition, q ∈ Dom in γ. Moreover, as q is not the root, q.α = k in γ
by definition of CLR(k). Then, by lemma 19, p.α ≥ k in γ and we consider two subcases:

p.α = k in γ: Then, |p.α− k| = 0 and the lemma holds.

p.α > k in γ: Then p.α = MinATall(p)+1 and MinATall(p) = k (because q.α = k). So, p.α = k+1 ≥
1 and the lemma holds.

q is not a child of p in γ: Then, there is a child y of p such that q ∈ T (y) ∩Dom) \ {y} in γ (note that
Level(y) = l + 1).

Consider the three following cases:

• p.α < k in γ. In this case, y.α 6= k by Lemma 19. So, we consider the two following subcases:

– y.α < k in γ. By the induction hypothesis, we have:

‖y, q‖ > |y.α− k|
‖p, q‖ > |y.α− k|+ 1
‖p, q‖ > |MaxAShort(p)− k|+ 1
‖p, q‖ > |MaxAShort(p)− (k + 1)|
‖p, q‖ > |MaxAShort(p) + 1− (k + 2)|
‖p, q‖ > |p.α− (k + 2)|
‖p, q‖ > |p.α− k|
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– y.α > k in γ. Then:

MaxAShort(p) + MinATall(p) > 2k − 2
MaxAShort(p)− k + 1 > k − 1−MinATall(p)
p.α− k > k − 1−MinATall(p)
|k − 1−MinATall(p)| > |p.α− k|
|k −MinATall(p)|+ 1 > |p.α− k|
|k − y.α|+ 1 > |p.α− k|
|y.α− k|+ 1 > |p.α− k|
‖y, q‖+ 1 > |p.α− k| (by the induction hypothesis)
‖p, q‖ > |p.α− k|

• p.α = k in γ. Then, |p.α − k| = 0 and as every proper descendant of p is at least at distance 1
from p, the lemma trivially holds.

• p.α > k in γ. So, we consider the two following subcases:

– y.α < k.

MaxAShort(p) + MinATall(p) ≤ 2k − 2
MaxAShort(p) + MinATall(p) + 1 ≤ 2k − 1
MaxAShort(p) + p.α ≤ 2k − 1
p.α− k ≤ k −MaxAShort(p)− 1
|p.α− k| ≤ |k −MaxAShort(p)− 1|
|p.α− k| ≤ |k −MaxAShort(p)|+ 1
|p.α− k| ≤ |MaxAShort(p)− k|+ 1
|p.α− k| ≤ |y.α− k|+ 1
|p.α− k| ≤ ‖y, q‖+ 1 (by the induction hypothesis)
‖p, q‖ ≥ |p.α− k|

– y.α ≥ k. By the induction hypothesis, we have:

‖y, q‖ ≥ |y.α− k|
‖p, q‖ ≥ |y.α− k|+ 1
‖p, q‖ ≥ |MinATall(p)− k|+ 1
‖p, q‖ ≥ |MinATall(p) + 1− k|
‖p, q‖ ≥ |p.α− k|

�

Figure 6 illustrates the proof of the theorem given below.

Theorem 5 The set Dom of clusterheads computed by CLR(k) is a minimum cardinality k-dominating set
of T .

Proof. Consider the set Dom of clusterheads defined in some terminal configuration computed by CLR(k)
in T . We proceed by contradiction: Assume that there exists a k-dominating set DS of T such that
|DS| < |Dom|. Pick a node p of maximum level such that T (p)∩Dom contains more nodes than T (p)∩DS,
i.e.:

• |T (p) ∩Dom| > |T (p) ∩DS|, and

• |T (q) ∩Dom| ≤ |T (q) ∩DS| for any proper descendant q of p in T .

This means, in particular, that p ∈ Dom but p /∈ DS. By definition of Dom, p.α ≤ k. By property 3.(a),
there exists a sequence of nodes p0,p1,. . . ,pa, for a = p.α, such that:
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Figure 6: Illustration of the proof of Theorem 5.

• pa = p,

• the parent of pi in T is pi+1, for all 0 ≤ i < a, and

• pi.α = i, for all 0 ≤ i ≤ a.

Let K be the set of all nodes within k hops of p0.

Claim I: K is a subset of T (p).
Proof of Claim I: If p is the root of T , then the claim trivially holds. Otherwise, a = p.α = k, which implies
that p0 is k hops below p, and thus the claim holds.

Claim II: K ∩Dom = {p}.
Proof of Claim II: Suppose q ∈ K and q 6= p. Pick the node pi that is closest to q. Then, q is at most k − i
(i.e., |pi.α− k|) hops below pi. By Lemma 20, q /∈ Dom.

Let W = T (p) \ K. Then, W is the exact union of subtrees rooted at w1, w2,. . . , wm, namely the nodes
not in K whose parents are in K.

Each wi is a proper descendant of p, and thus, by hypothesis, DS must have at least as many members as
Dom in W. Since DS has fewer members than Dom in T (p), then DS must have fewer members than Dom
in K. By Claim II, K ∩DS = ∅. This implies that DS contains no node within k hops of p0, contradicting
the hypothesis that DS is a k-dominating set. �

4.4 Experimental Results

We ran simulations to study the average performance of our algorithm (CLR(k) ◦MIST ◦BFST ) in terms
of number of clusterheads. For sake of simplicity, our algorithm will be named Competitive in this section.

We obtain our experimental results using an event-driven simulator for wireless sensor networks, called
Sinalgo. In this simulator, processes are randomly deployed on a square plane. Processes are motionless and
equipped with radio. Two processes can communicate if and only if their Euclidean distance is at most rad,
where rad is the transmission range. So, the network topology is a Unit Disk Graph (UDG).
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Figure 7: Competitive v.s. its theoretical bound d n
k+1e, for n = 1000, k = 5, and a square field of size

4000m.

We considered connected UDG networks of n = 1000 nodes deployed using a uniform random distribution
on a 4000m-side square. We tune the transmission range to control the average degree δ of the network. We
vary δ from 10 to 30 and k from 3 to 5. For each setting, the average number of clusterheads is computed
over 50 connected UDGs, randomly generated.

We only presented here the results obtained with k = 5. However, the general trends observed for k = 5
are representative: they can be also observed in other cases we experimented (that is, k = 3 and k = 4).

We first compared the average performance of our algorithm, Competitive, against the theoretical bound
proven in Theorem 3. The experimental results are given in Figure 7. They confirm that Competitive is well-
suited for wireless sensor networks, since its average performance is drastically better than the theoretical
bound, which holds for all arbitrary connected graphs. Note also that, the number of clusterheads decreases
when the average degree increases because the diameter of the network also decreases in that case. (This
trend can be also observed in all other curves.)

Then we implemented algorithms given in [6] and [8]. To the best of our knowledge, these are the only
self-stabilizing algorithms that guarantee a bound on the number of clusterheads. The algorithm given in [8]
is a hierarchical composition of three layers. The two first layers, denoted by DSK in the following, consists
of a spanning tree construction and an algorithm that uses the tree structure to compute a k-dominating
set D of at most d n

k+1e processes. The third layer consists of an algorithm that makes D minimal, that is,
it computes a minimal k-dominating set that is a subset of D. Note that, experiments in [8] show that best
results are obtained using a BFS tree algorithm as first layer. Hence, we do the same here. In the following,
we denote by DSK+ the three layer algorithm.

The minimization module used in [8] is actually the algorithm given in [6]. This algorithm, called Minimal

in the following, can be used without input, i.e., it can be used independently and directly on a network to
compute an unconstrained minimal k-dominating set, whose size is at most max(1, n/dk+1

2 e). We can also
compose our algorithm with Minimal. This version is denoted by Competitive+ in the following. We recall
the main features of each algorithm in Table 1.

We first compared in Figure 8 the two algorithms that computes a dominating set that is not necessar-
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Algorithm Memory Requirement Round Complexity Upper Bound Minimal ?
Competitive O(log k + log n) O(n) d n

k+1e No

DSK [8] O(log k + log n+ k log N
k ) O(n) d n

k+1e No

Minimal [6] O(log k + log n) O(n) max(1, n/dk+1
2 e) Yes

Competitive+ O(log k + log n) O(n) d n
k+1e Yes

DSK+ O(log k + log n+ k log N
k ) O(n) d n

k+1e Yes

Table 1: Features of each algorithm.
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Figure 8: Competitive v.s. DSK, for n = 1000, k = 5, and a square field of size 4000m.

ily minimal, i.e. our algorithm Competitive and Algorithm DSK. Results clearly show that Competitive

computes notably smaller k-dominating sets than DSK.
We then compared Competitive and Competitive+ to see if the minimization really impacts the result.

As we can see in Figure 9, the minimization drastically reduced the size of the computed k-dominating sets.
Finally, Figure 10 presents results to compare the best version of our algorithm (Competitive+) to other

algorithms that compute minimal k-dominating sets, that is, DSK+ and Minimal. We can remark that results
are really close, but still our algorithm offers the best performances.

5 Competitiveness of k-Clustering

Unit Disk Graphs: We now analyze the competitiveness, in terms of number of clusters, of CLR(k) ◦
MIST ◦ BFST , in the special case that the network is a UDG in the plane, that is, the processes are fixed
in the plane, and two processes can communicate if and only if their Euclidean distance in the plane is at
most one. We first show, in Lemma 21, that the cardinality of the MIS computed by MIST ◦ BFST is
bounded by a multiple of the minimum cardinality of any k-clustering, then in Lemma 22, we show that the
cardinality of Clr, the k-clustering built by CLR(k) ◦ MIST ◦ BFST , is bounded by a multiple of that
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same minimum.
The proof of Lemma 21 makes use of the following result by Folkman and Graham [21].

Theorem 6 ([21]) Let X be a compact convex region of the plane and J ⊆ X such that the distance between

any two distinct members of J is at least 1. Then, the cardinality of J is at most
⌊

2√
3
A(X) + 1

2P (X) + 1
⌋

,

where A(X) and P (X) are the area and the perimeter of X, respectively.

Lemma 21 For every connected UDG and every k ≥ 1, any independent set I is of cardinality at most(
2πk2√

3
+ πk + 1

)
times the cardinality of an optimum k-clustering.

Proof. Consider any independent set I and any optimum k-clustering Opt of some UDG in the plane.
Consider any clusterhead p in Opt and the surrounding disk of radius k centered at p in the plane. All
processes that belongs to the k-cluster of p are within this disk. As the distance between any two distinct

members of I is greater than 1, we can apply Theorem 6, that is, no more than
(

2√
3
(πk2) + 1

2 (2πk) + 1
)

processes of I can be in this disk, thus in the k-cluster of p. By definition, every process belongs to a

k-cluster. It follows that the cardinality of I is at most
(

2πk2√
3

+ πk + 1
)
× |Opt|. �

We now compare the maximal independent set computed by MIST ◦ BFST with the k-clustering set
Clr computed by CLR(k) ◦MIST ◦ BFST .

Lemma 22 For every connected network and every k ≥ 1, let I be the MIS computed by MIST ◦ BFST ,
the cardinality of Clr, the k-clustering built by CLR(k) ◦MIST ◦ BFST is at most 1 + 2

k (|I| − 1).

Proof. By Lemma 16 (page 18), every k-cluster of Clr contains a path of k + 1 processes (i.e., of length
k), except for the k-cluster which contains r. Since Clr is built on TMIS , by Property 1 (page 5), this path
contains dk2 e processes of I \ {r}. Thus, |Clr| − 1 k-clusters of Clr contain at least dk2 e processes of I \ {r}.
We have:

(|Clr| − 1)× dk2 e ≤ |I \ {r}|
(|Clr| − 1)k2 ≤ |I| − 1
|Clr| − 1 ≤ 2

k (|I| − 1)
|Clr| ≤ 1 + 2

k (|I| − 1)

�

By Lemmas 21 and 22, we deduce that |Clr| ≤ 1− 2
k +

(
4πk√

3
+ 2π + 2

k

)
|Opt|, and since 4π√

3
≈ 7.2552, we

can claim:

Theorem 7 For every connected UDG and every k ≥ 1, CLR(k) ◦MIST ◦ BFST computes a 7.2552k +
O(1)-approximation of the optimum k-clustering in terms of cardinality.

Quasi-Unit Disk Graphs: If V is a set of points in the plane, and λ ≥ 1, then we say that G = (V,E)
is an Quasi-Unit Disk Graph (QUDG) [22] in the plane with approximation ratio λ, if, for any u, v ∈ V ,
‖u, v‖ ≤ 1 ⇒ {u, v} ∈ E and {u, v} ∈ E ⇒ ‖u, v‖ ≤ λ. This model has been first introduced by [23]. It is
also known as Approximate Disk Graphs.

Theorem 8 For every connected QUDG in the plane with approximation ratio λ, and every k ≥ 1, CLR(k)◦
MIST ◦ BFST computes a 7.2552λ2k +O(λ)-approximation of the optimum k-clustering in terms of car-
dinality.

Proof. As in the proof of Lemma 21, we make use of Theorem 6, but we then consider the surrounding
disk of radius λk centered at any clusterhead of an optimum k-clustering Opt. It follows that no more than(

2√
3
(πλ2k2) + 1

2 (2πλk) + 1
)

processes can be independent in this disk, and thus no more than that same
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number can be in any k-cluster of Opt. It follows that the cardinality of any independent set in an QUDG

is at most
(

2πλ2k2√
3

+ πλk + 1
)

times the one of an optimum k-clustering Opt. By Lemma 22 and since
4π√
3
≈ 7.2552, we are done. �

6 P-Completeness of our MIS Construction

The time bottleneck of our k-clustering solution is the MIS tree construction. Indeed, our algorithmMIST ◦
BFST builds an MIS tree in Θ(n) rounds in the worst case and, once the MIS Tree is built, the k-clustering
is computed in O(D) rounds by Theorem 3 (page 18) and Property 2 (page 10). We would like to improve
that time to be O(D), but as we shall see below, finding an algorithm with a sublinear time complexity for
computing an MIS tree for a general network could be very hard, and may be impossible. Indeed, we show
below that finding the lexically first MIS tree is P-complete. Since there are networks where D = O(log n),
this implies that there cannot be an O(D) time distributed algorithm to find the lexically first MIS tree,
unless NC = P.

Whether it would be easier to find an MIS tree, without the restriction that it be lexically first, is still
an open question.

P-completeness of the LFMIS problem with a unique local minimum: Given a networkG = (V,E),
AlgorithmMIST ◦BFST computes an MIS of G, with respect to the ordering ≺ defined in Subsection 3.2.
Note that there is a natural lexical ordering on the subsets of V , obtained by writing each subset as a list of
processes ordered by ≺. The MIS computed by our algorithm comes first in this natural lexical ordering of
subsets of V , it is thus the lexically first maximal independent set of G.

Let p1, . . . , pn denote the processes of G, ordered by ≺. MIST ◦BFST takes advantage of an additional
property of ≺: There is a unique local minimum, i.e., for any i > 1 there is some j < i such that pj is a
neighbor of pi (Lemma 4, page 8).

The lexically first maximal independent set problem on a graph G is equivalent to finding a lexically
first maximal clique in the complementary graph G′, shown by Cook [24] to be P-complete. However,
MIST ◦ BFST solves a restricted version of the LFMIS problem, where the ordering is known to have
a unique local minimum, and thus we need to give separate proof that this version is also P-complete. It
consists in exhibiting a method to NC-reduce any instance of the Circuit Value (CV) problem to an instance
of the LFMIS problem with unique local minimum. The CV problem has been shown to be P-complete in
[25].

A Boolean circuit is a straight line program consisting of finitely many assignments of the form

• xi ← true,

• xi ← false,

• xi ← xj ∧ xk with j, k < i,

• xi ← xj ∨ xk with j, k < i, or

• xi ← ¬xj with j < i,

where each variable xi in the program appears on the left side of exactly one assignment. The conditions
j, k < i and j < i ensure acyclicity. (This implies in particular that the right side of the first assignment is
a constant true or false). The CV problem is then defined to be the evaluation the value of variable xn in
such a program, where n is the maximum index. An example of such a program is given in Figure 11a. The
program can be also represented using logic gates, see in Figure 12a.

We now exhibit a method to NC-reduce any instance of the P-complete CV problem to an equivalent
instance of the LFMIS problem with unique local minimum, in order to prove that the LFMIS problem
with unique local minimum is P-complete. First, we show in Lemma 23 that every Boolean circuit program
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can be expressed into an intermediate equivalent form called paired form (defined in Definition 3). Next, in
the proof of Theorem 9, we consider any Boolean circuit written in paired form. We transform this circuit
into another intermediate reduced form, from which it is easy to finally obtain an equivalent instance of
the LFMIS problem with unique local minimum. We show that each of these three transformations can be
computed in polylogarithmic time using a polynomial number of processes.

The example of Boolean circuit given in Figure 12a is actually in paired form. Its reduced form is given
in Figure 11b. Figure 12 represents the same circuits with logic gates. In Figure 13, we show an equivalent
instance of the LFMIS problem with unique local minimum, which is the result of the transformation given
at the end of the proof of Theorem 9.

Definition 3 (Paired Form) A Boolean circuit is said to be in paired form if the number n of its variables
is even and for every i ∈ [1..n], we have:

• If i is even, then the right side of the ith assignment is the negation of the (i− 1)th assigned variable.

• If i is odd, then the right side of the ith assignment is either a constant or the conjunction or disjunction
of two prior variables.

Lemma 23 Any Boolean circuit can be rewritten into an equivalent Boolean circuit in paired form, in
constant time using a polynomial number of processes in parallel.

Proof. Consider any Boolean circuit containing n variables. Recall that xi denotes the ith assigned variable
of the circuit. Here, a, b, c, and d denote new variables. Apply the following transformation on each of the
n assignments.

• If the ith assignment at even rank is not ¬xi−1. Then, we have two cases:

– i 6= n: Insert a← ¬xi−1 and b← ¬xi respectively before and after that assignment.

– i = n: We have to ensure that the output of the circuit remains unchanged. Insert a ← ¬xi−1
before the ith assignment and insert the assignments b ← ¬xi, c ← b ∧ b, and d ← ¬c after the
ith assignment. Then, the new output will be d = ¬c = ¬(b ∧ b) = ¬b = ¬¬xi = xi.

In both cases the truth value of every variable xk with k ∈ [1..n] remains unchanged.

• If the ith assignment at odd rank is a negation xi ← ¬xj with j < i and i < n. Then, replace the ith

assignment by a ← xj ∨ xj , b ← ¬a and xi ← b ∨ b. In particular, after the transformation, we have
xi = b∨ b = ¬a∨¬a = ¬(xj ∨ xj)∨¬(xj ∨ xj) = ¬xj ∨¬xj = ¬xj . The truth value of every variable
xk with k ∈ [1..n] remains unchanged.

• If the nth assignment is at an odd rank. Then, we should add assignments so that the number of
assignments of the new circuit becomes even. Moreover, we have to ensure that the output of the
circuit remains unchanged. We have two cases:

– The assignment is a negation xn ← ¬xj with j < n. Replace the nth assignment by a← xj ∨ xj
and xn ← ¬a. Then, the output remains unchanged since xn = ¬a = ¬(xj ∨ xj) = ¬xj .

– The assignment is not a negation. Add assignments a← ¬xn, b← a ∧ a, and c← ¬b at the end
of the circuit. The new output will be c = ¬b = ¬(a ∧ a) = ¬a = ¬¬xn = xn.

In both cases the truth value of every variable xk with k ∈ [1..n] remains unchanged.

After the transformation, we obtain a Boolean circuit of the paired form. The value of the last variable of
this circuit is the same as that of the last variable of the initial circuit. Finally, note that there are O(n)
transformations. Each transformation is independent of all others, and hence can be done in constant time.
Thus, the whole transformation can be done in constant time using a polynomial number of processes in
parallel. �
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1 : x1 ← true
2 : x2 ← ¬x1
3 : x3 ← x1 ∨ x2
4 : x4 ← ¬x3
5 : x5 ← x2 ∧ x4
6 : x6 ← ¬x5

(a)

1 : y1 ← true
2 : y2 ← ¬y1
3 : y3 ← ¬y2
4 : y4 ← ¬y2 ∧ ¬y3
5 : y5 ← ¬y2 ∧ ¬y3 ∧ ¬y4
6 : y6 ← ¬y2 ∧ ¬y5
7 : y7 ← ¬y2 ∧ ¬y4 ∧ ¬y6
8 : y8 ← ¬y2 ∧ ¬y7

(b)

x1 = y3
x2 = y4
x3 = y6
x4 = y5
x5 = y7
x6 = y8

(c)

Figure 11: (a) A Boolean circuit in paired form, (b) its reduced form, and (c) the correspondence between
variables of both circuits.

true
x1 x2 x3 x4 x5 x6

(a)

true
y1 y2

y4

y3 y5

y6 y8

y7

(b)

Figure 12: (a) The same Boolean circuit, and (b) its reduced form using Logic gates.

Theorem 9 The LFMIS problem with unique local minimum is P-complete.

Proof. Consider an instance of CV problem, that is a Boolean circuit. Recall that xi denotes the ith

assigned variable of the circuit. Without loss of generality, we can assume that this instance is in the paired
form. Indeed, this assumption can be enforced using the NC-reduction given in Lemma 23. Thus, from
Definition 3, assuming an even number of variables, we note them x1, x2, . . . , x2n. For any i ∈ [1..n], refer
to x2i−1 and x2i as partners. Note that partners always take opposite Boolean values when evaluated.

The rest of the proof is divided into two parts. We first NC-reduce the initial instance of the CV problem
into an intermediate reduced form (i). Then, we transform that reduced form of the circuit into an equivalent
instance of the LFMIS problem with unique local minimum (ii).

(i) Reduced Form. Rewrite the circuit into reduced form, where the variables are y1, y2, . . . , y2n+2. The
first assignment will be y1 ← true, and the second assignment will be y2 ← ¬y1. There will be a one-to-one
correspondence between the variables of the initial circuit and all but the first two variables of the circuit
in the reduced form: For any i ∈ [1..n], the two variables y2i+1 and y2i+2 will correspond to the partner
variables x2i−1 and x2i, in either order. This order will be solved by the rewriting, allowing in particular to
know which of y2n+1 and y2n+2 corresponds to x2n, the output of the initial circuit. Thus, y2i+1 and y2i+2

will also have opposite values and we will also refer to these variables as partners. We use the following
rewriting rules to construct the reduced form of the circuit, for any i ∈ [1..n].

1. The (2i+2)nd assignment of the reduced circuit will be y2i+2 ← ¬y2∧¬y2i+1. That is, y2i+2 is assigned
the Boolean value opposite to that of its odd partner y2i+1, since ¬y2 = true.

2. The (2i+ 1)st assignment of the reduced circuit will depend on the (2i− 1)st assignment in the initial
circuit:
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1

2

3 4 5 6 7 8

Figure 13: Resulting instance of the LFMIS problem.

(a) If the (2i− 1)st assignment of the initial circuit is x2i−1 = true, then the (2i+ 1)st assignment of
the reduced circuit will be y2i+1 ← ¬y2 (that is, true). Thus, y2i+1 will correspond to x2i−1, and
y2i+2 will correspond to x2i.

(b) If the (2i− 1)st assignment of the initial circuit is x2i−1 = false, then the (2i+ 1)st assignment of
the reduced circuit will be y2i+1 ← ¬y2 (that is, true). Thus, y2i+1 will correspond to x2i, and
y2i+2 will correspond to x2i−1.

(c) If the (2i − 1)st assignment of the initial circuit is a conjunction x2i−1 ← xj ∧ xk, let yp and yq
be the variables corresponding to the partners of xj and xk, respectively. Then, the (2i + 1)st

assignment of the reduced circuit will be y2i+1 ← ¬y2 ∧ ¬yp ∧ ¬yq (that is, true ∧ ¬¬xj ∧ ¬¬xk
= xj ∧ xk). Thus, y2i+1 will correspond to x2i−1, and y2i+2 will correspond to x2i.

(d) If the (2i − 1)st assignment of the initial circuit is a disjunction x2i−1 ← xj ∨ xk, let yp and yq
be the variables corresponding to xj and xk, respectively. Then, the (2i+ 1)st assignment of the
reduced circuit will be y2i+1 ← ¬y2 ∧ ¬yp ∧ ¬yq (that is, true ∧ ¬(yp ∨ yq) = ¬(xj ∨ xk)). Thus,
y2i+1 will correspond to x2i, and y2i+2 will correspond to x2i−1.

By construction, the partner variables of the reduced circuit will always be assigned opposite truth values.
Through simple induction, we can see that evaluation of the reduced circuit will assign true to y1, false to
y2, and to each variable of the reduced circuit the same value as the corresponding variable in the initial
circuit.

(ii) Equivalent Instance of LFMIS Problem. Finally, we construct an equivalent instance of the LFMIS
problem with unique local minimum as follows. Let G be the network whose ordered (w.r.t. UIDs) list of
processes is p1, p2, . . . , p2n+2, and where p1 is the root. For each 1 ≤ j < i ≤ 2n + 2, pi is adjacent to pj
if and only if the term ¬yj appears in the ith assignment of the reduced circuit. The LFMIS problem with
unique local minimum for the reduced circuit described in Figure 11b and represented using Logic gates in
Figure 12b is shown in Figure 13. We remark that the distances of all processes to p1 are: ‖p1, p1‖ = 0,
‖p2, p1‖ = 1, and ∀2 < i ≤ 2n+ 2, ‖pi, p1‖ = 2. Consequently, for every 1 < i ≤ 2n+ 2, pi−1 ≺ pi.

The first variable y1 is assigned to true; it is equivalent to having the root process p1 in the LFMIS. The
second variable y2 is the only one to depend on y1 and, for every 3 ≤ i ≤ 2n+ 2, yi depends on y2; p2 is the
central process of G and the only one at level 1. Every other variable is the conjunction of the negations
of some previous variables, which implies that, for all 3 ≤ i ≤ 2n + 2, local computation of the LFMIS at
process pi depends only on the computation at prior processes p2, . . . , pi−1.

By simple induction on process ordering, we can see that pi ∈ I if and only if yi, and hence its corre-
sponding variable of the initial circuit, are assigned the value true.
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Note that all steps of the reduction can be accomplished in parallel in polylogarithmic time with polyno-
mially many processors. Thus, any instance of CV problem can be NC-reduced to an instance of the LFMIS
problem with unique local minimum. �

7 Conclusion and Perspectives

We have given a silent self-stabilizing algorithm for constructing a k-clustering of any asynchronous connected
network with unique IDs. Our algorithm stabilizes in O(n) rounds, using O(log k+ log n) space per process,
where n is the number of processes. Our algorithm is uniform in the sense that it does not require processes
to know any upper bound on the size n or the diameter D of the network. This is the first algorithm of k-
clustering construction that is both self-stabilizing and competitive in UDG and QUDG networks. Moreover,
in case of tree networks, our algorithm computes an optimal k-clustering.

An immediate extension of this work would be to sharpen the competitive analysis of our k-clustering in
any UDG. Another possible extension is to try to find another competitive construction for a UDG which can
be performed in sublinear time. We feel it is worth investigating if it is possible to design a self-stabilizing
k-clustering that is competitive in any connected network.
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