
Self-Stabilizing Weak Leader Election in Anonymous Trees using

Constant Memory per Edge

AJOY K. DATTA STEPHANE DEVISMES LAWRENCE L. LARMORE
VINCENT VILLAIN

Abstract

We propose a deterministic silent self-stabilizing algorithm for the weak leader election problem in
anonymous trees. Our algorithm is designed in the message passing model, and requires only O(1) bits of
memory per edge. It does not necessitate the a priori knowledge of any global parameter on the network.
Finally, its stabilization time is at most 3D2 × (X + 2Imax + 2) time units, where D is the diameter of
the network, X is an upper bound on the time to execute some recurrent code by processes, and Imax is
the maximal number of messages initially in a link.

keywords: Self-stabilization, weak leader election, anonymous tree, message passing, intermittent faults.

1 Introduction

We consider the deterministic self-stabilizing weak leader election problem in anonymous trees. Self-stabilization
[1] is a versatile technique to withstand any finite number of transient faults in a distributed system. Indeed,
a self-stabilizing algorithm is able to recover correct behavior in finite time without external (e.g., human)
intervention, regardless of the arbitrary initial configuration of the system (i.e., regardless the initial state of
the processes and messages initially in the links), and therefore, also after the occurrence of transient faults,
provided that these faults do not alter the code of the processes.

A particular class of self-stabilizing algorithms is that of silent algorithms. A self-stabilizing algorithm
is silent [2] if it converges to a global state where values of communication registers used by the algorithm
remain fixed. Consequently, from such a global state information exchanged between processes is also fixed.
Silent (self-stabilizing) algorithms are typically proposed to solve static problem such as leader election.

In distributed computing, the leader election problem consists in distinguishing a single process, so-called
the leader, among the others. This problem is fundamental, as it is a basic component of solutions to
a number of important problems such as spanning tree construction, implementation of broadcasting and
convergecasting methods, etc. Now, following the results of Yamashita and Kameda [3], there are anonymous
trees whose symmetricity is 2 (e.g., a tree of just two processes) for which deterministic leader election is
impossible. To circumvent this negative result, Datta et al [4] propose a weakened version of the problem,
called weak leader election: elect at least one, but at most two processes, and in the latter case the two
processes should be neighbors. The major interest of solving the weak leader election problem is to reduce
the global problem of electing one leader among n processes to the local problem of electing one leader
among at most two neighbors. For example, if two neighbors are elected instead of only one process, then
one of them can be probabilistically elected within constant expected time, just by making each of those two
neighbors toss a coin and exchange their result until one obtains head and the other obtains tail. Notice that
a very close variant of the weak leader election problem, called general election problem (GEP), has been
proposed in [5]. This problem consists in electing, if possible a process, otherwise if possible an edge. In this
latter paper, non-self-stabilizing solutions to GEP in rings are studied, assuming that process identifiers are
not necessarily unique.

1

The bulk of self-stabilizing literature uses the shared memory model with composite atomicity introduced
by Dijkstra [1]. In this high-level model, any process is able to read the states of every neighbor and update its
own state in a single atomic step. Designing self-stabilizing algorithm using lower level communication models
such as asynchronous message passing is more challenging. In one of the weakest forms of the message passing
model, messages in transit can be intermittently lost, duplicated, or reordered. It is especially important
to consider such a low level model since Varghese and Jayaram [6] prove that simple process crashes and
restarts, and unreliable communication channels, can drive protocols to arbitrary states. To our knowledge,
very few work in the self-stabilizing literature consider such a weak model [7, 8].

1.1 Contribution

In this paper, we give a deterministic silent self-stabilizing algorithm for the weak leader election problem
in an anonymous tree. Our algorithm is expressed in the message passing model under the following weak
assumptions. No bound is assumed on the link capacity (although our algorithm also works assuming
any positive bound on the link capacity). Moreover, the system can be subjected to both transient faults
and intermittent faults1. Arbitrary transient faults are withstood due to the self-stabilizing nature of the
algorithm. But, in addition, our algorithm also tolerates frequent message lost, duplication, and reordering.

Our algorithm requires only O(1) bits of memory per edge. It does not necessitate the a priori knowledge
of any global parameter on the network such as an upper bound on the diameter or the number of processes.
Finally, it achieves a stabilization time independent of the number of processes in the tree. Namely, we
prove that the stabilization time is at most 3D2 × (X + 2Imax + 2) time units, where D is the diameter of
the network, X is an upper bound on the time to execute some recurrent code by processes, and Imax is the
maximal number of messages initially in a link.

1.2 Related Work

To the best of our knowledge, no self-stabilizing algorithm in a message passing model for the weak leader
election problem has been given until now. The related papers presented in the paragraph below [9, 10, 11,
4, 12] consider the locally shared memory model with composite atomicity.

The weak leader problem has been introduced by Datta and Larmore in [4]. In that paper, they give a
weak leader election algorithm for anonymous trees which is silent and self-stabilizing. The stabilization time
of their algorithm is O(D) rounds and n.D steps (n is the number of processes). The memory requirement
of their solution is O(1) bits per process. They assume a distributed unfair daemon, the most general
scheduling assumption of the locally shared memory model with composite atomicity. In the same paper,
they also consider two related problems, finding centers and medians. Any tree contains at least one but at
most two centers (resp. medians). Hence a solution to either problem is also a solution for the weak leader
election, but the converse is false. They prove lower bounds for the space complexity of silent self-stabilizing
algorithms for these two problems, namely Ω(logD) and Ω(log n) bits per process for the centers and the
medians finding, respectively. They also propose two algorithms, one for each of the two problems, matching
the lower bounds and achieving the same time complexity as their weak leader election algorithm. Another
self-stabilizing algorithm for finding centers in anonymous trees can be found in [12]. In this paper, Datta
et al circumvent the space complexity lower bound by proposing a self-stabilizing but non-silent algorithm.
This algorithm has a memory requirement in O(1) space per process. The stabilization time of their solution
is D rounds, assuming the distributed unfair daemon. Other silent self-stabilizing solutions for the centers
and medians finding are given in [9, 10, 11]. However, they assume strong scheduling hypothesis, i.e., central
and locally central daemon. Algorithms in [9, 10] assume processes a priori know an upper bound N on the
number of processes, and their memory requirement is in Θ(logN) (no time complexity is given). In [11],
the space complexity is Θ(logD) for finding centers and Θ(log n) for finding medians. The step complexity

1The main difference between transient and intermittent faults is their frequency. In the former case, the time between two
periods of faults is large enough to allow the system to recover. In the latter case, a self-stabilizing algorithm should be able to
converge despite the frequent occurrence of faults during its stabilization phase.

2

is O(n3 + n2ch) for finding centers, and O(n3cs) for finding medians, where ch, cs are the maximum initial
values of certain variables in the algorithm.

More generally, several papers investigate the possibility of self-stabilization in message passing, e.g., [13,
14, 15, 16, 17, 18, 19, 20, 7]. The crucial assumption for communication links is their boundedness, i.e.,
whether or not processes are aware of the maximum number of messages that can be in transit in a particular
link. Gouda and Multari [13] show that for a wide class of problems, including the alternating bit protocol
(ABP), deterministic self-stabilization is impossible using bounded memory per process when link capacities
are unbounded. They also present a self-stabilizing version of the ABP with unbounded links that uses
unbounded memory per process. Afek and Brown [15] present a self-stabilizing ABP replacing unbounded
process memory by an infinite sequence of random numbers. However, we are interested here in deterministic
algorithms. Katz and Perry [14] derive a self-stabilizing ABP to construct a self-stabilizing snapshot protocol.
In turn, the snapshot protocol allows to transform almost all non-self-stabilizing protocols into self-stabilizing
ones, but at a prohibitive cost, e.g., it uses unbounded memory per process, while we target here a space
complexity constant per edge. Guaranteeing self-stabilization with bounded memory per process for most
of specifications requires considering bounded capacity links and such a bound should be a priori known by
all processes [16, 17, 18, 19, 20]. In particular, Varghese [18] gives such self-stabilizing solutions for a wide
class of problems, including token circulation and propagation of information with feedback. In this paper,
no bound is assumed on the link capacity.

Awerbuch et al [21] introduced the property of local correctability and demonstrated that protocols
which are locally correctable can be self-stabilized using bounded memory per process in spite of unbounded
capacity links. Delaët et al [7] also proposed a method to design silent self-stabilizing protocols with bounded
memory per process in message passing systems equipped with unreliable links of unbounded capacity for
a class of fix-point problems. However, solutions in [4, 12] are based on a local synchronization mechanism
called unison, which cannot be implemented in message-passing using the methods proposed in [21, 7].
Finally, porting the other solutions for finding centers or medians [9, 10, 11] to message-passing using [21] or
[7] (if possible) would give solutions with space complexity Ω(∆D) for finding centers and Ω(∆n) for finding
medians (where ∆ is the maximum degree of the tree), and so not in constant space per edge.

Finally, note that the design of the algorithm we propose is close to the one of the non-self-stabilizing
election algorithm for identified tree networks proposed in the book of Gerard Tel [22] (page 231).

1.3 Roadmap

The next section is dedicated to computational model and basic definition. Our algorithm, L, is presented in
Section 3, while its correctness proof is given in Section 4. A complexity analysis of L is given in Section 5.
We make concluding remarks in Section 6.

2 Preliminaries

2.1 Network

Let T = (V,E) be an unoriented tree, where V is a set of n ≥ 2 deterministic processes, and E a set
of bidirectional asynchronous links between processes. Two processes p and q are said to be neighbors if
{p, q} ∈ E. Each bidirectional link {p, q} ∈ E can be decomposed into two unidirectional links (p, q) and
(q, p) which are the links from p to q and from q to p, respectively. Processes are anonymous. For any
process p and q in V , we define ‖p, q‖, the distance between p and q in T , to be the length of the shortest
path in T linking p to q. The diameter D of T is the maximum distance between any two processes, i.e.,
D = maxp,q∈V ‖p, q‖.

Each process can communicate with its neighbors by sending messages along the corresponding links. A
link may hold an arbitrary number of messages. A process p can distinguish the links it is incident to using
distinct local labels. Let Np be the set of all local labels at a process p, and let δp = |Np| be the degree of
p. In the following, we will let p denote both a process and the local label of p at a neighbor q. Any process

3

l whose degree is 1 is called a leaf and, in this case, we denote by u(l) its unique neighbor. Let LeavesT be
the set of leaves in T . For every leaf l, for every node p 6= l, let c(l, p) be the neighbor of p that is the closest
from l.

2.2 States and Configurations

The state of a process is a vector of the values of its variables. Among the variables at process p, we make the
distinction between communication and non-communication variables. A communication variable of process
p is a variable whose value is sent and/or received through messages. The state of a unidirectional link (p, q)
is a multiset of messages2 Mp,q. The state of the bidirectional link {p, q} is the unordered pair {Mp,q,Mq,p}.
When process p sends a message m to process q, m is added to Mp,q; eventually m is deleted from that set
when m is either lost, or received by q. A configuration of the system is the product of the states of the
processes and the states of the bidirectional links. Each configuration contains finitely many messages.

2.3 Events

The system configuration is modified by atomically executing an applicable event: if γ is a configuration and
e an event applicable to γ, we denote by e(γ) the configuration obtained by atomically executing e on γ.

There are two kinds of events: process events and system events.

2.3.1 Process Events

A process event is executed by some process p, where p can modify its state and send finitely many messages.
There are two kinds of process events: recurring events (R event) and triggered events (T event).

• A recurring event at process p is regularly executed by p, perhaps by using a timer. We make no
assumption about the periodicity of the event, except that it is executed infinitely often. By definition,
a recurring process event is applicable to any configuration.

• A triggered event can only be executed by a process p if it is triggered by the reception of an expected
message m from a neighbor q, in which case m is removed from Mq,p. Of course, the event is applicable
only if m ∈Mq,p.

2.3.2 System Events

A system event is triggered by an intermittent fault. We assume two kinds of intermittent faults can occur:
message loss and message duplication. A message loss consists of removing some message m from some
multiset Mp,q. A message duplication consists in adding an additional copy of some message m in some
multiset Mp,q. Either of these events is applicable only if m ∈Mp,q.

2.4 Local and Distributed Algorithms

A distributed algorithm consists of n local algorithms, one per process. The local algorithm of p consists of
definitions of finitely many process events.

2.5 Schedule and Execution

A schedule is a sequence of events. A schedule S = e0, . . . is admissible from some configuration γ0 if

• e0 is applicable to γ0 and ∀i > 0, if ei is defined, then ei is applicable to γi where γi = ei−1(γi−1), and

• the following well-foundedness and fairness properties are satisfied:

2This assumption implies that the links are not FIFO.

4

– Every event of type R at every process appears infinitely often in S. (Process fairness.)

– Every message m in a link (q, p) that is not lost is eventually received, provided that there is an
appropriate T event in the local algorithm of p, i.e., a T event in the local algorithm of p that is
triggered by the reception of m from q. (Eventual delivery property.)

– If infinitely many messages are sent in a link (q, p), then infinitely many messages are received by
p, provided that there are the appropriate T events in the local algorithm of p. (The links are
fair lossy.)

– Each message is duplicated only a finite (yet unbounded) number of times and only if it is a
message that has been previously sent, or a message that is present in the initial configuration.
(Finite number of duplications.)

Let γ0 be a configuration and S = e0, . . . an admissible schedule from γ0. The corresponding execution is
γ0, γ1 = e0(γ0), . . .

2.6 Silent Self-Stabilization

Silent self-Stabilization is introduced in [2] as a specialization of self-stabilization [1]. A configuration γ is
terminal if the values of all communication variables are constant in all possible executions starting from γ.

Let SP be a predicate over configurations. An algorithm is silent and self-stabilizing for SP in a given
network, if all its executions reach within a finite time a terminal configuration from which SP holds forever
in any possible execution suffix.

2.7 The Weak Leader Election Problem

The weak leader election problem consists in making each process p computes the value of some local predicate
Leader(p) so that the predicate SWL defined below is eventually satisfied forever.

For any configuration γ, we say that SWL(γ) holds if

1. there is at least one but at most two processes satisfying predicate Leader in γ; and

2. if there are two processes satisfying predicate Leader in γ, they are neighbors.

Hence, regardless the initial configuration of the system, a silent self-stabilizing algorithm for the weak leader
election problem should reach within finite time a terminal configuration from which

1. the value of Leader(p) is constant for every process p and

2. SWL holds forever in any possible execution suffix.

3 Algorithm

Our algorithm is called Algorithm L. Its formal code is given in Algorithm 1. Algorithm L aims at electing
one process or one edge. In the former case the elected process is called the leader. In the latter case, the
two processes incident to the elected edge are called co-leaders. We now define L.

3.1 Variables

Each process p maintains two communication variables:

• Pp ∈ Np ∪ {⊥}, which we refer to as the pointer of p.

Pp =⊥ means that p is currently candidate for the leader election. Otherwise, Pp = q ∈ Np and we
have two cases. Either Pq = p and the edge {p, q} is a leader edge, or p is not candidate and adopts
the same leader as q: q is on the shortest path to the (co-)leader process(es).

5

• Ap[], a Boolean array of size δp indexed by Np. Ap[q] is true if and only if p believes that q points at
p, i.e., that Pq = p.

In a terminal configuration of L, either the pointers define a tree rooted at the (sole) leader, or two trees
rooted at the co-leaders and the two co-leaders point to each other.

The memory requirement of each process p is δp+dlog(δp+1)e bits, i.e., O(∆) bits where ∆ = maxp∈V δp
is the maximum degree of the tree, i.e., O(1) per edge. So, we have

Theorem 1 The memory requirement in Algorithm L is constant per edge.

Finally, as there are n− 1 edges in a tree, the average memory requirement per process is also constant.

3.2 Messages

L has two possible messages: 〈0〉 and 〈1〉. If p points to a neighbor q, then it continually sends the message
〈1〉 to q; otherwise it continually sends 〈0〉 to q. Precisely, each process p regularly sends a one-bit message
〈Pp = q〉 to each neighbor q, where 〈Pp = q〉 equals 〈1〉 if Pp = q, 0 otherwise.

For any neighboring processes p and q, Ap[q] ← 1 whenever p receives the message 〈1〉 from q, and
Ap[q]← 0 whenever p receives the message 〈0〉 from q.

3.3 Predicate Leader

The specification predicate of L is instantiated as follows:

Leader(p) ≡ (Pp =⊥) ∨ (Ap[Pp] = 1)

Algorithm L ensures that in any terminal configuration, (Pp = q ∈ Np)⇔ (Aq[p] = 1), for every process
p and every q ∈ Np. There are two kinds of terminal configuration. In the first kind, Pp =⊥ for exactly one
process p and there is no elected edge. In this case, p is the sole leader, i.e., the unique process p satisfying
Leader(p). Otherwise, no process has its pointer equal to ⊥ and exactly one edge is elected. The ends of
that edge, say p and q, point to each other, that is, Pp = q and Pq = p, which implies both Leader(p) and
Leader(q), and no other process satisfies the specification predicate.

3.4 Macro and Function

Algorithm L uses the following macro:

N0(p) = {q ∈ Np : Ap[q] = 0}

Then, L uses the function NewP (p), defined below, to recompute the value of the pointer Pp continually.
Eventually, all pointer values are stable, i.e., do not change, and L has converged.

NewP (p)
1: if |N0(p)| = 1 then
2: return the unique element of N0(p)
3: else if |N0(p)| ≥ 2 then
4: return ⊥
5: else
6: return Pp

6

Algorithm 1 Algorithm L, code for any process p

R event:
1: Pp ← NewP (p)
2: for all q ∈ Np do send〈Pp = q〉 to q
T event: upon receiving 〈x〉 from q

3: Ap[q]← x
4: Pp ← NewP (p)

3.5 Overview

Every process p regularly sends to each neighbor q a message (〈0〉 or 〈1〉) to let it know whether Pp = q (see
Line 2 in the R event of Algorithm 1). Upon receiving this message from p, q updates Aq[p] accordingly (see
Line 3 in the T event of Algorithm 1).

If Pp =⊥, then p is a candidate for leader election. If Pp = q 6=⊥ there are two cases. If Pq = p, then the
edge {p, q} is elected, meaning that both p and q consider themselves to be co-leaders. Otherwise, p is no
longer a candidate for leader election, and q is the neighbor of p on the shortest path to the (co-)leader(s).

The election process works as follows. Each process p updates Pp using function NewP (p). Pp is regularly
updated (see Line 1 in the R event of Algorithm 1) and also after each update of Ap[] (see Line 4 in the T
event of Algorithm 1):

• p decides to point to a neighbor q if all its neighbors except q point to p, i.e., N0(p) = {q} (see Lines
1-2 in NewP (p)): p sets Pp to q meaning that it is no longer a candidate, and adopts the same leader
process or the same leader edge as q. Notice that it is possible that p and q decide to point each other
concurrently. In this case, the edge {p, q} is a leader edge.

• p sets Pp to ⊥ if |N0(p)| ≥ 2 (see Lines 3-4 in NewP (p)), because there is currently no agreement
between at least two of its neighbors on where the leader is.

• In all other cases, Pp is not modified: see Lines 5-6 in NewP (p).

4 Correctness

Recall that we consider trees of n nodes with n ≥ 2.

Lemma 1 Let p and q be two neighboring processes, If, within finite time, the system reaches a configuration
γ from which Pp = q (resp. Pp 6= q) forever, then within finite time (from γ), we have

1. q only receives messages 〈x〉 from p,

2. q receives messages 〈x〉 from p infinitely often, and

3. Aq[p] = x forever,

where x = 1 if Pp = q in γ, x = 0 otherwise.

Proof. The proof of this lemma is immediate from the definition of the algorithm and the assumptions
on the system, as shown below.

• Proof of Claim 1: The number of messages initially in the link (p, q) is finite (by definition, each
configuration contains only a finite number of messages). Then, by definition of the algorithm, from γ,
p only sends messages 〈x〉 to q. Finally, each message can be duplicated only a finite number of times
and each message is eventually received or lost (see the properties of an admissible schedule). Hence,
eventually q can only receive messages 〈x〉 from p.

7

• Proof of Claim 2: By definition, p executes its R event infinitely often. So, Claim 2 is a consequence
of the initial hypothesis of the lemma and the fact that links are fair lossy.

• Proof of Claim 3: Immediate from Claims 1 and 2.

�

By definition, a leaf l cannot execute Lines 3-4 of NewP (l) because δl = 1. Hence follows.

Remark 1 For every leaf l, if Pl = u(l), then Pl = u(l) forever.

Lemma 2 Let l be a leaf. Within finite time, the system reaches a configuration γ from which

1. Pl is constant forever.

Moreover, let x = 1 if Pl = u(l) in γ, x = 0 otherwise. Within finite time (from γ), we have

2. u(l) only receives messages 〈x〉 from l,

3. u(l) receives messages 〈x〉 from l infinitely often, and

4. Au(l)[l] = x forever.

Proof.

• Proof of Claim 1: By the contradiction. Then, Pl switches from u(l) to ⊥ infinitely often, a contradic-
tion to Remark 1.

• Proof of Claims 2-4: Immediate from Claim 1 and Lemma 1.

�

Then, the proof of correctness is done by induction on the number n of processes in the tree.

4.1 Base case

If the tree contains only two processes p and q, both are leaves and neighbors. By Lemma 2 (Claims 1
and 4), the system eventually reaches a terminal configuration γ. Assume, by the contradiction, that neither
Leader(p) nor Leader(q) hold in γ. In this case, Pp = q ∧ Ap[q] = 0 and Pq = p ∧ Aq[p] = 0. Now, in γ,
Pp = q implies that Aq[p] = 1 and Pq = p implies that Ap[q] = 1 (by Lemma 2.4), a contradiction. Hence,
SWL(γ) holds, and we are done.

4.2 Inductive Hypothesis

Let k ≥ 2. Assume that every execution of L in any tree T of n nodes, with 2 ≤ n ≤ k, reaches within finite
time a terminal configuration γ from which SWL holds forever.

4.3 Inductive Step

Let T = (V,E) be a tree of k + 1 processes. Let e = γ0 . . . be any execution of L on T . We consider the
following two cases.

8

4.3.1 Case 1

Assume that there is a leaf l such that, within finite time in e, Pu(l) 6= l holds forever. Then, the execution e
eventually reaches a configuration γ from which Al[u(l)] = 0 forever, by Lemma 1. After its first R event from
γ, l satisfies Pl = u(l) forever, by Remark 1. After that, the execution e eventually reaches a configuration
from which Au(l)[l] = 1 forever by Lemma 2.4. So:

• Eventually in e, the state of l is constant and Leader(l) is false forever. (Indeed, Pl = u(l)∧Al[u(l)] = 0
holds forever.)

• Moreover, once Au(l)[l] = 1 forever in e, l is neutral in the behavior of u(l) and in particular in
the computation of Pu(l) since l does not belong to N0(u(l)) anymore. More precisely, let T ′ =
(V \ {l}, E \ {l, u(l)}) and let γi be the first configuration of e from which Au(l)[l] = 1 forever in e. Let
γ′i be the configuration of T ′ obtained by removing from γi

– the state of l,

– the state of the link {l, u(l)}, and

– the array cell Au(l)[l] in the state of u(l).

Let Se = e0, . . . be the schedule that generates e. Let Se′ = ea, eb, . . . be the schedule obtained by
removing from Se all events related to l (i.e. process events at l, messages received by u(l) from l,
messages received by l from u(l), and system events in the link {l, u(l)}). Se′ is admissible from γ′i.
Let e′ = γ′i, γ

′
a = ea(γ′i), γ

′
b = eb(γ

′
a), . . . be the corresponding execution. For every configuration γ′z in

e′, ∀v ∈ V \ {l}, ∀w ∈ Nv \ {l}, we have

– the state of v in γ′z is equal to the state of v in γz, except for Au(l)[l] which does not exist in γ′z
while Au(l)[l] = 1 in γz; and

– the state of the link {v, w} is the same in γz and γ′z.

By the inductive hypothesis, e′ stabilizes to a terminal configuration from which SWL holds forever.
So, e stabilizes to a terminal configuration from which SWL holds forever too: there are at least one
but at most two leaders among processes in V \ {l}, and l is not a leader.

4.3.2 Case 2

Assume that for every leaf l, we have Pu(l) = l infinitely often. Consider now a particular leaf l. We can
show, by induction on the distance of processes p 6= l to l that Pp = c(l, p) infinitely often.

• Base Case: The statement holds trivially for u(l), by hypothesis.

• Inductive Hypothesis: Let d ≥ 1. Assume that for every process p at distance d from l, we have
Pp = c(l, p) infinitely often.

• Inductive Step: let p be a process at distance d + 1 from l. Let q = c(l, p). q is at distance d from l.
By the inductive hypothesis, Pq = c(l, q) 6= p infinitely often. Now, each time q sets Pq to c(l, q), we
have N0(q) ≤ 1:

– either q executes Line 2 in Function NewP (q) and N0(q) = {c(l, q)}, or

– q executes Line 6 in Function NewP (q) and N0(q) = ∅.

In either case, Aq[p] = 1. Thus, Aq[p] = 1 infinitely often. Now, q receives infinitely many messages
from p. So, q receives infinitely many messages 〈1〉 from p. Consequently, p satisfies Pp = q = c(l, p)
infinitely often.

9

We now use the previous result to obtain a contradiction. Let v be a leaf different from l. v exists since
the number of nodes in T , k + 1, is greater than of equal to 3. Again, since k + 1 ≥ 3, u(v) 6= l. We
can then apply the previous result: Pu(v) = c(l, u(v)) 6= v infinitely often. Now, by hypothesis, Pu(v) = v
infinitely often too. So, this means that Au(v)[v] oscillates between 0 and 1 infinitely often, a contradiction
to Lemma 2.4.

Hence, the following theorem follows:

Theorem 2 Algorithm L is silent and self-stabilizing for SWL in any anonymous tree of at least two pro-
cesses.

5 Stabilization Time and Message complexity

5.1 Measuring Complexity

The stabilization time of a silent self-stabilizing algorithm is the maximum time, starting from any arbitrary
initial configuration and over all possible executions, to reach a terminal configuration from which the
specification is true forever.

The problem is now how to measure complexities in asynchronous unreliable message passing self-
stabilizing systems. In our model, messages can be lost. We make no assumption on the drop rate of
messages and no assumption on the frequency of message sending. Time (resp. message) complexity cannot
be bounded under these assumptions. The problem is similar with duplication of messages. To circumvent
this problem, we only measure complexities in executions where all links are reliable (i.e. no message loss and
no duplication). We justify this simplification by the fact that measuring time (resp. message) complexity
under unreliable links does not only evaluate the performance of the algorithm, but rather the performance
of the whole system, including the network. Following the literature (e.g., [22]), we do not want to make
complexity analysis dependent on system-specific parameters.

Under the reliable link hypothesis, we evaluate time complexity in terms of time units, assuming that in
at most one time unit at least an oldest message in each link3 (if any) reaches its destination, and that the
time for executing the code of a process event is zero.

Now, one problem remains: what are the frequency of recurrent events at processes? If we assume
that, like message transmissions, each recurrent event is executed at the latest every unit of time, then the
links may suffer from congestion, i.e., messages may be sent more often than they are received causing the
number of messages gradually increasing in the network. So, to prevent any congestion, we assume that each
recurrent event is executed at most once per time unit. Moreover, notice that assuming a lower bound on
the time before executing a recurrent event is necessary to permit the message complexities to be bounded.
Finally, to permit bounded time complexities, we assume that each recurrent event is executed at least every
X ≥ 1 time units. Informally, this means that the periodicity of the timers of recurrent events should be
carefully addressed when deploying the algorithm. In practice, X represents the ratio between the actual
periodicity of the timers and the worst-case message transmission time. So, X should be greater than or
equal to 1 to prevent congestion. In the best case, the periodicity of the timers is chosen as small as possible,
while preventing congestion (X = 1): in this case, timers have no impact on performances. Otherwise, the
penalty is of a factor X.

5.2 Stabilization Time of Algorithm L
Consider now an arbitrary execution e where all links are reliable. Let Imax be the maximum number of
messages in a link in the initial configuration of e. From our hypotheses, we deduce that are always at most
Imax + 1 messages in a link. Hence, the next remark follows.

Remark 2 During e, any message is received within at most Imax + 1 time units after its appearance in a
link.

3We partially order messages in any execution e = γ0, . . . using the index of the configuration where a message appears first.

10

Lemma 3 Let l be any leaf. If Pl = u(l), then within X + 2Imax + 2 time units, the following conditions
hold forever:

• (l, u(l)) only contains messages 〈1〉,

• Au(l)[l] = 1, and

• the last message u(l) received from l is 〈1〉.

Proof. Once Pl = u(l), Pl = u(l) forever, by Remark 1. Hence, from that time, l only sends messages 〈1〉
to u(l). So, after at most Imax+1 time units, (l, u(l)) only contains messages 〈1〉 forever. Within X+Imax+1
additional time units, a message 〈1〉 is necessarily sent by l and received by u(l). Hence, from that time,
Au(l)[l] = 1 forever and the last message u(l) receives from l is always 〈1〉. �

Following a similar reasoning, we have:

Lemma 4 Let l be any leaf. Let t ≥ 0 and t′ ≥ t+X + 2Imax + 2, If Pl =⊥ at any time during [t, t′], then
at any time in [t+X + 2Imax + 2, t′] we have:

• (l, u(l)) only contains messages 〈0〉,

• Au(l)[l] = 0,

• the last message u(l) received from l is 〈0〉.

Proof. In [t, t′], l only sends messages 〈0〉 to u(l). So, after at most Imax + 1 time units from t, (l, u(l))
only contains messages 〈0〉 until (at least) time t′. Within X + Imax + 1 additional time units, a message 〈0〉
is necessarily sent by l and received by u(l). Hence, from that time and until (at least) l modifies the value
of Pl, Au(l)[l] = 0 and the last message u(l) receives from l is always 〈0〉. �

Lemma 5 Let l be any leaf. Let t ≥ 0 and t′ ≥ t+ 2D × (X + 2Imax + 2). If Pu(l) is assigned to a value in
{l,⊥} each time u(l) executes an R event in [t, t′], then the configuration at time t′ is terminal.

Proof.

• Claim 1: Let t′′ ≥ t + (D − 1) × (X + 2Imax + 2). If Pu(l) is assigned to a value in {l,⊥} each
time u(l) executes an R event in [t, t′′], then for every node v in V \ {l, u(l)} and for every time in
[t+ ‖v, u(l)‖ × (X + 2Imax + 2), t′′] we have

1. Av[c(l, v)] = 0,

2. if v executes an R event, then Pv is assigned to a value in {c(l, v),⊥},
3. (c(l, v), v) only contains messages 〈0〉, and

4. the last message v received from c(l, v) is 〈0〉.

Proof of Claim 1: By induction on the distance of v to u(l). The case ‖v, u(l)‖ = 0 is vacuum
since, by definition, there is no node in V \ {l, u(l)} at distance 0 from u(l). Assume now, that
‖v, u(l)‖ = k with k > 0. Assume that v 6= l (the case v = l is also vacuum). Notice that D > 1
in this case. From time t + (‖v, u(l)‖ − 1) × (X + 2Imax + 2) to t′′, c(l, v) only sends messages 〈0〉
to v (if c(l, v) 6= u(l), we apply the induction hypothesis on c(l, v), otherwise c(l, v) = u(l), i.e.,
‖v, u(l)‖ = 1, and this fact is immediate from the initial hypothesis on Pu(l), since v 6= l). Hence, from
time t+(‖v, u(l)‖−1)× (X+2Imax +2)+Imax +1 to t′′, (c(l, v), v) only contains messages 〈0〉. Within
X + Imax + 1 additional time units, we have the guarantee that v received a message 〈0〉 from c(l, v).
Hence, from t+ ‖v, u(l)‖ × (X + 2Imax + 2) to t′′, Conditions 1-4 hold.

11

• Claim 2: Let t′′′ ≥ t + (2D − 2) × (X + 2Imax + 2). If Pu(l) is assigned to a value in {l,⊥} each
time u(l) executes an R event in [t, t′′′], then for every node v /∈ {l, u(l)} and for every time in
[t+ (2D − ‖v, u(l)‖ − 1)× (X + 2Imax + 2), t′′′] we have

1. Pv = c(l, v),

2. (v, c(l, v)) only contains messages 〈1〉,
3. the last message c(l, v) received from v is 〈1〉, and

4. Ac(l,v)[v] = 1.

Proof of Claim 2: By structural induction from the leaves different from l. Let f 6= l be a leaf.
By Claim 1.4 and Lemma 3, we are done. Let v be a non-leaf process. By applying the induction
hypothesis on every node y of Nv \ {c(l, v)} and Claim 1, we obtain that Condition 1 holds from time
t + (2D − ‖v, u(l)‖ − 2) × (X + 2Imax + 2) to t′′′. Then, Conditions 2-4 are immediate from 1 and
the fact that X + 2Imax + 2 additional time units are necessary to flush the link (v, c(l, v)) and to set
Ac(l,v)[v] to 1.

Consider now the time interval from t + (2D − 2)× (X + 2Imax + 2) to t + (2D − 1)× (X + 2Imax + 2). If
Pl =⊥ at every time of this interval, then the configuration at time t+(2D−1)×(X+2Imax +2) is terminal,
by Lemma 4 and Claims 1-2. Otherwise, within 2D × (X + 2Imax + 2) time units from t at the latest, the
configuration is terminal, by Lemma 3 and Claims 1-2. �

Theorem 3 The stabilization time of Algorithm L is at most 3D2 × (X + 2Imax + 2) time units.

Proof. By induction on the diameter D of the tree.
If D = 1, then the tree consists of only two neighboring leaves l1 and l2. Without the loss of generality,

consider l1. Nl1 \ {l2} = ∅. Hence, the value of Pl1 is always in {l2,⊥} and, by Lemma 5, the system reaches
a terminal configuration in at most 2× (X + 2Imax + 2) time units.

If D = 2, then let p be the unique non-leaf process. If Pp is assigned to a given leaf l or ⊥ each time
p executes an R event during the time interval [0, 4 × (X + 2Imax + 2)], then within 4 × (X + 2Imax + 2)
time units the configuration is terminal, by Lemma 5. Otherwise, there are at least two R events in the time
interval [0, 4 × (X + 2Imax + 2)], where p points to two different leaves. As a consequence, p sends at least
one message 〈0〉 to all leaves during this interval. Let t = 4× (X + 2Imax + 2). Within at most Imax + 1 time
units from t, all leaves receives a 〈0〉 message. Consequently, a time t′ = 4X+ 9Imax + 9, every leaf l satisfies
Pl = p forever (Remark 1). Apply Lemma 3 on all leaves. A particular consequence is that Pp becomes
constant from time t′′ = 5X + 11Imax + 11. After X + 2Imax + 2 time units from t′′, the configuration is
terminal, i.e., the system reaches a terminal configuration within at most 6X + 13Imax + 13 time units.

Assume D > 2. Consider the two following cases:

• There is a leaf l such that Pu(l) is assigned to a value in {l,⊥} each time u(l) executes an R event
during the time interval [0, 2D × (X + 2Imax + 2)]. Then, at time 2D × (X + 2Imax + 2) the system is
in a terminal configuration, by Lemma 5.

• Otherwise, all leaves receives a message 〈0〉 within time t = 2D × (X + 2Imax + 2) + Imax + 1. From
time t, every leaf l satisfies Pl = u(l) forever. Moreover, by Lemma 3, from time t′ = (2D+ 1)× (X +
2Imax + 2) + Imax + 1, for every leaf l, we have

– (l, u(l)) only contains messages 〈1〉,
– Au(l)[l] = 1, and

– the last message u(l) received from l is 〈1〉.

12

Assume that there is a leaf l such that Pu(l) is assigned to a value in {l,⊥} each time u(l) executes an R
event during the time interval [t′, t′+2D× (X+2Imax +2)]. Then, at time t′+2D× (X+2Imax +2) =
(4D+1)×(X+2Imax+2)+Imax+1, which is less than 3D2×(X+2Imax+2) time units, the system is in
a terminal configuration, by Lemma 5. Otherwise, from time t′′ = (4D+1)×(X+2Imax+2)+Imax+1,
for every leaf l, we have Pu(l) 6= l forever (because for every leaf l, Au(l)[l] = 1 forever from time t′).
From that point all the leaves are neutral in the behavior of their unique neighbor (as in the correctness
proof), hence we can apply the induction hypothesis on the subtree induced by V \ LeavesT whose
diameter is D − 2: the system reaches a terminal configuration within (4D + 1) × (X + 2Imax + 2) +
Imax + 1 + 3× (D − 2)2 × (X + 2Imax + 2) time units, which is less than 3D2 × (X + 2Imax + 2) time
units.

�

5.3 Message Complexity

By definition of the algorithm, every process p sends one message per neighbor at each R event only, so by
hypothesis, at most at each time unit. Hence, at most

∑
p∈V δp = 2 × |E| = 2n − 2 messages are sent at

each time unit, and from Theorem 3, we can deduce the following corollary:

Corollary 1 During the stabilization phase of Algorithm L, at most (6n−6)×D2×(X+2Imax+2) messages
are sent.

6 Conclusion

We have proposed a deterministic silent self-stabilizing algorithm for the weak leader election problem in
anonymous trees. Our algorithm is designed in the message passing model, requires only O(1) bits of
memory per edge, and does not necessitate the a priori knowledge of any global parameter on the network.
Our algorithm also tolerates frequent message lost, duplication, and reordering. We have proven a bound
on the stabilization time of our solution, namely O((X + Imax)D2) time units.

In future work, we would like to investigate solutions for the weak leader election problem in other classes
of anonymous networks, where (deterministic) leader election is impossible. Of course, the definition will
have to be relaxed, in a sense that the goal will be to elect the smallest possible subset of neighbors, instead
of at most two neighbors.

References

[1] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM, 17(11):643–
644, 1974.

[2] Shlomi Dolev, Mohamed G. Gouda, and Marco Schneider. Memory requirements for silent stabilization.
Acta Inf., 36(6):447–462, 1999.

[3] Masafumi Yamashita and Tsunehiko Kameda. Computing on anonymous networks: Part i-
characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst., 7(1):69–89, 1996.

[4] Ajoy Kumar Datta and Lawrence L. Larmore. Leader election and centers and medians in tree networks.
In Stabilization, Safety, and Security of Distributed Systems - 15th International Symposium, SSS 2013,
Osaka, Japan, November 13-16, 2013. Proceedings, pages 113–132, 2013.

[5] Paola Flocchini, Evangelos Kranakis, Danny Krizanc, Flaminia L. Luccio, and Nicola Santoro. Sorting
and election in anonymous asynchronous rings. J. Parallel Distrib. Comput., 64(2):254–265, 2004.

[6] George Varghese and Mahesh Jayaram. The fault span of crash failures. J. ACM, 47(2):244–293, 2000.

13

[7] Sylvie Delaët, Bertrand Ducourthial, and Sébastien Tixeuil. Self-stabilization with r-operators revisited.
Journal of Aerospace Computing, Information, and Communication (JACIC), 3(10):498–514, 2006.

[8] Sylvie Delaët and Sébastien Tixeuil. Tolerating transient and intermittent failures. J. Parallel Distrib.
Comput., 62(5):961–981, 2002.

[9] Gheorghe Antonoiu and Pradip K. Srimani. A self-stabilizing distributed algorithm to find the center
of a tree graph. Parallel Algorithms Appl., 10(3-4):237–248, 1997.

[10] Gheorghe Antonoiu and Pradip K. Srimani. A self-stabilizing distributed algorithm to find the median
of a tree graph. J. Comput. Syst. Sci., 58(1):215–221, 1999.

[11] Steven C. Bruell, Sukumar Ghosh, Mehmet Hakan Karaata, and Sriram V. Pemmaraju. Self-stabilizing
algorithms for finding centers and medians of trees. SIAM J. Comput., 29(2):600–614, 1999.

[12] Ajoy Kumar Datta, Lawrence L. Larmore, and Toshimitsu Masuzawa. Constant space self-stabilizing
center finding in anonymous tree networks. In Proceedings of the 2015 International Conference on
Distributed Computing and Networking, ICDCN 2015, Goa, India, January 4-7, 2015, pages 38:1–38:10,
2015.

[13] Mohamed G. Gouda and Nicholas J. Multari. Stabilizing communication protocols. IEEE Trans.
Computers, 40(4):448–458, 1991.

[14] Shmuel Katz and Kenneth J. Perry. Self-stabilizing extensions for message-passing systems. Distributed
Computing, 7(1):17–26, 1993.

[15] Yehuda Afek and Geoffrey M. Brown. Self-stabilization over unreliable communication media. Dis-
tributed Computing, 7(1):27–34, 1993.

[16] Yehuda Afek and Anat Bremler-Barr. Self-stabilizing unidirectional network algorithms by power supply.
Chicago J. Theor. Comput. Sci., 1998, 1998.

[17] Rodney R. Howell, Mikhail Nesterenko, and Masaaki Mizuno. Finite-state self-stabilizing protocols in
message-passing systems. In WSS, pages 62–69, 1999.

[18] George Varghese. Self-stabilization by counter flushing. SIAM J. Comput., 30(2):486–510, 2000.

[19] Anish Arora and Mikhail Nesterenko. Unifying stabilization and termination in message-passing systems.
Distributed Computing, 17(3):279–290, 2005.

[20] Baruch Awerbuch, Shay Kutten, Yishay Mansour, Boaz Patt-Shamir, and George Varghese. A time-
optimal self-stabilizing synchronizer using a phase clock. IEEE Trans. Dependable Sec. Comput.,
4(3):180–190, 2007.

[21] Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self-stabilization by local checking and
correction (extended abstract). In FOCS, pages 268–277, 1991.

[22] Gerard Tel. Introduction to distributed algorithms (2nd Ed.). Cambridge University Press, 2000.

14

	Introduction
	Contribution
	Related Work
	Roadmap

	Preliminaries
	Network
	States and Configurations
	Events
	Process Events
	System Events

	Local and Distributed Algorithms
	Schedule and Execution
	Silent Self-Stabilization
	The Weak Leader Election Problem

	Algorithm
	Variables
	Messages
	Predicate Leader
	Macro and Function
	Overview

	Correctness
	Base case
	Inductive Hypothesis
	Inductive Step
	Case 1
	Case 2

	Stabilization Time and Message complexity
	Measuring Complexity
	Stabilization Time of Algorithm L
	Message Complexity

	Conclusion

