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Trees/Forests: Ubiquitous in Self-Stabilization

Composition is a popular way to design self-stabilizing algorithms
(modular approach, simplicity of the design and proofs)

Numerous self-stabilizing
algorithms [Arora et al., 1990, Blin et al., 2010, Datta et al., 2016] are
made as a composition of
� a spanning directed treelike construction and
� some other algorithms specifically designed for directed
tree/forest topologies.

Many solutions are silent
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Spanning Directed Treelike Constructions

Many (silent) self-stabilizing spanning tree constructions are available,
e.g.:
� Arbitrary Tree: [Chen et al., 1991]
� DFS: [Collin and Dolev, 1994]
� BFS: [Cournier et al., 2009, Cournier et al., 2011]
� Shortest-Path: [Glacet et al., 2014]
� . . .
� (Efficient) General Scheme: [Devismes et al., 2019]
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Self-stabilizing Algorithms for Directed Spanning
Tree/Forest

Classical design pattern based on top-down (broadcast) and bottom-up
(convergecast) computations:

Top-Down

Computations are propagated from parents to nodes

Bottom-Up

Computations are propagated from children to nodes
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Our Goal

Define a class of algorithms for networks endowed with a spanning
forest (e.g., a spanning tree) based the notions of top-down and
bottom-up computations.

� The definition should be simple to check (i.e., quasi-syntactic)
� Algorithms of the class should be (silent) self-stabilizing
� Algorithms of the class should be efficient in stabilization time

Challenge: Trade-off efficiency/versatility
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Context

� Locally shared memory model with composite atomicity
I Distributed unfair daemon

(the most general scheduling assumption)

� Silent self-stabilizing algorithms

� Sense of direction defining spanning forest
I p.par : p.par is either a neighbor (its parent), or ⊥ (for a root).
I p.chldrn: the set of children

� Time complexity in moves and rounds
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Contribution
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Acyclic Strategy

Definition 1.
A distributed algorithm A follows an acyclic strategy if
� it is well-formed,
� its graph of actions’ causality GC is (directed) acyclic, and
� for every Ai in its families’ partition, Ai is
I correct-alone and
I either bottom-up or top-down.

syntactic condition / semantic condition

(An illustrative example in few slides . . . )

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
10/33



Main Result

Theorem 1.
Let A be a distributed algorithm. If
� A follows an acyclic strategy,
� every terminal configuration of A satisfies SP
� A is locally mutually exclusive
then
� A is silent and self-stabilizing for SP in G under the distributed
unfair daemon

� its stabilization time is at most
(
1 + d · (1 + ∆)

)H · k · nH+2 moves
� its stabilization time is at most (H + 1) · (H + 1) rounds

(∆ is the degree of the network, k is the number of families of A, d is the in-degree
of GC, H the height of GC, H is the height of the spanning forest)

(typically, k, d, and H are constants)
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Acyclic Strategy
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Toy Example
Compute a sum of inputs and broadcast the result

� Each process p holds a constant integer input p.in ∈ N

� The network is a directed tree rooted at r

� Every process p has two variables:
I p.sub ∈ N (to compute the sum of input values in the subtree of p)
I p.res ∈ N (to broadcast the result).

� Legitimacy predicate: SumOfInputs ≡ ∀p ∈ V , p.res =
∑

q∈V q.in
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Toy Example
Algorithm T E

For every process p
S(p) :: p.sub 6= (

∑
q∈p.chldrn q.sub)+p.in→ p.sub ← (

∑
q∈p.chldrn q.sub)+p.in

For process r
R(r) :: r .res 6= r .sub → r .res ← r .sub

For every process p 6= r
R(p) :: p.res 6= max(p.par .res, p.sub)→ p.res ← max(p.par .res, p.sub)
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Families and Well-Formedness
Definition 1.
A distributed algorithm A follows an acyclic strategy
if
� it is well-formed,
� its graph of actions’ causality C is (directed)

acyclic, and

� for every Ai in its families’ partition, Ai is
I correct-alone and
I either bottom-up or top-down.

� Family of actions: set of n actions,
one per process

� Well-Formed: Actions partitioned
into families s.t. each variable is
written in exactly one family

(Well-formedness is rather a guideline to simplify the analysis.)

T E is well-formed: two families S and R
� S = {S(p) : p ∈ V }
� R = {R(p) : p ∈ V }

S(p) :: p.sub 6= (
∑

q∈p.chldrn

q.sub) + p.in→ p.sub ← (
∑

q∈p.chldrn

q.sub) + p.in

———————————————————
R(r) :: r .res 6= r .sub → r .res ← r .sub

R(p) :: p.res 6= max(p.par .res, p.sub)→ p.res ← max(p.par .res, p.sub)
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Acyclicity of the graph of actions’ causality

Definition 1.
A distributed algorithm A follows an acyclic strategy
if
� it is well-formed,
� its graph of actions’ causality GC is (directed)

acyclic, and

� for every Ai in its families’ partition, Ai is
I correct-alone and
I either bottom-up or top-down.

� A1, ..., Ak : families’ partition of A.

� Aj ≺A Ai iff

I i 6= j and
I ∃p, q s.t. Aj(p) writes in variables

“read” by Ai (q).
� GC = ({A1, ..., Ak}, {(Aj , Ai ), Aj ≺A Ai})

S(p) :: p.sub 6= (
∑

q∈p.chldrn

q.sub) + p.in→ p.sub ← (
∑

q∈p.chldrn

q.sub) + p.in

———————————————————
R(r) :: r .res 6= r .sub → r .res ← r .sub

R(p) :: p.res 6= max(p.par .res, p.sub)→ p.res ← max(p.par .res, p.sub)

S ≺T E R

GC : S −→ R is acyclic
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All families are correct-alone

Definition 1.
A distributed algorithm A follows an acyclic strategy
if
� it is well-formed,
� its graph of actions’ causality GC is (directed)

acyclic, and

� for every Ai in its families’ partition, Ai is
I correct-alone and
I either bottom-up or top-down.

� A1, ..., Ak : families’ partition of A.
� Ai is correct-alone if ∀p, Ai (p) becomes

disabled whenever variables ”read” by Ai (p)
are only written by Ai (p) in a step.

S and R are correct-alone

S(p) :: p.sub 6=(
∑

q∈p.chldrn

q.sub) + p.in→ p.sub←(
∑

q∈p.chldrn
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Every family is either bottom-up or top-down
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acyclic, and

� for every Ai in its families’ partition, Ai is
I correct-alone and
I either bottom-up or top-down.

� Ai is top-down: ∀p, any variable
“read” by Ai (p) is written by Ai (q)
only if q = p or q = p.par .

� Ai is bottom-up: ∀p, any variable
“read” by Ai (p) is written by Ai (q)
only if q = p or q ∈ p.chldrn.

S is bottom-up
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∑

q∈p.chldrn

q.sub) + p.in→ p.sub ← (
∑

q∈p.chldrn
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Result for T E (1/2)

Theorem 1.
Let A be a distributed algorithm. If
� A follows an acyclic strategy,
� every terminal configuration of A satisfies SP
� A is locally mutually exclusive
then
� A is silent and self-stabilizing for SP in G under

the distributed unfair daemon
� its stabilization time is at most(

1 + d · (1 + ∆)
)H
· k · nH+2 moves

� its stabilization time is at most
(H + 1) · (H + 1) rounds

� T E follows an acyclic strategy
� Every terminal configuration of T E

satisfies SumOfInputs
(a trivial induction)

� I d = 1 (in-degree of GC)
I k = 2 (number of families)
I H = 1 (height of GC)

� T E is silent and self-stabilizing for SumOfInputs in G under the
distributed unfair daemon

� its stabilization time is at most (4 + 2∆) · n3 moves, where ∆ is
the degree of G and n the number of processes
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Result for T E (2/2)

The complexity of T E can be refined to at most n2(3 + 2H) moves
where n the number of processes and H is the height of the spanning
tree using the following technical lemma

Lemma 1.
Let Ai be a family of actions and p be a process. For every execution e of the

algorithm A on G, #m(e, Ai , p) ≤
(

n ·
(
1 + d ·

(
1 + maxO(Ai )

)))H(Ai )

· |Z(p, Ai )|.

This bound is tight: there is an execution of T E containing O(H · n2)
moves
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Round Complexity
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Lower Bound in Rounds for Algorithm T E

∀i ∈ {1, . . . , n}, pi .in = 1

1
1

0
1

0
1 0

1

0
1

p1p2

p3
p4

pn

...

sub:
res:Phase 1:

n − 1 phases ⇒ Ω(n) rounds
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Condition for a Stabilization Time in O(H) Rounds

Round complexity of T E = Ω(n) rounds ⇒ not optimal!

Why?

S and R of T E are not mutually exclusive

Theorem 2.
Let A be a distributed algorithm. If A
� follows an acyclic strategy and
� is locally mutually exclusive
then every execution of A reaches a terminal configuration within at
most at most (H + 1) · (H + 1) rounds

(H is the height of GC and H is the height of the spanning forest)

(typically, H is a constant)
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Transformation into Locally Mutually Exclusive Algorithm

� Idea: use a strict total order compatible with the partial order ≺A to
implement priorities on actions locally at each process

� Application on the Toy Example:
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� Idea: use a strict total order compatible with the partial order ≺A to
implement priorities on actions locally at each process

� Application on the Toy Example:

T E
I For every process p:

S(p) :: p.sub 6= (
∑

q∈p.chldrn q.sub) + p.in
→ p.sub ← (

∑
q∈p.chldrn q.sub) + p.in

I For process r :
R(r) :: r .res 6= r .sub

→ r .res ← r .sub
I For every process p 6= r :

R(p) :: p.res 6= max(p.par .res, p.sub)
→ p.res ← max(p.par .res, p.sub)

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
24/33



Transformation into Locally Mutually Exclusive Algorithm

� Idea: use a strict total order compatible with the partial order ≺A to
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T(T E) using S < R , i.e. S(p) as priority over R(p), ∀p
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Transformation into Locally Mutually Exclusive Algorithm

Theorem 3.
Let A be a distributed algorithm. If
� A follows an acyclic strategy and
� A is silent and self-stabilizing for SP in G under the distributed
unfair daemon

then
� T(A) is silent and self-stabilizing for SP in G under the distributed
unfair daemon

� its stabilization time is at most (H + 1) · (H + 1) rounds
� its stabilization time in moves is less than or equal to the one of A

(H the height of GC and H is the height of the spanning forest)

(typically, H is a constant)
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Result for T E

Since H = 1, (H + 1) · (H + 1) gives

2H + 2

� T(T E) is silent and self-stabilizing for SumOfInputs in G under the
distributed unfair daemon

� its stabilization time is at most 2H + 2 rounds (asymptotically
optimal)

� its stabilization time in moves is at most O(H · n3) moves
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Conclusion
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Application to the Literature

Same results
More general daemon
New/better complexity

� [Turau and Köhler, 2015]
� [Chaudhuri and Thompson, 2005]
� [Chaudhuri and Thompson, 2011]
� [Chaudhuri, 1999a]
� [Chaudhuri, 1999b]
� [Karaata, 1999]
� [Karaata and Chaudhuri, 1999]
� [Devismes, 2005]
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Conclusion

� Contribution: General scheme to prove and analyze silent
self-stabilizing algorithms designed for networks endowed with a
spanning forest.

� Future work: How to compose those algorithms carefully with
(silent) self-stabilizing spanning tree construction?

i.e., to obtain efficient composite algorithms
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Thank you for your attention

Questions?
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