
Acyclic Strategy for
Silent Self-Stabilization

in Spanning Forest

Karine Altisen1 Stéphane Devismes1 Anaïs Durand2

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France
2 IRISA, Université de Rennes, 35042 Rennes, France

SSS’2018, November 5th, Tokyo (Japan)

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
1/33

Roadmap

1 Introduction

2 Contribution

3 Acyclic Strategy

4 Round Complexity

5 Conclusion

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
2/33

Introduction

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
3/33

Trees/Forests: Ubiquitous in Self-Stabilization

Composition is a popular way to design self-stabilizing algorithms
(modular approach, simplicity of the design and proofs)

Numerous self-stabilizing
algorithms [Arora et al., 1990, Blin et al., 2010, Datta et al., 2016] are
made as a composition of
� a spanning directed treelike construction and
� some other algorithms specifically designed for directed
tree/forest topologies.

Many solutions are silent

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
4/33

Spanning Directed Treelike Constructions

Many (silent) self-stabilizing spanning tree constructions are available,
e.g.:
� Arbitrary Tree: [Chen et al., 1991]
� DFS: [Collin and Dolev, 1994]
� BFS: [Cournier et al., 2009, Cournier et al., 2011]
� Shortest-Path: [Glacet et al., 2014]
� . . .
� (Efficient) General Scheme: [Devismes et al., 2019]

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
5/33

Self-stabilizing Algorithms for Directed Spanning
Tree/Forest

Classical design pattern based on top-down (broadcast) and bottom-up
(convergecast) computations:

Top-Down

Computations are propagated from parents to nodes

Bottom-Up

Computations are propagated from children to nodes

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
6/33

Self-stabilizing Algorithms for Directed Spanning
Tree/Forest

Classical design pattern based on top-down (broadcast) and bottom-up
(convergecast) computations:

Top-Down

Computations are propagated from parents to nodes

Bottom-Up

Computations are propagated from children to nodes

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
6/33

Self-stabilizing Algorithms for Directed Spanning
Tree/Forest

Classical design pattern based on top-down (broadcast) and bottom-up
(convergecast) computations:

Top-Down

Computations are propagated from parents to nodes

Bottom-Up

Computations are propagated from children to nodes

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
6/33

Self-stabilizing Algorithms for Directed Spanning
Tree/Forest

Classical design pattern based on top-down (broadcast) and bottom-up
(convergecast) computations:

Top-Down

Computations are propagated from parents to nodes

Bottom-Up

Computations are propagated from children to nodes

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
6/33

Self-stabilizing Algorithms for Directed Spanning
Tree/Forest

Classical design pattern based on top-down (broadcast) and bottom-up
(convergecast) computations:

Top-Down

Computations are propagated from parents to nodes

Bottom-Up

Computations are propagated from children to nodes

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
6/33

Our Goal

Define a class of algorithms for networks endowed with a spanning
forest (e.g., a spanning tree) based the notions of top-down and
bottom-up computations.

� The definition should be simple to check (i.e., quasi-syntactic)
� Algorithms of the class should be (silent) self-stabilizing
� Algorithms of the class should be efficient in stabilization time

Challenge: Trade-off efficiency/versatility

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
7/33

Context

� Locally shared memory model with composite atomicity
I Distributed unfair daemon

(the most general scheduling assumption)

� Silent self-stabilizing algorithms

� Sense of direction defining spanning forest
I p.par : p.par is either a neighbor (its parent), or ⊥ (for a root).
I p.chldrn: the set of children

� Time complexity in moves and rounds

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
8/33

Contribution

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
9/33

Acyclic Strategy

Definition 1.
A distributed algorithm A follows an acyclic strategy if
� it is well-formed,
� its graph of actions’ causality GC is (directed) acyclic, and
� for every Ai in its families’ partition, Ai is
I correct-alone and
I either bottom-up or top-down.

syntactic condition / semantic condition

(An illustrative example in few slides . . .)

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
10/33

Main Result

Theorem 1.
Let A be a distributed algorithm. If
� A follows an acyclic strategy,
� every terminal configuration of A satisfies SP
� A is locally mutually exclusive
then
� A is silent and self-stabilizing for SP in G under the distributed
unfair daemon

� its stabilization time is at most
(
1 + d · (1 + ∆)

)H · k · nH+2 moves
� its stabilization time is at most (H + 1) · (H + 1) rounds

(∆ is the degree of the network, k is the number of families of A, d is the in-degree
of GC, H the height of GC, H is the height of the spanning forest)

(typically, k, d, and H are constants)
Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests

11/33

Main Result

Theorem 1.
Let A be a distributed algorithm. If
� A follows an acyclic strategy,
� every terminal configuration of A satisfies SP
� A is locally mutually exclusive
then
� A is silent and self-stabilizing for SP in G under the distributed
unfair daemon

� its stabilization time is at most
(
1 + d · (1 + ∆)

)H · k · nH+2 moves
� its stabilization time is at most (H + 1) · (H + 1) rounds

(∆ is the degree of the network, k is the number of families of A, d is the in-degree
of GC, H the height of GC, H is the height of the spanning forest)

(typically, k, d, and H are constants)
Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests

11/33

Acyclic Strategy

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
12/33

Toy Example
Compute a sum of inputs and broadcast the result

� Each process p holds a constant integer input p.in ∈ N

� The network is a directed tree rooted at r

� Every process p has two variables:
I p.sub ∈ N (to compute the sum of input values in the subtree of p)
I p.res ∈ N (to broadcast the result).

� Legitimacy predicate: SumOfInputs ≡ ∀p ∈ V , p.res =
∑

q∈V q.in

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
13/33

Toy Example
Compute a sum of inputs and broadcast the result

� Each process p holds a constant integer input p.in ∈ N

� The network is a directed tree rooted at r

� Every process p has two variables:
I p.sub ∈ N (to compute the sum of input values in the subtree of p)
I p.res ∈ N (to broadcast the result).

� Legitimacy predicate: SumOfInputs ≡ ∀p ∈ V , p.res =
∑

q∈V q.in

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
13/33

Toy Example
Compute a sum of inputs and broadcast the result

� Each process p holds a constant integer input p.in ∈ N

� The network is a directed tree rooted at r

� Every process p has two variables:
I p.sub ∈ N (to compute the sum of input values in the subtree of p)
I p.res ∈ N (to broadcast the result).

� Legitimacy predicate: SumOfInputs ≡ ∀p ∈ V , p.res =
∑

q∈V q.in

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
13/33

Toy Example
Algorithm T E

For every process p
S(p) :: p.sub 6= (

∑
q∈p.chldrn q.sub)+p.in→ p.sub ← (

∑
q∈p.chldrn q.sub)+p.in

For process r
R(r) :: r .res 6= r .sub → r .res ← r .sub

For every process p 6= r
R(p) :: p.res 6= max(p.par .res, p.sub)→ p.res ← max(p.par .res, p.sub)

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
14/33

Toy Example
Algorithm T E

For every process p
S(p) :: p.sub 6= (

∑
q∈p.chldrn q.sub)+p.in→ p.sub ← (

∑
q∈p.chldrn q.sub)+p.in

For process r
R(r) :: r .res 6= r .sub → r .res ← r .sub

For every process p 6= r
R(p) :: p.res 6= max(p.par .res, p.sub)→ p.res ← max(p.par .res, p.sub)

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
14/33

Families and Well-Formedness
Definition 1.
A distributed algorithm A follows an acyclic strategy
if
� it is well-formed,
� its graph of actions’ causality C is (directed)

acyclic, and

� for every Ai in its families’ partition, Ai is
I correct-alone and
I either bottom-up or top-down.

� Family of actions: set of n actions,
one per process

� Well-Formed: Actions partitioned
into families s.t. each variable is
written in exactly one family

(Well-formedness is rather a guideline to simplify the analysis.)

T E is well-formed: two families S and R
� S = {S(p) : p ∈ V }
� R = {R(p) : p ∈ V }

S(p) :: p.sub 6= (
∑

q∈p.chldrn

q.sub) + p.in→ p.sub ← (
∑

q∈p.chldrn

q.sub) + p.in

———————————————————
R(r) :: r .res 6= r .sub → r .res ← r .sub

R(p) :: p.res 6= max(p.par .res, p.sub)→ p.res ← max(p.par .res, p.sub)

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
15/33

Families and Well-Formedness
Definition 1.
A distributed algorithm A follows an acyclic strategy
if
� it is well-formed,
� its graph of actions’ causality C is (directed)

acyclic, and

� for every Ai in its families’ partition, Ai is
I correct-alone and
I either bottom-up or top-down.

� Family of actions: set of n actions,
one per process

� Well-Formed: Actions partitioned
into families s.t. each variable is
written in exactly one family

(Well-formedness is rather a guideline to simplify the analysis.)

T E is well-formed: two families S and R
� S = {S(p) : p ∈ V }
� R = {R(p) : p ∈ V }

S(p) :: p.sub 6= (
∑

q∈p.chldrn

q.sub) + p.in→ p.sub ← (
∑

q∈p.chldrn

q.sub) + p.in

———————————————————
R(r) :: r .res 6= r .sub → r .res ← r .sub

R(p) :: p.res 6= max(p.par .res, p.sub)→ p.res ← max(p.par .res, p.sub)

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
15/33

Acyclicity of the graph of actions’ causality

Definition 1.
A distributed algorithm A follows an acyclic strategy
if
� it is well-formed,
� its graph of actions’ causality GC is (directed)

acyclic, and

� for every Ai in its families’ partition, Ai is
I correct-alone and
I either bottom-up or top-down.

� A1, ..., Ak : families’ partition of A.

� Aj ≺A Ai iff

I i 6= j and
I ∃p, q s.t. Aj(p) writes in variables

“read” by Ai (q).
� GC = ({A1, ..., Ak}, {(Aj , Ai), Aj ≺A Ai})

S(p) :: p.sub 6= (
∑

q∈p.chldrn

q.sub) + p.in→ p.sub ← (
∑

q∈p.chldrn

q.sub) + p.in

———————————————————
R(r) :: r .res 6= r .sub → r .res ← r .sub

R(p) :: p.res 6= max(p.par .res, p.sub)→ p.res ← max(p.par .res, p.sub)

S ≺T E R

GC : S −→ R is acyclic

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
16/33

Acyclicity of the graph of actions’ causality

Definition 1.
A distributed algorithm A follows an acyclic strategy
if
� it is well-formed,
� its graph of actions’ causality GC is (directed)

acyclic, and

� for every Ai in its families’ partition, Ai is
I correct-alone and
I either bottom-up or top-down.

� A1, ..., Ak : families’ partition of A.

� Aj ≺A Ai iff

I i 6= j and
I ∃p, q s.t. Aj(p) writes in variables

“read” by Ai (q).
� GC = ({A1, ..., Ak}, {(Aj , Ai), Aj ≺A Ai})

S(p) :: p.sub 6= (
∑

q∈p.chldrn

q.sub) + p.in→ p.sub ← (
∑

q∈p.chldrn

q.sub) + p.in

———————————————————
R(r) :: r .res 6= r .sub → r .res ← r .sub

R(p) :: p.res 6= max(p.par .res, p.sub)→ p.res ← max(p.par .res, p.sub)

S ≺T E R

GC : S −→ R is acyclic

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
16/33

Acyclicity of the graph of actions’ causality

Definition 1.
A distributed algorithm A follows an acyclic strategy
if
� it is well-formed,
� its graph of actions’ causality GC is (directed)

acyclic, and

� for every Ai in its families’ partition, Ai is
I correct-alone and
I either bottom-up or top-down.

� A1, ..., Ak : families’ partition of A.

� Aj ≺A Ai iff

I i 6= j and
I ∃p, q s.t. Aj(p) writes in variables

“read” by Ai (q).
� GC = ({A1, ..., Ak}, {(Aj , Ai), Aj ≺A Ai})

S(p) :: p.sub 6= (
∑

q∈p.chldrn

q.sub) + p.in→ p.sub ← (
∑

q∈p.chldrn

q.sub) + p.in

———————————————————
R(r) :: r .res 6= r .sub → r .res ← r .sub

R(p) :: p.res 6= max(p.par .res, p.sub)→ p.res ← max(p.par .res, p.sub)

S ≺T E R

GC : S −→ R is acyclic
Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests

16/33

All families are correct-alone

Definition 1.
A distributed algorithm A follows an acyclic strategy
if
� it is well-formed,
� its graph of actions’ causality GC is (directed)

acyclic, and

� for every Ai in its families’ partition, Ai is
I correct-alone and
I either bottom-up or top-down.

� A1, ..., Ak : families’ partition of A.
� Ai is correct-alone if ∀p, Ai (p) becomes

disabled whenever variables ”read” by Ai (p)
are only written by Ai (p) in a step.

S and R are correct-alone

S(p) :: p.sub 6=(
∑

q∈p.chldrn

q.sub) + p.in→ p.sub←(
∑

q∈p.chldrn

q.sub) + p.in

———————————————————
R(r) :: r .res 6=r .sub → r .res←r .sub

R(p) :: p.res 6= max(p.par .res, p.sub)→ p.res←max(p.par .res, p.sub)

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
17/33

All families are correct-alone

Definition 1.
A distributed algorithm A follows an acyclic strategy
if
� it is well-formed,
� its graph of actions’ causality GC is (directed)

acyclic, and

� for every Ai in its families’ partition, Ai is
I correct-alone and
I either bottom-up or top-down.

� A1, ..., Ak : families’ partition of A.
� Ai is correct-alone if ∀p, Ai (p) becomes

disabled whenever variables ”read” by Ai (p)
are only written by Ai (p) in a step.

S and R are correct-alone

S(p) :: p.sub 6=(
∑

q∈p.chldrn

q.sub) + p.in→ p.sub←(
∑

q∈p.chldrn

q.sub) + p.in

———————————————————
R(r) :: r .res 6=r .sub → r .res←r .sub

R(p) :: p.res 6= max(p.par .res, p.sub)→ p.res←max(p.par .res, p.sub)

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
17/33

Every family is either bottom-up or top-down

Definition 1.
A distributed algorithm A follows an acyclic strategy
if
� it is well-formed,
� its graph of actions’ causality GC is (directed)

acyclic, and

� for every Ai in its families’ partition, Ai is
I correct-alone and
I either bottom-up or top-down.

� Ai is top-down: ∀p, any variable
“read” by Ai (p) is written by Ai (q)
only if q = p or q = p.par .

� Ai is bottom-up: ∀p, any variable
“read” by Ai (p) is written by Ai (q)
only if q = p or q ∈ p.chldrn.

S is bottom-up

S(p) :: p.sub 6= (
∑

q∈p.chldrn

q.sub) + p.in→ p.sub ← (
∑

q∈p.chldrn

q.sub) + p.in

———————————————————

R is top-down

R(r) :: r .res 6= r .sub → r .res ← r .sub

R(p) :: p.res 6= max(p.par .res, p.sub)→ p.res ← max(p.par .res, p.sub)

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
18/33

Every family is either bottom-up or top-down

Definition 1.
A distributed algorithm A follows an acyclic strategy
if
� it is well-formed,
� its graph of actions’ causality GC is (directed)

acyclic, and

� for every Ai in its families’ partition, Ai is
I correct-alone and
I either bottom-up or top-down.

� Ai is top-down: ∀p, any variable
“read” by Ai (p) is written by Ai (q)
only if q = p or q = p.par .

� Ai is bottom-up: ∀p, any variable
“read” by Ai (p) is written by Ai (q)
only if q = p or q ∈ p.chldrn.

S is bottom-up

S(p) :: p.sub 6= (
∑

q∈p.chldrn

q.sub) + p.in→ p.sub ← (
∑

q∈p.chldrn

q.sub) + p.in

———————————————————

R is top-down

R(r) :: r .res 6= r .sub → r .res ← r .sub

R(p) :: p.res 6= max(p.par .res, p.sub)→ p.res ← max(p.par .res, p.sub)

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
18/33

Every family is either bottom-up or top-down

Definition 1.
A distributed algorithm A follows an acyclic strategy
if
� it is well-formed,
� its graph of actions’ causality GC is (directed)

acyclic, and

� for every Ai in its families’ partition, Ai is
I correct-alone and
I either bottom-up or top-down.

� Ai is top-down: ∀p, any variable
“read” by Ai (p) is written by Ai (q)
only if q = p or q = p.par .

� Ai is bottom-up: ∀p, any variable
“read” by Ai (p) is written by Ai (q)
only if q = p or q ∈ p.chldrn.

S is bottom-up

S(p) :: p.sub 6= (
∑

q∈p.chldrn

q.sub) + p.in→ p.sub ← (
∑

q∈p.chldrn

q.sub) + p.in

———————————————————

R is top-down

R(r) :: r .res 6= r .sub → r .res ← r .sub

R(p) :: p.res 6= max(p.par .res, p.sub)→ p.res ← max(p.par .res, p.sub)

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
18/33

Every family is either bottom-up or top-down

Definition 1.
A distributed algorithm A follows an acyclic strategy
if
� it is well-formed,
� its graph of actions’ causality GC is (directed)

acyclic, and

� for every Ai in its families’ partition, Ai is
I correct-alone and
I either bottom-up or top-down.

� Ai is top-down: ∀p, any variable
“read” by Ai (p) is written by Ai (q)
only if q = p or q = p.par .

� Ai is bottom-up: ∀p, any variable
“read” by Ai (p) is written by Ai (q)
only if q = p or q ∈ p.chldrn.

S is bottom-up

S(p) :: p.sub 6= (
∑

q∈p.chldrn

q.sub) + p.in→ p.sub ← (
∑

q∈p.chldrn

q.sub) + p.in

———————————————————

R is top-down

R(r) :: r .res 6= r .sub → r .res ← r .sub

R(p) :: p.res 6= max(p.par .res, p.sub)→ p.res ← max(p.par .res, p.sub)

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
18/33

Result for T E (1/2)

Theorem 1.
Let A be a distributed algorithm. If
� A follows an acyclic strategy,
� every terminal configuration of A satisfies SP
� A is locally mutually exclusive
then
� A is silent and self-stabilizing for SP in G under

the distributed unfair daemon
� its stabilization time is at most(

1 + d · (1 + ∆)
)H
· k · nH+2 moves

� its stabilization time is at most
(H + 1) · (H + 1) rounds

� T E follows an acyclic strategy
� Every terminal configuration of T E

satisfies SumOfInputs
(a trivial induction)

� I d = 1 (in-degree of GC)
I k = 2 (number of families)
I H = 1 (height of GC)

� T E is silent and self-stabilizing for SumOfInputs in G under the
distributed unfair daemon

� its stabilization time is at most (4 + 2∆) · n3 moves, where ∆ is
the degree of G and n the number of processes

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
19/33

Result for T E (1/2)

Theorem 1.
Let A be a distributed algorithm. If
� A follows an acyclic strategy,
� every terminal configuration of A satisfies SP
� A is locally mutually exclusive
then
� A is silent and self-stabilizing for SP in G under

the distributed unfair daemon
� its stabilization time is at most(

1 + d · (1 + ∆)
)H
· k · nH+2 moves

� its stabilization time is at most
(H + 1) · (H + 1) rounds

� T E follows an acyclic strategy
� Every terminal configuration of T E

satisfies SumOfInputs
(a trivial induction)

� I d = 1 (in-degree of GC)
I k = 2 (number of families)
I H = 1 (height of GC)

� T E is silent and self-stabilizing for SumOfInputs in G under the
distributed unfair daemon

� its stabilization time is at most (4 + 2∆) · n3 moves, where ∆ is
the degree of G and n the number of processes

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
19/33

Result for T E (1/2)

Theorem 1.
Let A be a distributed algorithm. If
� A follows an acyclic strategy,
� every terminal configuration of A satisfies SP
� A is locally mutually exclusive
then
� A is silent and self-stabilizing for SP in G under

the distributed unfair daemon
� its stabilization time is at most(

1 + d · (1 + ∆)
)H
· k · nH+2 moves

� its stabilization time is at most
(H + 1) · (H + 1) rounds

� T E follows an acyclic strategy
� Every terminal configuration of T E

satisfies SumOfInputs
(a trivial induction)

� I d = 1 (in-degree of GC)
I k = 2 (number of families)
I H = 1 (height of GC)

� T E is silent and self-stabilizing for SumOfInputs in G under the
distributed unfair daemon

� its stabilization time is at most (4 + 2∆) · n3 moves, where ∆ is
the degree of G and n the number of processes

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
19/33

Result for T E (2/2)

The complexity of T E can be refined to at most n2(3 + 2H) moves
where n the number of processes and H is the height of the spanning
tree using the following technical lemma

Lemma 1.
Let Ai be a family of actions and p be a process. For every execution e of the

algorithm A on G, #m(e, Ai , p) ≤
(

n ·
(
1 + d ·

(
1 + maxO(Ai)

)))H(Ai)

· |Z(p, Ai)|.

This bound is tight: there is an execution of T E containing O(H · n2)
moves

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
20/33

Result for T E (2/2)

The complexity of T E can be refined to at most n2(3 + 2H) moves
where n the number of processes and H is the height of the spanning
tree using the following technical lemma

Lemma 1.
Let Ai be a family of actions and p be a process. For every execution e of the

algorithm A on G, #m(e, Ai , p) ≤
(

n ·
(
1 + d ·

(
1 + maxO(Ai)

)))H(Ai)

· |Z(p, Ai)|.

This bound is tight: there is an execution of T E containing O(H · n2)
moves

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
20/33

Round Complexity

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
21/33

Lower Bound in Rounds for Algorithm T E

∀i ∈ {1, . . . , n}, pi .in = 1

1
1

0
1

0
1 0

1

0
1

p1p2

p3
p4

pn

...

sub:
res:Phase 1:

n − 1 phases ⇒ Ω(n) rounds

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
22/33

Lower Bound in Rounds for Algorithm T E

∀i ∈ {1, . . . , n}, pi .in = 1

1
1

1
1

0
1 0

1

0
1

p1p2

p3
p4

pn

...

sub:
res:Phase 1:

n − 1 phases ⇒ Ω(n) rounds

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
22/33

Lower Bound in Rounds for Algorithm T E

∀i ∈ {1, . . . , n}, pi .in = 1

2
1

1
1

0
1 0

1

0
1

p1p2

p3
p4

pn

...

sub:
res:Phase 1:

n − 1 phases ⇒ Ω(n) rounds

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
22/33

Lower Bound in Rounds for Algorithm T E

∀i ∈ {1, . . . , n}, pi .in = 1

2
2

1
1

0
1 0

1

0
1

p1p2

p3
p4

pn

...

sub:
res:Phase 1:

n − 1 phases ⇒ Ω(n) rounds

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
22/33

Lower Bound in Rounds for Algorithm T E

∀i ∈ {1, . . . , n}, pi .in = 1

2
2

1
2

0
2 0

2

0
2

p1p2

p3
p4

pn

...

sub:
res:Phase 1:

1 round

n − 1 phases ⇒ Ω(n) rounds

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
22/33

Lower Bound in Rounds for Algorithm T E

∀i ∈ {1, . . . , n}, pi .in = 1

3
3

1
3

1
3 0

3

0
3

p1p2

p3
p4

pn

...

sub:
res:

Phase 2:
1 round

n − 1 phases ⇒ Ω(n) rounds

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
22/33

Lower Bound in Rounds for Algorithm T E

∀i ∈ {1, . . . , n}, pi .in = 1

3
3

1
3

1
3 0

3

0
3

p1p2

p3
p4

pn

...

sub:
res:

Phase 2:
1 round

n − 1 phases ⇒ Ω(n) rounds

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
22/33

Condition for a Stabilization Time in O(H) Rounds

Round complexity of T E = Ω(n) rounds ⇒ not optimal!

Why?

S and R of T E are not mutually exclusive

Theorem 2.
Let A be a distributed algorithm. If A
� follows an acyclic strategy and
� is locally mutually exclusive
then every execution of A reaches a terminal configuration within at
most at most (H + 1) · (H + 1) rounds

(H is the height of GC and H is the height of the spanning forest)

(typically, H is a constant)

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
23/33

Condition for a Stabilization Time in O(H) Rounds

Round complexity of T E = Ω(n) rounds ⇒ not optimal!

Why? S and R of T E are not mutually exclusive

Theorem 2.
Let A be a distributed algorithm. If A
� follows an acyclic strategy and
� is locally mutually exclusive
then every execution of A reaches a terminal configuration within at
most at most (H + 1) · (H + 1) rounds

(H is the height of GC and H is the height of the spanning forest)

(typically, H is a constant)

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
23/33

Condition for a Stabilization Time in O(H) Rounds

Round complexity of T E = Ω(n) rounds ⇒ not optimal!

Why? S and R of T E are not mutually exclusive

Theorem 2.
Let A be a distributed algorithm. If A
� follows an acyclic strategy and
� is locally mutually exclusive
then every execution of A reaches a terminal configuration within at
most at most (H + 1) · (H + 1) rounds

(H is the height of GC and H is the height of the spanning forest)

(typically, H is a constant)

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
23/33

Transformation into Locally Mutually Exclusive Algorithm

� Idea: use a strict total order compatible with the partial order ≺A to
implement priorities on actions locally at each process

� Application on the Toy Example:

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
24/33

Transformation into Locally Mutually Exclusive Algorithm

� Idea: use a strict total order compatible with the partial order ≺A to
implement priorities on actions locally at each process

� Application on the Toy Example:

T E
I For every process p:

S(p) :: p.sub 6= (
∑

q∈p.chldrn q.sub) + p.in
→ p.sub ← (

∑
q∈p.chldrn q.sub) + p.in

I For process r :
R(r) :: r .res 6= r .sub

→ r .res ← r .sub
I For every process p 6= r :

R(p) :: p.res 6= max(p.par .res, p.sub)
→ p.res ← max(p.par .res, p.sub)

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
24/33

Transformation into Locally Mutually Exclusive Algorithm

� Idea: use a strict total order compatible with the partial order ≺A to
implement priorities on actions locally at each process

� Application on the Toy Example:

T(T E) using S < R , i.e. S(p) as priority over R(p), ∀p
I For every process p:

S(p) :: p.sub 6= (
∑

q∈p.chldrn q.sub) + p.in
→ p.sub ← (

∑
q∈p.chldrn q.sub) + p.in

I For process r :
R(r) ::

(
r .sub = (

∑
q∈r .chldrn q.sub) + r .in

)
∧ r .res 6= r .sub

→ r .res ← r .sub
I For every process p 6= r :

R(p) ::
(
p.sub = (

∑
q∈p.chldrn q.sub) + p.in

)
∧ p.res 6= max(p.par .res, p.sub)

→ p.res ← max(p.par .res, p.sub)

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
24/33

Transformation into Locally Mutually Exclusive Algorithm

Theorem 3.
Let A be a distributed algorithm. If
� A follows an acyclic strategy and
� A is silent and self-stabilizing for SP in G under the distributed
unfair daemon

then
� T(A) is silent and self-stabilizing for SP in G under the distributed
unfair daemon

� its stabilization time is at most (H + 1) · (H + 1) rounds
� its stabilization time in moves is less than or equal to the one of A

(H the height of GC and H is the height of the spanning forest)

(typically, H is a constant)

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
25/33

Result for T E

Since H = 1, (H + 1) · (H + 1) gives

2H + 2

� T(T E) is silent and self-stabilizing for SumOfInputs in G under the
distributed unfair daemon

� its stabilization time is at most 2H + 2 rounds (asymptotically
optimal)

� its stabilization time in moves is at most O(H · n3) moves

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
26/33

Conclusion

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
27/33

Application to the Literature

Same results
More general daemon
New/better complexity

� [Turau and Köhler, 2015]
� [Chaudhuri and Thompson, 2005]
� [Chaudhuri and Thompson, 2011]
� [Chaudhuri, 1999a]
� [Chaudhuri, 1999b]
� [Karaata, 1999]
� [Karaata and Chaudhuri, 1999]
� [Devismes, 2005]

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
28/33

Conclusion

� Contribution: General scheme to prove and analyze silent
self-stabilizing algorithms designed for networks endowed with a
spanning forest.

� Future work: How to compose those algorithms carefully with
(silent) self-stabilizing spanning tree construction?

i.e., to obtain efficient composite algorithms

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
29/33

Thank you for your attention

Questions?

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
30/33

Arora, A., Gouda, M., and Herman, T. (1990).
Composite routing protocols.
In SPDP’90, pages 70–78.

Blin, L., Potop-Butucaru, M., Rovedakis, S., and Tixeuil, S. (2010).
Loop-free super-stabilizing spanning tree construction.
In SSS’10, pages 50–64.

Chaudhuri, P. (1999a).
An O(n2) Self-Stabilizing Algorithm for Computing Bridge-Connected Components.
Computing, 62(1):55–67.

Chaudhuri, P. (1999b).
A note on self-stabilizing articulation point detection.
Journal of Systems Architecture, 45(14):1249–1252.

Chaudhuri, P. and Thompson, H. (2005).
Self-stabilizing tree ranking.
Int. J. Comput. Math., 82(5):529–539.

Chaudhuri, P. and Thompson, H. (2011).
Improved self-stabilizing algorithms for l(2, 1)-labeling tree networks.
Mathematics in Computer Science, 5(1):27–39.

Chen, N., Yu, H., and Huang, S. (1991).
A self-stabilizing algorithm for constructing spanning trees.
Information Processing Letters, 39:147–151.

Collin, Z. and Dolev, S. (1994).
Self-stabilizing depth-first search.
Inf. Process. Lett., 49(6):297–301.

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
31/33

Cournier, A., Devismes, S., and Villain, V. (2009).
Light enabling snap-stabilization of fundamental protocols.
ACM Transactions on Autonomous and Adaptive Systems, 4(1).

Cournier, A., Rovedakis, S., and Villain, V. (2011).
The first fully polynomial stabilizing algorithm for BFS tree construction.
In the 15th International Conference on Principles of Distributed Systems (OPODIS’11), Springer LNCS 7109,
pages 159–174.

Datta, A. K., Devismes, S., Heurtefeux, K., Larmore, L. L., and Rivierre, Y. (2016).
Competitive self-stabilizing k-clustering.
TCS, 626:110–133.

Devismes, S. (2005).
A silent self-stabilizing algorithm for finding cut-nodes and bridges.
Parallel Processing Letters, 15(1-2):183–198.

Devismes, S., Ilcinkas, D., and Johnen, C. (2019).
Silent self-stabilizing scheme for spanning-tree-like constructions.
In 20th International Conference on Distributed Computing and Networking (ICDCN 2019), Bangalore, India. ACM.
to appear.

Glacet, C., Hanusse, N., Ilcinkas, D., and Johnen, C. (2014).
Disconnected components detection and rooted shortest-path tree maintenance in networks.
In SSS’14, pages 120–134.

Karaata, M. H. (1999).
A self-stabilizing algorithm for finding articulation points.
Int. J. Found. Comput. Sci., 10(1):33–46.

Karaata, M. H. and Chaudhuri, P. (1999).
A self-stabilizing algorithm for bridge finding.
Dist. Comp., 12(1):47–53.

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
32/33

Turau, V. and Köhler, S. (2015).
A distributed algorithm for minimum distance-k domination in trees.
J. Graph Algorithms Appl., 19(1):223–242.

Altisen et al. Acyclic Strategy for Silent Self-Stabilization in Spanning Forests
33/33

	Introduction
	Contribution
	Acyclic Strategy
	Round Complexity
	Conclusion

