Self-Stabilizing Leader Election in Polynomial Steps¹

Karine Altisen Alain Cournier Stéphane Devismes

Anaïs Durand Franck Petit

February 16, 2015. LaBRI

¹ This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) and the AGIR project DIAMS.

Context

Process

- Autonomous
- Interconnected

Process

- Autonomous
- Interconnected

Process

- Autonomous
- Interconnected

Hypotheses

- Connected
- Bidirectional
- Identified

Process

- Autonomous
- Interconnected

Hypotheses

- Connected
- Bidirectional
- Identified

Expected Property

Fault-tolerance

Self-Stabilization²

 $^{^2\}mathsf{Edsger}\ \mathsf{W}.\ \mathsf{Dijkstra}.\ \mathsf{Self\text{-}stabilizing}\ \mathsf{systems}\ \mathsf{in}\ \mathsf{spite}\ \mathsf{of}\ \mathsf{distributed}\ \mathsf{control}.\ 1974$

Self-Stabilization²

 $^{^2}$ Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. 1974

Configuration

Atomic Step

• Reading of the variables of the neighbors

Atomic Step

- Reading of the variables of the neighbors
- Enabled nodes

Atomic Step

- Reading of the variables of the neighbors
- Enabled nodes
- Daemon election: models the asynchronism

Atomic Step

- Reading of the variables of the neighbors
- Enabled nodes
- Daemon election: models the asynchronism
- Update of the local states

Daemons

- Synchronous
- Central / Distributed
- Fairness : Strongly Fair, Weakly Fair, Unfair

Complexity

- In space : memory requirement in bits
- In time (mainly stabilization time)
 - ► In (atomic) steps
 - ▶ In rounds (execution time according slowest processes)

Rounds

• Distinguish a process: the leader

• Distinguish a process: the leader

- Distinguish a process: the leader
- Every process eventually knows the identifier of the leader

- Distinguish a process: the leader
- Every process eventually knows the identifier of the leader

Problem

- Silent Self-stabilizing Leader Election
- Model:
 - ► Locally shared memory model
 - Read/write atomicity
 - Distributed unfair daemon
- Network:
 - Any connected topology
 - Bidirectional
 - Identified
- No global knowledge on the network

State of the Art

Model	Paper	Knowledge			Daemon	Complexity			Silent
		D	N	В	Ducinon	Memory	Rounds	Steps	Shellt
Message Passing	Afek, Bremler, 1998			×		$\Theta(\log n)$	O(n)	?	✓
	Awerbuch et al, 1993	×				$\Theta(\log D \log n)$	$O(\mathcal{D})$?	✓
	Burman, Kutten, 2007	×				$\Theta(\log D \log n)$	$O(\mathcal{D})$?	✓
	Dolev, Herman, 1997		×		Fair	$\Theta(N \log N)$	$O(\mathcal{D})$?	
Locally	Arora, Gouda, 1994	×			Weakly Fair	$\Theta(\log N)$	O(N)	?	✓
Shared	Datta et al, 2010				Unfair	unbounded	O(n)	?	✓
Memory	Kravchik, Kutten, 2013				Synchronous	$\Theta(\log n)$	$O(\mathcal{D})$?	✓
	Datta et al, 2011				Unfair	$\Theta(\log n)$	O(n)	?	✓

 \mathcal{D} : Diameter $D \geq \mathcal{D}$: Upper bound on the diameter

n: Number of nodes $N \ge n$: Upper bound on the number of nodes

B: Upper bound on the link-capacity

Our Contribution

Algorithm \mathcal{LE}

- Memory requirement asymptotically optimal: $\Theta(\log n)$ bits/process
- Stabilization time (worst case):
 - ▶ $3n + \mathcal{D}$ rounds
 - Lower Bound: $\frac{n^3}{6} + \frac{3}{2}n^2 \frac{8}{3}n + 2$ steps,
 - Upper Bound: $\frac{n^3}{2} + 2n^2 + \frac{n}{2} + 1$ steps

Our Contribution

Algorithm \mathcal{LE}

- Memory requirement asymptotically optimal: $\Theta(\log n)$ bits/process
- Stabilization time (worst case):
 - ▶ $3n + \mathcal{D}$ rounds
 - Lower Bound: $\frac{n^3}{6} + \frac{3}{2}n^2 \frac{8}{3}n + 2$ steps,
 - Upper Bound: $\frac{n^3}{2} + 2n^2 + \frac{n}{2} + 1$ steps

Analytical Study of Datta et al, 2011³

- Stabilization time not polynomial in steps:
 - ▶ $\forall \alpha \geq 3$, \exists networks and executions in $\Omega(n^{\alpha+1})$ steps.

 $^{^3}$ Datta, Larmore, and Vemula. Self-stabilizing Leader Election in Optimal Space under an Arbitrary Scheduler. 2011

Design of the Leader Election Algorithm

Join a Tree

3 variables per process p

- $p.idR \in \mathbb{N}$: ID of the root
- $p.par \in \mathcal{N}_p \cup \{p\}$: Parent pointer
- $p.level \in \mathbb{N}$: Level

Join a Tree

3 variables per process p

- $p.idR \in \mathbb{N}$: ID of the root
- $p.par \in \mathcal{N}_p \cup \{p\}$: Parent pointer
- $p.level \in \mathbb{N}$: Level

- p.idR = p
- p.par = p
- p.level = 0

Join a Tree

3 variables per process p

- $p.idR \in \mathbb{N}$: ID of the root
- $p.par \in \mathcal{N}_p \cup \{p\}$: Parent pointer
- $p.level \in \mathbb{N}$: Level

- p.idR = p
- p.par = p
- p.level = 0

Join a Tree

3 variables per process p

- $p.idR \in \mathbb{N}$: ID of the root
- $p.par \in \mathcal{N}_p \cup \{p\}$: Parent pointer
- $p.level \in \mathbb{N}$: Level

- p.idR = p
- p.par = p
- *p.level* = 0

Join a Tree

3 variables per process p

- $p.idR \in \mathbb{N}$: ID of the root
- $p.par \in \mathcal{N}_p \cup \{p\}$: Parent pointer
- $p.level \in \mathbb{N}$: Level

- p.idR = p
- p.par = p
- *p.level* = 0

Self-stabilization ⇒ Arbitrary initialization

Self-stabilization \Longrightarrow Arbitrary initialization \Longrightarrow Fake ids

Self-stabilization \implies Arbitrary initialization \implies Fake ids

Simplified Algorithm: Removal of Fake Ids

Reset

Simplified Algorithm: Removal of Fake Ids

Reset

Reset

- p.idR = p
- \bullet p.par = p
- *p.level* = 0

Simplified Algorithm: Removal of Fake Ids

Reset

Reset

- p.idR = p
- *p.level* = 0

Reset

- p.idR = p
- p.par = p
- *p.level* = 0

Reset

- p.idR = p
- *p.level* = 0

Abnormal trees removal

Freeze before Remove

Add a variable $Status \in \{C, EB, EF\}$

- C means "not involved in a tree removal":
 - ▶ Only process of status C can join a tree and
 - only by choosing a process of status C as parent
- EB: Error Broadcast
- EF: Error Feedback

Abnormal trees removal

Freeze before Remove

Add a variable $Status \in \{C, EB, EF\}$

- C means "not involved in a tree removal":
 - Only process of status C can join a tree and
 - only by choosing a process of status C as parent
- EB: Error Broadcast
- EF: Error Feedback

KinshipOk should be modified to take possible inconsistencies of variables Status into account!

- No alive abnormal tree created
- ullet Height of an abnormal tree: at most n

- No alive abnormal tree created
- ullet Height of an abnormal tree: at most n
- Cleaning:
 - ► EB-wave : n► EF-wave : n► R-wave : n

- No alive abnormal tree created
- Height of an abnormal tree: at most n
- Cleaning:
 - ► EB-wave : n► EF-wave : n► R-wave : n
- Building of the Spanning Tree: D

- No alive abnormal tree created
- Height of an abnormal tree: at most n
- Cleaning:
 - ► EB-wave : n► EF-wave : n► R-wave : n
- Building of the Spanning Tree: D

$$O(3n + D)$$
 rounds

- j = k + 3
- $\mathcal{D} = n k$

- j = k + 3
- $\mathcal{D} = n k$

- k links
- j = k + 3
- $\mathcal{D} = n k$

n

- k links
- j = k + 3
- $\mathcal{D} = n k$

n

- k links
- j = k + 3
- $\mathcal{D} = n k$

- k links
- j = k + 3
- $\mathcal{D} = n k$

n + n

•
$$j = k + 3$$

•
$$\mathcal{D} = n - k$$

- k links
- j = k + 3
- $\mathcal{D} = n k$

- k links
- j = k + 3
- $\mathcal{D} = n k$

- k links
- j = k + 3
- $\mathcal{D} = n k$

At most n alive abnormal trees + No alive abnormal tree created

Death of an abnormal tree

At most $\frac{n}{n}$ alive abnormal trees $\frac{1}{n+1}$ No alive abnormal tree created $\frac{1}{n+1}$ segments

At most n alive abnormal trees + No alive abnormal tree

At most n alive abnormal trees + No alive abnormal tree created \longrightarrow At most n+1 segments

In a segment

$$idR: 7 \xrightarrow{J\text{-action}} 5 \xrightarrow{J\text{-action}} 3 \xrightarrow{J\text{-action}} 2 \xrightarrow{EB\text{-action}} \xrightarrow{EF\text{-action}} \xrightarrow{R\text{-action}} 7 \xrightarrow{J\text{-action}} 3 \xrightarrow{D\text{-action}} 3 \xrightarrow{D\text{-action}} 7 \xrightarrow{D\text{-action}} 3 \xrightarrow{EF\text{-action}} 7 \xrightarrow{EF\text{-action}}$$

Death of an abnormal tree

At most n alive abnormal trees +No alive abnormal tree created \longrightarrow At most n+1 segments

In a segment

$$idR: 7 \xrightarrow{J\text{-action}} 5 \xrightarrow{J\text{-action}} 3 \xrightarrow{J\text{-action}} 2 \xrightarrow{EB\text{-action}} \xrightarrow{EF\text{-action}} \xrightarrow{R\text{-action}} 7 \xrightarrow{J\text{-action}} 3 \xrightarrow{D\text{-action}} 3 \xrightarrow{D\text{-action}} 7 \xrightarrow{D\text{-action}} 3 \xrightarrow{R\text{-action}} 7 \xrightarrow{R\text{-action}} 7 \xrightarrow{R\text{-action}} 3 \xrightarrow{R\text{-action}} 7 \xrightarrow{R\text{-action}} 7 \xrightarrow{R\text{-action}} 3 \xrightarrow{R\text{-action}} 7 \xrightarrow{R\text{-action}} 3 \xrightarrow{R\text{-action}} 3 \xrightarrow{R\text{-action}} 7 \xrightarrow{R\text{-action}} 3 \xrightarrow{R\text{-action}} 3 \xrightarrow{R\text{-action}} 7 \xrightarrow{R\text{-action}} 3 \xrightarrow{R\text{-action}} 3$$

- n-1 *J*-action 1 *EB*-action 1 *R*-action

Death of an abnormal tree

At most n alive abnormal trees +No alive abnormal tree created \longrightarrow At most n+1 segments

In a segment

$$idR: 7 \xrightarrow{J\text{-action}} 5 \xrightarrow{J\text{-action}} 3 \xrightarrow{J\text{-action}} 2 \xrightarrow{EB\text{-action}} \xrightarrow{EF\text{-action}} \xrightarrow{R\text{-action}} 7 \xrightarrow{J\text{-action}} 3$$
Death of an abnormal tree = End of the segment

- n-1 *J*-actions
- 1 FB-action 1 FF-action
- 1 R-action
- $\Rightarrow O(n)$ actions per process

Death of an abnormal tree

At most n alive abnormal trees + No alive abnormal tree created \longrightarrow At most n+1 segments

In a segment

$$\textit{idR}: 7 \xrightarrow{\textit{J-action}} 5 \xrightarrow{\textit{J-action}} 3 \xrightarrow{\textit{J-action}} 2 \xrightarrow{\textit{EB-action}} \cancel{EF-action} \xrightarrow{\textit{R-action}} 7 \xrightarrow{\textit{J-action}} 3 \xrightarrow{\textit{D-action}} 3 \xrightarrow{\tinyD-action}} 3 \xrightarrow{\tinyD-action} 3 \xrightarrow{\tinyD-action} 3 \xrightarrow{\tinyD-action} 3 \xrightarrow{\tinyD-a$$

- n-1 *J*-actions 1 *EB*-action 1 *EF*-action 1 *R*-action $\Rightarrow O(n)$ actions per process
 - $O(n^3)$ steps

Lower Bound: $\frac{n^3}{6} + \frac{3}{2}n^2 - \frac{8}{3}n + 2$ steps Upper Bound: $\frac{n^3}{2} + 2n^2 + \frac{n}{2} + 1$ steps

$$\Theta(n)$$
 reset $\Rightarrow \sum_{j=1}^{n} \sum_{i=1}^{j} i \Rightarrow \Theta(n^3)$ steps

Analytical Study of Datta et al, 2011⁴

 $^{^4}$ Datta, Larmore, and Vemula. Self-stabilizing Leader Election in Optimal Space under an Arbitrary Scheduler. 2011

Join a tree

Key:

Join a tree

Key:

Change of color

Change of color

Change of color

Color Waves Absorption

Principles

Color Waves Absorption

Principles

Color Waves Absorption

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

 β

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

 β^2

Key: $(i,j).ID = (i-1)\beta + j$ (i,j).idR = 0 $\bigcirc \text{Can be joined}$ $\bigcirc \text{Cannot be joined}$

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

 β^2

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

 β^2

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

 β^2

Key: $(i,j).ID = (i-1)\beta + j$ (i,j).idR = 0 Can be joined Cannot be joined

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

 β^2

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

 β^2

Key:
$$(i,j).ID = (i-1)\beta + j$$

$$(i,j).idR = 0$$

$$\bigcirc \text{Can be joined}$$

$$\bigcirc \text{Cannot be joined}$$

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

 β^2

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

 β^3

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

 β^3

Key: $(i,j).ID = (i-1)\beta + j$ (i,j).idR = 0 $\bigcirc Can be joined$ $\bigcirc Cannot be joined$

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

 β^3

Key: $(i,j).ID = (i-1)\beta + j$ (i,j).idR = 0 Can be joined Cannot be joined

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

 β^3

Key: $(i,j).ID = (i-1)\beta + j$ (i,j).idR = 0 $\bigcirc Can be joined$ $\bigcirc Cannot be joined$

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

 β^3

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

 β^3

Key: $(i,j).ID = (i-1)\beta + j$ (i,j).idR = 0 $\bigcirc Can be joined$ $\bigcirc Cannot be joined$

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

 β^3

Key: $(i,j).ID = (i-1)\beta + j$ (i,j).idR = 0 Can be joined Cannot be joined

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

 β^3

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

 β^3

Key: $(i,j).ID = (i-1)\beta + j$ (i,j).idR = 0 $\bigcirc Can be joined$ $\bigcirc Cannot be joined$

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

 β^3

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

 β^3

Key: $(i,j).ID = (i-1)\beta + j$ (i,j).idR = 0 Can be joined Cannot be joined

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

 β^3

Key: $(i,j).ID = (i-1)\beta + j$ $\diamondsuit (i,j).idR = 0$ $\bigcirc Can be joined$ $\bigcirc Cannot be joined$

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

 β^4

Key: $(i,j).ID = (i-1)\beta + j$ (i,j).idR = 0 $\bigcirc Can be joined$ $\bigcirc Cannot be joined$

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

$$\beta = \Omega(n) \Rightarrow \frac{\beta^4}{\Omega(n^4)}$$

Network for $\Omega(n^5)$ steps

 $\forall \alpha \geq 3$, \exists networks and executions in $\Omega(n^{\alpha+1})$ steps.

Worst Case:

$$\Omega\left(\left(2n\right)^{\frac{1}{4}\log_2(2n)}\right)$$
 steps

Goal

Design a self-stabilizing leader election algorithm that stabilizes in $\mathcal{O}(\mathcal{D})$ rounds.

Goal

Design a self-stabilizing leader election algorithm that stabilizes in $\mathcal{O}(\mathcal{D})$ rounds.

Hypotheses

- Unfair daemon
- Memory requirement of $\Theta(\log n)$ bits/process

Goal

Design a self-stabilizing leader election algorithm that stabilizes in $\mathcal{O}(\mathcal{D})$ rounds.

Hypotheses

- Unfair daemon
- Memory requirement of $\Theta(\log n)$ bits/process
- With the knowledge of $D \geq \mathcal{D}$, $(D = O(\mathcal{D}))$: \checkmark

Goal

Design a self-stabilizing leader election algorithm that stabilizes in $\mathcal{O}(\mathcal{D})$ rounds.

Hypotheses

- Unfair daemon
- Memory requirement of $\Theta(\log n)$ bits/process
- With the knowledge of $D \geq \mathcal{D}$, $(D = O(\mathcal{D}))$: \checkmark
- Without any global knowledge: ??

Thank you for your attention.

Do you have any questions ?

Rounds

Experimental Results

Average stabilization time in rounds in UDGs (n = 1000)

Experimental Results

Average stabilization time in steps in UDGs ($\mathcal{D}=15$)