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Program comparison

Tools to compare programs play a major role in programming language theory

Program p1

equivalent to?
more general than?
just different from?

Program p2

I Simulation is a notion of program comparison (more specifically program
refinement) that enables local reasoning

I Useful for concurrency theory, model checking, verified compilation, etc.
I In a verified compiler, the compiled program refines the source program
I Programs typically modeled as labeled transition systems (LTSs)
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Which simulation? Two key properties

Weak

Some computations (τ transitions)
are semantically invisible and do
not need to be matched on the
other side
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Divergence sensitive

A non-diverging program should not be
compiled to a possibly diverging program

This is a global condition.
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→ Straightforward answer: divergence-sensitive weak simulation…maybe not
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Normed simulation
I This limitation was noted in 1998!

I Normed simulation enables local reasoning through a decreasing measure
I It shaped most later notions of simulation for verified compilation
I CompCert relies on it
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Towards a better notion of simulation?

Introduced Usability Completeness
Div. weak simulation 1981? × X

Normed simulation 1998 X ×
What I want This paper X X

Normed simulations complete only for deterministic LTSs
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A Family of Sims with Diverging
Interests
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A modern characterization of divergence-sensitive weak simulation

Inspiring advances from the 2010’s

I Implicit normed simulation (used in ITrees) is based on a mixed
inductive-coinductive definition.

I Weak-tau simulation (from CompCertTSO), made of two mutually-defined
relations, relates some programs that are not related by normed simulation.

I Coinduction up-to companion eases the definition of powerful reasoning techniques

→ I combine all of this into a mutually coinductive notion dubbed µdiv-simulation.

µdiv-simulation

I Sound and complete wrt divergence-sensitive weak simulation
I Weaker (more complete) than variants of normed simulation
I As usable as implicit normed simulation thanks to coinduction up-to
I Defined in a generic LTS setting in
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µdiv-simulation, diagrammatically
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How can we reason about it?

I Modern coinduction up-to
I A parameterized definition
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Coinduction up-to: Key idea

Standard proof of simulation

I Exhibit a relation R between states.
I Prove that R is a simulation

Proof using coinduction up-to
Start from a small R and lazily add pairs of states to it as needed during the proof.
→ Interesting proof technique in an interactive proof assistant
Concretely, up-to techniques can transform the proof goal during the proof.

History of coinduction up-to

I Exists since the 80’s.
I Comfortable in Rocq since the 2010’s (paco, coinduction).
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Concrete up-to techniques

Consider this simulation goal: τ
τ

t

t ′
R u

By the left up-to τ technique, this reduces to: t R u ∧ t ′ R u

Asymmetric reasoning

I Left and right up-to τ and up-to ε

I From the ITree/CTree world
I Recovers the proof rules from normed sim!

Some other up-to techniques

I Transitivity and rewriting: complicated, 5 variations supported
I Well-known in the bisimulation literature (e.g., expansions)
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Is µdiv-simulation enough?

I We may need deadlock preservation too (easier)
I Strong simulation is easier to wield
I Some notions between weak and strong simulation can serve as proof devices

Problem
That makes a lot of closely-related definitions of simulation.

Solution
I Use a parameterized definition.
I Two Boolean parameters, one ternary parameter
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Parameterized definition: the diagrams

I Parameterized definition: 12 notions (strong, weak, divergence-sensitive weak,
dealock-sensitive, etc.) jointly studied
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Case studies
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Case study: A CompCert pass

I A few lines of Rocq to instantiate the theories
I Port of a 300-line CSE proof (∼70 lines changed)
I Originally uses an Eventually simulation, analogous to the left up-to τ technique
I Forward =⇒ backward simulation
I No need to explicitly build the backward simulation!
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Case study: Choice Trees

I A few lines of Rocq to instantiate the theories
I A single parameterized proof system for the 12 refinements
I Up-to bind technique
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Conclusion
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Conclusion

Contributions
I Parameterized notion of simulation with up-to techniques
I Novel characterization of divergence preservation
I Implemented in 3.5k lines of , using the rocq-coinduction library
I Version 0.2 released on opam as rocq-sims
I POPL’26 paper on my webpage: https://www-verimag.imag.fr/~chappen/

Future work
I Extension to bisimulation
I Extension to trace inclusion

Thank you for your attention!

https://www-verimag.imag.fr/~chappen/
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