Nicolas Chappe (Post-doc @ CNRS / Verimag)

January 15, 2026

7

\ erimac

1/18

Tools to compare programs play a major role in programming language theory

Program po

=k

Program p;

=k

2/18

Tools to compare programs play a major role in programming language theory

Program po

=k

Program p; equivalent to?

=k

2/18

Tools to compare programs play a major role in programming language theory

Program p; equivalent to? Program po

= more general than?

=k

2/18

Tools to compare programs play a major role in programming language theory

Program p; equivalent to? Program po

= more general than?
just different from?

=k

2/18

Tools to compare programs play a major role in programming language theory

Program p; equivalent to? Program po

= more general than?
just different from?

=k

» Simulation is a notion of program comparison (more specifically program
refinement) that enables local reasoning

2/18

Program comparison

Tools to compare programs play a major role in programming language theory

Program p; equivalent to? Program ps

more general than?
just different from?

» Simulation is a notion of program comparison (more specifically program
refinement) that enables local reasoning

» Useful for concurrency theory, model checking, verified compilation, etc.

Program comparison

Tools to compare programs play a major role in programming language theory

Program p; equivalent to? Program ps

more general than?
just different from?

» Simulation is a notion of program comparison (more specifically program
refinement) that enables local reasoning

» Useful for concurrency theory, model checking, verified compilation, etc.

» In a verified compiler, the compiled program refines the source program

Program comparison

Tools to compare programs play a major role in programming language theory

Program p; equivalent to? Program ps

more general than?
just different from?

» Simulation is a notion of program comparison (more specifically program
refinement) that enables local reasoning

» Useful for concurrency theory, model checking, verified compilation, etc.
» In a verified compiler, the compiled program refines the source program
» Programs typically modeled as labeled transition systems (LTSs)

t u
Some computations (7 transitions) R E
are semantically invisible and do T T* !
not need to be matched on the !
other side P 5
t u

R

~

¢ ---c

3/18

t u t u
Some computations (7 transitions) R | R "y
I I
are semantically invisible and do T ™! / M
I
not need to be matched on the : I
other side / y / /
t - u @ === u

R R

t——u

A non-diverging program should not be . R : _

compiled to a possibly diverging program infinity ! infinity
of T ! of 7

+

3/18

Which simulation? Two key properties

Weak

t u t u
Some computations (7 transitions) R | R "y
are semantically invisible and do T * 3 / -
not need to be matched on the i /i
other side ¢ S J ¢ R ES J
Divergence sensitive

t u
A non-diverging program should not be R 1
compiled to a possibly diverging program infinity i infinity
of 7 vof 7

— Straightforward answer: divergence-sensitive weak simulation

Which simulation? Two key properties

Weak

t u t u
Some computations (7 transitions) R | R "y
are semantically invisible and do T * 3 / -
not need to be matched on the i /i
other side ¢ S J ¢ R ES J
Divergence sensitive

t——u

A non-diverging program should not be R 1
compiled to a possibly diverging program infinity i infinity
This is a global condition. of 7 ! of 7

— Straightforward answer: divergence-sensitive weak simulation..maybe not

Normed simulation

» This limitation was noted in 1998!
Normed Simulations

David Griffioen!'?* Frits Vaandrager®

1 owI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
? Computing Science Institute, University of Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
{davidg, fvaan}@cs.kun.nl

Thus the research program to reduce global reasoning
to local reasoning has not been carried out to its completion.

Normed simulation

» This limitation was noted in 1998!
Normed Simulations

David Griffioen!'?* Frits Vaandrager®

1 oW1
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

? Computing Science Institute, University of Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
/ {davidg, fvaan}@cs.kun.nl

Thus the research program to reduce global reasoning
to local reasoning has not been carried out to its completion.
» Normed simulation enables local reasoning through a decreasing measure
» It shaped most later notions of simulation for verified compilation
» CompCert relies on it

| Introduced | Usability | Completeness

Div. weak simulation 19817 X v
Normed simulation 1998 v X
What | want | This paper v v

Normed simulations complete only for deterministic LTSs

5/18

A Family of Sims with Diverging
Interests

A modern characterization of divergence-sensitive weak simulation

Inspiring advances from the 2010’s

» Implicit normed simulation (used in ITrees) is based on a mixed
inductive-coinductive definition.

» Weak-tau simulation (from CompCertTSO), made of two mutually-defined
relations, relates some programs that are not related by normed simulation.

» Coinduction up-to companion eases the definition of powerful reasoning techniques

— | combine all of this into a mutually coinductive notion dubbed pdiv-simulation.

A modern characterization of divergence-sensitive weak simulation

Inspiring advances from the 2010’s

» Implicit normed simulation (used in ITrees) is based on a mixed
inductive-coinductive definition.

» Weak-tau simulation (from CompCertTSO), made of two mutually-defined
relations, relates some programs that are not related by normed simulation.

» Coinduction up-to companion eases the definition of powerful reasoning techniques

— | combine all of this into a mutually coinductive notion dubbed pdiv-simulation.

pdiv-simulation

» Sound and complete wrt divergence-sensitive weak simulation

» Weaker (more complete) than variants of normed simulation

» As usable as implicit normed simulation thanks to coinduction up-to
» Defined in a generic LTS setting in #®

\
¢-- --x
\]
\]
+

8/18

/
u
7?’div

t

8/18

How can we reason about it?

» Modern coinduction up-to

» A parameterized definition

» Exhibit a relation R between states.

» Prove that R is a simulation

10/18

» Exhibit a relation R between states.
» Prove that R is a simulation

Start from a small R and lazily add pairs of states to it as needed during the proof.
— Interesting proof technique in an interactive proof assistant
Concretely, up-to techniques can transform the proof goal during the proof.

10/18

Coinduction up-to: Key idea

Standard proof of simulation

» Exhibit a relation R between states.

» Prove that R is a simulation

Proof using coinduction up-to

Start from a small R and lazily add pairs of states to it as needed during the proof.
— Interesting proof technique in an interactive proof assistant
Concretely, up-to techniques can transform the proof goal during the proof.

History of coinduction up-to

» Exists since the 80's.

» Comfortable in Rocq since the 2010's (paco, coinduction).

T t
Consider this simulation goal: C)< R u
t

11/18

T t
Consider this simulation goal: C)< R u
t

By the left up-to 7 technique, this reduces to: t R uAt' R u

11/18

T t
Consider this simulation goal: C)< R u
t

By the left up-to 7 technique, this reduces to: t R uAt' R u

» Left and right up-to 7 and up-to €
» From the ITree/CTree world
» Recovers the proof rules from normed sim!

11/18

Concrete up-to techniques

T t
Consider this simulation goal: Q< R u
t

By the left up-to 7 technique, this reduces to: t R uAt' R u
Asymmetric reasoning

» Left and right up-to 7 and up-to €
» From the ITree/CTree world

» Recovers the proof rules from normed sim!

Some other up-to techniques

» Transitivity and rewriting: complicated, 5 variations supported

» Well-known in the bisimulation literature (e.g., expansions)

» We may need deadlock preservation too (easier)
» Strong simulation is easier to wield

» Some notions between weak and strong simulation can serve as proof devices

12/18

» We may need deadlock preservation too (easier)

» Strong simulation is easier to wield

» Some notions between weak and strong simulation can serve as proof devices

That makes a lot of closely-related definitions of simulation.

12/18

Is pdiv-simulation enough?

» We may need deadlock preservation too (easier)
» Strong simulation is easier to wield

» Some notions between weak and strong simulation can serve as proof devices

That makes a lot of closely-related definitions of simulation.

» Use a parameterized definition.

> Two Boolean parameters, one ternary parameter

12/18

Parameterized definition: the diagrams

» Parameterized definition: 12 notions (strong, weak, divergence-sensitive weak,
dealock-sensitive, etc.) jointly studied

simF X
f—1u
l
(I Iy,
tf 777777 ul
R
Condition: T
simF R
t—u
|
) /\ (T T:
]
AR

Condition: T

simF X
t—u
T*L
: A (
I‘If A
A

Condition: delay

simF &
| ———u
l
I
+
A\ ’ t : Vv
I
tr‘ ______ u’
R

Condition: delay

simF R
ti

m o

Condition: lock

Condition: freeze

simF X
ti

e~ 4--w

Cond.: lock A delay

simF R
f—u

.
s

v)
L7 Jeﬂ:’?dw

tf
Cond.: freeze_div

Case studies

Case study: A CompCert pass

A few lines of Rocq to instantiate the theories
Port of a 300-line CSE proof (~70 lines changed)
Originally uses an Eventually simulation, analogous to the left up-to 7 technique

Forward — backward simulation

vVvYyyvyy

No need to explicitly build the backward simulation!

Case study: Choice Trees

vx € X,(kx) Ru £ =nolock v Xinhabited

Ret v.R Ret v (ret) (Brbk)Ru or-b
y,t R (k" y) £ =nolockvk’y— v (F =nofreezent —)
tR Brbk) r-n
tRu D =delay tRu F =freezev(F = freeze_div adivprestu)
(step_r) - (step_l)
tRStepu simF R (Stept) u
tRu F =freeze_div tRu
SteptRu (step-10) simF R (Stept) (Step u) (step)
v, (kv) R (k' v) t » A (L =nolockvu)
simF R (Visek) (Visek’) (vie) tRu (stuck

» A few lines of Rocq to instantiate the theories
» A single parameterized proof system for the 12 refinements
» Up-to bind technique

Conclusion

Conclusion

Contributions

» Parameterized notion of simulation with up-to techniques
Novel characterization of divergence preservation
Implemented in 3.5k lines of ®MROCQ, using the rocq-coinduction library

>
>
» Version 0.2 released on opam as rocq-sims
>

POPL'26 paper on my webpage: https://www-verimag.imag.fr/~chappen/

Future work

» Extension to bisimulation

» Extension to trace inclusion

Thank you for your attention!

https://www-verimag.imag.fr/~chappen/

	Introduction
	Conclusion
	Appendix

