

A Family of Sims with Diverging Interests

POPL'26, Rennes, France

Nicolas Chappe (Post-doc @ CNRS / Verimag)

January 15, 2026

Program comparison

Tools to *compare* programs play a major role in programming language theory

Program p_1

Program p_2

Program comparison

Tools to *compare* programs play a major role in programming language theory

Program p_1

equivalent to?

Program p_2

Program comparison

Tools to *compare* programs play a major role in programming language theory

Program p_1

equivalent to?
more general than?

Program p_2

Program comparison

Tools to *compare* programs play a major role in programming language theory

Program p_1

equivalent to?

more general than?

just different from?

Program p_2

Program comparison

Tools to *compare* programs play a major role in programming language theory

Program p_1

equivalent to?

more general than?

just different from?

Program p_2

- ▶ **Simulation** is a notion of program comparison (more specifically program refinement) that enables **local reasoning**

Program comparison

Tools to *compare* programs play a major role in programming language theory

Program p_1

equivalent to?

more general than?

just different from?

Program p_2

- ▶ **Simulation** is a notion of program comparison (more specifically program *refinement*) that enables **local reasoning**
- ▶ Useful for concurrency theory, model checking, **verified compilation**, etc.

Program comparison

Tools to *compare* programs play a major role in programming language theory

Program p_1

equivalent to?

more general than?

just different from?

Program p_2

- ▶ **Simulation** is a notion of program comparison (more specifically program *refinement*) that enables **local reasoning**
- ▶ Useful for concurrency theory, model checking, **verified compilation**, etc.
- ▶ In a verified compiler, the compiled program *refines* the source program

Program comparison

Tools to *compare* programs play a major role in programming language theory

Program p_1

equivalent to?

more general than?

just different from?

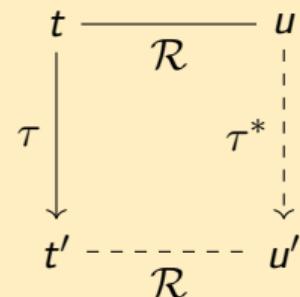
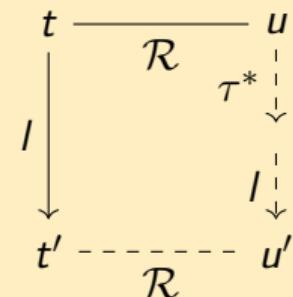
Program p_2

- ▶ **Simulation** is a notion of program comparison (more specifically program *refinement*) that enables **local reasoning**
- ▶ Useful for concurrency theory, model checking, **verified compilation**, etc.
- ▶ In a verified compiler, the compiled program *refines* the source program
- ▶ Programs typically modeled as labeled transition systems (LTSs)

Which simulation? Two key properties

Weak

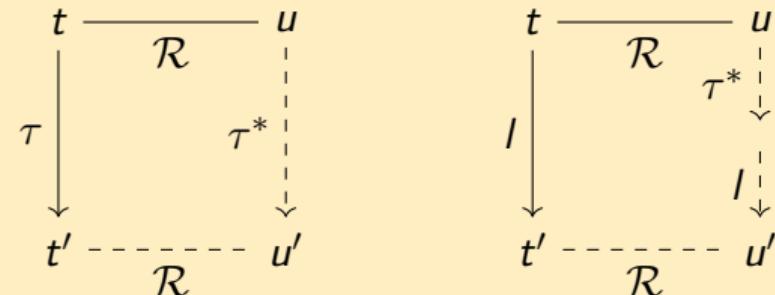
Some computations (τ transitions) are semantically invisible and do not need to be matched on the other side



Which simulation? Two key properties

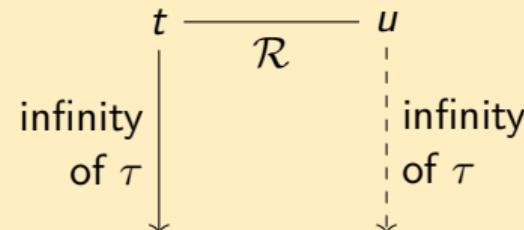
Weak

Some computations (τ transitions) are semantically invisible and do not need to be matched on the other side



Divergence sensitive

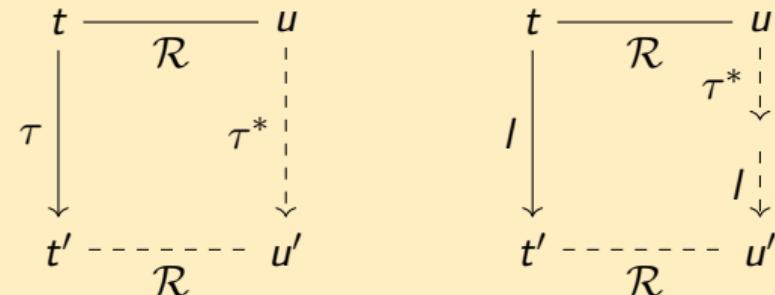
A non-diverging program should not be compiled to a possibly diverging program



Which simulation? Two key properties

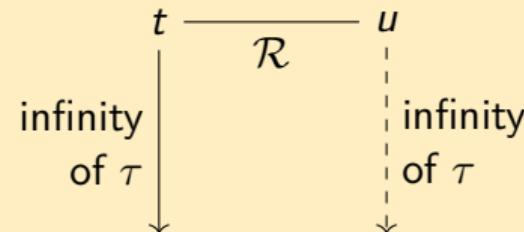
Weak

Some computations (τ transitions) are semantically invisible and do not need to be matched on the other side



Divergence sensitive

A non-diverging program should not be compiled to a possibly diverging program

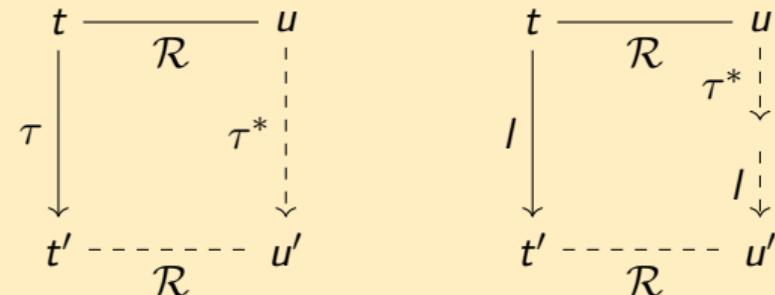


→ Straightforward answer: divergence-sensitive weak simulation

Which simulation? Two key properties

Weak

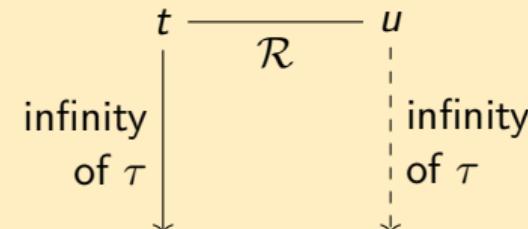
Some computations (τ transitions) are semantically invisible and do not need to be matched on the other side



Divergence sensitive

A non-diverging program should not be compiled to a possibly diverging program

This is a global condition.



→ Straightforward answer: divergence-sensitive weak simulation...maybe not

Normed simulation

- ▶ This limitation was noted in 1998!

Normed Simulations

David Griffioen^{1,2*} Frits Vaandrager²

¹ CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

² Computing Science Institute, University of Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

{davidg,fvaan}@cs.kun.nl

Thus the research program to reduce global reasoning
to local reasoning has not been carried out to its completion.

Normed simulation

- ▶ This limitation was noted in 1998!

Normed Simulations

David Griffioen^{1,2*} Frits Vaandrager²

¹ CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

² Computing Science Institute, University of Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

{davidg,fvaan}@cs.kun.nl

Thus the research program to reduce global reasoning
to local reasoning has not been carried out to its completion.

- ▶ Normed simulation enables local reasoning through a decreasing measure
- ▶ It shaped most later notions of simulation for verified compilation
- ▶ CompCert relies on it

Towards a better notion of simulation?

	Introduced	Usability	Completeness
Div. weak simulation	1981?	✗	✓
Normed simulation	1998	✓	✗
What I want	This paper	✓	✓

Normed simulations complete *only for deterministic LTSs*

A Family of Sims with Diverging Interests

A modern characterization of divergence-sensitive weak simulation

Inspiring advances from the 2010's

- ▶ *Implicit* normed simulation (used in ITrees) is based on a mixed inductive-coinductive definition.
- ▶ *Weak-tau simulation* (from CompCertTSO), made of two mutually-defined relations, relates some programs that are not related by normed simulation.
- ▶ *Coinduction up-to companion* eases the definition of powerful reasoning techniques

→ I combine all of this into a mutually coinductive notion dubbed μ div-simulation.

A modern characterization of divergence-sensitive weak simulation

Inspiring advances from the 2010's

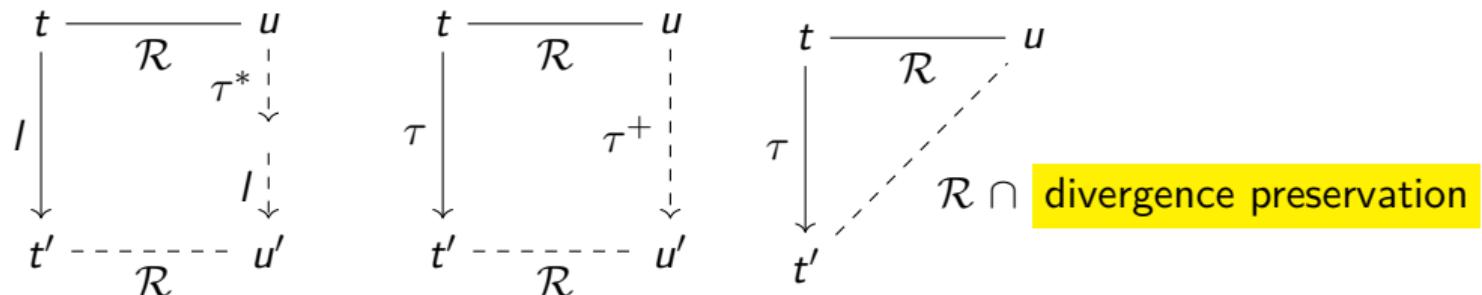
- ▶ *Implicit* normed simulation (used in ITrees) is based on a mixed inductive-coinductive definition.
- ▶ *Weak-tau simulation* (from CompCertTSO), made of two mutually-defined relations, relates some programs that are not related by normed simulation.
- ▶ *Coinduction up-to companion* eases the definition of powerful reasoning techniques

→ I combine all of this into a mutually coinductive notion dubbed μ div-simulation.

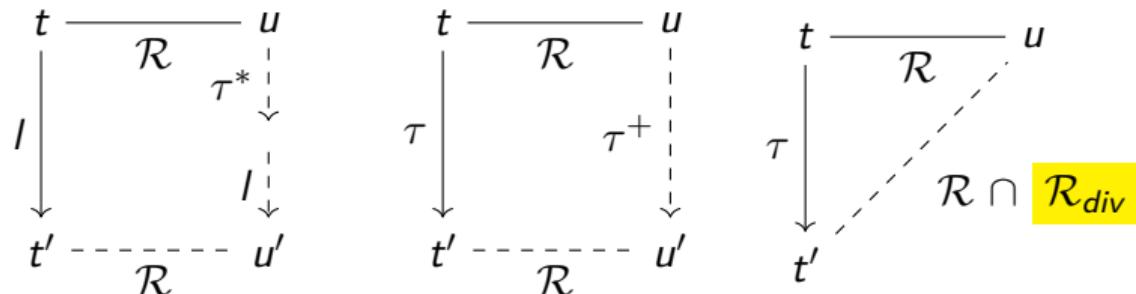
μ div-simulation

- ▶ Sound and complete wrt divergence-sensitive weak simulation
- ▶ Weaker (more complete) than variants of normed simulation
- ▶ As usable as implicit normed simulation thanks to coinduction up-to
- ▶ Defined in a generic LTS setting in **ROCC**

μ div-simulation, diagrammatically



μ div-simulation, diagrammatically



Divergence preservation, coinductively

How can we reason about it?

- ▶ Modern coinduction up-to
- ▶ A parameterized definition

Coinduction up-to: Key idea

Standard proof of simulation

- ▶ Exhibit a relation \mathcal{R} between states.
- ▶ Prove that \mathcal{R} is a simulation

Coinduction up-to: Key idea

Standard proof of simulation

- ▶ Exhibit a relation \mathcal{R} between states.
- ▶ Prove that \mathcal{R} is a simulation

Proof using coinduction up-to

Start from a small \mathcal{R} and lazily add pairs of states to it as needed during the proof.

→ Interesting proof technique in an interactive proof assistant

Concretely, *up-to techniques* can transform the proof goal during the proof.

Coinduction up-to: Key idea

Standard proof of simulation

- ▶ Exhibit a relation \mathcal{R} between states.
- ▶ Prove that \mathcal{R} is a simulation

Proof using coinduction up-to

Start from a small \mathcal{R} and lazily add pairs of states to it as needed during the proof.

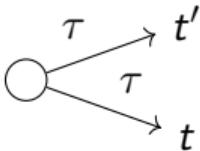
→ Interesting proof technique in an interactive proof assistant

Concretely, *up-to techniques* can transform the proof goal during the proof.

History of coinduction up-to

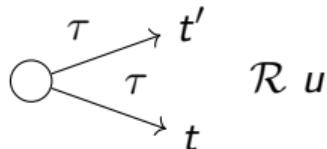
- ▶ Exists since the 80's.
- ▶ Comfortable in Rocq since the 2010's (paco, coinduction).

Concrete up-to techniques

Consider this simulation goal:  $\mathcal{R} u$

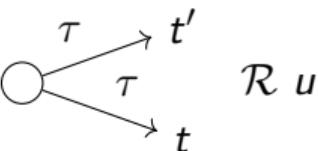
```
graph LR; S(( )) -- "τ" --> t1[t']; S -- "τ" --> t2[t];
```

Concrete up-to techniques

Consider this simulation goal: 

By the left up-to τ technique, this reduces to: $t \mathcal{R} u \wedge t' \mathcal{R} u$

Concrete up-to techniques

Consider this simulation goal: 

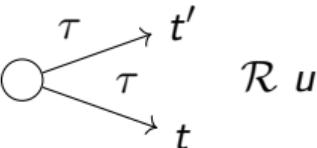
By the left up-to τ technique, this reduces to: $t \mathcal{R} u \wedge t' \mathcal{R} u$

Asymmetric reasoning

- ▶ Left and right up-to τ and up-to ϵ
- ▶ From the ITree/CTree world
- ▶ Recovers the proof rules from normed sim!

Concrete up-to techniques

Consider this simulation goal:


$$\tau \rightarrow t' \quad \tau \rightarrow t \quad R \ u$$

By the left up-to τ technique, this reduces to: $t \ R \ u \wedge t' \ R \ u$

Asymmetric reasoning

- ▶ Left and right up-to τ and up-to ϵ
- ▶ From the ITree/CTree world
- ▶ Recovers the proof rules from normed sim!

Some other up-to techniques

- ▶ Transitivity and rewriting: complicated, 5 variations supported
- ▶ Well-known in the **bisimulation** literature (e.g., expansions)

Is μ div-simulation enough?

- ▶ We may need deadlock preservation too (easier)
- ▶ Strong simulation is easier to wield
- ▶ Some notions between weak and strong simulation can serve as proof devices

Is μ div-simulation enough?

- ▶ We may need deadlock preservation too (easier)
- ▶ Strong simulation is easier to wield
- ▶ Some notions between weak and strong simulation can serve as proof devices

Problem

That makes a lot of closely-related definitions of simulation.

Is μ div-simulation enough?

- ▶ We may need deadlock preservation too (easier)
- ▶ Strong simulation is easier to wield
- ▶ Some notions between weak and strong simulation can serve as proof devices

Problem

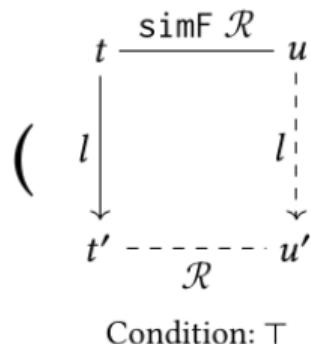
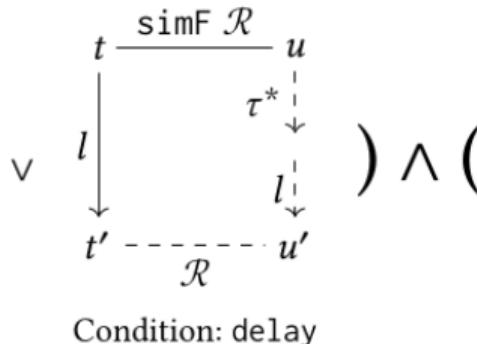
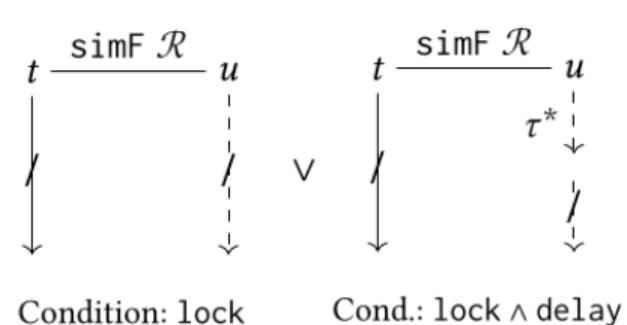
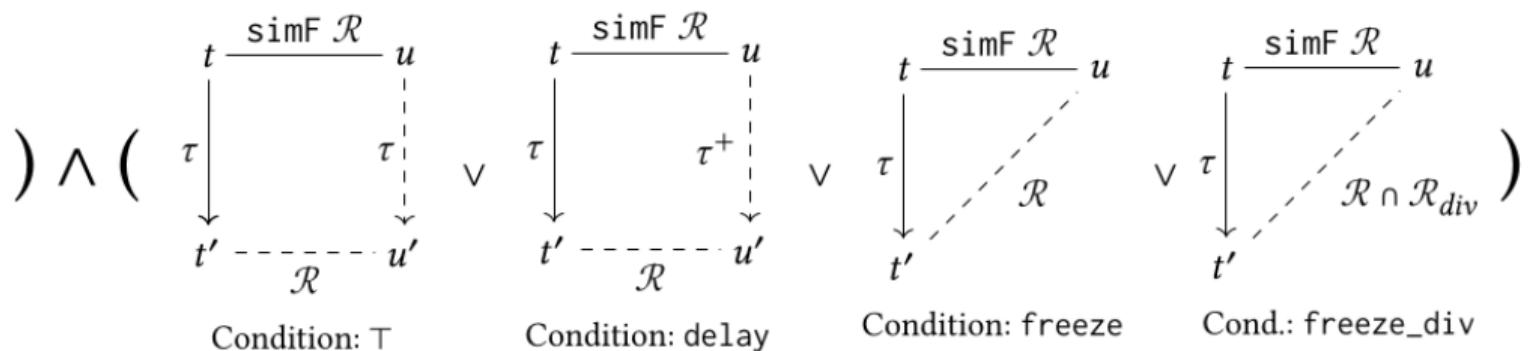
That makes a lot of closely-related definitions of simulation.

Solution

- ▶ Use a parameterized definition.
- ▶ Two Boolean parameters, one ternary parameter

Parameterized definition: the diagrams

- ▶ Parameterized definition: 12 notions (strong, weak, divergence-sensitive weak, deadlock-sensitive, etc.) jointly studied



Case studies

Case study: A CompCert pass

- ▶ A few lines of Rocq to instantiate the theories
- ▶ Port of a 300-line CSE proof (~ 70 lines changed)
- ▶ Originally uses an *Eventually simulation*, analogous to the left up-to τ technique
- ▶ Forward \implies backward simulation
- ▶ No need to explicitly build the backward simulation!

Case study: Choice Trees

$$\begin{array}{c}
 \frac{\text{Ret } v \mathcal{R} \text{ Ret } v}{\text{Ret } v \mathcal{R} \text{ Ret } v} \text{ (ret)} \quad \frac{\forall x \in X, (k \ x) \mathcal{R} u \quad \mathcal{L} = \text{nolock} \vee X \text{ inhabited}}{(\text{Br } b \ k) \mathcal{R} u} \text{ (br_l)} \\
 \frac{\exists y, t \mathcal{R} (k' \ y) \quad \mathcal{L} = \text{nolock} \vee k' \ y \rightarrow \vee (\mathcal{F} = \text{nofreeze} \wedge t \rightarrow)}{t \mathcal{R} (\text{Br } b \ k')} \text{ (br_r)} \\
 \frac{t \mathcal{R} u \quad \mathcal{D} = \text{delay}}{t \mathcal{R} \text{ Step } u} \text{ (step_r)} \quad \frac{t \mathcal{R} u \quad \mathcal{F} = \text{freeze} \vee (\mathcal{F} = \text{freeze_div} \wedge \text{divpres } t \ u)}{\text{simF } \mathcal{R} (\text{Step } t) \ u} \text{ (step_l)} \\
 \frac{t \mathcal{R} u \quad \mathcal{F} = \text{freeze_div}}{\text{Step } t \mathcal{R} u} \text{ (step_l')} \quad \frac{t \mathcal{R} u}{\text{simF } \mathcal{R} (\text{Step } t) (\text{Step } u)} \text{ (step)} \\
 \frac{\forall v, (k \ v) \mathcal{R} (k' \ v)}{\text{simF } \mathcal{R} (\text{Vis } e \ k) (\text{Vis } e \ k')} \text{ (vis)} \quad \frac{t \not\rightarrow \wedge (\mathcal{L} = \text{nolock} \vee u \not\rightarrow)}{t \mathcal{R} u} \text{ (stuck)}
 \end{array}$$

- ▶ A few lines of Rocq to instantiate the theories
- ▶ A single parameterized proof system for the 12 refinements
- ▶ Up-to bind technique

Conclusion

Conclusion

Contributions

- ▶ Parameterized notion of simulation with up-to techniques
- ▶ Novel characterization of divergence preservation
- ▶ Implemented in 3.5k lines of **ROCQ**, using the `rocq-coinduction` library
- ▶ Version 0.2 released on opam as `rocq-sims`
- ▶ POPL'26 paper on my webpage: <https://www-verimag.imag.fr/~chappen/>

Future work

- ▶ Extension to bisimulation
- ▶ Extension to trace inclusion

Thank you for your attention!