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Behavioral inclusion results play a central role in verified compilation. They are typically achieved through
the use of simulations that are both weak and sensitive to divergence. More specifically, verified compilation
projects often rely on variants of normed simulation, which is not complete with respect to divergence-sensitive
weak simulation. We propose to bridge this gap with pudiv-simulation, a novel notion of simulation that is
equivalent to classical divergence-sensitive weak simulation, and designed to be as comfortable to use as
modern characterizations of normed simulation. We then define a parameterized notion of simulation that
covers strong simulation, weak simulation, pdiv-simulation, and 9 more notions of simulation, and jointly
establish various “up-to” reasoning techniques for these 12 notions. Our results are formalized in Rocq and
instantiated on two case studies: Choice Trees and CompCert. Because we work with an abstract LTS setting,
our results are also relevant to other fields that make use of divergence-sensitive weak simulation, such as
model checking.

CCS Concepts: » Theory of computation — Program reasoning; - Software and its engineering —
Semantics.

1 Introduction

Verified compilation aims to formally verify the correctness of compilers and program transforma-
tions in order to prevent miscompilation bugs. This field of research has been rapidly developing
these past few decades, the most notable achievement certainly being CompCert [20], a formally
verified optimizing compiler from C to several architectures, with industrial users.

As any compiler, a verified compiler performs a series of transformations on a source program
in order to optimize it and to compile it down to assembly. But unlike a regular compiler, a verified
compiler comes with a proof that each of these passes preserves the semantics of the program. More
specifically, the developer of a verified compilation pass seeks a result of behavioral inclusion (or
refinement): the behaviors of the program resulting from a compilation pass should all be possible
behaviors of the program given as input to the pass. A full verified compiler thus requires many
proofs of behavioral inclusion (one for each pass). This notion of behavioral inclusion is formally
captured by trace inclusion, but trace inclusion can be a bit unwieldy, so verified compilation projects
rather stick to simulation [23], a more restrictive notion of behavioral inclusion that implies trace
inclusion. The pervasiveness of interactive simulation proofs in verified compilers justifies the need
for clean and powerful reasoning principles around simulations.

Roughly speaking, a program simulates another one if the former can reproduce every step of
computation of the latter. In verified compilation, one seeks to establish that the source program
simulates the associated compiled program. There actually exist many kinds of simulation relations
and bisimulation relations [35],! with numerous applications in concurrency theory [30] and model
checking [4, 14]. There is however less diversity in the world of verified compilation, because
one notion fits most of the needs of the field: divergence-sensitive weak simulation. It is called
weak because this kind of simulation has a notion of internal “tau” events that carry unobservable
semantic information that can be hidden, and divergence-sensitive because silent divergence (e.g.,
empty infinite while loops) should not be introduced by the compiler. Section 2.2 introduces it
more formally, as it constitutes the main object of study of the present paper.

!Bisimulations are notions of behavioral equivalence closely related to simulations.
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Fig. 1. A behavioral inclusion result that cannot be proved with divergence-sensitive simulation techniques
currently used

Extensive studies about notions of simulation (and bisimulation) are generally motivated by
process algebras. Weak (bi)simulation is particularly relevant in this setting and has thus been
thoroughly studied. On the other hand, divergence sensitivity is less relevant to process algebras?
and has thus been studied less thoroughly. Still, one result is particularly important: normed
simulation.

Indeed, we are not aware of any verified compilation project that directly uses divergence-
sensitive weak simulation, because of challenges that we discuss in Section 2.2. In the case of
CompCert, and other verified compilation projects [12, 38], the notion of simulation actually used
is not quite divergence-sensitive weak simulation, but rather normed simulation [15, 16], a slightly
more restrictive variant that enjoys more comfortable reasoning principles. Normed simulation
is a notion of weak simulation that ensures divergence preservation through the use of a well-
founded measure on program states. Section 2.3 introduces it more precisely. Despite the ubiquity
of normed simulation, tools for proving simulation results have significantly evolved over the years.
In particular, three research directions from the 2010s arguably constitute major milestones for
simulation proof techniques:

« Coinduction up-to, a powerful approach to simulation proofs, has become more usable in
proof assistants thanks to the development of novel theories and accompanying libraries [17,
27, 32]. We illustrate this powerful approach in Section 2.4.

« A modern characterization of normed simulation has emerged [24] and is now widely
used [12, 13, 37]. It no longer requires explicitly providing a well-founded measure, but
instead relies on a novel mixed inductive-coinductive characterization (further discussed in
Section 2.3).

« The CompCertTSO project [36], which successfully developed a verified compiler for concur-
rent C programs, hit a case in which normed simulation was not complete enough to prove
the correctness of one of their passes (a fence elimination pass), and consequently developed
a novel notion dubbed weak-tau simulation [34] (further discussed in Section 7). This notion
is based on mutually-defined relations of simulation and divergence preservation. It is sound
with respect to divergence-sensitive weak simulation and sufficiently complete to prove
their refinement result of interest.

These three independent advances are helpful to ease proofs of simulation in a verified compilation
setting. Unfortunately, to our knowledge, these ideas have still not been combined into a single
notion of simulation, which is of much consequence. Consider for instance the LTS states f; and
depicted in Figure 1. State f; is simulated by u; according to classical divergence-sensitive weak
simulation (as defined in Section 2.2), but neither variants of normed simulation nor weak-tau
simulation are sufficiently complete to make it provable, as we explain in their respective sections.
This result is simply unprovable with the tools of existing verified compilation projects.

ZProcess algebras often assume the property of fair abstraction from divergence that makes divergence sensitivity irrele-
vant [2].
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The main ambition of the present paper is to bridge this gap by combining the three recent
advances discussed above into a novel notion of simulation dubbed pdiv-simulation and to formalize
it in the Rocq prover [33]. Indeed, pdiv-simulation ensures divergence preservation through two
mutually dependent coinductive relations, one of which is inductive-coinductive, and we develop
powerful reasoning principles around it thanks to coinduction up-to, thus combining the three
aforementioned elements. Unlike most existing notions of simulation for verified compilation, pdiv-
simulation is sound and complete with respect to classical divergence-sensitive weak simulation.
Furthermore, it arguably enjoys more powerful reasoning principles than existing notions of normed
simulation thanks to the use of coinduction up-to. The simulation from Figure 1 is proved using
pdiv-simulation in Section 3.5.

Restricting our study to a flavor of divergence-sensitive weak simulation would not be en-
tirely satisfying, because there is a whole family of sims relevant to verified compilation. First,
beyond divergence sensitivity, deadlock sensitivity is also worthy of interest in verified com-
pilation. Deadlock-sensitive notions of simulation prevent the introduction of deadlocks in the
compiled program by the compiler, which is especially relevant in a concurrent setting, in particular
for CompCertTSO [36]. But deadlock sensitivity is not always desired, as some memory models
exploit deadlock insensitivity to handle out-of-memory errors [5]. Second, other notions of simula-
tion can be useful as proof intermediates for divergence-sensitive weak simulation, in particular
strong simulation. At the very least, our study should cover divergence-sensitive weak simulation,
deadlock-sensitive divergence-sensitive weak simulation, strong simulation, and deadlock-sensitive
strong simulation. But this is not the whole story yet: the literature about bisimulations defines
some notions between strong bisimulation and weak bisimulation that can be valuable as proof
intermediates, such as expansions [31]. One can expect similar results to hold for variants of weak
simulation and thus for divergence-sensitive weak simulation, further raising the number of notions
of simulation of interest. As a consequence, Section 4 generalizes pdiv-simulation to a parame-
terized notion of simulation, with two boolean parameters and one ternary parameter, and we
jointly study the 12 resulting notions of simulation (including div-simulation). This idea of jointly
studying several notions of program comparison through a parameterized definition has already
been explored for weak bisimulation [39], but only in a deterministic setting.

All of our results are formalized in the Rocq prover. Throughout this paper, clickable references
to our Rocq development are marked with the Rocq logo [#]. While verified compilation is a
major motivation for the present work, our results and their Rocq formalization only depend on an
abstract setting of LTS, and can thus be instantiated to problems in other fields that have uses for
divergence-sensitive weak simulation, such as model checking [4].

Structure of this paper. Section 2 gives important context for this work. It states the definition of
relevant existing notions of simulation and demonstrates the use of coinduction up-to in simulation
proofs with an example. Section 3 defines pdiv-simulation, validates it against divergence-sensitive
weak simulation, and proposes an example of a simulation proof. Section 4 generalizes pdiv-
simulation to a parameterized notion of simulation that captures 12 variants of strong and weak
simulation, and studies this parameterized notion. Section 5 instantiates our parameterized simula-
tion on the latest iteration of Choice Trees (CTrees), a data structure for representing the semantics
of concurrent programs that notably lacked a notion of divergence-sensitive weak simulation
until now, and establishes a parameterized proof system for CTrees. Section 6 instantiates pdiv-
simulation on CompCert and demonstrates the applicability of our approach by porting an existing
proof of simulation to our framework. Section 7 discusses related work and in particular compares
pdiv-simulation with two existing notions of simulation: FreeSim and weak-tau simulation.
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2 Context

This section introduces important existing notions. It first dives into the world of simulations,
starting from plain strong simulation (Section 2.1) then moving on to the most relevant notions
of simulation for the present work: divergence-sensitive simulation (Section 2.2) and normed
simulation (Section 2.3). Finally, it details the coinduction up-to proof approach in Section 2.4.

2.1 Labelled Transition Systems, Simulations

This section introduces the basic setting and terminology that this paper is based on: labelled
transition systems and simulations.

The semantics of programs are usually modelled as labelled transition systems or LTSs. An LTS
(S,X, —) consists of a (possibly infinite) set of states S, a (possibly infinite) set of labels ¥, and a

labelled transition relation -»C S x X x S [P LTs.v:19]. We write s—l> s’ for (s,1,s") €—.

In verified compilation, states of an LTS represent the possible states of execution of a program,
and labelled transitions represent events that can occur during program execution. These LTSs are
typically built from small-step operational semantics.

Simulation is the most commonly used form of behavioral inclusion in verified compilation,
defined on LTSs. Its simplest form is strong simulation.

Definition 2.1. A relation R between states of an LTS is a strong simulation if it verifies:

) I
Viu,t Ru = ssimF RtuwithssimF Rtu=vt'Li—>t = W, u—>u rt’ Ru

We say that u simulates t if (¢, u) € R for some simulation relation X. In verified compilation, we
aim to prove that the initial state of the program before compilation simulates the initial state of
the program after compilation.

ssimF is called the simulation game or simulation functor. It
can alternatively be characterized as a simulation diagram, as in ssimF R
Figure 2. In simulation diagrams, solid lines and arrows represent - u
the universal quantifiers from the mathematical definition of the ZJ :
functor, and dashed ones represent the existential quantifiers. z

Each transition from the left (“simulated”) state t labelled with P o
some [ should be matched by a transition from u with the same R
label I, and the resulting pair of states should still be related by .

Outgoing transitions from the left state  can be seen as simulation Fig. 2. The diagram characteriz-
challenges to which the right state v has to answer. ing a strong simulation relation

The union of all strong simulations, noted ssim, is itself a strong R.
simulation, dubbed strong similarity. As a consequence, ssimtu
holds if and only if u simulates t. Similarity can be characterized as a greatest fixpoint: ssim =
gfp ssimF.

This section focused on the definition of strong simulation, but as we will soon see, more complex
notions of simulation have the same ingredients: they relate states from two LTSs, they can be
characterized by one or more simulation diagrams, and they induce a notion of similarity.

A note on undefined behaviors (UBs). In some verified compilers, including CompCert [20],
simulations have built-in support for UBs: states in which “anything can happen” and that simulate

3In practice, this may be a relation between states of two different LTSs, but the union of LTSs is a trivial operation
[PALTSSum.v:87].
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Fig. 3. The three diagrams that classically characterize a divergence-sensitive weak simulation relation X.

every possible state. Languages such as C [18] feature UBs to increase optimization opportunities,
though this design choice is subject to debate [25]. LTSs and simulations in the present paper do
not feature UBs, because a UB state of execution can always be encoded as a LTS state than can
take transitions with every possible label to every possible state [# uB.v:29].

2.2 Divergence-sensitive weak simulation

Strong simulation is only the simplest of many existing notions of simulation. It is not typically used
in verified compilation (except for simulation proofs based on big-step semantics, as in the early
days of CompCert [7]) because it lacks a notion of transitions stemming from unobservable events.
By contrast, divergence-sensitive weak simulation is a notion of behavioral inclusion of particular
interest in the field of verified compilation. The main additional ingredient of weak simulations
is that a particular label 7 represents internal events that are unobservable. What precise kinds
of event are represented as 7 transitions or as observable transitions largely depends on design
choices of individual semantics. Semantics in verified compilation usually represent as many events
as possible as 7 transitions, to allow for more optimizations. Indeed, if an event such as a memory
access is observable, it means that the source program and the corresponding optimized compiled
program have to perform exactly the same memory accesses in the same order, which greatly limits
optimization opportunities. Observable events typically include external functions and input/output
operations.

T transitions are treated as invisible by weak simulation. More precisely, most modern verified
compilation projects use variants of divergence-sensitive weak simulation [35]. The divergence
sensitivity condition ensures that if the simulated program admits an infinite series of invisible T
transitions, the simulating program admits one too.

Divergence-sensitive weak simulation can be defined diagrammatically, as in Figure 3. If the
three diagrams hold for every pair of states in a relation &, then X is a divergence-sensitive weak

simulation. In these diagrams, — means “any finite number of successive transitions labelled with

+ [
I’ Likewise, l—> means “any non-null finite number of successive transitions labelled with [I”, and l—>
means “an infinite number of successive transitions labelled with I”. We note divsimF the simulation
functor for divergence-sensitive weak simulation, and divsim the greatest divergence-sensitive
weak simulation.

The two diagrams on the left of Figure 3 define a weak simulation. Each transition from the left
(“simulated”) state t labelled with [ # 7 should be matched by a transition with the same label, with
the possible addition of a finite number of 7 transitions before.* Each transition from ¢ labelled with
7 should be matched by a finite number of 7 transitions. These two cases capture that 7 transitions

4Alternatively, the weak simulation game for [ # 7 can be defined with optional t* before and after the answer labelled with
[, but these variants are known to be equivalent.
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Fig. 4. The three diagrams that characterize an explicit normed simulation relation X.

are semantically “invisible” and can be skipped when playing the simulation game. We note simF,
the weak simulation functor, restricted to these two diagrams.

The third case captures sensitivity to silent divergence: when t can perform an infinity of 7
transitions, u should be able to perform an infinity of 7 transitions too. Without this third diagram,
a state s that loops on itself with a 7 transition is simulated by any state s’. Indeed, X = {(s,s")}
is a weak simulation: whenever s loops on itself, s’ can stagnate in response, as is permitted by
the 7 diagram of weak simulation, and the resulting pair (s, s”) is in R despite no progress having
been made. This condition is important for verified compilation. Recall that the correctness of a
verified compilation pass relies on a proof that the compiled program C(P) is simulated by the
source program P. The program while (true) {3} is typically modelled as a state that r-loops on
itself. Transporting the above result of weak simulation between s and s’, it is correct for weak
simulation to compile any program to while (true) {3.Of course, this is not a desirable property,
which is why verified compilers rely on variants of divergence-sensitive simulation. More generally,
divergence sensitivity ensures that if the compiled program silently diverges, the source program
diverges too.

There is a fundamental difference between the divergence sensitivity diagram and the two
previous diagrams: the two diagrams for weak simulation model a case analysis on the transitions
that are immediately possible from ¢, whereas the diagram for divergence preservation quantifies
on infinite sequences of future T transitions. This makes this divergence preservation condition global.
A proof scientist willing to prove a divergence-sensitive weak simulation result using this basic
definition would have proof obligations that involve reasoning globally about the future of the LTS.
In practice, this is too much of a burden and frameworks related to verified compilation do not use
this definition, but variants devised to alleviate the need for such a global condition.

2.3 Normed Simulation

Variants of divergence-sensitive weak simulation without a global condition have emerged in the
1990’s. In particular, normed simulation [15] is widely used in verified compilation projects, as well
as in model checking [4].

A key observation about the classical game from Figure 3 is that of the two cases of the weak
simulation diagram, the only case that is problematic with respect to divergence preservation is
when t perfoms a 7 transition and u stagnates with a 7° answer. Indeed, if u answers with at least
one 7, it means that u performs at least as many 7 transitions as t, which ensures that whenever ¢
diverges, u diverges too.

Normed simulation is a more restrictive form of divergence-sensitive weak simulation that relies
on a notion of well-founded measure m that can be expressed locally instead of a global condition.
We will call it explicit normed simulation in the following, in order to distinguish it from the notion
of simulation described at the end of the present section. It is also known as explicit stuttering
simulation [12]. Its definition is given diagrammatically in Figure 4, noting nsimF its functor.
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This time, two diagrams have the same challenge —T> This means that when there is a 7 transition,
u can answer with either of these diagrams (this convention will apply throughout this paper). This
split is critical to ensure divergence preservation. Indeed, this notion of simulation is parameterized
with a well-founded measure m that has to decrease when t perfoms a 7 transition and u stagnates
in response. This means that this specific stagnation diagram can only be invoked a finite number
of consecutive times before the measure reaches zero and the diagram becomes invalid. In other
words, ¢ can only perform a finite number of unanswered 7 transitions before u starts moving too.

CompCert has been successfully using variants of explicit normed simulation for a long time [20].
When working with deterministic LTSs (LTSs in which outgoing transitions of a given state are all
labelled differently), explicit normed simulation is complete with respect to divergence-sensitive
weak simulation. This is the case for most of the CompCert compilation chain, but in other settings
(especially concurrent settings) deterministic LTSs are often insufficiently expressive, and explicit
normed simulation is not complete with respect to divergence-sensitive weak simulation for
nondeterministic LTSs, which limits the applicability of normed simulation. A second limitation is
that having to define a well-founded measure on states of the LTS can be uncomfortable. There have
been efforts to address the discomfort of the well-founded measure on states, as will be detailed in
the next section.

However, we are not aware of notions of simulation for verified compilation that address the
incompleteness of explicit normed simulation in the general case. Going back to the example in
Figure 1, attempts to prove that the behaviors of #; are included in the behaviors of u, using explicit
normed simulation are doomed to fail. Suppose there exists an explicit normed simulation relation
R that contains (t,, 1), and an associated measure m. The t, 5 ty transition has to be simulated in
some way by u,. Following the simulation diagrams from Figure 4, u, can either perform a series
of 7 transitions, or stay in place provided the measure m associated with X decreases.

« The answer u, 5 u, is not possible, because if 4, subsequently moves to t3 and then 4, u;
has no way to simulate a transition labelled with b.

« The alternative is for u; not to move, but in this case the measure has to strictly decrease. It
is clear that m(t;) < m(#,) cannot hold for any measure based on a well-founded order.

Thus u, does not simulate #, for explicit normed simulation. This incompleteness of normed
simulation is a well-known fact in the model checking community [4].

Implicit normed simulation. Implicit normed simulation [24] is a more modern take on normed
simulation that makes use of a mixed inductive-coinductive definition to circumvent the need for
a decreasing measure. The notion of simulation is defined coinductively, but the case in which u
stagnates is defined inductively, ensuring that it can only be invoked a finite number of consecutive
times. It is equivalent to explicit normed simulation: the simulation example from Figure 1 cannot
be proved with implicit normed simulation either. The simulation diagrams of implicit normed
simulation are the same as explicit normed simulation (see Figure 4), except the conclusion of
the rightmost diagram is replaced with isimF . (noting isimF the functor for implicit normed
simulation). This makes isimF an inductive definition: the (¢’, u) pair resulting from the application
of this diagram shall in turn be related by one of the three diagrams. In practice, isim is defined as
the greatest fixpoint of a least fixpoint, and the third diagram is defined inductively rather than
coinductively. We omit the details for implicit normed simulation, but the formal definition of a
similar inductive-coinductive relation will be given in Section 3.1.

These past few years, implicit normed simulation has been frequently favored in libraries related
to verified compilation: it is in particular the basis of the sutt simulation and the eutt bisimulation
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Fig. 5. An example LTS in which s, strongly simulates s,

of ITrees [37]. But this more refined notion suffers from the same flaw as explicit normed simulation:
it is more restrictive than divergence-sensitive weak simulation.

2.4 Coinduction up-to

The most straightforward way to prove a refinement result between two LTS states t and u is to
exhibit a relation R such that t X u and prove that this X is a simulation. A major drawback is
that this approach requires to fully exhibit this possibly complex relation R from the beginning.
In CompCert, this relation is typically called match_states, and for some compilation passes
its definition can take several dozen lines of code. In a proof assistant such as Rocq, it is more
comfortable to start from an incomplete relation and interactively refine it bit by bit. This is precisely
what modern coinduction up-to permits. This section briefly sums up the possibilities offered by
coinduction up-to for proofs of simulation, with in particular a proof example.

Coinduction up-to has a long history, dating back to the 80’s [29], and underlying theories have
been developing rapidly in the 2010s. In particular, the advent of parameterized coinduction [17]
and then the more general coinduction up-to companion method [27, 32] marked a turning point for
interactive coinductive proofs in Rocq. A major motivation for the development of coinduction
up-to techniques was bisimulations [28], but these results have not necessarily been extended to the
simpler setting of simulations. Nevertheless, Interaction Trees [37] and then Choice Trees [10] are
recent Rocq libraries that define notions of simulation for verified compilation based on coinduction
up-to.

With coinduction up-to, the goal of a simulation proof is no longer to prove that a given relation
is a simulation, but that it is a subrelation of similarity, the simulation defined as the union of all
simulations. For that purpose, a plethora of proof techniques dubbed up-to techniques can be used.
They are generally of the shape “if these pairs of states are contained in the similarity relation, so are
these other pairs of states”. The initial relation is called the simulation candidate. When conducting
a proof by coinduction up-to, one does not work directly on the candidate relation X but on the
candidate relation up-to companion: tyg; e (R), noted ‘& for brevity in the rest of this paper. tyq;pnr
is the union of all compatible up-to techniques for the (in this case, strong) simulation functor,
itself a compatible up-to technique dubbed the companion. The crucial consequence of working
with ‘% is that compatible up-to techniques can be invoked on the fly during a proof of simulation.
We omit the theory behind it, as it would be too technical and it is nicely encapsulated in modern
Rocq coinduction libraries.

With coinduction up-to, it is no longer necessary to exhibit a simulation relation from the
beginning of a proof, one can start from a smaller relation and refine it as needed using up-to
techniques. To give an idea of how proofs by coinduction up-to are structured, we give below two
alternative proofs that s, strongly simulates s; in the LTS depicted in Figure 5: a classical proof,
and another one by coinduction up-to.



The Sims: A Family of Simulations for Verified Compilation (Draft) 9

Classical proof. We take R = {(s;, 4), (S9, S4), (53, 53)}. For each of these pairs, we now check that
the strong simulation diagram holds:¥(s, s”) € R, ssimF R s s’. For instance, starting from (s;, s4),
there are two transitions that s; can take:

a . . a .
« sy — s,. In this case, s, can answer with s; — s, and we indeed have (s,,s4) € R.

b . . b :
« s; — s3. In this case, s, can answer with s; — s3 and we indeed have (s3,s3) € R.

We omit similar checks for the pairs (s, s4) and (s3, 53). As the strong simulation diagram holds for
R, R is a strong simulation relation that contains in particular (s;, s4), which concludes the proof.

Proof by coinduction up-to. With coinduction up-to, we do not have to exhibit a simulation
relation R from the start. We can instead plainly start from R = {(s;,s,)} and refine this simulation
candidate as the proof progresses.

In particular, three standard simulation up-to techniques will be useful for this proof:

« The simulation up-to simulation step technique, stating that Vst, ssimF ‘R st =— s ‘R t.
« The up-to reflexivity technique, stating that Vs, s ‘% s.
« The up-to identity technique, stating that Vst,s Xt — s‘Rt.

Again, we have to prove that the simulation diagram holds, but this time the proof goal involves
the simulation candidate up-to companion: ¥(s,s”) € R, ssimF ‘R s s’. After unfolding R, this can
be reformulated as the following initial proof state: = ssimF ‘R s; s4.

In an initial proof state, the goal always involves ssimF ‘R and not ‘R. Consequently the
coinduction hypothesis cannot be applied (otherwise all coinductive proofs would be immediate!),
we say that it is guarded. Unlike Rocq’s native tools for coinduction, this guard is not syntactic but
semantic.

First, we unfold the simulation game. There are two possible transitions from s;.

. 5 5 $y. In this case, 54 can answer with s4 5 s4. The new proof goal is: - sy ‘X s4.
‘R is now exposed, the goal is unguarded and the coinduction hypothesis could be applied
if it matched. In this case it doesn’t: the coinduction hypothesis only contains (s, s4) but
not the pair of interest (s,, s4). To get back to the coinduction hypothesis, we apply the
simulation up-to simulation step technique: = ssimF ‘R sy 4.
We play the simulation game: s, 5 sy is answered by s, 5 sS4 81 VR s4. We got back to
(1, 84), the up-to identity technique concludes this first case.

. . b .
« §; — s3. In this case, s4 can answer with s, — s3. The new proof goal is: - s3 ‘% s5.
We apply the up-to reflexivity technique, which concludes this second case.

In this second proof, we did not have to explicitly add the intermediate pair (sy,s4) to the
simulation relation. The pair (s,, s4) was already “lazily” in R up-to one simulation step, and thus in
R up-to the union of all compatible up-to principles, i.e. in *X.

As a final note, a convenient result about coinduction up-to states that any property valid for ‘R
are also valid for ssimF ‘R and ssim. Of course, this result is stated for ssimF here but it is just as
valid for any other functor.

In the rest of this paper, we will always implicitly work with simulation candidates up-to
companion, thus we will omit the backticks and write e.g. & for ‘.

3 A Mutually Coinductive Characterization of Divergence-Sensitive Weak Simulation

Divergence-sensitive weak simulation from the previous century was not particularly usable in

practice, which led to the definition of the previously mentioned notions of simulation.
However, the state of the art regarding coinduction has significantly evolved since then, in

particular coinduction up-to allows to define particularly involved proof techniques on coinductive
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Fig. 6. An inductive-coinductive characterization of divergence preservation, based on a functor divpresIndF

relations such as (bi)simulation. To date, the verified compilation community has not fully adopted
this advance that originates from the process algebra community. The most extensive use of
coinduction up-to in a project adjacent to verified compilation can arguably be found in the
Choice Trees library [10], but divergence-sensitive weak simulation is not among the notions of
(bi)simulation it defines. Defining a modern notion of divergence-sensitive weak simulation thus
remains an open problem. This section tackles it with two design principles:

« This new simulation should be sound and complete with respect to the original divergence-
sensitive weak simulation.

« The definition of this new simulation should be as simple as possible, and advanced reasoning
techniques can be recovered through up-to techniques.

Additionally, one key observation guided the design of this novel notion of simulation: as
discussed in Section 2.2, the problem with divergence-sensitive weak simulation is its global
characterization of divergence preservation, which is why the next section will build a local
characterization of divergence preservation.

3.1 Divergence Preservation, Coinductively

The divergence preservation diagram from Figure 3 is a global property. In this section, we propose
an alternative inductive-coinductive definition formulated like a simulation game. It is depicted in
Figure 6.

By itself, the left diagram ensures that if ¢ diverges, then u diverges too. As for the right diagram,
it comes useful in case neither ¢ nor u can diverge. For instance, if there is one (or a finite number
of) 7 transition at ¢ but zero at u, neither f nor u diverge, thus divergence is preserved, but the left
diagram does not capture it, only the right one does. As an inductive rule, the right diagram does
not consume the coinductive guard: the inductive-coinductive definition will indeed be set up so
that R «— divpresIndF Ry,

Formally, we define the functor corresponding to these diagrams as

. ; \ T T .
divpresIndF R% Rygptuzvt', t>t = @, u-> v ARg,t' v')v (Rg‘l.g ' u).
Then, we apply a least fixpoint operator (through Rocq’s built-in inductive type mechanism) and

a greatest fixpoint operator (provided by the coinduction library) [# Divergence.v:206]:

divprestu = gfp divpresF with divpresF X, tu = 1fp AR% -divpresIndF R, 5851”1‘5

The resulting relation captures divergence preservation, and it does so locally: unlike the diver-
gence preservation condition from Figure 3, the challenge of this coinductive notion of divergence
preservation does not involve 7% but just one 7 transition.


https://gricad-gitlab.univ-grenoble-alpes.fr/chappen/rocq-sims/-/blob/v0.1/theories/Divergence.v#L206
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Fig. 7. The definition of pndiv-simulation

THEOREM 3.1 (divpres IS EQUIVALENT TO DIVERGENCE PRESERVATION [# Divergence.v:306]). For
all statest and u, divpres t u implies diverges t = diverges . In classical logic, the converse is
also true.

In this definition of divergence preservation, it can be inconvenient to have to match each 7 from
t with exactly one 7 from u. Fortunately, an up-to technique can relax this condition to one or more
T transitions.

LEMMA 3.2 (DIVERGENCE PRESERVATION UP-TO 7 [# Divergence.v:256]). If Ry, is a candidate for
divpresF, then

+ . .
(Vt’, S = @, u—u A Ry’ U v (582’;5 ¢ u)) = divpresIndF ﬂ?f% R gy t U

3.2 Definition of pdiv-simulation

We propose a novel notion of simulation based on definitions of simulation and divergence preser-
vation stated in a mutually coinductive manner.

Again, we give a diagrammatical definition in Figure 7. Just like normed simulation, the 7 case is
split into two in order to ensure divergence preservation in the case where u stagnates.

This time, the technique used to ensure the preservation of divergence is mutual coinduction: in
the third diagram of X the game not only leads back to X but also to X ;,, a divergence preservation
candidate as defined in the previous section. In practice, this means that the simulation functor does
not operate on a pair of states but on a triple made of a pair of states and a boolean that indicates
whether the two current states are related by X or & z;,,.°

It may not be clear at first sight how this definition is more comfortable than the one with a
global divergence preservation condition. This definition gets rid of the global condition, but the
apparent need to work with two relations R and X ;;, can be intimidating. Fortunately, the %,
relation can be hidden in higher-level proof principles.The one case of the simulation game in
which R ;, appears is the one where a 7 transition is consumed on the ¢ side, but not on the u
side. A natural way to prove Ry, is to prove a global divergence preservation result in the style of
divergence-sensitive weak simulation.

LEmMMA 3.3 (LINK BETWEEN R j;,, AND divpres [#® sims.v:408]). Let (R, Ry;,) be a ndiv-simulation
candidate. For all statest and u, divprestu = Ry, tu.

As discussed in Section 2.2, such a global property can be uncomfortable. It would be very
valuable to have a proof technique that allows consuming such a 7 transition on only the ¢ side,
without having to work with R ;. In implicit normed simulation-based developments, this property
is typically encoded directly into the simulation functor, and the asynchronous consumption of a 7

SWhen referring to R ;;,, we implicitly refer to the R, mutually defined with R.


https://gricad-gitlab.univ-grenoble-alpes.fr/chappen/rocq-sims/-/blob/v0.1/theories/Divergence.v#L306
https://gricad-gitlab.univ-grenoble-alpes.fr/chappen/rocq-sims/-/blob/v0.1/theories/Divergence.v#L256
https://gricad-gitlab.univ-grenoble-alpes.fr/chappen/rocq-sims/-/blob/v0.1/theories/Sims.v#L408
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simF R R
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a ~ |
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_-7 simF R R L
- u’

Fig. 8. The left up-to r technique [ Sims.v:941] and the right up-to 7 technique [# Sims.v:453]

is inductive rather than being coinductive. This is not the case in our definition of simulation, but
we can resort to a coinduction up-to technique to enable this kind of reasoning.

3.3 Up-to tau Techniques

Simulation techniques that allow asymmetric consumption of 7 transitions give proof scientists the
opportunity to write more compositional proofs.

The left up-to 7 technique allows consuming 7 transitions from the left state without the R ;,
side condition.

LEMMA 3.4 (LINK BETWEEN X AND Ry, [# sims.v:394]). Let (R, Ry;,) be a ndiv-simulation can-
didate. For all statest and u, Vtu, simF Rtu = Ry, tu.

Whenever we have to prove that two states are related by X, we can prove that they are
related by simF ® instead, which allows one to ignore X, and only work with X in proofs of
simulation. As an immediate consequence, the left up-to r diagram from Figure 8 can replace the
R 4iv case in the pdiv-simulation game from Figure 7.

Similarly, a right up-to 7 technique is stated below: we can always choose a 7 transition on the u
side and consume it.

LEMMA 3.5 (RIGHT UP-TO T TECHNIQUE [ Sims.v:453]). Let (X, Ry;,) be a ndiv-simulation candi-
date.
T
Viuvw', u—»> u AtRu = tRu.

This technique acts on ‘X but an up-to technique valid for ‘R is also valid for simF *R: it can be
used both on a guarded or unguarded goal.

We believe this up-to technique is a great illustration of the power of coinduction up-to. In ITrees
and FreeSim, the simulation functor does not consist of standard simulation diagrams but of a
hardcoded sound and complete proof system that includes in particular these two proof rules.® Here,
we prefer to define a more direct definition of simF and recover more involved proof principles
through coinduction up-to.

3.4 Comparison with Divergence-Sensitive Weak Simulation

A major difference between pdiv-simulation and divergence-sensitive weak simulation is that the
R jivin the simulation diagram represents a partially-built proof of divergence preservation, whereas
the definition of divergence-sensitive weak simulation relies on a global divergence preservation
condition, which is naturally stronger. This means in particular that it is always possible to exhibit
a global proof of divergence preservation instead of proving that two states are in ‘R, using
Lemma 3.3. Proofs using this property will be very close to proofs based on standard divergence-
sensitive weak simulation, but a strength of our definition is that it is possible to use both this

® Amusingly, the sutt relation on ITrees stands for simulation up-to tau, and can be seen as an implicit normed simulation
with a hardcoded right up-to 7 technique.


https://gricad-gitlab.univ-grenoble-alpes.fr/chappen/rocq-sims/-/blob/v0.1/theories/Sims.v#L941
https://gricad-gitlab.univ-grenoble-alpes.fr/chappen/rocq-sims/-/blob/v0.1/theories/Sims.v#L453
https://gricad-gitlab.univ-grenoble-alpes.fr/chappen/rocq-sims/-/blob/v0.1/theories/Sims.v#L394
https://gricad-gitlab.univ-grenoble-alpes.fr/chappen/rocq-sims/-/blob/v0.1/theories/Sims.v#L453
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method and the left up-to 7 diagram at different points of the same proof of simulation. This is
precisely what we do in Section 3.5.
sim and divsim ultimately define the same coinductive relation.

THEOREM 3.6 (EQUIVALENCE WITH STANDARD DIVERGENCE-SENSITIVE WEAK SIMULA-
TION[# DivSim.v:87]).
Vtu,simtu = divsimtu.

Moreover, in classical logic, the converse is also true.

This result raises the question of why we did not just use the standard definition of divsim, and
recover the desired proof techniques (e.g., the up-to 7 techniques) through coinduction up-to. The
reason is that an up-to technique valid on some characterization of a coinductive relation is not
necessarily valid on other characterizations of the same coinductive relation. In this specific case,
we could not prove the important left up-to 7 technique for divsim.

This result of equivalence with divergence-sensitive weak simulation is uncommon for notions
of simulation used in verified compilation, as most of them are equivalent to normed simulation
(with the notable exception of weak-tau simulation, as studied in Section 7), which is sound but
not complete with respect to divergence-sensitive weak simulation. The mutually coinductive
characterization of divergence preservation was key to achieve that.

As a final note, we also defined implicit normed simulation in Rocq, proved that it implies
pdiv-simulation[# Indsim.v:101] and proved that on a simple LTS pdiv-simulation holds
but not implicit normed simulation, confirming that normed simulation is more restrictive
[#® 1IndsimCounterExample.v:85].

3.5 A Proof of Simulation

This section demonstrates how to establish the simulation result between the two LTSs shown in
the introduction (Figure 1). We also proved it in Rocq [# SimExample.v:52].
We would like to show sim ¢, u, using pdiv-simulation and up-to techniques, starting from a
simple simulation candidate X containing only (fy, 1y). The initial proof goal is: = simF ‘R ty uy.
Unfolding the simulation game, there are three possible transitions from £, that should be taken
into account.

. 1 5 ty can be answered by u,, stagnating. We can try to do so using the left up-to rtechnique,
which yields: = simF ‘R t; u,.
We got back our previous proof goal, so the up-to 7 technique is not a viable approach here.
We have to use the more general stagnation diagram from Figure 7 with Lemma 3.3, which
yields: = ) “R uy Aty ‘R g, Up-
The ‘R part of the proof goal is immediate from the coinduction hypothesis. As for the ‘% 3,
goal, one can prove divpres ; . This reduces to divpres &, u;, which is easily proved as
uy is a silently diverging state [ SimExample.v:41].

. 1 5 t; can be answered by 1, 5 uy, yielding: = t; ‘R uy.
We apply the up-to simulation step technique: - simF *& t; u;.
We unfold the simulation game. To #; 5 ty, Uy answers U, 5 uy. The proof goal becomes:
oty R uy.
Again, we apply the up-to simulation step technique, and play the simulation game. As
there is no outgoing transition from #,, this concludes this case.

b b
« ty — I3 can be answered by uy — us, yielding: - #3 “® us.
We apply the up-to simulation step technique. The only outgoing transition from f3 is #3 5 by,
to which u3 can only answer by stagnating. This time it will do so using the left up-to v


https://gricad-gitlab.univ-grenoble-alpes.fr/chappen/rocq-sims/-/blob/v0.1/theories/DivSim.v#L87
https://gricad-gitlab.univ-grenoble-alpes.fr/chappen/rocq-sims/-/blob/v0.1/theories/IndSim.v#L101
https://gricad-gitlab.univ-grenoble-alpes.fr/chappen/rocq-sims/-/blob/v0.1/examples/IndSimCounterExample.v#L85
https://gricad-gitlab.univ-grenoble-alpes.fr/chappen/rocq-sims/-/blob/v0.1/examples/SimExample.v#L52
https://gricad-gitlab.univ-grenoble-alpes.fr/chappen/rocq-sims/-/blob/v0.1/examples/SimExample.v#L41
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technique, so that we do not have to perform another proof of divergence preservation. The
goal becomes: = simF ‘R t; u;

As before, there is no outgoing transition from #,, so we can unfold the simulation game to
conclude this final case.

This result relies on a divergence preservation proof (in its first case), a kind of reasoning that
is not available with variants of normed simulation, which explains why our proof attempt in
Section 2.3 failed.

4 A Parameterized Notion of Simulation

The previous section introduced pdiv-simulation, a novel characterization of divergence-sensitive
weak simulation, and defined a few basic reasoning techniques. The next step would naturally
be to prove more results about this simulation. But before getting to that, this section will first
generalize the previously introduced pdiv-simulation to a parameterized notion of simulation that
captures not only divergence-sensitive weak simulation but also strong simulation, weak simulation,
deadlock-sensitive simulation, and more.

The point is that there exist many subtle variants of simulation, whose associated theories are
vastly similar. Studying them jointly allows to factor out a lot of work, and is particularly relevant
when many variants of simulation have, to our knowledge, never been studied through the lens of
coinduction up-to.

This section considers three parameters that effect the simulation game in distinct ways, and that
can be combined to yield various notions of simulation, with a total of 12 possible combinations.

4.1 Definition

The parameterized simulation functor (still noted simF as the pdiv-simulation functor becomes a
particular case of it) is indexed by three parameters that tweak the simulation game:

« D e {delay, nodelay}: When t performs a transition, should u answer immediately with the
same transition (nodelay) or can u delay its answer with a series of 7 transitions (delay)?

o F € {freeze, freeze_div,nofreeze}: When t performs a 7 transition, can u stay in place
(freeze) or does it necessarily have to answer with a 7 transition (nofreeze)? If it can stay
in place, should we make sure divergence is preserved (freeze_div)?

« £ € {nolock, lock}: When tis stuck and cannot take any transition, should u be required
to be stuck as well (1ock)?

The parameterized simulation diagrams implementing this concept can be found in Figure 9. In
this figure, t +» means that t has no outgoing transition and is thus stuck. The disjunctions in the
figure materialize different possible ways of answering a same simulation challenge. Some of the
diagrams are conditioned on the value of the parameters, they are omitted if the condition does not
match.

The non-parameterized pdiv-simulation studied in the previous section corresponds to 2 =
delay, & = freeze_div, and £ = nolock. Other combinations of the parameters lead to distinct
notions of simulation, some of them being well-known. Table 1 sums up the possible combinations
of D and ¥, assuming £ = nolock. Strong simulation, weak simulation, and divergence-sensitive
simulation are standard. The three other notions are less interesting by themselves, but are valu-
able proof devices for variants of weak simulation, as Section 4.3 will establish. The name “plus
simulation” comes from the fact that for this notion the answer to a 7 challenge has the shape 7.
This name has also been used with a similar definition in CompCert [20]. Analogously, the name
“option simulation” comes from the fact that for this notion the answer to a r challenge has to be
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Fig. 9. The parameterized definition of ndiv-simulation[# Sims.v:124]. Definition of the &, game omitted
(see Figure 6).

D/ F | nofreeze freeze_div freeze
nodelay | strong divergence-sensitive “option” “option”
delay | “plus” divergence-sensitive weak weak

Table 1. Notions of simulation we obtain depending on the parameters freeze and delay

either a 7 transition, or nothing. Option simulation is reminiscent of the expansion preorder used
in a weak bisimulation setting [1], and known as euttge in the Interaction Trees library.

The third dimension, £, is not depicted in Table 1. When £ = lock, one can simply prepend
“deadlock-sensitive” or “complete” to the names in Table 1. Indeed, it materializes deadlock sensitivity.
The story of deadlock sensitivity is similar to the story of divergence sensitivity from Section 2.2:
with a standard weak simulation, the empty process (a stuck state that cannot take any transition)
is trivially simulated by every possible state, and as a result compiling any program to a stuck
program is correct with respect to weak simulation. Deadlock sensitivity is however not as critical
as divergence sensitivity because LTSs for programming language semantics can often be built
to not have any stuck state, making deadlock sensitivity irrelevant. When deadlock sensitivity is
still needed, it is relatively straightforward to augment a notion of simulation with it, as does our
parameter L.

These various notions of simulation can be compared: in particular, complete strong simulation
(with parameters (D, F, £) = (nodelay, nofreeze, lock)) is the strongest, and weak simulation
(with parameters (D, F, £) = (delay, freeze, nolock)) is the weakest.

LEMMA 4.1 (COMPARING THE VARIOUS NOTIONS OF SIMULATION [ Sims.v:796]). nofreeze —
freeze_div = freeze;nodelay = delay; lock = nolock.

4.2 Asymmetric up-to Techniques

This section defines several up-to techniques for parameterized pdiv-simulation. As a reminder,
up-to techniques are theorems that transform a simulation up-to candidate, which is the setting we


https://gricad-gitlab.univ-grenoble-alpes.fr/chappen/rocq-sims/-/blob/v0.1/theories/Sims.v#L124
https://gricad-gitlab.univ-grenoble-alpes.fr/chappen/rocq-sims/-/blob/v0.1/theories/Sims.v#L796
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Fig. 10. Examples for the four asymmetric up-to techniques. States ¢, ', u, u’ can have arbitrary outgoing
transitions.

are working in. The particular case of transitivity is addressed in Section 4.3. The Choice Trees case
study (Section 5) will define a few more specialized up-to techniques.

The present section focuses on asymmetric up-to techniques, that act either on the left-hand
side or on the right-hand side of R. Figure 10 sums up the four up-to techniques that this section
defines, on small examples. These techniques are meant for backward reasoning: they transform a
proof goal into one or several smaller proof goals.

4.2.1 Left and Right up-to tau. These up-to techniques have already been discussed in Section 3.3.
They can be generalized to parameterized simulation, with additional conditions.

For the divergence-sensitive variants of simulation (i.e., ¥ = freeze_div), the left up-to tau
technique allows to consume a 7 transition from the left state without any answer from the right
state of the simulation and without a divergence preservation side condition, which is precisely
what is allowed in the simulation game when J = freeze. This provides a nice framework for
formulating the left up-to tau technique, as a more relaxed variation of the up-to simulation step
technique.

LEMMA 4.2 (RELAXED UP-TO SIMULATION STEP FOR IDIV-SIMULATION|[# Sims.v:915]). If X is a
(D, freeze_div, £)-simulation candidate, then for all states t and u,

SIMF(p freeze gyt =— tRu

As a consequence of this result, in a simulation proof with # = freeze_div, only one divergence-
preserving simulation step is necessary, then regular simulation steps are sufficient. Intuitively,
the reason is that these additional simulation steps will at worst consume a finite number of 7
transitions on the left-hand side before tying the coinductive knot. For this to be safe, the right-hand
side needs to also perform at least one transition, which is ensured by the divergence-preserving
step.

The right up-to tau technique allows to consume 7 transitions on the right-hand side. Because it
consumes more 7 transitions on the right-hand side than on the left-hand side, it naturally requires
D = delay.

THEOREM 4.3 (RIGHT UP-TO TAU TECHNIQUE [ Sims.v:453]). If R is a (delay, F, £)-simulation
candidate, then

-
Viuvw', u— u' At Ru = tRu.


https://gricad-gitlab.univ-grenoble-alpes.fr/chappen/rocq-sims/-/blob/v0.1/theories/Sims.v#L915
https://gricad-gitlab.univ-grenoble-alpes.fr/chappen/rocq-sims/-/blob/v0.1/theories/Sims.v#L453
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4.2.2  Left and Right up-to epsilon. Up-to epsilon techniques push a bit further the up-to rtechniques.
They “reduce choice” by removing some transitions from an LTS. These are a generalization of
the “up-to epsilon” techniques of Choice Trees [9], but also of the built-in asynchronous progress
techniques of FreeSim [12].

The left up-to epsilon technique splits ¢ into a partition S of “sub-states” with less outgoing
transitions, in order to split the simulation proof into smaller pieces.

THEOREM 4.4 (LEFT UP-TO EPSILON TECHNIQUE [# Sims.v:562]). Lett and u be states, S a set of
states, and R a simulation candidate with £ = nolock.”

1 I
((Vlt’,t—>t’ == EIsES,s—>t’)/\Vs€S,sﬂ€u) = tRu

The right up-to epsilon technique removes some of the outgoing transitions from u.

THEOREM 4.5 (RIGHT UP-TO EPSILON TECHNIQUE [# Sims.v:575]). Let R be a simulation candidate
with £ = nolock.

1 l
Vtuu’,((Vlu",u'—>u” — u—>u”)/\tj€u’) — tRu

These two techniques are more general than their up-to 7 counterparts, but they operate with the
assumption that removing some of the outgoing transitions transitions from a state gives another
valid state of the LTS. This is to some extent the case for Choice Trees, but not for CompCert. For
the latter, the up-to epsilon techniques are not applicable.

4.3 Transitivity and Rewriting Similar Terms

In a verified compiler, it is crucial to have a notion of simulation that is transitive, as it allows
composing proofs of simulation for the various compilation passes into the end-to-end proof that
the source program simulates the final compiled program. Our parameterized simulation is indeed
transitive for all the possible values of parameters.

THEOREM 4.6 (TOP-LEVEL TRANSITIVITY [# Sims.v:752]). simp g ) is transitive for all the possi-
ble values of D, &, and L.

In a coinduction up-to setting, one can hope to go further than this “top-level” result about sim,
and prove a transitivity result about simulation candidates R. Because results about coinduction
candidates can be transported for free to their greatest fixpoints, such an up-to technique implies
the above top-level transitivity result, and it has additional benefits. A major use case of up-to
transitivity is that it allows rewriting similar terms during simulation proofs: if one has already
established that sim a b and now desires to prove that a ® ¢, it suffices to prove that b R c. This
special case is called up-to similarity.

The validity of up-to transitivity depends on the values of the parameters.

THEOREM 4.7 (UP-TO TRANSITIVITY [#Sims.v:1160]). Let R be a (nodelay, F, £)-simulation
candidate R. If furthermore F # freeze_div, then R is transitive.

As we will now justify, the up-to transitivity technique is unsound for the notions of simulation
not covered by the above theorem, in particular the weak variants of similarity. This is not surprising,
as this limitation had been noted for weak bisimulation several decades ago [31].

"Both up-to epsilon theorems can be adapted to deadlock-sensitive simulation, but this requires additional hypotheses. We
omit the details, see our Rocq development for the exact statement.


https://gricad-gitlab.univ-grenoble-alpes.fr/chappen/rocq-sims/-/blob/v0.1/theories/Sims.v#L562
https://gricad-gitlab.univ-grenoble-alpes.fr/chappen/rocq-sims/-/blob/v0.1/theories/Sims.v#L575
https://gricad-gitlab.univ-grenoble-alpes.fr/chappen/rocq-sims/-/blob/v0.1/theories/Sims.v#L752
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Why up-to transitivity does not hold. Let us try to prove the following weak simulation result,
with t and u arbitrary states: SiMge1ay freezenolock) f 4 Our initial proof goalist R u + simF R tu.

Assuming up-to transitivity holds, it reduces tot R u  simF Rt (O—T> t )/\ simF R (O—T> t ) U

The left proof obligation is trivially verified because the LTSs are weak-similar. As for the right one,
the left 7 transition can be consumed, leading to t ® u + t R u, which concludes the proof. Weak
similarity up-to transitivity would thus relate all the states with each other: it does not hold.

Fortunately, several strategies have been devised in the setting of weak bisimulation up-to [26, 28,
31] to still establish restricted statements of up-to transitivity. In the following, we adapt two such
strategies to our parameterized simulation: the expansion preorder, and the distinction between 7
and non-7 transitions.

Theorem 4.8 is a direct adaptation of the expansion preorder used for weak bisimulation. As we
have seen, the main challenge with weak (bi)simulation up-to is that in the general case it could
introduce 7 transitions in the left state that could then be exploited to consume the coinductive
guard and trivialize any (bi)simulation proof. A possible answer is to rewrite with a variant of
simulation that does not permit to introduce more 7 transitions on the left. In the case of weak
bisimulation, the expansion preorder can fill that role. In our case, parameterized pdiv-simulation
has a flag that exactly does that: the delay flag, which suggests a restricted statement of up-to
similarity for the left-hand side.

THEOREM 4.8 (LEFT UP-TO SIMILARITY [ Sims.v:1120]). If R is a (D, F, £)-simulation candidate,
then:

Vit u, SiMpodetay, ) 1 At Ru = tRu

For instance, during a proof of weak simulation up-to companion, the above theorem allows
rewriting terms that are at least option-similar (as per Table 1) on the left-hand side. It is also
possible to rewrite terms that are strongly similar, as it is even stronger than option similarity.

There is an analogous additional difficulty for divergence-sensitive notions of simulation: rewriting
on the right-hand side could add 7 transitions that could then be artificially used to trivially prove
divergence preservation. Again, a possible answer is to rewrite with a variant of simulation that
does not permit to introduce more 7 transitions on the right. Our parameterized simulation has a
flag that does exactly that: the freeze flag, which suggests a restricted statement of up-to similarity
for the purpose of rewriting terms on the right-hand side.

THEOREM 4.9 (RIGHT UP-TO SIMILARITY [ Sims.v:1013]). If R isa (D, F, £)-simulation candidate
with & # freeze_div, then:

Viw u,t Ru' asimep g pyu' u = tRu
Alternatively, if R is a (D, freeze_div, £)-simulation candidate, then:

Viu' u,t R w' ASim(p nofreeze o) W 4 = tRu

Both on the left and right sides, the problems with rewriting similar terms comes from r transitions.
This suggests that, in states with no outgoing 7 transition, unrestricted rewriting is possible.
Following [28], we can tweak the simulation game in Figure 9 so that the visible [ diagram leads
to R instead of R, essentially hardcoding transitivity into the simulation diagram. With this
definition, we get one more up-to technique for rewriting similar terms.
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Fig. 11. The interpretation of the four kinds of nodes of values of type ctree E B X in terms of a labelled
transition system. Dashed transitions represent an inductive search down the tree for a transition.

THEOREM 4.10 (UP-TO SIMILARITY FOR NON-TAU STATES [# Sims.v:991]). If R is a (D, F, £)-
simulation candidate, then for all states t t’ u u’ such that t and t’ have no outgoing 7 transitions,

simep g oyt At R Asimp 5 pyu' u = tRu

This time, there is no restriction on the parameters of the simulation game, and rewriting is
allowed both on the left and right sides.

Throughout this section, we have defined various up-to techniques for our parameterized simu-
lation, to allow for more compositional reasoning. In particular, Theorems 4.2, 4.8, and 4.9 were
heterogeneous in the values of the simulation parameters, which justifies our use of a parameterized
definition.

5 Application: Choice Trees

Until now, we made few assumptions about the LTSs we are working with. This relatively generic
setting was still sufficient to define various notions of simulation and prove a number of properties
about them. This section finally instantiates our theory to a more concrete setting of monadic
interpreters. Interaction Trees (ITrees) [37] are a data structure for representing and reasoning
about recursive and impure programs that has gained a lot of attention these past few years,
including for verified compilation projects [38]. ITrees can be seen as structured deterministic
LTSs shallowly embedded in Rocq. Various extensions to nondeterministic LTSs have then been
proposed [3, 8, 10, 12]. This section focuses on Choice Trees (CTrees) [9] because among these
notions they capture the widest class of LTSs: to our knowledge they are the only ITree-like
structure that can capture the LTSs in Figure 1.This generality has its drawbacks [3] but provides
us an interesting setting.

One of the intended use cases of CTrees is the formalization of the semantics of programming
languages. In particular, they have been used to model a small concurrent subset of the semantics
of LLVM IR [11]. The library notably includes several notions of simulation and bisimulation based
on standard process algebraic definitions, with several coinduction up-to techniques. But as of now,
the CTrees library focuses more on notions of strong (bi)simulation, and does not come with a
formalization of divergence-sensitive weak simulation. In this section, we aim to instantiate our
parameterized simulation on CTrees and derive a proof system for our parameterized simulation
on CTrees, in order to augment them with a notion of divergence-sensitive weak simulation.

5.1 Basic Definitions

Choice Trees are a coinductive model for the semantics of programs, in particular concurrent
programs, defined in Rocq as follows:

CoInductive ctree (E B : Type -> Type) (R : Type) :=

| Ret (r : R) (* pure computation *)

| vVis {X : Type} (e : E X) (k : X -> ctree) (* external event *)

| Br {X : Type} (c : B X) (k : X -> ctree) (* delayed branching =*)

| Step (t : ctree) (* internal computation x)


https://gricad-gitlab.univ-grenoble-alpes.fr/chappen/rocq-sims/-/blob/v0.1/theories/Sims.v#L991
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An object of type ctree E B Xis a possibly infinite tree that can contain four kinds of nodes
that each have their own semantics, as defined above.

« Ret nodes represent the final return of a value of type X at the end of an execution. They
have no successors.

« Vis nodes represent effects: the program emits an event e € E X to the environment in
accordance with the signature of events E, and the environment answers with a value of
type X.

« Step nodes represent internal computations, they play the same role as 7 transitions.

« Br nodes represent nondeterministic choices, emitted in accordance with the signature B.

Figure 11 depicts a straightforward injection of CTrees into LTSs: Ret nodes generate a single
transition into a stuck state, labelled with the return value. Vis nodes generate one transition per
possible answer from the environment, each labelled with both the request and the answer. Step
nodes generate a 7 transition. Br nodes do not generate any transitions, they are collapsed in the
LTS.

From this injection, the CTrees library defines in particular strong simulation and complete
simulation on the LTSs underlying CTrees, and defines up-to techniques and a proof system for
both of these notions of simulation on CTrees. However, we are not aware of any effort to develop
a notion of divergence-sensitive weak simulation for CTrees,® despite its crucial role for verified
compilation. By instantiating our parameterized simulation on CTrees, we can vastly extend the set
of supported notions of simulation on CTrees, and develop a common parameterized equational
theory for all of these simulations. To instantiate parameterized simulation on CTrees, we need to
provide a method to build an LTS from a CTree. Because the CTree library already defines such an
injection, this is immediate [# CTree.v:30].

5.2 A Proof System

Due to the structure inherent to CTrees, it is possible to reason equationally about simulations that
involve CTrees. The CTrees library defines proof systems for strong simulation and for complete
simulation, with some duplication between them. This section defines a proof system with rules
conditioned on the values of the simulation parameters, yielding a concise unified theory for
parameterized simulation. These rules are depicted in Figure 12. In this figure, ¢ — means that there
exists at least one (possibly 7) transition from .

This proof system is meant to be used during coinductive proofs of simulation, the rules act on
a parameterized simulation candidate R. Just like up-to techniques, these results can trivially be
transported to top-level similarity, by replacing both X and simF X by sim in the rules.

The (ret), (step), and (vis) rules are straightforward: they match the constructors of both
sides and consume the coinductive guard. As for the other rules, they are direct consequences
of up-to techniques and simulation diagrams of parameterized simulation. The (step_1) rule is a
consequence of the freeze diagram from Figure 9. The (step_1") rule is a consequence of Lemma 4.2.
The (step_1'") rule is a consequence of the freeze_div diagram from Figure 9. The (step_r) rule is
a consequence of Theorem 4.3. The (br_1) rule is a consequence of Theorem 4.4. The (br_r) rule is a
consequence of Theorem 4.5. The (stuck) rule is a consequence of the lock diagram from Figure 9.

These rules, proved in Rocq, provide sound proof systems for coinductive proofs of the various
variants of simulation covered by our parameterized definition. It is however not complete, but one
can always write a simulation proof that mixes the use of these rules and lower-level results when
needed.

8The “strong simulation on the Br-aware LTS” is arguably a notion of weak simulation, but it is not divergence-sensitive.
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Fig. 12. Proof rules for coinductive proofs of parameterized simulation on CTrees[# CTree.v:450]

5.3 Up-to Bind

The above rules act on CTree constructors, but CTrees can also be built using various combinators.
Several have been defined and studied. This section focuses on bind and iter, and establishes ex-
pected properties to reason about them in parameterized simulation proofs. These two combinators
are particularly interesting because they respectively encode sequencing and loops,

The monadicbind : ctree E B X -> (X -> ctree E B Y) -> ctree E B Y operator takes
a CTree t, a continuation k, and replaces every node of the form (Ret x) in the CTree with the
continuation k x. It is especially useful to represent sequencing computations. As with ITrees and
similar structures, a proof of simulation can be split into two at a bind through the use of an up-to
technique.

THEOREM 5.1 (UP-TO BIND [# CTree.v:327]). Let R be a (D, F, £)-simulation candidate with
D =delay v F # freeze_div. Ift, t’ are CTrees and k, k’ are continuations, then:

(£ =nolockv (Vx,kx = Ak’ x 5))asimtt’ A(Vx,kx Rk’ x) = bindtk R bindt’ k’

The restriction on 2 and 7 is not because of a corner case that makes the result not hold for
divergence-sensitive option simulation. We actually believe that it does also hold in that case, but
that we are lacking the right tools to establish this result for the moment. Our current proof for the
up-to bind technique is already quite complicated (a few hundred lines counting auxiliary lemmas
when our other proofs are all below 100 lines) so we leave this to future work. Still, the proof as it is
now establishes an up-to bind technique for 10 notions of simulation. Our parameterized definition
was key to avoid major code duplication between different proofs of up-to bind principles.

A notable corollary of the up-to bind principle is that similarity is preserved by the iteration
combinator. There are two distinct iteration combinators defined on CTrees: one that guards
recursion with a unary Br node, and one that guards recursion with a Step node. We focus on the
second one, which is more standard and matches the iteration combinator from ITrees. Its signature
isiterS {I: Type} (body : I -> ctree EB (I + X)) (i : I) : ctree E B X.
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The given body of the loop is initially executed with the given i parameter. The body can return
a value in I, in which case the loop is re-entered, or in R, in which case the loop is exited and
the value is returned. Because iterS is defined in terms of bind, its compatibility with similarity
is a direct consequence of Theorem 5.1. It inherits the same requirements on the values of the
parameters 2 and F.

COROLLARY 5.2 (iterS PRESERVES SIMILARITY [ CTree.v:605]). IfD = delayv F = freeze_div,
then:

Vi, simip 5 ¢y (body i) (body' i) == Vi,simp 5 ) (iterSbody i) (iterSbody' i)

This result is valuable in that it allows to reason about possibly diverging programs at the top-level
using only sim and not a simulation candidate, as long as the possible divergence comes from
the iterS combinator. This avoids the need for a coinductive proof in sufficiently simple settings,
typically sequential programs.

6 Application: CompCert

CompCert [20] is certainly the most notable verified compilation project. It contains many successive
verified compilation and optimization passes from CompCert C, a language close to ISO C 2011 [18],
down to assembly code. All the intermediate representations are formalized as LTSs (through
small-step operational semantics), and all the CompCert passes come with a behavioral inclusion
result, more specifically an explicit normed simulation result. Apart from the very first intermediate
representation, the LTSs considered are all deterministic, which makes for simpler proofs of
simulation. This section instantiates pdiv-simulation on CompCert. We first give our motivations
for this application, before discussing the instantiation and an actual proof of an existing compilation
pass.

Motivation: match_states. Of course, the explicit normed simulation of CompCert is not based
on modern coinduction up-to libraries, as they did not exist at the beginning of the CompCert project.
Rather, it is defined propositionally, in the style of Definition 2.1. As a consequence, simulation
relations (typically named match_states in CompCert) have to be entirely characterized from the
start in proofs of simulation. Some of these match_states are quite complex, spanning several dozen
lines of code. They are sometimes even longer than the relational description of the transformation
being proved.” Because coinduction up-to allows to only partially specify the simulation relation,
its use could partially alleviate this problem. But coinduction up-to is not a silver bullet, there is
some complexity inherent to large-scale semantics such as that of CompCert.

Motivation: The explicit norm. Most proofs of normed simulation in CompCert contains not only
a simulation relation, but also a measure on states, because CompCert relies on explicit normed
simulation. This explicit measure can be uncomfortable to work with, and a modern alternative could
alleviate this burden. Furthermore, normed simulation is not complete with respect to divergence-
sensitive weak simulation, unlike our pdiv-simulation. This is however less relevant for CompCert
as long as its intermediate representations are fully deterministic, because normed simulation and
divergence-sensitive weak simulation do coincide in a deterministic setting.

Motivation: Up-to techniques and eventually simulation. Eventually simulation is a proof technique
for normed simulation introduced a few years ago in CompCert.!” In general terms, it transforms a
match_states relation so that a finite number of 7 transitions can be skipped on the left-hand side

°See for instance the relation for the inlining pass: https:/github.com/AbsInt/CompCert/blob/
0eabf20d971e4fd0c7c92dad8a171af0c0fe3ed7/backend/Inliningproof.v#L858
Ohttps://github.com/AbsInt/CompCert/blob/0eabf20d971e4fd0c7c92dad8al71af0c0fe3ed7/common/Smallstep.v#L773
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of the simulation, with the same use cases as our left up-to 7 technique. This eventually simulation
is in fact an up-to technique, because an up-to technique is precisely a function that transforms
a simulation candidate. It is currently defined propositionally, outside of any coinduction up-to
framework, which makes things harder: up-to principles have to be explicitly integrated in the
simulation relations of proofs that use them, and they cannot be combined at will. Indeed, simulation
diagrams in CompCert are roughly of the shape “after one simulation step we get back to the
match_states relation”, but diagrams of proofs that make use of eventually simulation are of the
shape “after one simulation step we get back to the relation obtained by applying the eventually
transformer to the match_states relation”. Using the companion here, as we did throughout this
paper, would both lighten proofs that make use of such up-to techniques, and make them usable at
no additional cost in other simulation proofs.

The instantiation. Because CompCert is already based on LTSs, instantiating our theory on it is,
once again, effortless, taking only about 20 lines of Rocq [# compCert.v:30].

Common subexpression elimination. We show the applicability of our simulation on CompCert by
porting an existing simulation proof to use it, specifically the proof of simulation of the common
subexpression elimination (CSE) pass, an optimization pass that factors out redundant expressions.
In its current state in CompCert, it uses the eventually simulation technique. With pdiv-simulation,
this is not necessary because the equivalent left up-to 7 technique has already been proved in a
generic setting and can be invoked on the fly during the proof. Overall, we modified a few dozen
lines in this 300-line proof to port it to pndiv-simulation[# compcert.v:163]. The proof structure is
largely the same as before, but it now occasionally invokes the upto_E@_1 lemma (a specialization
of the left up-to 7 technique to CompCert) instead of exploiting a hardcoded eventually simulation
technique.

Discussion. We eluded many internal details of CompCert for brevity, such as the specific handling
of undefined behaviors (it poses no particular challenge). Our goal in this section was to demonstrate
that our formalism can be instantiated on a realistic verified compiler, and that doing so does not
introduce additional complexity. On the contrary, it can potentially simplify simulation proofs. We
did not push this case study further, porting more compilation passes or other parts of the CompCert
codebase would be a tedious endeavour with little benefit. Rather, we believe pndiv-simulation could
be a valuable additional tool for the development of future compilation passes, even more so if
someday more CompCert intermediate representations are made nondeterministic.

7 Related Work

Freely-stuttering simulation. Freely-stuttering simulation, or FreeSim [12], is a notion of simu-
lation that attempts to combine the strengths of implicit normed simulation and explicit normed
simulation. The Rocq formalization of FreeSim relies on a relatively abstract setting of structured
LTSs in order to make it usable in different verified compilation projects, with two case studies:
DTrees (a data structure similar to CTrees) and CompCert. On the flip side, these various aims
of FreeSim ultimately make the definition of freely-stuttering simulation quite complicated: it
relies on a combination of induction, coinduction and two decreasing measures. For a more precise
definition we refer the interested reader to the introductory FreeSim paper. Our definition of pdiv-
simulation is arguably simpler, and is furthermore complete with respect to divergence-sensitive
weak simulation.

Another limitation of FreeSim is that it can only be applied on LTSs of a very specific shape:
LTSs in which any state that has an outgoing observable transition has no other outgoing transition
at all. This is not the case for the LTSs in CompCert, so the FreeSim development uses another
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definition of FreeSim for their CompCert case study, further complexifying the development. The
FreeSim paper claims that any LTS can be transformed to an LTS of the expected shape, but does
not formally prove it. We propose such an LTS transformer in our development [# FreeSim.v:20]
in order to prove that FreeSim on a “FreeSimized” LTS'! implies our implicit normed simulation
on a standard LTS [# Freesim.v:343]. Because implicit normed simulation is itself strictly more
restrictive than pdiv-simulation, our notion of simulation is indeed more complete than FreeSim.

FreeSim has two strengths in comparison with pdiv-simulation: it supports angelic nondeter-
minism, which is out of the scope of the current paper, and it has a mechanism for remembering
asynchronous progress. This second strength can be emulated by our up-to epsilon techniques in
simple cases, and we believe it could be reproduced in the general case using up-to techniques
without changing our definition of pdiv-simulation, but we leave this to future work.

Weak-tau simulation. CompCertTSO was a successful (but now unmaintained) project to extend
CompCert to concurrent programs [36]. As is the case in CompCert, its compilation passes are
proved correct using explicit normed simulation results, with one exception. On top of extending
CompCert’s compilation passes to concurrent programs, CompCertTSO adds three passes of
redundant fence elimination, an optimization specific to concurrent programs. In one of these
three passes, normed simulation is not complete enough for the desired simulation result, so the
CompCertTSO authors designed a novel notion of simulation specifically for this proof: weak-
tau simulation [34]. A weak-tau simulation is a pair of mutually-defined relations of simulation
and divergence preservation, making this notion quite close to pdiv-simulation in spirit (though
formulated in a different style). Yet we are confident that it is not complete with respect to divergence-
sensitive weak simulation,'? because the divergence preservation relation of weak-tau simulation
follows the same basic idea as ours but without the inductive case on the right of Figure 6. This

slight omission has major consequences: a simulation result as simple as sim (O—> t ) t becomes

unprovable. For the same reason, the states #; and u3 of our introductory example from Figure 1
are not weak-tau similar, which implies that ¢, and u, are not either.

Divergence sensitivity. [22] studies divergence-sensitive weak bisimulation, and gives a verifi-
cation method for it, dubbed inductive weak bisimulation. While it could certainly be adapted to
divergence-sensitive weak simulation, this verification method relies on first establishing a weak
bisimulation and only then verifying divergence preservation, a proof strategy that is not viable in
a coinduction up-to setting.

Parameterized simulation. We are not aware of any pre-existing notion of parameterized simula-
tion, however notions of parameterized bisimulation have been proposed. In 1993, van Glabbeek
famously compared 155 notions of bisimulation [35] thanks to carefully parameterized definitions.
More recently, [39] proposed a Rocq formalization of a parameterized notion of bisimulation that
covers weak and strong bisimulation as well as the expansion preorder [1]. This Rocq formalization
contains a study of up-to techniques for these three notions of bisimulation. It is however restricted
to deterministic LTSs.

Simulations in verified compilation. Actual verified compilation projects are usually based on
deterministic LTSs [19, 20, 38] because it makes for simpler proofs. As is visible in our discussion
about CompCertTSO, things get more complicated in a concurrent setting. Beyond divergence
sensitivity, other dimensions are worthy of interest. For instance, [21] defines a notion of refinement

We actually do not consider FreeSim itself, but FreeSim’s variant of implicit normed simulation, proved equivalent to
FreeSim in its introductory paper.
12Note however that we have not formalized any result about weak-tau simulations in our Rocq development.
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for concurrent programs that separates traces depending on memory access locations, yielding a
notion weaker than usual notions of simulation, but this is orthogonal to our contribution.

8 Discussion

This paper introduced pdiv-simulation as a powerful notion of simulation equivalent to classical
divergence-sensitive weak simulation, and proposed various up-to techniques. Because we main-
tained a relatively abstract setting in Sections 3 and 4, our study can be applied to various verified
compilation projects, including CompCert, and could also be applied to process algebras and model
checking all the same. Our claims are formalized in Rocq, and we strived to keep the core theory
around our parameterized simulation[# sims.v:428] clean to make it more approachable. Nearly all
of our proofs about generic parameterized simulation are below 30 lines of Rocq, confirming the
power of the coinduction up-to companion proof approach. Beyond our technical contributions,
one goal of this paper is to increase awareness about coinduction up-to in the verified compilation
community, in particular through Section 6. We based our work on modern coinduction up-to
companion and tower induction, but the later notion of diacritical companion [6] could possibly
simplify some of our proofs around up-to techniques.

Design note: LTS vs simulation game. Some features can be equivalently encoded either in LTSs
or in the simulation game, such as deadlock sensitivity (encoded as a parameter in our simulation
game) or undefined behaviors (that we prefer to leave to the LTS). Both have benefits and drawbacks,
time will tell if our design choices in this regard were the right ones.

Perspectives: beyond simulations. A possible ambitious extension of our work would be to mecha-
nize and study a parameterized notion of bisimulation. Because there are many ways to symmetrize
a simulation functor into a bisimulation functor, this could quickly become unmanageable [35].
A possible starting point could be to combine the recently-proposed notion of intertwined bisim-
ulation [9] (basically a delay-style variant of = -bisimulation [30]) with pdiv-simulation into a
divergence-sensitive notion of bisimulation for verified compilation. Because bisimulation is signif-
icantly less relevant than simulation in verified compilation, we did not explore this perspective.
Another valuable extension could be to go beyond simulations and develop a compositional notion
of trace inclusion that handles divergence preservation in the spirit of pdiv-simulation. Again, we
leave this to future work.
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