
École Normale Supérieure de Lyon

Optimisations en compilation certifiée
—Encadré par David Monniaux, verimag—

Nicolas Nardino

Abstract
We try to develop a prepass instruction scheduling oracle for CompCert that is aware of register pres-
sure, in order to minimise spills, while retaining an efficient schedule.

We start from the existing list_scheduler, a greedy algorithm. We modify it to track register
usage, and when the pressure reaches a set threshold, we issue an instruction which decreases it the
most.
We try different methods of dealing with edge-cases, and benchmark them to choose which one to

keep.

Remerciements
Je tiens à remercier DavidMonniaux, monmaître de stage, pour les idées, pour l’aide apportée, et sim-
plement pour la possibilité de faire ce stage ; Sylvain Boulmé, co-encadrant, pour les mêmes raisons ;
ainsi que l’ensemble de l’équipe verimag pour l’accueil, et le café.

Contents

1. Introduction 3
1.1. CompCert . 3
1.2. Prepass scheduling, RTL and LTL . 3
1.3. Current oracles . 4
1.4. Challenging the current oracles . 5

2. The algorithm 6
2.1. Skeleton . 7
2.2. Pre-computations . 7
2.3. Tracking liveness . 8
2.4. Edge cases . 8

3. A variant of list_scheduler with another priority function 9

4. Benchmarks 9
4.1. Empirically determining an optimal threshold . 9
4.2. In number of spills . 10
4.3. Output code performance . 11

5. Conclusion 14

Appendix A. Source code 16

Annexe B. Contexte institutionnel 29

2

1. Introduction
1.1. CompCert

The correctness of compilers is a key part of producing correct programs. Even if the source code of a
program has a formal proof of correctness, there may be a bug in the compiler, and we have no reason
to believe that the output binaries do what we want.

Several studies have found bugs in many compilers ([ER08], [YCER11]). These bugs are insignifi-
cant in everyday use, butwhen dealingwith critical software, uponwhich highly sensitive information,
or even lives may depend—i.e.when a proof of correctness of the program is expected—then these is-
sues need to be solved.
TheCompCert1 compiler is an answer to this issue, as it ensures that the output program “behaves

as expected”: the following theorem has been formally proven.

Theorem 1.1 (Semantic preservation)
For all source programs S and compiler-generated codeC , if the compiler, applied to the source
S, produces the codeC , without reporting a compile-time error, then the observable behavior of
C is one of the possible observable behaviors of S.

Compilation in CompCert is done in several passes, from one Intermediate Language (IL) to the
next, and for each of these steps, there is a proof of the semantic preservation theorem, written with
the Coq proof assistant.

Verimag is maintaing its own fork of the CompCert compiler, in which some optimisations,
rather than being written in Coq, use oracle/validator pairs: the oracle, in OCaml, ouputs a possible
reduction of the input code, and the validator verifies that the symbolic execution of both yields the
same behaviours.

In the following, CompCert designates the fork of the CompCert compiler maintained by ver-
imag.

1.2. Prepass scheduling, RTL and LTL

Instruction scheduling is an optimisation pass found in all optimising compilers, when compiling to-
wards fully pipelined, in-order architectures, such as ARM/Aarch64. Its purpose is to re-order the
instructions to minimise stalling, without breaking any data dependency.
InCompCert, themain instruction scheduling pass is done before register allocation, allowing for

more flexibility as the only data dependencies present are true dependencies. However, the current
oracles are unaware of register pressure, thus can produce a schedule with more live registers than the
architecture allows for, resulting in more spills than necessary, and lower performances.
Register allocation happens between two ILs of CompCert: RTL and LTL. Both are generic as-

sembly languages, in which the code is represented by Control Flow Graphs (CFG), separated into su-
perblocks. Themain difference—there are others but they don’t matter to us—is that RTLworks with
an infinite number of pseudo-registers, while LTL uses the actual registers of the architecture we are
compiling towards.

1https://compcert.org

3

https://compcert.org

Prepass instruction scheduling is the very last optimisation pass of the RTL step, just before register
allocation.

We are trying to develop a prepass scheduling oracle that is aware of register pressure, in order to
reduce unnecessary spills. Or more precisely, register pressures, since most architecures have several
classes of registers—usually, general-purpose registers, to store addresse and integer data, and floating-
point registers specialised towards floating-point data and operations, usually bigger than general-pur-
pose registers.

1.3. Current oracles

There are several oracles currently implemented in CompCert, but themain one that is actually used
is a greedy algorithm (list_scheduler). When benchmarked, the code produced by the other ones
was almost never more efficient, and when it was, it was only by a small margin.
These oracles are at the core, algorithms for finding a topological order in a directed graph, with a

few quirks:

• There are time constraints between instructions

• If the resources allow it, multiple instructions can be scheduled at the same time

list_schedulerworks as follows:

Algorithm 1 list_scheduler
Require: A list of constraints between instructions
Ensure: A correct schedule of said instructions

Compute the longest paths from each instruction to the exit
Compute a maximum time bound for the problem, from constraints
Create a set of ready instructions: instructions which can be scheduled now
repeat

Find an instruction with the longest path to the exit in the ready set
if None can be scheduled then

Advance time (* Go to the next cycle *)
Update resources

else
Schedule it at current time
Update the ready set
Update resources

untilThe time bound is reached
if All instructions have been scheduled then

returnThe schedule
else

return None (* The original order will be kept *)

In short, the algorithm prioritises instructions with long paths to the exit. The resulting schedules

4

usually start with a long sequence of initialisations, leading to registers being live for longer, and po-
tentially, spills.

The same algorithm is also used in an other way: the problem is reversed, then a schedule is com-
puted, and then reversed (rev_list_scheduler). This leads to initialisations being scheduled as
late as possible, leading to maybe less efficient schedules, but fewer spills.
However, these are just general observations frombenchmarks, and since these oracles are insensitive

to register pressure, theremay exist examples where the schedule produced by them is less efficient than
the original order, because of spills created.

1.4. Challenging the current oracles

Finding such examples can be a first step in developping new oracles. All tests were donewithAarch64
as the target architecture, with 29 available general-purpose registers, and 32 floating-point registers.

Challenging rev_list_scheduler

int f(int k) {
int a1 = k;
int b1 = 2*a1;
int c = a1;
/* ... */
int a26 = k+25;
int b26 = 2*a26;
c += a26;
return b13 + /* ... */ b1 +

b14 + /* ... */ b26 + c;
}

This was the first example we found, and the one which was the most surprising at first. Indeed, it
does not spill when scheduled in the original order, orwhen using list_scheduler. However, spills
appear when scheduling using rev_list_scheduler, which seems to contradict the observations
mentioned earlier.
But this can be explained by taking a closer look at the way rev_list_scheduler schedules:

5

Figure 1: Scheduling of a dependency graph by rev_list_scheduler

out

1 2 · · · k

k + 1 k + 2 k + 3

Each node is an instruction, and its label is its position in the output schedule of revlist, in re-
verse order, starting at the end. In short, if all paths have same length, it schedules in a breadth-first
order, starting at the output. Therefore, in our example, where we have a dependency graph of the
sort, all the arihtmetic operations will be scheduled last, and all the initialisations, at the beginning,
leading to too many live registers at once, and thus, spills.

Challenging list_scheduler

Surprisingly few changes were needed to find an example that makes list_scheduler spill:

int f(int k) {
float a1 = (float) k;
float b1 = 2.*a1;
float c = a1;
/* ... */
float a30 = (float) k+29;
float b30 = 2.*a30;
c += a30;
return c + b1 + /* ... */ b30;

}

There is however a small caveat: this example works because of architecture resources limitations.
Indeed, list_scheduler will schedule the first load (a1), then the first floating-point operation
(b1) (because the necessary resources are free), but then, since float operations take a long time, it will
schedule the next load (a2), then the operation on it (b2). All the additions on cwill be delayed to the
end, so we need to keep the values of a<i> in live registers, or to spill them.

2. The algorithm
The oracle is largely inspired by [GH88]

6

2.1. Skeleton

The main skeleton of the algorithm is based on list_scheduler, with a few changes:

• we track register liveness during the whole execution (see 2.3)

• when the pressure gets too high, we switch to another mode, prioritising instructions that re-
duce it

There are also a few pre-computations needed, due to the current representation of superblocks in
CompCert, which will be detailed later (see 2.2).

Algorithm 2 reg_pres_scheduler
Require: A list of constraints between instructions, live entry registers for the superblock, informa-

tion on register usage by each instruction
Ensure: A correct schedule of said instructions

Compute the longest paths from each instruction to the exit
Compute a maximum time bound for the problem, from constraints
Create a set of ready instructions: instructions which can be scheduled now
Initialise necessary data structures (see 2.3)
repeat

if The pressure for register class t is above a set threshold (see 4.1) then
Find an instruction which decreases pressure along this class the most
if No instruction can reduce it then

See 2.4
else

Find an instruction with the longest path to the exit in the ready set
if None can be scheduled then

Advance time (* Go to the next cycle *)
Update resources & pressures

else
Schedule it at current time
Update the ready set
Update resources & pressures

untilThe time bound is reached
if All instructions have been scheduled then

returnThe schedule
else

return None (* The original order will be kept *)

2.2. Pre-computations

Since previous scheduling oracles in CompCert work only from a list of constraints, we need to add
more information to the problem type (oracles have type problem -> solution option).

• The list of live input registers of the superblock

7

• For each instruction, the list of argument and destination registers

• Typing information for each register (already present in the superblock type)

• For each register, a count of the number of times it’s referenced as an argument (we use reference
counting to track down when registers are freed)

Getting live input registers

In the superblock type in CompCert, we have the information of live output registers, therefore,
we only need to go back the sequence of instructions, removing destination registers from the list, and
adding back argument registers.

Reference counting

In a traversal of the sequence of instructions, for each instruction, we add for each argument register a
binding in a hash table, along with its class, to the number of time it has been encountered so far. In
the same traversal, we can build our lists of argument and destination registers.

2.3. Tracking liveness

To track pressure, we use an array of size the number of register classes, with initial values the number
of available register for each class for the target architecture. Each time a new register becomes live, we
decrement the value corresponding to its class, and increment it when a register is used as an argument
for the last time. To track this moment, we use reference counting, as previouslymentioned: the num-
ber of times a given register is referenced as an argument has been pre-computed, so when we issue an
instruction, we iterate on its list of arguments (pre-computed), and decrement the reference count of
each argument register. We use another hash table to track which registers are live (in order to know
when new register become live).

2.4. Edge cases

Several solutions for dealing with the case the pressure is above the threshold, but no instruction that can
be scheduled decrease itwere tested. The first one, whichwas a temporary solution, was to use a waiting
window, of at most 5 cycles, to see if such an instruction becomes available. If we are still in the same
situation after 5 cycles, we schedule an instruction as if the pressure was below the threshold.
This temporary solutionwas used for the first benchmarks, andwas themost effectivewhen it comes

to reducing the number of spills (see 4.2). However, stalling the processor is not ideal when trying to
produce efficient code. The next idea, was to then schedule an instructionwith the shortest path to the
exit, with the assumption that when its execution path ends, registers will be freed [GH88]. However,
this lead to a significant increase in spills, compared tolist_scheduler, whichwe could not explain.
What worked in the end was to do the opposite: schedule instructions with the longest path to the

exit, which do not increase register pressure.
This still leaves the case: all schedulable instructions increase register pressure. For this situation, we

used a waiting window.

8

3. A variant of list_scheduler with another priority function
As previouslymentioned, list_scheduler is at its core, an algorithm for finding a topological order
in a directed graph. For choosing the next instruction to schedule when several are available, we use a
total order on instructions: a lexicographical order on (−c, i), where c is the length of a critical path,
and i the original position of the instruction. It is a strict and total order on instructions, and we then
choose the next insttruction to be minimum for it, and issuable (i.e. it is ready, and the resources are
free).
Another idea for a scheduler that is sensitive to register pressurewas to always choose, at equal critical

path lengths, the instruction with the smallest pressure delta. This can be implemented by changing
this ordering function to a lexicographical order on (−c, δ, i), with δ the register pressure delta of
the instruction. However, this ordering function is not static, it changes along the execution of the
algorithm. For example, given two instructions:

A: X0 = 237;
B: X0 = 612;

Assuming X0 was not already alive, if A has already been scheduled, then B has a delta of 0, but of
+1 otherwise.
This alsomeanswe don’t differentiate between an instructionwhich frees a register of one class, and

captures a new register of another, and an instruction with a null delta on all classes.
This variant proved to be very ineffective at reducing spills when benchmarked (see 4.2).

4. Benchmarks
Benchmarks were done on a set of 150 programs generated by Yarpgen2.
Performance benchmarks were executed on a Raspberry Pi with an ARMCortex-A53 (Aarch64)
There are two significant values we are measuring here through benchmarks: the number of spills

produced by a particular schedule, and the number of processor cycles elapsed during its execution.
For the first, we count the number of matches of pattern

local\([0-9]+,[a-z]+\) = (X|D)[0-9]+

in the LTL code generated during compilation.
It should be noted that among the 150 programs generated by Yarpgen, only about a third had

spills with list_scheduler.
For the second, we simply execute the program, while locked on a single core, and measure the dif-

ference between the clock time before and after execution.

4.1. Empirically determining an optimal threshold

Determining an optimal threshold on the number of free registers belowwhich our scheduler changes
mode was done through benchmarks.

2https://github.com/intel/yarpgen

9

https://github.com/intel/yarpgen

1 2 3 4 5
70

72

74

76

78

80

82

84

86

88

90

Threshold

%
of

av
oi
de
d
sp
ill
s

Influence of threshold value on spills reduction

Tests for higher threshold values showed no improvement, the proportion of avoided spills stabilises
around 80%. Therefore, 2 was chosen as a default value.

4.2. In number of spills

The first thing that should be noted, is that out of the 150 programs that were used for benchmarks,
spills appeared with list_scheduler in only 54. Given the way our algorithm is designed, in all the
others, the schedules should be identical (which was verified).
The next graph shows the performances of our different variants, in terms of spill reduction com-

pared to list_scheduler.

10

0 10 20 30 40 50 60 70 80 90 100

re
gp
re
s_
bi
sre

gp
re
s
(w
ai
t-
wi
nd
ow
)

re
gp
re
s

74.87

79.62

3.59

spill reduction

alg
or
ith

m
Influence of prepass scheduling algorithm on spills

The error bars show standard deviation.
As previously mentioned, the wait-window option performs slightly better when it comes to the

number of spills, and regpres_bis, the variant described in 3 is almost useless.
We can also see that for the two versions of regpres, the standard deviation is consequential. In-

deed, when looking at the raw numbers, while formost of the test programs, the spills were completely
eliminated (or close to), there were some that showed little to no improvement, and even a few cases
of regression (e.g. 6 spills with list_scheduler, and 8 with regpres).

It would be tempting to say that the wait-window option should be kept as default, since it ap-
pears to be the most efficient at eliminating spills. However, we have to remember that it can produce
significantly longer schedules, as it can introduce unnecessary bubbles to wait for a “more suitable”
instruction. We therefore have to benchmark the output schedules on execution time.

4.3. Output code performance

Thenext graph shows, for each test programthat features spillswhen scheduledwithlist_scheduler,
the ratio between the number of cycles of its executionwhen compiled with the given prepass schedul-
ing optimisation, and list_scheduler.

11

0 5 10 15 20 25 30 35 40 45 50 55

0.6

0.8

1

1.2

1.4

1.6

test #

re
lat
iv
ep

er
fo
rm

an
ce
to
li
st
_s
ch
ed
ul
er

Influence of scheduling algorithm on output code performance

regpres
regpres (wait-window)

As we can see, appart from a few exceptions (in both directions), performances are pretty similar
between the algorithms, and indeed, when computing the geometric means of these results:

12

90 91 92 93 94 95 96 97 98 99 100

re
gp
re
s
(w
ai
t-
wi
nd
ow
)

re
gp
re
s

98.37

98.02

ratio average

alg
or
ith

m
Influence of prepass scheduling algorithm on performances

It seems that both of them produce schedules that are, on average, slightly more efficient than
list_scheduler, and that there is no significant difference between the two.
It could be insteresting to see whether the tests that showedworse performances are those for which

regpres couldn’t reduce the number of spills.

13

0 10 20 30 40 50

−40

−20

0

20

40

60

80

100

test #

sp
ill
re
du

ct
io
n

spill reduction
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

pe
rfo

rm
an
ce
ra
tio

performance ratio

But there doesn’t seem to be any correlation.
We have to keep in mind that these test programs are not representative of real-world applications.

yarpgen is a tool designed to produce programs that trigger compilation bugs. We tried to compile
GNUprograms tobenchmark compilation, but therewere toomany compilation issues, andwedidn’t
have the time to solve them.

5. Conclusion
Our new algorithm appears to be very effective at reducing spills, but the resulting code does not ap-
pear to be significantly faster, even for the programs in which many spills were eliminated. This result
was expected: list_scheduler is used in CompCert because most of the time, the schedules it
produces are “very good”. As previously mentioned, there are other oracles that are implemented in
CompCert, for example an oracle which uses integer linear programming to find a “better” solution,
froman initial solution computed bylist_scheduler. But in almost all cases, the ILP solver cannot
find a better schedule.
However, the aim of regpres is not to produce significantly faster schedules in general, but to pre-

vent situations, whichmay be rare (and the rarer themore registers the target architecture possesses), in
which prepass scheduling introduces an uneccessarily high number of spills. This is alsowhy regpres
is designed to function identically to list_scheduler “most of the time” (i.e. as long as the pres-
sure is below the threshold), and produces schedules which are therefore similar to those produced by
list_scheduler.

14

References
[ER08] Eric Eide and John Regehr. Volatiles are miscompiled, and what to do about it. In Pro-

ceedings of the 8th ACM International Conference on Embedded Software, EMSOFT ’08,
page 255–264, New York, NY, USA, 2008. Association for ComputingMachinery.

[GH88] J. R. Goodman and W.-C. Hsu. Code scheduling and register allocation in large basic
blocks. In Proceedings of the 2nd International Conference on Supercomputing, ICS ’88,
page 442–452, New York, NY, USA, 1988. Association for ComputingMachinery.

[YCER11] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs
in c compilers. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, page 283–294, New York, NY, USA,
2011. Association for ComputingMachinery.

15

Appendix A. Source code

(** the useful one. Returns a hashtable with bindings of shape
** [(r,(t, n)], where [r] is a pseudo-register (Registers.reg),
** [t] is its class (according to [typing]), and [n] the number of
** times it's referenced as an argument in instructions of [seqa] ;
** and an arrray containg the list of regs referenced by each
** instruction , with a boolean to know whether it's as arg or dest *)

let reference_counting (seqa : (instruction * Regset.t) array)
(out_regs : Registers.Regset.t) (typing : RTLtyping.regenv) :
(Registers.reg, int * int) Hashtbl.t *

(Registers.reg * bool) list array =
let retl = Hashtbl.create 42 in
let retr = Array.make (Array.length seqa) [] in
(* retr.(i) : (r, b) -> (r', b') -> ...
* where b = true if seen as arg, false if seen as dest
*)

List.iter (fun reg ->
Hashtbl.add retl

reg (Machregsaux.class_of_type (typing reg), 1)
) (Registers.Regset.elements out_regs);

let add_reg reg =
match Hashtbl.find_opt retl reg with
| Some (t, n) -> Hashtbl.add retl reg (t, n+1)
| None -> Hashtbl.add retl reg (Machregsaux.class_of_type

(typing reg), 1)
in
let map_true = List.map (fun r -> r, true) in
Array.iteri (fun i (ins, _) ->

match ins with
| Iop(_,args,dest,_) | Iload(_,_,_,args,dest,_) ->

List.iter (add_reg) args;
retr.(i) <- (dest, false)::(map_true args)

| Icond(_,args,_,_,_) ->
List.iter (add_reg) args;
retr.(i) <- map_true args

| Istore(_,_,args,src,_) ->
List.iter (add_reg) args;
add_reg src;
retr.(i) <- (src, true)::(map_true args)

| Icall(_,fn,args,dest,_) ->
List.iter (add_reg) args;
retr.(i) <- (match fn with

| Datatypes.Coq_inl reg ->
add_reg reg;
(dest,false)::(reg, true)::(map_true args)

| _ -> (dest,false)::(map_true args))

| Itailcall(_,fn,args) ->

16

List.iter (add_reg) args;
retr.(i) <- (match fn with

| Datatypes.Coq_inl reg ->
add_reg reg;
(reg, true)::(map_true args)

| _ -> map_true args)
| Ibuiltin(_,args,dest,_) ->

let rec bar = function
| AST.BA r -> add_reg r;

retr.(i) <- (r, true)::retr.(i)
| AST.BA_splitlong (hi, lo) | AST.BA_addptr (hi, lo) ->

bar hi; bar lo
| _ -> ()

in
List.iter (bar) args;
let rec bad = function

| AST.BR r -> retr.(i) <- (r, false)::retr.(i)
| AST.BR_splitlong (hi, lo) ->

bad hi; bad lo
| _ -> ()

in
bad dest;

| Ijumptable (reg,_) | Ireturn (Some reg) ->
add_reg reg;
retr.(i) <- [reg, true]

| _ -> ()
) seqa;

(* print_string "mentions\n";
* Array.iteri (fun i l ->
* print_int i;
* print_string ": [";
* List.iter (fun (r, b) ->
* print_int (Camlcoq.P.to_int r);
* print_string ":";
* print_string (if b then "a:" else "d");
* if b then print_int (snd (Hashtbl.find retl r));
* print_string ", "
*) l;
* print_string "]\n";
* flush stdout;
*) retr; *)

retl, retr

let get_live_regs_entry (sb : superblock) code =
(if !Clflags.option_debug_compcert > 6

then debug_flag := true);
debug "getting live regs for superblock:\n";
print_superblock sb code;

17

debug "\n";
let seqa = Array.map (fun i ->

(match PTree.get i code with
| Some ii -> ii
| None -> failwith "RTLpathScheduleraux.get_live_regs_entry"

),
(match PTree.get i sb.liveins with
| Some s -> s
| None -> Regset.empty))

sb.instructions in
let ret =

Array.fold_right (fun (ins, liveins) regset_i ->
let regset = Registers.Regset.union liveins regset_i in
match ins with
| Inop _ -> regset
| Iop (_, args, dest, _)
| Iload (_, _, _, args, dest, _) ->

List.fold_left (fun set reg -> Registers.Regset.add reg set)
(Registers.Regset.remove dest regset) args

| Istore (_, _, args, src, _) ->
List.fold_left (fun set reg -> Registers.Regset.add reg set)

(Registers.Regset.add src regset) args
| Icall (_, fn, args, dest, _) ->

List.fold_left (fun set reg -> Registers.Regset.add reg set)
((match fn with

| Datatypes.Coq_inl reg -> (Registers.Regset.add reg)
| Datatypes.Coq_inr _ -> (fun x -> x))
(Registers.Regset.remove dest regset))

args
| Itailcall (_, fn, args) ->

List.fold_left (fun set reg -> Registers.Regset.add reg set)
(match fn with
| Datatypes.Coq_inl reg -> (Registers.Regset.add reg regset)
| Datatypes.Coq_inr _ -> regset)

args
| Ibuiltin (_, args, dest, _) ->

List.fold_left (fun set arg ->
let rec add reg set =

match reg with
| AST.BA r -> Registers.Regset.add r set
| AST.BA_splitlong (hi, lo)
| AST.BA_addptr (hi, lo) -> add hi (add lo set)
| _ -> set

in add arg set)
(let rec rem dest set =

match dest with
| AST.BR r -> Registers.Regset.remove r set
| AST.BR_splitlong (hi, lo) -> rem hi (rem lo set)
| _ -> set

18

in rem dest regset)
args

| Icond (_, args, _, _, _) ->
List.fold_left (fun set reg ->

Registers.Regset.add reg set)
regset args

| Ijumptable (reg, _)
| Ireturn (Some reg) ->
Registers.Regset.add reg regset

| _ -> regset
) seqa sb.s_output_regs

in debug "live in regs: ";
print_regset ret;
debug "\n";
debug_flag := false;
ret

(* A scheduler sensitive to register pressure *)
let reg_pres_scheduler (problem : problem) : solution option =

(* DebugPrint.debug_flag := true; *)

let nr_instructions = get_nr_instructions problem in

if !Clflags.option_debug_compcert > 6 then
(Printf.eprintf "\nSCHEDULING_SUPERBLOCK %d\n" nr_instructions;
flush stderr);

let successors = get_successors problem
and predecessors = get_predecessors problem
and times = Array.make (nr_instructions+1) (-1) in
let live_regs_entry = problem.live_regs_entry in

let available_regs = Array.copy Machregsaux.nr_regs in

let nr_types_regs = Array.length available_regs in

let thres = Array.fold_left (min)
(max !(Clflags.option_regpres_threshold) 0)
Machregsaux.nr_regs

in

let regs_thresholds = Array.make nr_types_regs thres in

let class_r r =
Machregsaux.class_of_type (problem.typing r) in

19

let live_regs = Hashtbl.create 42 in

List.iter (fun r -> let classe = Machregsaux.class_of_type
(problem.typing r) in

available_regs.(classe)
<- available_regs.(classe) - 1;
Hashtbl.add live_regs r classe)

(Registers.Regset.elements live_regs_entry);

let csr_b = ref false in

let counts, mentions =
match problem.reference_counting with
| Some (l, r) -> l, r
| None -> assert false

in

let fold_delta i = (fun a (r, b) ->
a +

if class_r r <> i then 0 else
(if b then

if (Hashtbl.find counts r = (i, 1))
then 1 else 0

else
match Hashtbl.find_opt live_regs r with
| None -> -1
| Some t -> 0

)) in

let priorities = critical_paths successors in

let current_resources = Array.copy problem.resource_bounds in

let module InstrSet =
struct

module MSet =
Set.Make (struct

type t=int
let compare x y =

match priorities.(y) - priorities.(x) with
| 0 -> x - y
| z -> z

end)

let empty = MSet.empty
let is_empty = MSet.is_empty
let add = MSet.add
let remove = MSet.remove

20

let union = MSet.union
let iter = MSet.iter

let compare_regs i x y =
let pyi = List.fold_left (fold_delta i) 0 mentions.(y) in
(* print_int y;
* print_string " ";
* print_int pyi;
* print_newline ();
* flush stdout; *)

let pxi = List.fold_left (fold_delta i) 0 mentions.(x) in
match pyi - pxi with
| 0 -> (match priorities.(y) - priorities.(x) with

| 0 -> x - y
| z -> z)

| z -> z

(** t is the register class *)
let sched_CSR t ready usages =

(* print_string "looking for max delta";
* print_newline ();
* flush stdout; *)

let result = ref (-1) in
iter (fun i ->

if vector_less_equal usages.(i) current_resources
then if !result = -1 || (compare_regs t !result i > 0)

then result := i) ready;
!result

end
in

let max_time = bound_max_time problem + 5*nr_instructions in
let ready = Array.make max_time InstrSet.empty in

Array.iteri (fun i preds ->
if i < nr_instructions && preds = []
then ready.(0) <- InstrSet.add i ready.(0)) predecessors;

let current_time = ref 0
and earliest_time i =

try
let time = ref (-1) in
List.iter (fun (j, latency) ->

if times.(j) < 0
then raise Exit
else let t = times.(j) + latency in

if t > !time
then time := t) predecessors.(i);

assert (!time >= 0);

21

!time
with Exit -> -1

in

let advance_time () =
(if !current_time < max_time -1

then (
Array.blit problem.resource_bounds 0 current_resources 0

(Array.length current_resources);
ready.(!current_time + 1) <-

InstrSet.union (ready.(!current_time))
(ready.(!current_time +1));

ready.(!current_time) <- InstrSet.empty));
incr current_time

in

let cnt = ref 0 in

let attempt_scheduling ready usages =
let result = ref (-1) in
DebugPrint.debug "\n\nREADY: ";
InstrSet.iter (fun i -> DebugPrint.debug "%d " i) ready;
DebugPrint.debug "\n\n";
try

Array.iteri (fun i avlregs ->
DebugPrint.debug "avlregs: %d %d\nlive regs: %d\n"

i avlregs (Hashtbl.length live_regs);
if !cnt < 5 && avlregs <= regs_thresholds.(i)
then (

csr_b := true;
let maybe = InstrSet.sched_CSR i ready usages in
DebugPrint.debug "maybe %d\n" maybe;
(if maybe >= 0 &&

let delta =
List.fold_left (fold_delta i) 0 mentions.(maybe) in

DebugPrint.debug "delta %d\n" delta;
delta > 0

then
(vector_subtract usages.(maybe) current_resources;
result := maybe)

else
if not !Clflags.option_regpres_wait_window
then

(InstrSet.iter (fun ins ->
if vector_less_equal usages.(ins) current_resources

&& List.fold_left (fold_delta i) 0 mentions.(maybe) >= 0
then (result := ins;

vector_subtract usages.(!result) current_resources;
raise Exit)

22

) ready;
if !result <> -1 then

vector_subtract usages.(!result) current_resources
else incr cnt)

else
(incr cnt)

);
raise Exit)) available_regs;

InstrSet.iter (fun i ->
if vector_less_equal usages.(i) current_resources
then (

vector_subtract usages.(i) current_resources;
result := i;
raise Exit)) ready;

-1
with Exit ->

!result in

while !current_time < max_time
do

if (InstrSet.is_empty ready.(!current_time))
then advance_time ()
else

match attempt_scheduling ready.(!current_time)
problem.instruction_usages with

| -1 -> advance_time()
| i -> (assert(times.(i) < 0);

(DebugPrint.debug "INSTR ISSUED: %d\n" i;
if !csr_b && !Clflags.option_debug_compcert > 6 then

(Printf.eprintf "REGPRES: high pres class %d\n" i;
flush stderr);

csr_b := false;
(* if !Clflags.option_regpres_wait_window then *)
cnt := 0;
List.iter (fun (r,b) ->

if b then
(match Hashtbl.find_opt counts r with
| None -> assert false
| Some (t, n) ->

Hashtbl.remove counts r;
if n = 1 then

(Hashtbl.remove live_regs r;
available_regs.(t)
<- available_regs.(t) + 1))

else
let t = class_r r in
match Hashtbl.find_opt live_regs r with
| None -> (Hashtbl.add live_regs r t;

available_regs.(t)

23

<- available_regs.(t) - 1)
| Some i -> ()

) mentions.(i));
times.(i) <- !current_time;
ready.(!current_time)
<- InstrSet.remove i (ready.(!current_time));
List.iter (fun (instr_to , latency) ->

if instr_to < nr_instructions then
match earliest_time instr_to with
| -1 -> ()
| to_time ->

((* DebugPrint.debug "TO TIME %d : %d\n" to_time
* (Array.length ready); *)

ready.(to_time)
<- InstrSet.add instr_to ready.(to_time))

) successors.(i);
successors.(i) <- []

)
done;

try
let final_time = ref (-1) in
for i = 0 to nr_instructions - 1 do

DebugPrint.debug "%d " i;
(if times.(i) < 0 then raise Exit);
(if !final_time < times.(i) + 1 then final_time := times.(i) + 1)

done;
List.iter (fun (i, latency) ->

let target_time = latency + times.(i) in
if target_time > !final_time then

final_time := target_time) predecessors.(nr_instructions);
times.(nr_instructions) <- !final_time;
(* DebugPrint.debug_flag := false; *)
Some times

with Exit ->
(* DebugPrint.debug_flag := true; *)
DebugPrint.debug "reg_pres_sched failed\n";
(* DebugPrint.debug_flag := false; *)
None

;;

(**)

let reg_pres_scheduler_bis (problem : problem) : solution option =
(* DebugPrint.debug_flag := true; *)
DebugPrint.debug "\nNEW\n\n";
let nr_instructions = get_nr_instructions problem in

24

let successors = get_successors problem
and predecessors = get_predecessors problem
and times = Array.make (nr_instructions+1) (-1) in
let live_regs_entry = problem.live_regs_entry in

(* let available_regs = Array.copy Machregsaux.nr_regs in *)

let class_r r =
Machregsaux.class_of_type (problem.typing r) in

let live_regs = Hashtbl.create 42 in

List.iter (fun r -> let classe = Machregsaux.class_of_type
(problem.typing r) in

(* available_regs.(classe)
* <- available_regs.(classe) - 1; *)

Hashtbl.add live_regs r classe)
(Registers.Regset.elements live_regs_entry);

let counts, mentions =
match problem.reference_counting with
| Some (l, r) -> l, r
| None -> assert false

in

let fold_delta a (r, b) =
a + (if b then

match Hashtbl.find_opt counts r with
| Some (_, 1) -> 1
| _ -> 0

else
match Hashtbl.find_opt live_regs r with
| None -> -1
| Some t -> 0

) in

let priorities = critical_paths successors in

let current_resources = Array.copy problem.resource_bounds in

let compare_pres x y =
let pdy = List.fold_left (fold_delta) 0 mentions.(y) in
let pdx = List.fold_left (fold_delta) 0 mentions.(x) in
match pdy - pdx with
| 0 -> x - y
| z -> z

in

25

let module InstrSet =
Set.Make (struct

type t = int
let compare x y =

match priorities.(y) - priorities.(x) with
| 0 -> x - y
| z -> z

end) in

let max_time = bound_max_time problem (* + 5*nr_instructions *) in
let ready = Array.make max_time InstrSet.empty in

Array.iteri (fun i preds ->
if i < nr_instructions && preds = []
then ready.(0) <- InstrSet.add i ready.(0)) predecessors;

let current_time = ref 0
and earliest_time i =

try
let time = ref (-1) in
List.iter (fun (j, latency) ->

if times.(j) < 0
then raise Exit
else let t = times.(j) + latency in

if t > !time
then time := t) predecessors.(i);

assert (!time >= 0);
!time

with Exit -> -1
in

let advance_time () =
(* Printf.printf "ADV\n";
* flush stdout; *)

(if !current_time < max_time -1
then (

Array.blit problem.resource_bounds 0 current_resources 0
(Array.length current_resources);

ready.(!current_time + 1) <-
InstrSet.union (ready.(!current_time))

(ready.(!current_time +1));
ready.(!current_time) <- InstrSet.empty));

incr current_time
in

let attempt_scheduling ready usages =
let result = ref [] in
try

26

InstrSet.iter (fun i ->
if vector_less_equal usages.(i) current_resources
then

if !result = [] || priorities.(i) = priorities.(List.hd (!result))
then

result := i::(!result)
else raise Exit

) ready;
if !result <> [] then raise Exit;
-1

with
Exit ->
let mini = List.fold_left (fun a b ->

if a = -1 || compare_pres a b > 0
then b else a

) (-1) !result in
vector_subtract usages.(mini) current_resources;
mini

in

while !current_time < max_time
do

if (InstrSet.is_empty ready.(!current_time))
then advance_time ()
else

match attempt_scheduling ready.(!current_time)
problem.instruction_usages with

| -1 -> advance_time()
| i -> (

DebugPrint.debug "ISSUED: %d\nREADY: " i;
InstrSet.iter (fun i -> DebugPrint.debug "%d " i)

ready.(!current_time);
DebugPrint.debug "\nSUCC: ";
List.iter (fun (i, l) -> DebugPrint.debug "%d " i)

successors.(i);
DebugPrint.debug "\n\n";
assert(times.(i) < 0);
times.(i) <- !current_time;
ready.(!current_time)
<- InstrSet.remove i (ready.(!current_time));
(List.iter (fun (r,b) ->

if b then
(match Hashtbl.find_opt counts r with
| None -> assert false
| Some (t, n) ->

Hashtbl.remove counts r;
if n = 1 then

(Hashtbl.remove live_regs r;
(* available_regs.(t)

27

* <- available_regs.(t) + 1 *)))
else

let t = class_r r in
match Hashtbl.find_opt live_regs r with
| None -> (Hashtbl.add live_regs r t;

(* available_regs.(t)
* <- available_regs.(t) - 1 *))

| Some i -> ()
) mentions.(i));

List.iter (fun (instr_to , latency) ->
if instr_to < nr_instructions then

match earliest_time instr_to with
| -1 -> ()
| to_time ->

((* DebugPrint.debug "TO TIME %d : %d\n" to_time
* (Array.length ready); *)

ready.(to_time)
<- InstrSet.add instr_to ready.(to_time))

) successors.(i);
successors.(i) <- []

)
done;

try
let final_time = ref (-1) in
for i = 0 to nr_instructions - 1 do

(* print_int i;
* flush stdout; *)

(if times.(i) < 0 then raise Exit);
(if !final_time < times.(i) + 1 then final_time := times.(i) + 1)

done;
List.iter (fun (i, latency) ->

let target_time = latency + times.(i) in
if target_time > !final_time then

final_time := target_time) predecessors.(nr_instructions);
times.(nr_instructions) <- !final_time;
(* DebugPrint.debug_flag := false; *)
Some times

with Exit ->
DebugPrint.debug "reg_pres_sched failed\n";
(* DebugPrint.debug_flag := false; *)
None

;;

28

Annexe B. Contexte institutionnel
Compte tenu du contexte sanitaire, j’ai effectué mon stage principalement à distance, et n’étais au sein
du laboratoire qu’un jour par semaine. Je n’ai donc interragi qu’avec peu de personnes de l’équipe :
mon maître de stage David Monniaux (directeur du laboratoire), mon co-encadrant Sylvain Boulmé,
ainsi que les autres stagiaires. L’essentiel de la communication et des échanges se faisaient donc parmail,
ou via un chat mis en place par l’UGA. J’ai en revanche pû assister — à distance — à un séminaire sur
des idées d’améliorations de Coq et proof-general.

verimag3 est un laboratoire commun Université Grenoble-Alpes, CNRS, et Grenoble INP, spé-
cialisé dans les systèmes embarqués et critiques. Comme déjà évoqué, l’équipe développe sa propre
« variante » de CompCert, et plus généralement travaille sur les domaines de la vérification, de la
preuve formelle, de l’analyse de code…

3https://www-verimag.imag.fr/?lang=fr

29

https://www-verimag.imag.fr/?lang=fr

	Introduction
	CompCert
	Prepass scheduling, RTL and LTL
	Current oracles
	Challenging the current oracles

	The algorithm
	Skeleton
	Pre-computations
	Tracking liveness
	Edge cases

	A variant of list_scheduler with another priority function
	Benchmarks
	Empirically determining an optimal threshold
	In number of spills
	Output code performance

	Conclusion
	Source code
	Contexte institutionnel

