= s\é“ss"’f% m ‘
UCA PERSYVAL-2)]

Grenoble Alpes

Master of Science in Informatics at Grenoble
Master Informatique
High-confidence Embedded and Cyberphysical Systems

Code Transformations to Increase Prepass
Scheduling Opportunities in COMPCERT

Slightly revised post-defense report

Justus Fasse

December 6, 2021

Research project performed at VERIMAG™ under the supervision of
David Monniaux & Sylvain Boulmé

The original thesis was defended before a jury composed of:
Laurence Pierre ~ President
Akram Idani Examiner
Yannick Zakowski External Expert

*This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01)
funded by the French program Investissement d’avenir.

This internship complements previous work at VERIMAG on prepass superblock instruction
scheduling in COMPCERT. A superblock-local register renaming pass, that does not require any
modifications to the existing translation validation approach, was added. In addition, a technique
to move code below side exits of superblocks, composed of several independent passes, was im-
plemented. The semantics of the intermediate representation used for superblock scheduling had
to be tweaked, requiring changes down to the hash-consed implementation of the symbolic exe-
cution test. With the exception of one lemma, these adaptions have been proven in CoQ. These
two contributions decrease the amount of constraints on prepass instruction scheduling, making
it more powerful. A proof-of-concept oracle implementation demonstrates that selectively mov-
ing code below side exits can improve the schedules produced by prepass scheduling dramatically
for a few benchmarks, while in general not negatively impacting the performance of others.

Contents

1 Introduction 4
1.1 CoMPCERT and certified compilation 4

1.2 Instructionscheduling 5
1.2.1 Correctness of instruction scheduling 5

1.2.2 Basicblocks L 6

1.2.3 Globalcodescheduling, 7

1.3 Certified, scalable, instruction scheduling 8
131 RTLpath. e 8

1.3.2 Simulation test via symbolic execution 10

133 Hash-consing e 12

1.4 Missed scheduling opportunities 12

1.5 Relatedwork 14

2 Register renaming modulo liveness 18
2.1 Register renaming and code movement below sideexits 18

2.2 RegisterPressure e 20

3 Live code motion below side exits 22
3.1 Deciding which code to move below side exits 23

32 Codesize e e 26

4 Implementation 28
41 Registerrenamingo 28
4.1.1 Basic superblock-local register renaming 28

4.1.2 Moving restoration code outside of the superblock 29

4.2 Codemotion pastsideexits« . v vt ittt e e 31
4.2.1 Instrumenting instruction scheduling as code duplication heuristic . . . 32

4.2.2 Interpreting the results of relaxed scheduling problems 35

4.3 Changes to RTLpath and the symbolic execution 35
431 Adding “useless” Iconds, 35

432 Knownlimitation 38

5 Evaluation 11
5.1 Experimentalevaluation 41
5.1.1 Runtimeperformance., 43

51.2 CodesizeinCrease v v v v ittt i e 44

6 Discussion 47

1 Introduction

1.1 CoMPCERT and certified compilation

Compilers are an essential building block of virtually all software systems'. With rare exceptions
it is much preferable to rely on the compiler’s ability to analyze, transform and optimize pro-
grams than writing assembly manually. Unsurprisingly, compilers tend to be large and complex
programs themselves. While a compiler’s foremost responsibility is to generate correct code [16,
pp- 31, 314], it has proven extraordinarily difficult to achieve this goal in practice. Despite the ex-
tensive review and testing regiment applied to mainstream compilers such as gcc and clang/LLVM,
miscompilation still regularly occurs. For most code, where the software quality of the input pro-
gram usually falls far short of that of the compiler, this is not a major issue.

Critical systems that require high-assurance software on the other hand may not be satisfied
by placing this much trust in the compiler. Indeed, “in the past for highly critical applications
compiler optimizations were often completely switched off” [23]. COMPCERT [27, 26] offers
a compelling alternative: They give formal semantics to a dialect of C—CompCert C, which
comprises a large subset of C99 and some C11 extensions—and the targeted assembly languages.
These specifications, as well as all the intermediate languages are formalized in CoQ and the
transformations between them are proven correct. That is, if COMPCERT returns without sig-
nalling an error, the generated assembly code preserves the semantics of the source program?. More
precisely, the generated assembly code’s runtime behavior is one of the possible behaviors of the
source code. This clarification is necessary because some aspects of C are deliberately nondeter-
ministic. COMPCERT assumes that no undefined behavior is present in the source program.

Specifying the semantics in CoQ and proving that the transformations preserve these seman-
tics has been empirically shown to work: Yang, Chen, Eide, and Regehr did not find bugs in the
verified parts of COMPCERT while discovering dozens of errors in both gcc and clang [41]. Ear-
lier work had shown that of thirteen tested production-quality compilers, all of them produced
errors compiling the volatile qualifier, noting that such errors are “disturbingly common” [9].
The volatile keyword is often essential in ensuring the correct communication with hardware.

There are two main styles to prove an optimization correct in COMPCERT: (1) The algorithm
performing the transformation is programmed in GALLINA, COQ’s specification language, and
proven correct directly in CoQ. (2) Alternatively, an untrusted oracle, usually writtenin OCAML,
can be used if a verified-in-CoQ validator is provided that checks the results and only proceeds
if the output of the oracle can be shown to preserve the semantics of the input. This approach
presents a variation of translation validation.

'With the distinction to interpreters being arguably blurry.
?See section D of “Simple, light, yet formally verified, global common subexpression elimination and loop-invariant
code motion” for a short discussion of COMPCERT’s trusted computing base [32].

The latter approach relies on compile-time checks to ensure correctness. Its main advantage
is the ability to use a more convenient programming language and programming model. Fur-
thermore, the validator can be used for any implementation, allowing for relatively quick and
adventurous iterations. Note that COMPCERT only guarantees semantic preservation; the ef-
fectiveness of optimizations is not covered.

Some examples of COMPCERT’s existing optimizations include, among others, (1) function
inlining (2) constant propagation (3) common subexpression elimination (CSE) (4) dead code
elimination (DCE) and (5) a live-range splitting, graph-coloring (iterated register coalescing), reg-
ister allocator. The register allocator [34] being an impressive example of the use of translation
validation in CoMPCERT. However, “[1]oop optimizations and instruction scheduling optimiza-
tions are not implemented yet.” [22] These two notable exceptions are particularly important for
in-order processors (see section 1.2) in order to expose instruction-level parallelism (I1LP).

1.2 Instruction scheduling

Modern processors can be roughly divided into three groups: (1) “Statically scheduled super-
scalar processors” (2) “VLIW (very long instruction word) processors” (3) “ Dynamically sched-
uled superscalar processors” [20, p. 218]

“All processors since about 1985 have used pipelining to overlap the execution of instructions
and improve performance.” [20, p. 168]. Moreover, nowadays internal components of the CPU
are replicated “so that it can launch multiple instruction in every pipeline stage.” [33, p. 343]
For very long instruction word (VLIW) processors, ‘“bundles” need to be explicitly formed to
indicate which instructions should be issued simultaneously, whereas for superscalar processors
this is done implicitly. Instruction scheduling is the art of ordering the instructions in such a way
that the processor can safely (see section 1.2.1) execute as many instructions as possible in parallel
via the aforementioned techniques.

Dynamically scheduled processors employ hardware techniques to reorder the program code
at runtime to fit the hardware’s capabilities. Particularly, in the desktop and server space, dy-
namically scheduled superscalar processors dominate. Even newer embedded system processors
follow this design [20, p. 265]. However, supporting dynamic scheduling and other advanced
features such as speculative execution requires more, complex, hardware. Conversely, designs
with simpler control logic such as in-order VLIW processors use “less die space and energy for
the same [theoretical] computing power” [37]. By combining pipelining and the ability to issue
multiple instructions simultaneously, even simple processors possess tremendous potential for
exploiting ILP. Due to their relative simplicity, VLIW and statically scheduled processors require
extensive compiler support to realize their potential [20, p. 218]. For these processors it is the
compiler’s responsibility to discover and expose ILP. In this report we will focus on statically
scheduled superscalar processors.

1.2.1 Correctness of instruction scheduling

This work assumes interlocked pipelines and is thus able to concentrate on the logical correctness
of the instruction scheduling. That is, if instructions cannot be safely issued at the same time or

overlapped, the processor is assumed to stall the pipeline®. The stalling reduces or eliminates the
overlap until it is safe to execute the following instruction. Thus, the expected sequential seman-
tics are preserved. Of course, the timing and conflict information is important for good schedules
since the instruction scheduler wants to maximize overlap and minimize stalls. Similarly, struc-
tural hazards and consequently the inability of the processor to overlap certain instructions is
important. Both of these are taken into account by the actual instruction scheduling algorithms
considered in this report. However, because we assume an interlocked pipeline they are less im-
portant for the current discussion, which focuses on correctness.
Consequently, we will consider [20, p. 170]

« true data dependences
« name dependences and
« control dependences

It is statically known which registers an instruction will read and/or write, and whether the
memory will be affected. Due to a lack of integrated alias analysis the entire memory will be
regarded as a single location in this report.

A true data dependence occurs when a later instruction uses a result of a previous instruction
(read-after-write (RAW)). In contrast to name dependences there is a transfer of data between
the two instructions. Name dependences may occur as antidependences, a location is written to
after being read (write-after-read (WAR)), and output dependences where a location is written to
twice (write-after-write (WAW)). Since renaming is able to resolve these dependences, they are
also sometimes called “pseudo-constraints” [2, p. 469] of the scheduling problem. Instead of
disallowing movement across branches (strict adherence to control dependences), it is expected
that the exception behavior and data flow are preserved [20, p. 175]. The former is usually relaxed
to forbidding schedules or other transformations to introduce any new exceptions.

In principle, any reordering, even across the whole program, that respects these constraints
would be valid. Nonetheless, in order to make the problem tractable, instruction scheduling is
usually limited to smaller regions of code. The smallest unit of such code is called a basic block.

1.2.2 Basic blocks

The most popular, and arguably intuitive, basis for instruction scheduling are basic blocks. A
basic block is a sequence of instructions with a single entry and exit point. Thus, the basic block
can be thought of as a single semantic unit: once execution starts at the entry point—barring
runtime exceptions—all instructions of the basic block will be executed. Consequently, a basic
block may be reordered arbitrarily as long as the dependences (cf. section 1.2.1) are not violated.
As a result, any reordering that is valid according to the dependence rules, affects the modeled
state of the system in the same way. Recall that COMPCERT assumes that the input program
does not exhibit undefined behavior.

3 Alternatively, the toolchain after COMPCERT, e.g. the assembler is assumed to verify and/or fix these issues.

1.2.3 Global code scheduling

It is estimated that “between three and six instructions execute between a pair of branches.” [20,
p. 169] Because of that, the amount of ILP available within each basic block is rather limited.
However, as noted in section 1.2.1, it may be possible to exploit ILP across basic block boundaries.
Indeed, many such approaches have been developed (e.g. [11, 21, 31, 19, 1]). The reason for this
plethora of approaches to global code scheduling is the balance of flexibility for the instruction
scheduler to obtain good schedules and the complexity in reasoning about it and actually realizing
the desired schedule while preserving the program’s semantics. Some schedules may require ex-
tensive modifications to the program beyond simple reordering. Two of the most well-established
global code scheduling approaches are trace- and superblock scheduling.

Trace scheduling

In contrast to basic blocks (cf. section 1.2.2), traces [11] are considerably more flexible. They
allow both multiple entrances as well as multiple exits and are ideally selected, guided by profiling
information or presumably good heuristics, to be likely execution paths of the program at runtime.

Any instruction in the trace is only allowed one predecessor that is part of the same trace: the
path covered by the trace is loop-free [11] and linear. Code motion above and below side entrances
(joins) and exits (branches) is supported. Moreover, branches may be moved above joins and
below splits as well [15]. Asaresult, so-called “bookkeeping” code needs to be inserted after trace
scheduling in order to preserve the program’s semantics. The rules for code motion past side exits
are identical to those used in superblock scheduling and will be discussed in section 1.2.3. More
generally for trace scheduling, “[t]he details of the bookkeeping phase are very complex and their
formal presentation is unintuitive.” [11, p. 7]. The assumption is that due to their, presumed or
measured, importance to the runtime of the program, optimizing traces is worth the effort and
possible pessimization (e.g. speculative execution of instructions) of other parts of the program.

Superblock scheduling

A superblock [21] is in a sense a compromise between the rigidness of basic blocks and the flex-
ibility, but also complexity, of traces. Like basic blocks they can only have a single entrance, but
akin to traces they may have multiple exits. Code may therefore still move above and below side
exits during scheduling. The most complicated part of trace scheduling, reshaping the control
flow graph (CFG) for branches moving above joins is thus avoided.

The types of movement allowed are as follows [21, 15, p. 5].

« Above side exits, possibly with renaming and/or substituting non-trapping versions for
trapping instructions, e.g. dismissible loads. Instructions that are not live at the side exit
and do not trap may be speculatively executed without any compensation.

« Below side exits with optional, interposed, duplication if the moved instruction is live with
regard to the side exit.

An instruction is live with regard to an (side-) exit, if the location written to is or can be read by
the remainder of the program. A location is either a register name or a memory location. Keeping

track of the liveness of registers is not too difficult, but differentiating memory location requires
so-called alias analysis.

While superblock scheduling lacks the ability to move code across joins, tail duplication can
be used to eliminate some of them. After selecting likely-to-be-taken-together traces (cf. sec-
tion 1.2.3), the first side-entrance (join) may be identified and the rest of the trace (tail) be du-
plicated. Any other (outside) instructions branching to the original tail are then pointed to the
duplicated code instead. The side-entrance is thus eliminated (cf. [36, p. 71]). Gregg reports
that when combining tail duplication with superblock scheduling, neither superblock nor trace
scheduling is clearly superior to the other. Even with regard to code size—where we would ex-
pect a much larger increase with superblock scheduling due to the anticipatory as opposed to on-
demand duplication—they observe that trace scheduling’s compensation code “often produces
more code growth” [15, p. 11].

1.3 Certified, scalable, instruction scheduling

Six, Gourdin, Boulmé and Monniaux introduced scalable (cf. section 1.5) instruction scheduling
at the level of basic blocks [37]* and superblocks [38]. While the superblock scheduling happens
before register allocation at the RTL level and in principle automatically applies to all architectures
(target platform specific timing information is helpful, however), basic block scheduling must be
ported for each targeted architecture because it operates directly on the platform-specific assem-
bly code. Currently, it is available for KVX and AArché64. For both types of scheduling, they
employ the well-known technique, for formal verification in general but also CoMPCERT in par-
ticular (e.g. [34]), of translation validation (cf. section 1.1, see sections 1.3.2 and 4.3 for more
details). Because the oracle—in this case the instruction scheduler—is not trusted, it has total
freedom with regard to its implementation. Of course, the accepted transformations are limited
by what is provably equivalent according to the verifier, which is proven sound but not complete.

The verifiers for verifying basic and superblock schedules are based on (1) symbolic execution
for correctness and (2) hash-consing in order to scale the compile-times to large pieces of code
(in particular large basic- and superblocks). We will expand on both of these in sections 1.3.2
and 1.3.3.

Loop transforming optimizations themselves are out of scope of this report but please note that
“[t]he simplest and most common way to increase ILP is to exploit parallelism among iterations of
aloop.” [20, p. 170] Fortunately, loop unrolling, loop peeling and loop rotation have been added to
this version of COMPCERT as well [36]. All of these optimizations, when applied to inner loops®
increase the size of superblocks. Particularly in combination with tail-duplication [36], even inner
loops with conditional branches contained in them can be covered by a single superblock.

1.3.1 RTLpath

“Bundles are also supported. A bundle is a set of instructions that can be issued at the same time by the vLIW
processor used in the paper.
*Since they are usually predicted to loop.

© ® N o v A W N

-
= ©

Definition istep (ge: RTL.genv) (i: instruction) (sp: val) (rs:
< regset) (m: mem): option istate :=
match i with
| Inop pc' => Some (mk_istate true pc' rs m)
| Iop op args res pc' =>
SOME v <- eval_operation ge sp op rsi##args m IN
Some (mk_istate true pc' (rs#res <- v) m)
| Icond cond args ifso ifnot _ =>
SOME b <- eval_condition cond rsi##args m IN
Some (mk_istate (negb b) (if b then ifso else ifnot) rs m)

(X ... %)

end.
Listing 1: Excerpt of the definition of istep, defining how execution proceeds within a path.

The prepass scheduling is implemented as a pass from RTLpath > RTLpath, where RTLpath is
an extension of mainline COMPCERT’s RTL intermediate representation (IR). A path more or
less corresponds to the notion of trace of section 1.2.3, but since traces have a special meaning in
the context of COMPCERT, the term “path” will be used instead. While RTLpath itself does not
require these paths to be non-overlapping, the scheduling does. We will therefore only consider
this case, at which point the paths correspond to superblocks. In the following, path and super-
block will be used interchangeably. As described in section 1.2.3, paths (“traces”) are created by
a selection heuristic or are based on profiling information. Moreover, tail duplication may be used
to turn paths into essentially superblocks of larger size.

RTLpath extends RTL with

« Path metadata, notably the size of each path and verified liveness information.

« Apath_map, partially mapping CFG nodes (“PCs”) to the above metadata, in which case
the node is the beginning of a path. This map is checked for well-formedness: each target of
an exit must itself be the beginning of a path. Of course, the entrypoint of a function must
itself be a path entry. Additionally, except for the final instruction of a path, instructions
may only be basic, or two-way conditional branches (Icond) with a predicted successor.
The latter create side-exits.

Essentially, RTLpath is a version of RTL with verified annotations that enable execution to pro-
ceed multiple instructions at a time. In contrast to RTL whose semantics execute instruction-by-
instruction, RTLpath executes the code in path_steps: the entirety of a path is executed at
once. A path_step either hits an early exit, in which case the condition of a side exit must
have evaluated to true® or exit the path normally at the end. Note that this gives # possible execu-
tions, where 7 is the number of (side-) exits. In order to define the execution of a path, an internal
state is defined (istate), which keeps track of the register and memory state (irs and imem,
respectively), the next instruction to execute (ipc), and whether execution continues within the
path or a side-exit is triggered (icontinue). The execution within a basic block is defined by

During the generation of RTLpath, predicted conditional branches are normalized to always favor the false case.

a succession of isteps, bounded by the length of the path, given in the path_map. Listing 1
shows the definition of istep for three cases: 1) Inop, in which case the register and memory
state are left untouched and execution proceeds to the successor named in the instruction. 2) Top
which evaluates the operation, modifies the register state’ and continues to the unique successor.
3) Icond, which evaluates the condition and either triggers the path’s side exit by setting the
icontinue boolean to false or continues execution at the predicted successor.

RTL’s and RTLpath’s execution semantics are shown to be in bisimulation, which makes it easy
to move back and forth between the two.

The liveness information of RTLpath can be used to derive a simulation between RTLpath states
which only considers equality between live registers. This allows the speculative execution of
non-live instructions, essential for superblock scheduling. In order to prove lock-step simulation
between superblocks, as required by instruction scheduling, Six, Gourdin, Boulmé, and Monni-
aux define a symbolic execution semantics [38, 36].

1.3.2 Simulation test via symbolic execution

This section will only give a brief overview of the symbolic execution strategy used to establish
simulation between RTLpath superblocks [38, 4]. Section 4.3 will give more details on selected
aspects that were modified as part of the implementation of chapters 2 and 3

Transformations of the type RTLpath - RTLpath, in particular superblock scheduling but also
some rewriting optimizations (see “ Verified Superblock Scheduling with Related Optimizations” [38]),
are proven via symbolic execution to establish simulation. That is, ultimately, symbolic execu-
tion will be used on the original, provably correct, superblock and a—supposedly matching—
untrusted superblock returned by the oracle. Both superblocks will be executed from the same
initial symbolic state. The resulting symbolic states should be verifiable by an efficient test, “such
that its success would imply the simulation” [36, p. 141].

To ease the proof, the symbolic execution is divided into two parts.

Abstract symbolic execution First, an abstract version that simplifies the proof of bisimulation
necessary for correctness with regard to RTLpath [36, p. 116]. Symbolic values are introduced, as
well as modified semantics manipulating them. A symbolic state, sstate, of a path is made up
of an symbolic internal state, sistate, and a symbolic final value sfval, which records infor-
mation about a possible final instruction®. The sistate in turn is made up of a list of side exits,
including the conditions under which they are taken, and an sistate_local keeping track of
the symbolic register and memory state, as well as the preconditions necessary for a non-failing
execution. The preconditions are given as a conjunction of assertions that the execution of the
instruction does not fail. It also stores the current PC. See figure 7.2 of “ Optimized and formally-
verified compilation for a VLIW processor” for a visual summary and more detailed explana-
tions [36, p. 120]. Abstract symbolic execution (sexec) proceeds by symbolically executing each
instruction of the path while updating the sistate upto the last instruction. Then symbolically
executing a possible final instruction and storing the two results in an sstate. Twolemmas then

"Note that only load and store instruction may modify the memory state within a path.
#In case a path ends without a necessarily path-terminating instructions this value can be Snone.

10

prove the bisimulation between RTLpath and the abstract symbolic execution. sexec is an over-
approximation of path_step but also always represents a concrete execution of path_step,
thus proving the bisimulation [38, p. 18]. An additional predicate refines this bisimulation to be
less strict e.g. to accept register equality modulo liveness, required by useful superblock schedul-
ing.

Hash-consed symbolic execution Second, a computationally efficient version of the symbolic
execution based on hash-consing, thus enabling the scalable verification of even large superblocks.
Data structures are defined to refine their abstract twin. Abstract symbolic values are refined
by hash-consed counterparts, which simply add an additional field to store the hash-id, hid
(see section 1.3.3 for more details on hash-consing). Their semantics are inherited from their
abstract version. Dropping/ignoring the hid by projection, an equivalent, abstract, version is
obtained whose semantics can be reused. A similar process is followed for the symbolic state def-
initions, which are refined by more efficient data structures. For example, the precondition in
sistate_local, recording which instructions may not fail (and are guaranteed to not fail for
the original superblock) at a given point in the execution of the superblock is originally defined as
a conjunction of such assertions. This is hardly executable. Instead, sistate_local’s hash-
consed refinement, hsistate_local, stores a list of hsvals, which must not fail’. Thus,
“the proof of [Six, Gourdin, Boulmé, and Monniaux’s] implementation simply reduces to ensur-
ing that each elementary computation of the symbolic execution preserve[s] the data-refinement
relations w.r.t. its abstract model, and finally that the physical or syntactic equalities involved in
the implementation of the simulation test impl[y] the semantical equalities involved in its detailed
model.” [38, p. 20]

This symbolic evaluation described in [38] and [36] can thus verify the following types of move-
ment:

« Moving an instruction above a side exit, if it does not impact the data flow. A register write
may therefore only be moved above a side-exit if the register written-to is not live at the
predicted-not-taken branch. Furthermore, the move may not introduce a new exception,
unless the instruction is substituted with an equivalent, non-trapping, one.

« Moving an instruction downwards, that is below a side exit, is possible if its effect on the
data flow is not visible at the side exit (it is not live with regard to the side exit). Note that
moving possibly trapping instruction downwards is possible because they do not introduce
new failures to the superblock. Interestingly, it does add a new exception to the constituting
basic block that is the target of the move. Since superblocks do not have side-entrances,
however, it is guaranteed that if the moved (added to the basic block) instruction fails in the
basic block, the basic block would (semantically) never have been reached anyways.

Note that the scheduling itself, as presented in [36, 38], does not introduce any code duplication.

*While the abstract symbolic execution asserts that none of the instructions may fail, the concrete symbolic execution
only stores those instructions (symbolic expression/values) that may fail.

11

1.3.3 Hash-consing

In principle, the comparison of symbolic states requires expensive tests for structural equality
since each symbolic value essentially records the entire “history” of computations relevant to
it, starting from the initial symbolic state. The structure of these symbolic values resembles an
abstract syntax tree (AST). A naive implementation would pose problems with regard to both
memory usage and the cost of structural checking. Hash-consing, a staple of imperative program-
ming, alleviates both problems by using memoizing smart constructors for the symbolic values.
Instead of allocating two or more structurally identical terms, subsequent invocations of a hash-
consing constructor return the memoized object first constructed. Naturally, thus constructed
values must be immutable. As a result, data structures with many repeating structures can be
represented very compactly. Additionally, expensive structural equality tests can be replaced by
constant time pointer equality tests [4, p. 58].

The name Aash-consing is derived from a typical implementation detail: in order to quickly find
and return already created objects, hash-tables or maps are generally used in the implementation.
This very reason for its efficiency makes it difficult to employ this technique in the context of
CoMPCERT. GALLINA, CoQ’s specification language, lacks many important imperative fea-
tures to easily implement hash-consing. Nonetheless, multiple approaches are possible [6]. ASTs
are a prime-use case for hash-consing [6].

Six, Gourdin, Boulmé, and Monniaux do not rely on the full power of hash-consing. Their
system only relies on the property that physical equality i.e. pointer equality implies structural
equality, and not that structural equality implies pointer equality (although this property is still
highly desirable). This relaxation of the problem allows for a lightweight approach implemented
inthe IMPURE library [5]. IMPURE implements an efficient hash-consing factory. The only extra
assumption'® being made is that embedding O CAML’s pointer equality is correct as axiomatized
in listing 2. The axioms states that /f phys_eq terminates, returning a boolean that is true,
then its inputs can be considered equal for CoQ’s definition of equality. Note that as a user
of IMPURE we cannot make any assumption on the return value of phys_eq, except that if it
returns, it will return a boolean. Given a definition of how to compare hash-consed values!!, and
some auxiliary functions, the hash-consing factory returns a memoizing function [4, p. 60]. The
memoizing function doing the heavy lifting is itself untrusted (xhCons). It is essential, that this
untrusted-oracle-provided function behaves observationally like an identity (cf. the discussion on
proving that a certain relation between inputs and outputs is preserved. [4, pp. 37-38]). This is
verifiably guaranteed by the hCons wrapper, which adds a runtime check that the returned value
is equal to the given input with regard to the user-provided hashing equality.

1.4 Missed scheduling opportunities

If we compare the abilities of superblock scheduling in general (section 1.2.3) and in the context
of COoMPCERT in particular (section 1.3.2) we notice two missing scheduling opportunities.

!“In addition to adding IMPURE (see [4, pp. 27-29, 44-47]).
" An example for hash-consed condition evaluations is given in listing 14.

12

Axiom phys_eq: forall {A}, A -> A -> ?? bool.

Axiom phys_eq_correct: forall A (x y:A), WHEN phys_eq x y ~> b THEN
< b=true -> x=y.

Extract Inlined Constant phys_eq => "(==)".

Listing 2: IMPURE’s axiom on pointer equality and extraction to OCAML’s pointer equality test
(cf. [5, p. 10, 4, p. 32]).

1. Due to the lack of register renaming, certain instruction may not be moved due to name
dependences.

2. The symbolic execution is not able to verify the movement—and therefore necessary du-
plication— of instructions below side exits, if they are live with regard to that side exit.

The first shortcoming is mitigated by the fact that the superblock scheduling is applied at the
RTL level, that is before register allocation (prepass). As a result, name dependences are much
less common than after register allocation when the compiler handles the lack of infinitely many
(pseudo-)registers by spilling and restoring registers to and from the stack. However, they still
do occur, most notably after certain loop optimizations as introduced in [36]. For example, loop
unrolling is implemented by an ingeniously simple oracle. The verifier relies on the strict duplica-
tion of its instructions to achieve this remarkable brevity and flexibility'?. Consider listing 5 which
is the result of unrolling and then rotating the loop of the simple vector sum function of listing 3.
Although the superblock is much bigger than initially (listing 4), the scheduling opportunities
have increased very little:

1. The duplicated loop index increment cannot be moved above the side exit because it over-
writes the register used for the exit condition.

2. Unless the hardware platform and operating system support dismissible loads'® the load
operations cannot be moved across the side exit either.

3. The store operation cannot be moved below the side exit since the memory is implicitly
always considered live. Transitively, the floating point addition and two associated loads
cannot be scheduled below the side exit either.

Figure 1.1 shows the dependency graph of listing 5. Unsurprisingly, we observe that prepass
scheduling has no effect on this loop.

Generalizing the first point we notice that unrolled loops'* only expose a fraction of the possi-
ble 1LP due to name dependences, which are a direct result of the simple duplication of instruc-
tions without renaming. Therefore, one big advantage of superblock scheduling over basic block

2The same verifier can be used to verify loop rotation, loop peeling and will later be used to enable code motion past
side exits (cf. section 4.2).

BLoads that do not trigger an exception when performing an invalid memory access.

! At least inner loops where iterations are independent from each other.

13

[S N S N

© N o ! A W N e

_ R e =
o N = O

void vector_sum(double *dest, double *v1, double *v2, size_t len) {
for (size_t i = 0; i < len; i++) {
dest[i] = v1[i] + v2[i];
¥
¥

Listing 3: Simple vector sum function in C.
i = OL

loop:

if (i >= len) goto exit else (prediction: fallthrough)
t1 = vi[i]

t2 = v2[i]

t = tl + t2

dest[i] = t

i=1+1

goto loop

exit:
return

Listing 4: Simplified RTL code for vector sum (listing 3). The register names and numeric labels
have been renamed and the instruction representation slightly prettified.

scheduling, speculative execution of instructions at compile-time, is severely hindered. Chapter 2
tackles this problem.

The second point cannot be fixed without support by both the hardware and operating system
running the process and will not be discussed further for the purpose of this report but ties in
with the next point.

The inability of CoMPCERT’s current superblock scheduling to move live instructions below
side exits can miss advantageous interleavings of instructions (cf. fig. 4.2a and table 4.1).

Chapter 2 will discuss the general idea for a register renaming approach compatible with the
symbolic execution semantics of section 1.3.2. Then, chapter 3, elaborates the ideas and de-
sign behind the code motion below side exits implemented. Their implementations—including
changes to RTLpath and its symbolic execution, necessary for the latter and useful for the first—
are discussed in chapter 4. The results are experimentally evaluated (section 5.1) and discussed
(chapter 6) before concluding the report. Next, however, related work is discussed.

1.5 Related work

As noted in section 1.2.3, the size of basic blocks is often quite limited so that, for statically
scheduled platforms, global code scheduling becomes essential. Many variants have been pro-
posed and implemented. Trace scheduling [11] is theoretically even more powerful than super-

14

Dependency graph given the default prepass scheduler and without register renaming
x9 = float64[x2 + X5 << 3] P

o) T 0B : o) 3]

X8 = float64[x3 + x5 << 3] .0

O: 1
x5 = x5 41 1 T
1771 il [
y v
|1f (x5 >=lu x1) break else continue (prediction: continue) '
: i) o) il i T }
VY l l ' v v
X8 = Float64[x3 + x5 << 3] | 1 .ooeeeooooifi 9% %o = floateu[x2 + x5 << 3]

T

o

L J
if (x5 »=lu x1) break else continue (prediction: continue)

Figure 1.1: Dependency graph of unrolled and rotated vector sum. Due to name dependences
almost no movement is possible. Pseudo-register x5 corresponds to variable 1 in list-

ing 5, x8, x9 and x7 to t1, t2 and t respectively. Edges are annotated with their
expected latency at the RTL level.

15

I T - N N S

i = 0L
if (i >= len) goto exit else fallthrough (prediction: fallthrough)

loop:
t1 = vi[i]
t2 = v2[i]

t = tl + t2

dest[i] = t

i=1i+1

if (i >= len) goto exit else fallthrough (prediction: fallthrough)

t1 = vi[i]

t2 = v2[i]

t = tl + t2

dest[i] = t

i=1+1

if (i >= len) goto exit else goto loop (prediction: fallthrough)

exit:
return

Listing 5: Prettified RTL representation of loop-rotated and unrolled vector sum code.

block scheduling (cf. section 1.2.3). Nonetheless, many implementers have reached towards su-
perblocks due to their relative simplicity. The paper introducing superblocks [21], further men-
tions five dependence-removing optimizations to aid scheduling. While both trace scheduling
and superblock scheduling target linear sequences of code, Havanki, Banerjia, and Conte con-
sider “Treegions”. As the name implies, each treegion has a single entrance but can encompass
a tree-like structure of the program’s CFG [19]. In their experiments they report a 15% - 20% in-
crease in performance over superblock scheduling. Software pipelining [2, 25, pp. 472-482] is
a more advanced approach to instruction scheduling, specifically targeting loops. In essence the
goal is to compute multiple iterations of the loop at once without necessarily unrolling the loop as
many times. A prologue and epilogue need to be inserted in order to preserve the original loop’s
semantics.

Many approaches to verified compilation exist with differing goals. CakeML is another general-
purpose verified compiler, compiling StandardML rather than C. Instead of using CoqQ it is
written and proven with the Isabelle/HOL4 theorem prover. SEL4 [24] on the other hand is
a verified-correct microkernel that is proven with regard to semantic correctness and security.
They go from an abstract presentation down to C using Isabelle/HOL, and, on some platforms
prove the binary code produced. The latter means that they do not need to trust the compiler
and linker. Its proof is automatically performed via translation validation by an SMT solver, able
to handle all optimizations of gcc-O1 and much of SEL4 at -O2. Note however, that the C source
code being compiled comprises only 9500 lines of C code [35]. In a similar vain, ACL2 has been
used to verify user-mode programs with regard to a formal x86 15A model [14]. Some programs
are verifiable at gcc’s -O2 level while others are validated at the default optimization level.

Tristan and Leroy implemented a slight variation of trace scheduling for CoMPCERT [40].

16

They restrict full trace scheduling by not allowing the reordering of branches. In contrast to Six,
Gourdin, Boulmé, and Monniaux’s work on superblock scheduling, their optimization applies
to the Mach 1R of COMPCERT, after register allocation. The same goes for their instruction
scheduler of basic blocks, presented in the same paper [40]. Unfortunately, their implementation
of symbolic execution was not hash-consed and exhibited exponential blowup. Moreover, they
do not consider liveness and always duplicate instructions when moving code below side exits
or above joins. Tristan, Govereau, and Morrisett demonstrate that symbolic execution is able to
verify many kinds of transformations on LLVM using symbolic execution and a value graph [39].

Static single assignment form (SSA) presents a general solution to prepass register reuse by
outlawing it. If multiple definition can be the most current version of a variable, ¢ nodes are in-
serted, representing the correct choice, depending on the predecessor. Given SSA it is possible
to perform optimal register allocation in polynomial time [18]. On the hardware side, dynamic
register renaming with Tomasulo’s algorithm presents the state of the art. It is able to rename
registers across branches. Additionally, the hardware may implement more “registers” (or reser-
vation stations in Tomasulo’s algorithm) than officially available in the 1sA. With regard to the
issue of register allocation and its interdependence with instruction scheduling, combinatorial
approaches aim to solve both register allocation and instruction scheduling optimally. Recent
approaches have been shown to scale up to 1000 instructions [29, 30].

17

2 Register renaming modulo liveness

As explained in section 1.3.2, the superblock verifier considers superblocks equivalent if their
states match modulo register liveness at each exit. It follows that we can freely rename any, essen-
tially temporary, registers if they are not live outside of the superblock. However, any renaming
must be restored before any (side-) exit that may read the old register, expecting the renamed reg-
ister’s value. Due to the verified liveness information available at the RTLpath level, it is possible
to only restore those registers which are live with regard to an exit.

For example, the registers holding the loaded values in listing 4 are not live and need not be
restored. Moreover, the loop index variable i’s scope does not extend beyond the (trivially inner)
loop. As a result, i is not live with regard to the side exit, nor its duplication, generated by ro-
tating and unrolling the loop (cf. listing 5). However, i is live during the next iteration, so before
leaving the superblock at its predicted exit, i must receive the correct value. Restoring registers
to their, globally’, expected value after renaming will be called restoration code. Because 1 is not
live for the side-exits, the restoration code may be placed after the second conditional branch by
changing the successor information accordingly. The effect of renaming registers on the depen-
dency graph for this example is shown in fig. 2.1 (cf. fig. 1.1). Already, this small change decreases
the expected time (as determined by the “list” instruction scheduler at the RTLpath level) when
the final instruction of this particular superblock is started from 24 to 22 by removing many of
the name dependences. Note, that the restoration code itself introduces a name (output/WAR)
dependency again. Section 4.2 explains how to move or duplicate code from the superblock be-
low a side-exit. This can also be used to offload the restoration code for all side-exits. Only the
final restoration code, before the expected exit of the superblock must stay part of the super-
block. Because it will stay part of the superblock, it will be inserted before applying the heuristic
of chapter 3. This is a pessimistic choice because some of the restoration actions will be obviated
by the register allocation. More generally, the impact of register allocation on the effect of this
transformation can be quite significant due to the problem of register pressure (see section 2.2).

2.1 Register renaming and code movement below side exits

The register renaming approach of this chapter and the method for code motion past side exits
of chapter 3 and section 4.2 are implemented to work independently from each other. For exam-
ple, section 4.1.2 explains why we want to insert some restoration code before code motion below
side exits, which, however violates the nice property that each definition in a superblock has only
a single definition. Additionally, this property is trivially violated when simply not enabling regis-
ter renaming while turning on code motion below side exits (cf. tables 5.2 and 5.3). In addition to

!Qutside the current execution of the superblock.

18

X8 = floatb4[x3 + x5 << 3] |

X9 = floatb4[x2 + x5 << 3] X10 = X5 +1 1 |71

0.0 3 0 3 0. 10 1 1 1

| x7 = x8 +f x9

In

float64[x4 + X5 << 3] = X7
o 11 [
h 4
‘if (x10 >=lu x1) break else continue (prediction: continue) |l=
* -
A 4 A4
x11 = float64[x3 + x10 << 3] ‘

%12 = float64[x2 + x10 << 3]

Y
={ float64[x4 + x10 << 3] = x13 |

N . X14 = X10 +1 1}17
= o) 1 ll
A " A J

‘ 1f (x14 >=lu x1) break else continue (prediction: continue)

Figure 2.1: Dependency graph of unrolled and rotated vector sum. After renaming, a lot of de-
pendencies are eliminated (cf. fig. 1.1). Note that the memory stores, and preceding
calculations must occur before their respective side exit. Because on AArch64, loads
cannot be turned into speculative loads, the second loop iteration can also not be in-
terleaved with the first. The calculation of the loop indices (now x10 and x14), on
the other hand, have become flexible and could be pre-computed. Similarly for the
restoration code (x5 = x14), which can be placed anywhere after its last use.

19

the systematic register renaming described here, a second, ad-hoc, mode is implemented. For ex-
ample, whenever an instruction is duplicated twice or more in order to move below multiple side
exits (cf. section 4.2) the arguments of the duplicated instruction must not be mutated between
duplicate occurrences. Furthermore, the eventual insertion of all restoration code may invalidate
naively duplicated code which is necessary for code movement below side exits. In this case, extra
aliasing logic is applied: before restoring the register, a copy is made and used appropriately in
the remainder of the superblock.

2.2 Register Pressure

During register allocation, the compiler has to cope with the finite number of registers available to
it. It maps the pseudo registers, of which they were infinitely available and many used, to a small
set of registers more closely resembling those of the hardware. If more registers are live at a given
point than available, they need to be spilled, and restored on the next use. Excessive spilling
and restoring is costly in two regards. For one, it introduces load and store instructions which
are relatively costly. Two, this extra code increases the code size, sometimes significantly (see
fig. 5.3). In turn, this code size increase may not only be problematic for limited device storage
e.g. in small embedded systems but also for performance. The increased size may cause the code,
or “hot” parts of it, to no longer fit into the instruction cache of the cpu. Together, “[t]he
transformed code, while theoretically faster, may lose some or all of its advantage because it leads
to a shortage of registers. [...] The problem becomes especially challenging in multiple-issue
processors that require the exposure of more independent instruction sequences whose execution
can be overlapped.” [20, p. 182]

The problem of the register renaming approach presented earlier is twofold. The first is rather
fundamental to the presented approach: register renaming introduces a lot of new registers. In
principle, just the renaming does not have an influence on the number of /7ve registers. Nonethe-
less, it can have an influence on the heuristics employed by the register allocator. Second and
more importantly, applying prepass scheduling to increase ILP, the number of live registers and
thus register pressure can increase dramatically. After all, exposing more ILP by overlapping in-
structions and thus generating more live registers was the entire point of combining a renaming
pass with prepass scheduling. This latter issue can be mitigated by a register pressure aware in-
struction scheduling algorithm (see fig. 5.3).

The restoration code inserted by the renaming also increases the code size at the RTLpath/RTL
level. Again, the problem is twofold. First, executing the restoration code costs cycles which is
particularly irksome with regard to the superblocks we are trying to optimize. Second, it increases
the code size. By moving the restoration code for side-exits out of the superblock (cf. chapter 3),
the former issue can be avoided at the cost of exacerbating the latter. If the same renaming is
live for multiple side exits, moving the restoration code out of the superblock, that is affer the
side exits, necessitates multiple copies of the restoration code. Otherwise the restoration code
before an earlier side exit still applies to a later side exit of the same superblock. The upside is
that the superblock executes less instructions. Because the side exit has been predicted to not be
taken, this is assumed to be a worthwhile trade-off. In particular, Six, has adapted COMPCERT’s
linearization oracle, which is responsible for the generated code layout, to always lay out the basic

20

blocks of a superblock contiguously [36, p. 176]. In this light, avoiding as much restoration code in
the superblock as possible, while likely increasing the global code size, also reduces the code size
of the superblock itself, as laid out in memory. The process of code linearization has been slightly
modified in this work, because it was observed that the restoration code created outside of the
superblock would often be laid out directly after the superblock. In the case of inner loops spanned
by a superblock, this turns the loop condition (which sits at the end for a rotated loop), looping
back to the beginning of loop, into two jumps instead of one because the fallthrough successor is
no longer the side exit but some restoration code. To counteract this for inner loops spanned by
a superblock, we prefer the predicted-not-taken branch to be laid out after the superblock. Note
that restoration code may or may not be eliminated by register allocation. Register allocation
removes restoration code that has become redundant due to both higher-level registers having
been mapped to the same lower-level register.

21

LY N T

3 Live code motion below side exits

As mentioned in section 1.4, in addition to register renaming, we are also interested in moving
live instructions below side exits. Once again, consider the dependency graph in fig. 3.1 for the
unrolled and rotated vector sum example. Interestingly, the system used to generate these de-
pendency graphs, GraphViz [13] and in particular dot [12], visualizes the advantage of removing
dependencies in more than one way. In addition to removing edges, which makes the graphs vi-
sually cleaner, they become successively more compact! (height-wise, cf. figs. 1.1, 2.1 and 3.1).
For the vector sum example only the memory stores are live and could be moved below side exits.
While the loop index is live, it is a true dependence of the conditions guarding the side exits. Un-
fortunately, this added capability does not improve the expected performance? for this particular
example.

Consider instead listing 6 and its generated assembly code in table 3.1. Prepass register renam-
ing? of the floating point operations’ target registers does not enable the desired interlaving of
expensive computations because (a) the result (s in listing 6 and d0 in the assembly code) is live
after the loop, such that the first loop iteration cannot be merged into the second. (b) Merging
the second into the first (speculative execution) is not possible because the computations depend
on the load, which cannot be moved above the side exit as that would introduce an additional
possible failure. Without dismissible loads the latter cannot be realized. The former, however,
can at the cost of code duplication (see the suggested assembly code of table 3.1). We should thus
be able to reduce the loop’s final instruction’s starting time from 19 to just 15.

While achieving the desired expected performance, the actual code generated (see table 3.2)
is larger than desired due to a limitation in the heuristics employed (see section 3.1). For a slight

'Instruction scheduling in the context of trace scheduling is also sometimes called trace compaction [20, H-19].

*For these examples, expected performance will be roughly equated to the starting time of the final instruction in
a given sequence (corresponding to a superblock). This does not correspond to actual performance, especially in
the presence of loops and all the complications of actual hardware. Section 5.1 tries to evaluate performance in a
more realistic manner.

Note that at the RTL/RTLpath level, the same psuedo-registers are used for the two loop iterations. After register
allocation, as displayed in table 3.1, this need no longer be the case.

double sumsq(double *x, size_t len) {
double s = 0.0;
for (size_t i = 0; i < len; i++)
s += x[4i] * x[i];
return s;

Listing 6: C code to compute the sum of squares. Example due to Sylvain Boulmé.

22

x9 = float64[x2 + x5 << 3] ‘

x8 = float64[x3 + x5 << 3] x10 = x5 +1 1

0. 0. El 3 0. 0. o I 1
A A

E % float64[x4 + x5 << 3] = x7 }1
[} 1 1 1

1 1f (x10 >=lu x1) break else continue (prediction: continue)

T 11 T
x11 = float64[x3 + x10 << 3] ‘ x12 = float64[x2 + x10 << 3] ‘
[3 L3 [

D : U x4 = x10 +1 1 D k13 = x11 +f x12
Lo l . T . 3
vy : v

" v A
o r’ float64[x4 + x10 << 3] = x13

- hlxs = x14 F‘ if (x14 >=lu x1) break else continue (prediction: continue)

Figure 3.1: Dependency graph of unrolled and rotated vector sum. With the ability to insert com-
pensation code, even less dependencies are mandatory, giving the prepass scheduler
greater flexibility.

variation of this example, using two instead of just one buffer (s += xi] * y[i]), we are able
to reduce the final starting time from 21 to 16.
The capabilities of the code motion below side exits have to be distinguished for

e Memory stores and
 Other instructions

Due to the way code motion below side exits is implemented (see section 4.2 and fig. 4.1), moving
an instruction below multiple side exits requires several redundant copies in the superblock. This
is verifiable for all instructions* but memory stores. In addition to not supporting alias analysis,
executing a store instruction once versus twice always yields two different symbolic memories.
Normally, duplicating a store instruction would not be interesting, were it not for the limitations
discussed in sections 4.2 and 4.3.

3.1 Deciding which code to move below side exits

Ideally, the prepass instruction scheduling and duplication step necessary to realize schedules re-
quiring moves below side exits would be integrated with each other. This is not the case in this
work. Assuming all instructions could be speculatively executed, one approach would be to sim-
ply move as much code as possible below side exits, and let the subsequent instruction scheduling
pass decide which instructions actually belong towards the top of the superblock. Unfortunately,
some instruction can often not be speculatively executed e.g. in the absence of dismissible loads.
Moreover, due to the aforementioned lack of memory aliasing analysis store instructions are al-
ways considered live and can therefore not be moved above a side exit. Consequently, too aggres-
sive code motion downwards may hinder the instruction scheduler in finding good schedules. In-
stead, the actual instruction scheduling pass is run on a relaxed scheduling problem, removing the

*Since we are discussing transformation for instruction scheduling, final instructions (see section 1.3.2), which cannot
be scheduled, are ignored.

23

Instruction Start Latency Instruction Start Latency

.L101: ; loop start .L101: ; loop start

ldr d2, [x0, w2, sxtw #3] 0 3 ldr d2, [x0, w2, sxtw #3] 0 3
add w2, w2, #1 0 1 add w2, w2, #1 0 1
cmp w2, wl 1 1 cmp w2, wl 1 1
fmul d1, d2, d2 3 6 b.ge .L102 1 1
fadd do, do, d1 9 6 ldr d4, [x0, w2, sxtw #3] 2 3
b.ge .L100 9 1 add w2, w2, #1 2 1
ldr d4, [x0, w2, sxtw #3] 10 3 fmul d1, d2, d2 3 6
add w2, w2, #1 10 1 cmp w2, wi 3 1
cmp w2, wl 11 1 fmul d3, d4, d4 5 6
fmul d3, d4, d4 13 6 fadd do, do, d1 9 6
fadd do, do, d3 19 6 fadd do, do, d3 15 6
b.lt .L101 19 1 b.lt .L101 15 1
.L100: 3 loop exit .L102: ; compensation code

fmul d1, d2, d2
fadd do, do, d1
.L100: 3 loop exit

Table 3.1: Compilation result (left) for listing 6, without register renaming or live code motion
below side exits. Prepass register renaming, as discussed in chapter 2, which would
enable the speculative increment of the loop counter does not improve the expected
performance. Because AArch64 does not allow dismissible loads, the expensive com-
putations fmul and fadd cannot be interleaved with the first iteration. As a work-
around we can imagine the code on the right. The branch has been moved above the
firstiteration’s expensive computations, thus interleaving the two iterations without re-
quiring dismissible instructions. Note the insertion of compensation code to preserve
the data flow.

24

Instruction Start Latency

.L101: 3 loop start

ldr d2, [x0, w2, sxtw #3]
add w3, w2, #1

add w2, w3, #1

cmp w3, wl

b.ge .L102

fmul d5, d2, d2

ldr d16, [x0, w3, sxtw #3]
cmp w2, wl

b.ge .L103

fmul d6, d16, dié6

fadd d7, do, d5

fadd do, d7, dé

b .L101

O AN DM DWW WNHRFROO

ol
(9,1
— AN O = WO\ M =W

—
191

.L102: ; compensation code
fmul d3, d2, d2

fadd do, do, d3

b .L100

.L103: ; compensation code
fmul d1, d16, dié6

fadd d4, do, d5

fadd do, d4, d1

.L100: 3 loop exit

Table 3.2: Assembly code generated for listing 6 with both register renaming and live code motion
below side exits enabled. Compared to the envisioned result (see table 3.1), the same
final starting time is achieved. However, the code duplication incurred is much greater
due to the relative obliviousness of the heuristics (see section 3.2).

25

scheduling constraints that we may remove via code motion below side exits. The resulting sched-
ule is checked against the full constraints to see which instructions “want” to move downwards
but cannot. Due to the lack of compensation-code aware instruction scheduler, the result is com-
pared to a run on the original problem. If the original problem yields an equally good schedule®,
no code is duplicated. This simple work-around still allows many schedules involing significant
amount of code duplication for marginal gains (see fig. 5.1). A slightly more fine-grained mitiga-
tion is discussed in the next section. Note however, that these final-time-comparing approaches
still do not catch cases where an equivalent schedule, duplicating less instructions, exists (cf. the
desired assembly code of table 3.1 and the generated one, with an equivalent final time but much
more code duplication in table 3.2).

3.2 Code size

Code motion below side exits does not increase the size of the superblock itself at the RTLpath
level®. However, the compensation code that must be interposed between the side exit and its
target does increase the code size. Consider fig. 4.2. Many instructions, which previously could
not have been moved, are moved below the superblock’s first side exit to its predicted successor.
The appropriate compensation code to maintain correctness has been inserted into the predicted-
not-taken successor. Since some code is moved below the second side exit as well, which is thus
no longer the last instruction of the superblock, one additional unconditional branching instruc-
tion is inserted inside the superblock. Globally, however, we can see that the predicted-not-taken
successor’s size increases by eight instructions’. Additionally, the movement of code below the
second side exit further increases the code size by two instructions as a result of compensation
code. Here the interposition of the code between the side exit and its original target is clearly visi-
ble. Moreover, it highlights again the obliviousness of the heuristic with regard to the duplication
cost. The problem is particularly silly due to the necessary insertion of the unconditional branch
atalower IR. This branch is not accounted for at the RTL/RTLpath level and not predicted by the
heuristic. Ideally, such trivially factorizable code sequences would be avoided.

Like the traces of trace scheduling, the superblocks of this work have been created by static
or profiling based branch prediction, followed by trace selection and transformations meant to
increase the size of superblocks (or even turning some traces (paths in the context of COMP-
CERT) into superblocks in the first place). Note that if a superblock does not contain side exits,
i.e. does not make a prediction/assumption on the likely code execution path, neither specula-
tion nor compensation code after code motion below side exits apply. Thus, the key assumption
of trace scheduling—that the importance of the execution time of the superblock outweighs the
possible cost for other code executions—stands to reason. However, until now, this only applied
to the cost of speculative execution of instructions, including register pressure, but not directly
duplicating instructions. The introduction of register renaming and possible code motion past

>In one case it was observed that the relaxed problem lead to a worse expected final time for the schedule using list
scheduling. However, this case could be resolved by using the integer linear programming scheduler mentioned
“Verified Superblock Scheduling with Related Optimizations”.

®Its size may increase by a single unconditional branching instruction after linearization. An example is given below.

"In this case, since the predicted-not-taken successor is not a join, the compensation code was merged with the
original code during code layout.

26

side exits further exacerbates the problem of instruction scheduling with regard to register pres-
sure. Moreover, the latter may further directly generate additional code with an increased chance
to negatively impact other execution paths and performance in general. With the additions of this
work, COMPCERT becomes thus even more reliable on the accuracy of static branch predictions.

Two mitigations with regard to the code size increase are introduced by this work. A compiler
flag allows the register renaming and code motion below side exits optimizations to only be ap-
plied to inner loops, spanned by a superblock, that are predicted to loop. These are expected to
be especially likely to be executed and have an outsized effect on performance compared to other
superblocks. Additionally, since the existing instruction schedulers [38, 36], and the recent ad-
dition of a register-pressure aware scheduler by Nardino during an internship at VERIMAG, are
unaware of the duplication effort required to realize their schedules, an (expensive) heuristic tries
to estimate the gain in performance by allowing code motion below side exits (see section 4.2.1).
A compiler flag then allows to control the accepted code-duplication-to-expected-cycle-gain cost
ratio.

The actual superblock scheduling pass of Six, Gourdin, Boulmé, and Monniaux, may move in-
structions previously pushed downwards back above the side-exits, if possible (recall section 3.1).
Guiding the code motion below side exits with the actual instruction scheduling (see section 4.2.1)
algorithm used later, while computationally expensive, should avoid most of these situations.

27

L N

4 Implementation

In the untrusted OCAML code, a superblock is represented by the record shown in listing 7. The
instructions array is ordered so that we can simply iterate over them instead of walking
the CFG. Information about the live registers with regard to each (side-) exit is readily available
(liveinsand s_output_regsrespectively. s_output_regs stores the union of live reg-
isters of all successors.). In order to verify the transformation, our oracle combining register re-
naming and code motion below side exits, returns (1) the modified code i.e. modified and added
instructions (2) the possibly new function entry (3) the modified path_map and (4) another map
that guides the verifier to compare the correct paths. In practice, the function and path entries
are not modified. Instead, instructions are moved by reassigning the mapping of CFG nodes to
instructions, a trick already explained and exploited in “Optimized and formally-verified compi-
lation for a VLIW processor” [36]. Code insertion leverages this scheme further by designing
a fake schedule that will insert the instructions in the correct order while maintaining the path
entries and preserving the correct successor information of the last instruction in the path.

A new field was added to RTL, holding the untrusted change to the CFG and oracle-guiding
information of Duplicate per function. Thus the oracle of the duplication step (see section 4.2)
simply directly returns this information to the Duplicate verifier.

4.1 Register renaming

4.1.1 Basic superblock-local register renaming

Implementing the systematic renaming itself is quite simple: For each instruction in the super-
block, replace redefinitions of registers by fresh registers and keep track of the last renaming with
a simple map. The set of initially live registers can be obtained from the path_info entry in

type superblock =
{ mutable instructions: P.t array
; mutable liveins: Regset.t PTree.t
3 s_output_regs: Regset.t;
; typing: RTLtyping.regenv }

Listing 7: Representation of superblocksin the OCAML oracles. instructions holdsthe PCs
of the superblock’s instructions. Liveins maps from PCs of side-exits to registers
which are live in the unpredicted part of the branch. s_output_regs contains the
union of all successors of the last instruction, that is all registers that are live at the end
of the superblock.

28

the path_map of the function. Each use of the old register name will then be replaced by the
most recent renaming. At this point the superblock is internally consistent but not correct with
regard to its successors. In order to repair the superblock, the currently live renames are recorded
for each (side-) exit. Because the liveness information for each side exit is available, this snapshot
only records the information necessary to restore live registers. Eventually, before each (side-)
exit, a series of instructions restoring the expected value is inserted (restoration code, cf. fig. 2.1
and in particular the restoration instruction.). The final restoration code represents an exception,
where restoration code may be placed after the originally final instruction, if it is either basic or a
side-exit. In the latter case, restoration code that is not live with regard to the predicted successor
can essentially be moved out of the superblock for free.

Up to this point, the register renaming is entirely provable—without any modifications—by
the symbolic execution of section 1.3.2.

4.1.2 Moving restoration code outside of the superblock

The same technique that will be described in section 4.2 is applicable to moving restoration code
outside of the superblock. While this initially leaves a duplicate inside the superblock, the restora-
tion code inside the superblock will become useless and will be removed by DCE eventually.

The final restoration code of the superblock cannot be moved outside of it. Although some or
all of it might vanish due to register allocation, it might also remain. Therefore, the instruction
schedulers of section 4.2 are conservatively given a superblock with the final restoration code,
but not the one for side exsts, inserted. The map of live renamings, storing information about the
necessary renames per (side-) exits is changed to reflect the partial restoration. In combination
with moving the restoration code of side exits outside of the superblock, this gives the actual
prepass scheduling the opportunity to move the final and unavoidable restoration code as early as
possible. However, care must be taken in case the code motion below side exits decides to move
instructions below multiple side exits. Note that this can even happen when systematic register
renaming is applied. A renamed instruction may be moved across multiple side exits, creating two
or more copies before multiple side exits. The second occurrence may rely on its argument being
constant, which was originally true for e.g. an input register to the superblock whose redefinition
was then renamed. After inserting the restoration code, however, the value incorrectly assumed
to be immutable has changed.

More generally, the arguments of duplicated instructions are not allowed to change before the
duplicated occurrence. Therefore, when inserting the full restoration code, it is checked whether
the restored register is read after its restoration. Currently, this check is implemented with a sim-
ple walk of the superblock, starting just after the insertion site of the restoration instructions. If
the restoration code would change the data flow, an alias is created just before the restoration and
the new name applied to (a) the remainder of the superblock when systematic register renaming
is activated. Or (b) until the next definition is encountered, in the case that code motion below
side exits is enabled without systematic register renaming.

29

(@) The code to be moved below the side exit (shown (b) The conditional branch of the side exit is cloned

in green) has been placed and appropriately but changed to be “useless”. This version of the
marked just before the side exit (the diamond superblock passes the modified symbolic execu-
shape). tion semantics.

D \

(c) The code that has been framed between the (d) Finally, a modified pass of CSE3 can remove

cloned and parental conditional branch is dupli- the now redundant parental Icond and its du-
cated. This is easily verifiable by the existing Du- plicate. For each of the branches the result is
plicate verifier. known and does not need to be recomputed. A

pass of DCE is necessary in order to remove left-
over instructions when instructions are moved
across multiple side exits at once.

Figure 4.1: Sketch on how to move code below side exits. The diamond shape signifies a condition
with the two arrows coming out of it being the two branches.

30

4.2 Code motion past side exits

Moving live code below an Icond (shown in green in fig. 4.1), and thus interposing it between
the side exit and its target, is deceptively simple. First, clone the Tcond and “frame” the code
between the cloned Icond—whose two successor pointers both point to the beginning of the
code to be duplicated—and the original Icond (fig. 4.1b). Afterwards, the code up to and in-
cluding the original Icond may be duplicated. Intuitively, both initially useless branches point
to the exact same code in the beginning. After duplication they still point to identical, if dupli-
cated, code after the duplication (fig. 4.1c). This change is verifiable via the Duplicate verifier [36,
pp- 109-111] without modifications. Finally, both the original Icond and its duplicate (NB: not
its clone) can be removed since the result of the condition is known (fig. 4.1d) after computing
the evaluating the cloned Icond. One of them will unconditionally branch to the original i fso
successor and the other unconditionally branch to the ifnot successor. This step requires a
restricted version of CSE3! [32, p. 9], that only removes redundant conditional branches. When
instructions are moved downwards across multiple side exits, that their effect is live to, multi-
ple duplicates are created that are intentionally redundant. Following the duplication step (cf.
fig. 4.1c), they are no longer redundant, and their duplicate version inside the superblock will be
dead. After the actual instruction scheduling, another pass of CSE3 is run, in case final restora-
tion code of the superblock is moved so far up that its effect makes some restoration code inside
the side exits redundant. Alternatively, between the code motion past side exits and actual pre-
pass scheduling, the heuristic (section 4.2.1) and the actual schedule may disagree, in which case
instruction that can still be moved up obviate previously inserted restoration code. This process,
minus the cleanup phase, is visualized in fig. 4.1, and the changes necessary to verify are discussed
in section 4.3.

The information, (modified code and information necessary to guide the Duplicate verifier to
prove its correctness) necessary to perform the duplication of the if-branches is prepared at the
RTLpath level by slightly adapting the existing function to clone code. Instead of returning the
updated code, only the necessary changes are returned (a diff of sorts). Inside the trivial Duplicate
oracle for this transformation the diff is simply applied.

Unfortunately, it is not possible to modify Duplicate [36, p. 109] to directly insert the Icond
and duplicate values. Neither is it currently possible to transform multiple paths together at once,
or change the control flow in the described way using the symbolic execution test. Adapting the
former would require complicating the quite elegant and concise semantics, including its proven
verifier. The decisive factor, in not adapting Duplicate, however, is the inability to create and
insert new Iconds because the condition evaluation may fail. This is due to the fact that com-
parisons may fail if their arguments are not of the correct types. If this was the only problem,
a work-around involving COMPCERT’’s guarantee that at the RTL level everything is well-typed
would be possible. In this case unfortunately, pointers and integers share the same RTL type?, and
while integer comparison usually cannot fail, pointer comparisons can fail under various circum-
stances. The only pointer comparison allowed are comparisons between pointers of the same
and correct size (64- or 32-bit according to the platform), which must point to the same mem-

'In contrast to CoMPCERT’s default cSE, CSE3 is a global CSE that can remove redundant code across conditional
branches. The restricted version performs a strict subset of CSE3, but its proof is currently admitted.
*Tlong (64-bit integer) on 64-bit architectures, otherwise Tint on 32-bit platforms.

31

ory allocation and at most one index beyond the end of that allocation (in accordance with the
C standard). Equality and inequality tests with NULL are also permitted. Otherwise a pointer
comparison fails. As a result, the approach detailed in section 4.3 was chosen.

4.2.1 Instrumenting instruction scheduling as code duplication heuristic

As described in section 3.1, we want to instrument the actual instruction scheduler algorithm used
later to infer which code duplication and eventual resulting movement below side exits yields
schedules that are worth the incurred cost. Fortunately, the instruction schedulers are cleanly
divided into two phases: (1) calculating the scheduling constraints (cf. section 1.2.1) and (2) the
actual scheduling phase. By creating our own “frontend” to phase two, we can easily vary the
dependency calculation to fit our needs.

Ignoring liveness

The existing dependency calculation walks the instructions array (listing 7), updating im-
perative state to keep track of the latest register and memory reads and writes, as well as updating
the dependency constraints appropriately. When a side exit is encountered, the dependence calu-
lation handles multiple issues:

1. Input registers that present a hard dependency (“actual” input registers) i.e. those that are
required to compute the condition are added as RAW dependences.

2. Input registers, in the following called “fake”, which are not read by the Icond itself but
instead possibly read (live) for the part of the CFG pointed to by the predicted-not-taken
successor are also added as RAW dependences.

3. The side exit is recorded as the last read for both types of input registers with regard to the
continuation of the superblock. This information is used to add WAR dependences to later
writes in the superblock.

Simply erasing the liveness information with regard to side exits would allow impossible schedules
in certain cases where a write from below the side exit is incorrectly allowed to be moved above
it (see (3) above).

Instead only the RAW dependences for “fake” registers are omitted. Indeed, this relaxes the
scheudling problem as desired. In order to avoid false scheduling wins when comparing the re-
laxed to the unrelaxed problem (see section 4.2.2), “fake” input registers are recorded with a la-
tency of 0 which forces them to appear before side exits but without incurring the timing penalty
of only scheduling the branch at a time slot for which the “fake” input is ready. Without this mod-
ification, ostensibly better schedules requiring compensation code would be incorrectly favored.

Partially ignoring memory store liveness

As explained in chapter 3, it is not possible to move stores below multiple side exits using the
setup described in this chapter. Nonetheless, we can move memory stores across the next side
exit by erasing the original instruction, a process that was subsequently applied to all instructions.

32

00401428
00401560
004015E4

susan_smoothing
cmp w8, w25
b.gt LAB_6040166c

00481428 susan_:
00461568 neg
004615EC cmp
004615F0 b.gt

smoothing

4,

wd, w25
LAB_00401654

1 R :

080401428 susan_smoothing
004015F4 1drb w17, [x2]
004015F8 add x7, x2, #0x1
004015FC 1drb w18, [x1]
00401600 add x5, x1, #0x1
06401604 add w15, wd, #0x1
00401608 add x2, x7, #0x1
0840160C sub x14, x13, w17, SXTW
00401610 add x1, x5, #0x1
00401614 add w4, w15, #0x1
00401618 cmp w15, w25
0840161C 1ldrb w29, [x14]
06401620 mul w29, W18, w29
00401624 add w9, W9, w29
06401628 madd w6, w29, W17, W6

0040143C susan_smoothing
004015F0 cap w10, w23
884015F4 b.gt LABL6B4B16a4

susan_ssoothing

©046162C b.gt LAB_80401660

add x2, x4, #x1
add w7, we, #ox1

016eC 1drb w29, [xd]

i

00401428
00401660

00401664

00401668

susan_smoothing 00401428 susan_smoothing BRIy)
mov 7 oose1614 cmp w17, w23
00401630 1drb w10, [x7] b.gt LAB 6641668
00401634 cmp w4, W25

00401638 1drb w11, [x5]

mov x1, x5

0040143¢ susan_smoothing 0040143C susan_smoothing
mov x6, 6, X8, W29, SXTW

0040163C sub x14, x13, wi@, SXTW ,
00401620 ldrb wi5, [x2]

b LAB_00401654

@040166C sub x11, xB, w29, SKTW
dd #

00401640 1drb w5, [x14] tiel

00481644 mul w17, wil, W5
00461648 add W9, w9, w17
0048164C madd W6, W17, W18, W6
00461650 b.le LAB_004015f4

3

1. w6, w29, w1
@040168C b LAB 0041698

T T———
-
7
-
s

-

(S~~~

| e

| Y

! susan_saoothing 040143C susan_smoothing

| add wr, wis, w1 0401650 add w7, wI3.

sadd w1, w1, WIS,

i - Goiotoes b
00401428 susan_smoothing
00401654 add x2, x2, w23, SXTW pp—rrr
00401658 add w8, w8, #0x1 add xd, x4, w22, SKTW
6040165C b LAB_004015e8 69C add wib, wio, #ox1

b LA eedaisfa

(a) Generated code when register renaming is en- (b) In addition to register renaming (fig. 4.2a), the

abled.

Figure 4.2:

compiler is given the ability to move live instruc-
tions across side exits, at the cost of incurring
compensation code.

TACLe’s Smallest Univalue Segment Assimilating Nucleus (SUSAN) benchmark,
compiled with tail duplication and loop unrolling and rotation. The generated code
of the superblock spanning the inner loop is shown and evaluated in table 4.1. Note
that register names between the two compiled version have changed. This diff was
created using BinDiff [8].

33

Instruction Start Latency Instruction Start Latency

ldrb w17,[x2] 0 3 add x2,x4,#0x1 0 1
add x7,x2,#0x1 0 1 add wi17,w6,#0x1 0 1
ldrb w10,[x1] 1 3 ldrb w29,[x4] 1 3
add x5,x1,#0x1 1 1 add x11,x5,#0x1 1 1
add wil5,w4,#0x1 2 1 cmp wl7,w23 2 1
add x2,x7,#0x1 2 1 b.gt LAB_00401668 3 1
sub x14,x13,wl7, SXTW 3 1 sub x6,%8,w29, SXTW 4 1
add x1,x5,#0x1 3 1 ldrb w15, [x2] 4 3
add w4,wl5,#0x1 4 1 Ldrb w12: [x5] p 3
cmp wl>,w25 4 1 add x5,x11,#0x1 5 1
ldrb w29, [x14] > 3 add x4,x2,#0x1 6 1
mul w29 ,wl0,w29 8 4 ldrb wil4,[x6] 6 3
add w9 ,w9,w29 12 1 ldrb wi3,[x11] 7 3
madd w6,w29,wl7,wb 13 4 sub x11,x8,wl5, SXTW 7 1
b.gt LAB_00401660 13 1 add w6, w7 $0x1 2 .
ldrb w10,[x7] 14 3 mul w2,wl2,wl4 9 4
cmp w4 ,w25 14 1 ldrb w17,[x11] 9 1
ldrb w11,[x5] 15 3 cmp w6 ,w23 10 1
sub x14,x13,wl0, SXTW 15 1 mul wll,wl3,wl7 12 4
ldrb w5,[x14] 16 3 add wil3,w7,w2 12 1
mul wl7,wll,w5 19 4 madd w12,w2,w29,wl 13 4
add w9,w9,wl7 23 1 b.gt LAB_00401690 13 1
madd w6,wl7,wl0,w6 23 4 add w7 ,wi3,wil 16 1
b.le LAB_004015f4 24 ! madd wi,wll,wl5,wl2 17 4

b LAB_00401604 17 1

Table 4.1: Evaluation of the superblocks of fig. 4.2 by hand. An important performance gain can
be observed by improved interleaving of instructions that are now able to move below
the side exit.

34

Encoding this constraint in the dependency calculation is slightly more complicated. Instead of
adding each side exit as a blanket memory read, they are only added as memory reads to stores that
have occurred one side exit before. Once again, this is implemented by splitting the constraint
creating function for memory reads in two, once for actual memory reads and once for “fake”
memory reads (side exits), which can be compensated. As before, fake reads are given a latency
of 0.

4.2.2 Interpreting the results of relaxed scheduling problems

The actual instruction scheduling algorithms, oblivious to our trickery, report a schedule for the
given superblock with the relaxed constraints. By comparing the resulting schedule with the orig-
inal constraints we can observe (a) whether the relaxed problem’s schedule is worth the possible
code duplication (recall section 3.2) and (b) which instructions have been moved in an illegal way.
Schedules are represented as arrays of PCs, in the order determined by the scheduler. Mapping
the PCs of the superblock to their prior (original problem) and posterior (relaxed problem) index,
it is easy to check whether a dependency of a side exit is no longer above it. Since the true input
registers of side exits must be respected by the relaxed schedule as well, we can be sure that only
movable instructions will be duplicated.

The following example should give the intuition. Given the dependency graph of the original
code with the full constraints, we can obtain the dependencies of a side exit with PC n,, at index
ise of the instructions array. Consider the simplistic example of just one dependency with PC
Ndep at index ig.,. Necessarily, igep < 45 Having obtained the schedule (a permutation of
the original array) for the relaxed problem, we can find the new indices i, and g, of nsc and
Nqep respectively. If 4 > i}, we can infer that the instruction at PC nge;, should be moved
below this side exit. That is, in the relaxed problem, the instruction scheduler would not keep the
compsenable dependency above the side exits.

Instead of actually recording the instructions to be duplicated, their PCs are. This is important
because we may first need to apply the ad-hoc renaming step of chapter 2 and section 4.1.1. The
connection between original and duplicated instructions is lost as soon as we insert the compen-
sation code. Extra aliasing logic may still need to be applied after inserting the restoration code
(section 4.1.1). Afterwards, the Iconds of side exits below which instructions are to be moved
are cloned, placing the target code (to-be-moved) between them. This information is implicitly
recovered by a prior insertion of an Inop before each side exit. If| after inserting the to-be-moved
code, the Inop no longer directly precedes the side exit, it will be replaced by the cloned Icond
thus correctly framing the code for duplication. Finally, the modified code, path_map and
staged duplication information is returned.

4.3 Changes to RTLpath and the symbolic execution

4.3.1 Adding “useless” Iconds

A priori, the symbolic execution described in section 1.3.2 does not keep track of not-failing
condition evaluations of Iconds. This was unnecessary because between the original and sched-
uled path (superblock): the number of side exits of the paths has to match, they must appear in

35

13

Definition istep (ge: RTL.genv) (i: instruction) (sp: val) (rs:
< regset) (m: mem): option istate :=
match i with
| Inop pc' => Some (mk_istate true pc' rs m)
| Iop op args res pc' =>
SOME v <- eval_operation ge sp op rsi##args m IN
Some (mk_istate true pc' (rs#res <- v) m)
| Icond cond args ifso ifnot _ =>
SOME b <- eval_condition cond rsi##args m IN
if Pos.eq_dec ifso ifnot then
Some (mk_istate true (if b then ifso else ifnot) rs m)
else
Some (mk_istate (negb b) (if b then ifso else ifnot) rs m)
o (% ... %)
end.

Listing 8: Modified definition of RTLpath’s i step function (cf. listing 1). Note that for Iconds
with identical successors, execution a/ways stays within the superblock.

order, their “conditions are checked for syntactical equality, their list of arguments are compared
for semantics equalities of symbolic values, and the PPAG [Preconditioned Parallel Assignment
ended by Goto] are semantically compared modulo register liveness.” [38, p. 18]. Normally, in-
serting an Icond would either terminate the superblock, if it is unpredicted, or introduce a new
side exit, neither of which would be a legal transformation. The excerpt in listing 8 legalizes
so-called “useless” Iconds: Iconds with two identical successors and thus not actually repre-
senting a meaningful branch. As explained in section 4.2, introducing such a useless Icond is
the first step to enabling live code motion below side exits.

This change must be mirrored and proven correct for the well-formedness check since now not
every Icond introduces a (side-) exit. Similarly, the RTLpath liveness generation needs a small
adjustment. Both of these changes are rather small.

Moreover, the symbolic execution semantics need to be modified in order to specify when in-
serting such an Icond is legal. First, at an abstract level (RTLpathSE_theory.v): upon
executing an Icond as part of siexec_inst, the non-failure of the condition evaluation is
recorded as a precondition to the successful execution of the superblock (see listing 9, cf. asser-
tion that instruction do not trap in section 1.3.2). These modified semantics must once again
be proven to bisimulate the (modified) execution semantics of RTLpath (sexec_correct and
sexect_exact).

Next, the data structures that will be used in the hash-consing implementation must be ad-
justed (RTLpathSE_simu_specs.Vv). A new kind of (ultimately hash-consed) data structure
needs to be added to represent non-failing conditions, hscond (hash-consed symbolic condition,
see listing 10 for its definition). Note that hscond does not depend on the memory: a pointer
comparison—against whose failure we are guarding—does not need access to the content of the
memory (listing 11). And since alloc and free are the only operation that can modify the
allocated blocks/size simply always supplying Sini t, the initial symbolic memory, suffices. To

36

IS

E N

1

Definition slocal_eval_cond (st:sistate_local) (cond : condition)
— (args : list_sval) :=
{| si_pre:=(fun ge sp rs m => seval_condition ge sp cond args
< st.(si_smem) rs m <> None
/\ (st.(si_pre) ge sp rs m))
; si_sreg:=st.(si_sreg)
; si_smem:= st.(si_smem) |}.

Listing 9: Upon encountering an Icond, siexec_inst will record that its condition must not
fail by adding the non-failure to the superblocks precondition. The symbolic register
and memory state is left unchanged.

Record hscond :=
{ cond : condition
; Lhsv : list_hsval
; hscond_hid : hashcode }.

Listing 10: Data structure to represent hash-consed condition evaluation. Note that unlike the
abstract version, this data structure does not depend on the symbolic memory.

Notation "'seval_hscond' ge sp hsc" := (seval_condition ge sp

< hsc.(cond) (hsval_list_proj hsc.(lhsv)) Sinit)
(only parsing, at level 0, ge at next level, sp at next level, hsc
— at next level): hse.

Listing 11: Symbolically evaluating an hscond always uses the initial symbolic memory Sinit.

37

1

Record hsistate_local :=
{ hsi_smem :> hsmem
; hsi_ok_lscond: list hscond
;3 hsi_ok_lsval: list hsval
; hsi_sreg:> PTree.t hsval }.

Listing 12: Hash-consed refinement of symbolic, local superblock state. The addition of a list of
hsconds mirrors the approach taken for non-failing instructions (hsi_ok_1lsval).

Definition hsilocal_simu_spec (alive: Regset.t) (hstl hst2:
< hsistate_local) :=
List.incl (hsi_ok_lsval hst2) (hsi_ok_lsval hst1l)
/\ List.incl (hsi_ok_lscond hst2) (hsi_ok_lscond hst1)
/\ (forall r, Regset.In r alive -> PTree.get r hst2 = PTree.get r
— hSti)
/\ hsi_smem hstl = hsi_smem hst2.

Listing 13: Definition of what it means for two hash-consed symbolic local states to simulate each
other. The second test, making sure that the transformed superblock’s condition eval-
uations are included in the original one’s has been added.

hsistate_local we must add the list of non-failing condition evaluations. This mirrors the
approach taken for non-failing instructions (hsi_ok_lsval, see listing 12). The presence of
an hscond in this list signifies that its evaluation (listing 11) does not fail®. In order to prove that
this hash-consed representation of the local state refines the abstract symbolic local, two small
lemmas had to be fixed. The refined definitions of the other states are not touched and the proofs
pass without further modifications.

For the actual implementation of the simulation test, the hash-consed data structures are ac-
tually passed to the memoizing smart constructor factory of section 1.3.2. Listing 14 shows the
hash-consing equality considered for our symbolic condition evaluations. The conditions, non-
nested terms are compared for structural equality. The hash-consed symbolic values, on which
the symbolic condition evaluation depends are simply compared by physical equality. If both
OCAaML-imported non-deterministic functions return true, the equality succeeds. Other data
structures of the implementation are similarly adapted.

4.3.2 Known limitation

There is a small caveat with regard to the modified RTLpath semantics and its interaction with the
scheduling oracles. In rare cases, the last side exit of a superblock is, inside the superblock, only
followed by Inops. After scheduling it may thus be placed at the very end. If at that point both its

$While the hscond will be hash-consed, the list itself is not. Thus the list of non-failing conditions of side exits
grows quadratically with the number n of side exits of a superblock. In general we expect n to be quite small. The
list inclusion test used later is ©(n), using an imperative hash-map, or ©(n log n), using a map based on a purely
functional binary-search tree. [4, p. 39]

38

Definition hscond_hash_eq (hsc1l hsc2: hscond): ?? bool :=
DO b1l <~ struct_eq hscl.(cond) hsc2.(cond);;
DO b2 <~ phys_eq hsc1l.(lhsv) hsc2.(lhsv);;
if b1 && b2 then RET true else RET false.

Listing 14: hash_eq for hash-consed conditions.

branches point to the same successor, it will be considered a useless Icond. Consequently, the
transformed superblock has one less side exit, which is not legal. This issue is mostly* avoided
by applying Goutagny’s work on RTLtunneling, porting COoMPCERT s previous tunneling®, per-
formed after register allocation, to RTL.

*Some programs generated by YARPGen [28] still trigger this issue.

*“Branch tunneling shortens sequences of branches (with no intervening computations) by rewriting the branch
and conditional branch instructions so that they jump directly to the end of the branch sequence.” (https://
compcert.org/doc/html/compcert.backend.Tunneling.html, last accessed on 2021-08-20)

39

https://compcert.org/doc/html/compcert.backend.Tunneling.html
https://compcert.org/doc/html/compcert.backend.Tunneling.html

Filename Changes to to RTLpath” Lines changed

RTLpath.v “Useless” Iconds are not early exits and do not 25
actually branch.

RTLpathproof.v No changes. 0

RTLpathWFcheck.v “Useless” Iconds are not side exits, neither 10
successor must start a new path.

RTLpathLivegen.v Take these changes into account during path 10
generation.
RTLpathLivegenproof.v Trivial. 18
RTLpathSE theory.v The condition is evaluated and asserted not to 168
failbut sistate_exit is created.
RTLpathSE simu_specs.v Add conditions as eventually hash-consed data 22
structure. When comparing symbolic evalua-
tions, all conditions must have been executed on
the original path as well.

RTLpathSE_impl.v Impelement previous checks with hash-consing 370
in the IMPURE monad.

RTLpathScheduler.v Pass along untrusted information. 2

RTLpathSchedulerproofv ~ “Useless” Iconds are essentially a new basic 35
instruction after which we must check equiva-
lence if it is the final instruction of the path.

Table 4.2: Summary of the changes to RTLpath and its symbolic execution. Note that

hsiexec_inst_correctinRTLpathSE impl.vhasnotbeen proven entirely cor-
rect. The number of lines changed include a proof stub (only the cases for Iconds are
missing), including a commented out proof stub of presumably an important lemma,
that was proven earlier in a less strong form.

40

5 Evaluation

The theoretical advantage of the presented work is clear: with a perfect oracle, less constraints
should always lead to better schedules. Right now, this fork of mainline CoMPCERT’s fork
at VERIMAG is able to at least theoretically leverage almost the full advantages of superblock
scheduling.

5.1 Experimental evaluation

None of the theoretical guarantees given by the symbolic execution (section 1.3.2) or its adaption
(section 4.3) claim that the verifier is complete with regard to the oracle or that the oracle itself is
correct. Indeed, we have discussed a limitation of the verifier with regard to technically correct
code movement by the oracle that had to be be forbidden. However, practically speaking the trans-
lation validation does not fail for any of the tests or benchmarks given at least the compilation op-
tions of tables 5.2 and 5.3. All COMPCERT “compilers” (compilation with different optimization
options will be considered as separate compilers), share the same set of common flags: —-fcse3—
trivial-ops —-funrollbody 30 -flooprotate 10 -ftailduplicate 60in
addition to standard flags related to the benchmarks'.

The benchmark suite, comprises 154 benchmarks taken from PolyBench?, TACLeBench [10],
MiBench [17], Lustre examples and some benchmarks curated at VERIMAG. A Raspberry Pi 3
Model B Plus Rev 1.3 with a Cortex A53 processor was used as test platform. It runs at 1.5 GHz
with an in-order eight-stage deep pipeline, issues instructions dynamically up to two at a time [33,
p- 355]. The cycle estimates of table 4.1 are based on the same assumption as the postpass sched-
uler uses in VERIMAG’s fork of mainline COMPCERT.

After running the entire benchmark suite 31 times, throwing away the first measurements to
guard again thermal throttling issues during the benchmarks (or rather force equal thermal throt-
tling). The raw performance metrics are measured in cycles, obtained via the CPU’s cycle counter
made easily accessible by an extra kernel module®. Afterwards, the relative standard deviation

(rRSD) was calculated as 100 7 for each benchmark and compiler. Benchmarks with an RSD above

2 for any of the compilers WCle:C filtered out, leaving 44 benchmarks. For these benchmarks the 30
measurements where averaged and the relative relative difference calculated to a baseline version
of the compiler (see figs. 5.2 and 5.3).

The value of 3, when limiting the amount of duplications caused by code motion below side
exits, was picked rather arbitrarily. Intuitively, we want this number to be somewhat small in order

'For example, the flag ~DSMALL_DATASET is passed, telling PolyBench to use its small data set (as opposed to
mini, standard or large).

http://web.cs.ucla.edu/~pouchet/software/polybench/, last accessed on 2021-08-22

*https://github.com/jerinjacobk/armv8_pmu_cycle_counter_el0

11

http://web.cs.ucla.edu/~pouchet/software/polybench/
https://github.com/jerinjacobk/armv8_pmu_cycle_counter_el0

800

600+

Number of superblocks transformed

400
L]
200+
)
0 L I
0

100 200 300
Accepted duplication cost per expected cycle gain

Figure 5.1: Number of superblocks transformed when limiting the amount of instructions dupli-
cated per expected cycles gained due to the duplication. Note that the first data point
sits at 1.

Abbreviation Meaning

pp(n|1]|b]r)
ITr
li

liN

il

Prepass scheduling: None, List, Backwards, Register-pressure aware.

If present then register renaming is turned on.

“lift if”, code can be moved below side exits. In combination with rr it moves
restoration code of side exits out of the superblock.

If present (must be combined with li/liN), instructions are allowed to move below
side exits.

When used with ms, specifies the maximum ratio between duplicated instructions
and expected gain in cycles.

If present, the extra optimizations (rr/ms) are only applied to inner loops predicted
to loop.

Table 5.1: Key to decipher compiler optimizations.

42

40

30+

204 compiler

Wi
ppl_rr_li

. ppl_rr_li3_ms
ppl_rr_li_ms

Relative performance gain in % over ppl

. N 3 PRy Lo e ©
o 3 R R R S R R N N Q@ RS EE R
& St o Feb & & m“ R & U
& & R & ¥ a3 %, 5\ RS & <5 ‘5\ ¢
2 \a\ {0 ¥ < (&l & e & & S
Q S & S E S & ¥ R 2
¢ FSEE o & o
Lé\ S] hd o
& >
W ‘é’a’

Benchmarks

Figure 5.2: Selection of compilers plotted for easier visualization of results. Note the handful of
benchmarks with important performance gains. Higher is better.

to avoid “excessive” code duplication. On the other hand, especially in this context, we still want
to apply the optimization to many superblocks. Hence, 3 was picked as a trade-off (see fig. 5.1).

5.1.1 Runtime performance

Looking at fig. 5.2 we can see that register renaming and code motion past side exits can have an
important influence on the runtime performance in certain cases (cf. the unimpressive mean and
median columns of table 5.2). Note that SUSAN appears twice, once as part of MiBench, and once
as part of TACLeBench. Predictably, and reassuringly, the performance results are very similar.
SUSAN is particularly interesting because its code size increase is relatively small. To investi-
gate where the performance gain comes form, the binaries of SUSAN when compiling just with
register renaming (“ppl_rr_1i”’) and when additionally allowing code motion (“ppl_rr li ms”)
were compared using BinDiff 6 [8] after exporting Ghidra’s analysis results with the BinExport
extension®. The code part of the CFG shown in fig. 4.2 has been discovered with BinDiff and we
attribute to it the major gain in performance. Only one other part of the CFG showed noticeable

*https://github.com/google/binexport

43

https://github.com/google/binexport

compiler

5 | [N
pplrr i

W pplr_li3_ms
ppLrr_li_ms

ase in % over ppl

| ||||||||..|m I‘I‘|‘|‘III|I‘|‘|‘.I...|.|||| FBN I
0
ol 1]

> S EE IO

e e e LA B m s s s

-
o™ P

T
F
S

LN » *
5 & S % é‘” e’\“&@ S & && L EE QPP L S F S P S € 0 Fé G
@\° ‘@ * he » S z,\ & \) s ,\ (8 é’°\ o (@ 5 3 & W B B‘ sz
PP S o S L
\o‘\ Q@ §>‘ &ﬁ S S & & @(@ é@s‘ L
& LS T W & & 8
< ,&‘* & <€ o

& &
P W
N

Benchmarks

Figure 5.3: Relative code size increase to just the default compilation options for these bench-
marks. Lower is better.

differences, but the same version compiled while limiting the accepted duplication cost to 3, only
displayed the former change with similar performance. In table 4.1 the pipeline of the Cortex-
A53 was simulated by hand and shows an important gain in cycles for this inner loop, showcasing
the advantageous interleaving enabled by moving live code below a side exit. Other benchmarks
showed important improvements for register renaming as well.

For many benchmarks there is no important change in performance to observe, suggesting that
the heuristics of section 4.2.1 work decently well.

5.1.2 Code size increase

With regard to code size on the other hand, almost all of the benchmarks show important increase
in the relative code size. Code size is measured by counting the lines of assembly as assembly and
linking are outside the control of COoMPCERT and add serious variability. It is interesting to note
that the relatively large increase in code size does not seem to impact the performance too much.
One possibility is that the code size increase mostly happens outside of important superblocks
and/or loops so that the instruction cache is serious too much impacted. Figure 5.3 presents the
increase in code size over compiling without register renaming and code motion below side exits.

44

Compiler Mean SD Min Q25 Median Q75 Max

gcc O1 7.6388 14.5364 -14.9958 -0.358799 5.85085 14.0446 64.8289

gcc 02 20.6496 26.7684 0.134864 7.44226 11.3749 21.6997 150.406

ppn -3.40771 4.26335 -16.6199 -5.36854 -3.45005 -0.15971 6.99419

ppn_rr -3.3006 4.74266 -18.7174 -5.29553 -2.66983 -0.0992033 6.54556

ppb -1.24036 4.56508 -22.831 -2.68629 -0.180271 0.308892 6.3524

ppr -0.073096 0.274274 -0.739752 -0.139261 -0.0299136 0.0455517 0.778176

ppl rr 0.253656 2.43581 -3.7699 -0.258335 -0.0663835 0.106016 11.0758

ppb_rr -1.04864 4.49441 -20.9926 -2.8004 -0.21653 0.198317 6.73587

ppr_rr 0.182216 2.4542 -3.75183 -0.408277 -0.0743278 0.0484149 11.4343

ppl rr li 0.660213 3.31885 -3.90563 -0.285752 -0.0057986 0.349426 18.6909
ppl rr li il -0.070214 0.658057 -1.65598 -0.158776 -0.0399422 0.0535289 3.32184
ppb_rr li -1.8191 4.80041 -24.5397 -3.45424 -0.42696 0.0174452 6.74696
ppr_rr li 0.562115 3.30297 -3.85031 -0.362995 -0.0120634 0.290906 18.5492

ppl rr li ms 3.15595 8.80805 -3.22288 -0.256543 0.0262018 1.11994 38.6752
ppl_rr li_ms il -0.0721444 0.703755 -1.91889 -0.219389 -0.0695988 0.0441982 3.45987
ppb _rr li ms 1.22705 9.27699 -19.6032 -1.91012 -0.146475 1.06919 39.5203
pprrr li ms 292591 851032 -3.22139 -0.367747 0.0252563 1.27369 37.1793
ppl rr li3 ms 3.1115 8.71975 -3.31072 -0.138454 0.0226524 0.750526 38.3435
ppb_rr_li3 ms 125772 9.17075 -18.8024 -1.66887 -0.145992 1.10096 39.2114
ppr_rr li3 ms 2.86386 8.51221 -3.30564 -0.274683 -0.0235695 0.488564 37.3514
ppl li ms 0.27112 4.69161 -15.6833 -0.183128 0.0114277 0.763195 12.8895
ppb li ms -0.491917 6.36201 -15.5361 -2.7751 -0.108018 0.299748 16.3388
ppr_li ms 0.224586 4.69652 -15.7203 -0.259994 -0.012063 0.713992 12.8301
ppl i3 ms -0.0839534 4.3917 -15.3511 -0.123845 -0.0113259 0.116377 13.0092
ppb_li3 ms -0.408243 6.37275 -15.5132 -2.70171 -0.0607288 0.355513 16.141
ppr_li3 ms -0.103613 4.51028 -15.7118 -0.220621 -0.0612546 0.209797 12.9947

45

Table 5.2: Summary of performance benchmarks. The key is given in table 5.1.

Compiler Mean SD Min Q25 Median Q75 Max

gcc O1 -66.0654 245.387 -1210.79 -16.2458 -8.48005 -4.67762 8.96157

gcc 02 -71.5867 249.573 -1249.74 -23.5247 -17.5077 -12.6662 38.5971

ppb 0.097385 0.948883 -5.39671 0.0 0.0955621 0.376648 2.4873

ppb_li3 ms 0.409494 1.17012 -5.5476 0.0670706 0.364445 0.706278 3.41463
ppb li ms 0.458691 1.19714 -5.5476 0.0808104 0.379297 0.822077 3.41463
ppb_rr 0.308986 1.10511 -5.5476 0.0550055 0.293114 0.554402 3.07443

ppb_rr li3 ms 1.57274 1.83256 -5.66105 0.560658 1.17985 2.78572 5.51817
ppb rr li 0.492641 1.25282 -5.5476 0.113363 0.535142 0.68902 4.61783

ppb _rr li ms 1.58262 1.82967 -5.66105 0.560658 1.2363 2.78572 5.51817
ppl li3 ms 0315715 1.11001 -0.717213 0.0 0.0 0.202116 6.01266
ppl li ms 0.882762 1.51656 -0.485642 0.0 0126799 1.58075 7.62053

ppl rr 0.731947 0.663163 -0.820513 0.129327 0.880089 1.18018 1.96399
ppl_rr_li3_ms 1.95622 2.13583 -0.820513 0.401118 1.344490 2.74429 10.1362
ppl rr li 0.880711 0.874215 -0.820513 0.285794 0.980769 1.32018 4.46571
pplrr li il 0.0260701 0.108609 -0.0125219 0.0 0.0 0.0 0.668896
ppl rr li ms 3.21504 3.00893 -0.485642 0.850749 2.40294 4.79656 10.4106
ppl rr li ms il 0.0260701 0.108609 -0.0125219 0.0 0.0 0.0 0.668896
ppn 0.00677172 1.01803 -6.38528 0.0 0.173663 0.360794 0.44843

ppn_rr 0.122665 0.989112 -5.69892 0.0 0.182006 0.566199 1.28913

ppr 0.0249667 0.225173 -0.340252 0.0 0.0 0.0 1.32932

ppr li3 ms 0.392023 1.0948 -0.212993 0.0 0.0 0.265425 6.01266
ppr_li_ms 0.850847 1.49502 -0.854993 0.0 0.101193 1.58075 7.62053
ppr_rr 0.85587 0.674165 -0.212993 0.337667 0.888906 1.27247 2.98013
ppr_rr_li3_ms 2.08116 2.07185 -0.212993 0.777462 1.43303 2.85659 10.1362
ppr_rr li 1.00211 0.859299 -0.212993 0.428924 1.00032 1.35112 4.46571
ppr_rr_li_ms 3.29533 3.04364 -0.958576 1.05497 2.40294 5.15452 10.4106

Table 5.3: Summary of code size increase on benchmarks. The key is given in table 5.1.

46

6 Discussion

The first part of this work, implementing a simple register renaming pass on top of RTLpath’s
symbolic execution, once again (cf. [38, pp. 8-9]) demonstrates the flexibility of the translation
validation approach. Without any modifications, it is able to verify the systematic register rewrit-
ing, including the insertion of restoration code. Even when considering the adaption of RTLpath
down to the implementation of hash-consed symbolic execution, the burden of refactoring and
proof has been modest, considering the many aspects touched upon in this work.

When combined with loop optimizations verified via the Duplicate oracle, register renaming
appears to have an important influence on the availability of 1LP.

The problem of register allocation is central to compilation and in the form present in CoMPp-
CERT NP-complete [7]. An important drawback of the register rewriting presented here is its
complex interactions with prepass instruction scheduling—where a register-pressure aware sched-
uler is an important step in the right direction—and register allocation. It seems very difficult to
predict which renamings will be a boon to performance and which might actually make things
worse. No effort has been made in this project to do so, although targeted register renaming (see
section 4.1.1) could be used to single out likely candidates for effective renaming e.g. loop indices.
In addition to being a more general approach to register renaming, SSA makes it possible to per-
form optimal register allocation in polynomial time [18]. COMPCERTSSA [3] does implement
an SSA form for but its proof of correctness is quite large. “Their correctness proofs are harder
[than non-SSA CoMPCERT] and involve non-trivial invariants about control-flow graphs, dom-
inance relations, etc.” [32, p. 23] Nonetheless it has recently been ported to current versions of
ComPCERT.

The benchmark results regarding the combination of register renaming and code motions be-
low side exits are promising. They indicate that extension of prepass superblock scheduling to
support code motion below side exits via compensation code is a worthwhile pursuit. At the same
time there is still obvious room for improvement with regard to maximizing scheduling potential.
In particular the lack of alias analysis in the symbolic execution forces many scheduling depen-
dencies that are in principle not necessary. More immediately, enabling redundant writes to be
normalized to the same symbolic memory would allow movement of stores below multiple side
exits. However, how much additional flexibility it would bring and whether it could be mean-
ingfully exploited is unclear. Previous benchmarks (not shown here) did not display remarkable
performance differences between the two relaxations (section 4.2.1) that are currently compens-
able.

Both additions of this work are limited in their scope to superblocks, thus necessitating the
impressive succession of independent passes to achieve code motion below side exits. While ar-
guably decomposing a larger optimization into multiple smaller ones may be beneficial, in this case
the setup seems more complicated than necessary. A tree or graph-like code region representa-
tion could remedy the situation. For example if both the likely successor and unlikely successor

47

were available, in a setup where symbolic execution is still practical and efficient, the code motion
below side exits could be proved directly during scheduling. This would avoid most of the com-
plicated aspects of this work with regard to both the composition and slight modification of many
passes, as well as the relatively complicated oracle implementation presented earlier. Another
interesting avenue to tackle the currently relatively myopic view of the symbolic execution would
be the introduction of invariants to the concept of code regions. These and additional ideas are
currently being explored by Léo Gourdin as part of his PhD thesis at VERIMAG co-supervised
by Sylvain Boulmé and Frédéric Pétrot.

In conclusion, the extension of the symbolic execution semantics enabled a relatively complex,
non-local, transformation where most of the complexity is handled by the oracle. The results hint
at exciting possibilities with regard to oracle-guided translation validation, verified by scalable
symbolic execution, particularly with regard to more powerful code region representations in the
future.

48

Bibliography

[1]

2]

[5]

[6]

[7]

[8]

[9]

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley series in computer science / World student series edition. Addison-
Wesley, 1986. 1SBN: 0-201-10088-6. URL: https://www.worldcat.org/oclc/
12285707.

Andrew W. Appel. “Preface”. In: Modern Compiler Implementation in ML. Cambridge Uni-
versity Press, 1997. DO1: 10.1017/CB09780511811449.001.

Gilles Barthe, Delphine Demange, and David Pichardie. “Formal Verification of an SSA-
Based Middle-End for CompCert”. In: ACM Trans. Program. Lang. Syst. 36.1 (2014), 4:1-
4:35.D01: 10.1145/2579080. URL: https://doi.org/10.1145/2579080.

Sylvain Boulmé. “Formally Verified Defensive Programming. Efficient CoQ-Verified Com-
putations from Untrusted ML Oracles”. Preliminary Draft for a future HDR. July 4, 2021.

Sylvain Boulmé and Thomas Vandendorpe. “ Embedding Untrusted Imperative ML Or-
acles into Coq Verified Code”. working paper or preprint. July 2019. URL: https: //
hal.archives-ouvertes.fr/hal-02062288.

Thomas Braibant, Jacques-Henri Jourdan, and David Monniaux. “Implementing and Rea-
soning About Hash-consed Data Structures in Coq”. In: J. Autom. Reason. 53.3 (2014),
pp. 271-304. DOI: 10.1007/s10817-014-9306-0. URL: https://doi.org/
10.1007/s10817-014-9306-0.

Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hop-
kins, and Peter W. Markstein. “Register Allocation Via Coloring”. In: Comput. Lang. 6.1
(1981), pp. 47-57. DOL: 10 . 1016 /00960551 (81) 90048—-5. URL: https : //
doi.org/10.1016/0096-0551(81)90048-5.

Thomas Dullien and Rolf Rolles. “Graph-based comparison of Executable Objects”. In:
Symposium sur la sécurité des technologies de I’information et des communications. Asso-
ciation STIC c/o CentraleSupélec, 2005. URL: https://www.sstic.org/2005/
presentation/bindiff_compairson_struct_objets_exec/.

Eric Eide and John Regehr. “Volatiles are miscompiled, and what to do about it”. In: Pro-
ceedings of the 8th ACM & IEEFE International conference on Embedded sofiware, EASOFT
2008, Atlanta, GA, USA, October 19-24, 2008. Ed. by Luca de Alfaro and Jens Palsberg.
ACM, 2008, pp. 255-264. DOI: 10 .1145/1450058 . 1450093. URL: https://
doi.org/10.1145/1450058.1450093.

49

https://www.worldcat.org/oclc/12285707
https://www.worldcat.org/oclc/12285707
https://doi.org/10.1017/CBO9780511811449.001
https://doi.org/10.1145/2579080
https://doi.org/10.1145/2579080
https://hal.archives-ouvertes.fr/hal-02062288
https://hal.archives-ouvertes.fr/hal-02062288
https://doi.org/10.1007/s10817-014-9306-0
https://doi.org/10.1007/s10817-014-9306-0
https://doi.org/10.1007/s10817-014-9306-0
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1016/0096-0551(81)90048-5
https://www.sstic.org/2005/presentation/bindiff_compairson_struct_objets_exec/
https://www.sstic.org/2005/presentation/bindiff_compairson_struct_objets_exec/
https://doi.org/10.1145/1450058.1450093
https://doi.org/10.1145/1450058.1450093
https://doi.org/10.1145/1450058.1450093

[10] Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Bjorn Lisper, Wolfgang Puffitsch, Chris-
tine Rochange, Martin Schoeberl, Rasmus Bo Sgrensen, Peter Wigemann, and Simon We-
gener. “TACLeBench: A Benchmark Collection to Support Worst-Case Execution Time
Research”. In: 16th International Workshop on Worst-Case Execution Time Analysis (WCET
2016). Ed. by Martin Schoeberl. Vol. 55. OpenAccess Series in Informatics (OASIcs). Dagstuhl,
Germany: Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2016, 2:1-2:10.

[11] Joseph A. Fisher. “Trace Scheduling: A Technique for Global Microcode Compaction”. In:
IEEFE Trans. Computers 30.7 (1981), pp. 478-490. D01: 10.1109/TC.1981.1675827.
URL: https://doi.org/10.1109/TC.1981.1675827.

[12] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Kiem-phong Vo. “A
Technique for Drawing Directed Graphs”. In: [EEE TRANSACTIONS ON SOFTWARE
ENGINEERING 19.3 (1993), pp. 214-230.

[13] Emden R. Gansner and Stephen C. North. “An open graph visualization system and its
applications to software engineering”. In: SOFTWARE - PRACTICEAND EXPERIENCE
30.11 (2000), pp. 1203-1233.

[14] Shilpi Goel. “Formal verification of application and system programs based on a vali-
dated x86 ISA model”. PhD thesis. University of Texas at Austin, 2016. URL: https:
//repositories.lib.utexas.edu/handle/2152/46437.

[15] David Gregg. “ Comparing Tail Duplication with Compensation Code in Single Path Global
Instruction Scheduling”. In: Compiler Construction, 10th International Conference, CC 2001
Held as Part of the Joint European Conferences on Theory and Practice of Sofiware, ETAPS
2001 Genova, Italy, April 2-6, 2001, Proceedings. Ed. by Reinhard Wilhelm. Vol. 2027. Lec-
ture Notes in Computer Science. Springer, 2001, pp. 200-212. DOI1: 10.1007/3-540-
45306-7_14. URL: https://doi.org/10.1007/3-540-45306-77%5C_14.

[16] Dick Grune, Kees van Reeuwijk, Henri E. Bal, and Koen Jacobs Ceriel J.H. d Langendoen.
Modern Compiler Design. Springer New York, 2012. po1: 10.1007 /978-1-4614—-
4699-6.URL: http://dx.doi.org/10.1007/978-1-4614-4699-6.

[17] M.R.Guthaus,].S.Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown. “MiBench:
A free, commercially representative embedded benchmark suite”. In: Proceedings of the
Fourth Annual IEEE International Workshop on Workload Characterization. WWC-4 (Cat.
No.01EX538). 2001, pp. 3-14. DOI1: 10.1109/WWC.2001.990739.

[18] Sebastian Hack and Gerhard Goos. “Optimal Register Allocation for SSA-form Programs
in polynomial Time”. In: Information Processing Letters 98.4 (May 2006), pp. 150-155. DOI:
10.1016/5j.ipl.2006.01.008.

[19] William A. Havanki, Sanjeev Banerjia, and Thomas M. Conte. “Treegion Scheduling for
Wide Issue Processors”. In: Proceedings of the Fourth International Symposium on High-Performance
Computer Architecture, Las Vegas, Nevada, USA, January 31 - February 4, 1998. IEEE Com-
puter Society, 1998, pp. 266-276. DO1: 10. 1109 /HPCA.1998.650566. URL: https:
//doi.org/10.1109/HPCA.1998.650566.

[20] John L.Hennessy and David A. Patterson. Computer Architecture. A Quantitative Approach.
6th. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2017. 1SBN: 9780128119051.

50

https://doi.org/10.1109/TC.1981.1675827
https://doi.org/10.1109/TC.1981.1675827
https://repositories.lib.utexas.edu/handle/2152/46437
https://repositories.lib.utexas.edu/handle/2152/46437
https://doi.org/10.1007/3-540-45306-7_14
https://doi.org/10.1007/3-540-45306-7_14
https://doi.org/10.1007/3-540-45306-7%5C_14
https://doi.org/10.1007/978-1-4614-4699-6
https://doi.org/10.1007/978-1-4614-4699-6
http://dx.doi.org/10.1007/978-1-4614-4699-6
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1016/j.ipl.2006.01.008
https://doi.org/10.1109/HPCA.1998.650566
https://doi.org/10.1109/HPCA.1998.650566
https://doi.org/10.1109/HPCA.1998.650566

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Wen-mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang, Nancy J. Warter,
Roger A. Bringmann, Roland G. Ouellette, Richard E. Hank, Tokuzo Kiyohara, Grant E.
Haab, John G. Holm, and Daniel M. Lavery. “The superblock: An effective technique for
VLIW and superscalar compilation”. In: JJ. Supercomput. 7.1-2 (1993), pp. 229-248. DOI:
10.1007/BF01205185. URL: https://doi.org/10.1007/BF01205185.

Daniel Kistner, Jorg Barrho, Ulrich Wiinsche, Marc Schlickling, Bernhard Schommer,
Michael Schmidt, Christian Ferdinand, Xavier Leroy, and Sandrine Blazy. “ CompCert:
Practical Experience on Integrating and Qualifying a Formally Verified Optimizing Com-
piler”. In: ERTS2 2018 - 9th European Congress Embedded Real-Time Sofiware and Systems.
3AF, SEE, SIE. Toulouse, France, Jan. 2018, pp. 1-9. URL: https://hal.inria.
fr/hal-01643290.

Daniel Kistner, Xavier Leroy, Sandrine Blazy, Bernhard Schommer, Michael Schmidt,
and Christian Ferdinand. “Closing the Gap - The Formally Verified Optimizing Com-
piler CompCert”. In: SSS°17: Safety-critical Systems Symposium 2017. Developments in
System Safety Engineering: Proceedings of the Twenty-fifth Safety-critical Systems Sym-
posium. Bristol, United Kingdom: CreateSpace, Feb. 2017, pp. 163-180. URL: https :
//hal.inria.fr/hal-01399482.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. “seL4: formal verification of an OS kernel”.
In: Proceedings of the 22nd ACM Symposium on Operating Systems Principles 2009, SOSP
2009, Big Sky, Montana, USA, October 11-14, 2009. Ed. by Jeanna Neefe Matthews and
ThomasE. Anderson. ACM, 2009, pp. 207-220.D01: 10.1145/1629575.1629596.
URL: https://doi.org/10.1145/1629575.1629596.

Monica S. Lam. “Software Pipelining: An Effective Scheduling Technique for VLIW Ma-
chines”. In: Proceedings of the ACM SIGPLAN’88 Conference on Programming Language De-
sign and Implementation (PLDI), Atlanta, Georgia, USA, June 22-24, 1988. Ed. by Richard
L. Wexelblat. ACM, 1988, pp. 318-328. DOI: 10. 1145/53990. 54022. URL: ht tps :
//doi.org/10.1145/53990.54022.

Xavier Leroy. Commented Coq development. CompCert Version 3.9. May 10, 2021. URL:
https://compcert.org/doc/ (visited on 05/26/2021).

Xavier Leroy. “Formal verification of a realistic compiler”. In: Commun. ACM 52.7 (2009),
pp- 107-115. DO1: 10.1145/1538788.1538814. URL: https://doi.org/10.
1145/1538788.1538814.

Vsevolod Livinskii, Dmitry Babokin, and John Regehr. “Random testing for C and C++
compilers with YARPGen”. In: Proc. ACM Program. Lang. 4.O0PSLA (2020),196:1-196:25.
DOI: 10.1145/3428264. URL: https://doi.org/10.1145/3428264.

Roberto Castaiieda Lozano, Mats Carlsson, Gabriel Hjort Blindell, and Christian Schulte.
“Combinatorial Register Allocation and Instruction Scheduling”. In: ACM Trans. Program.
Lang. Syst. 41.3 (2019), 17:1-17:53. DOI1: 10.1145/3332373. URL: https://doi.
org/10.1145/3332373.

51

https://doi.org/10.1007/BF01205185
https://doi.org/10.1007/BF01205185
https://hal.inria.fr/hal-01643290
https://hal.inria.fr/hal-01643290
https://hal.inria.fr/hal-01399482
https://hal.inria.fr/hal-01399482
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/53990.54022
https://doi.org/10.1145/53990.54022
https://doi.org/10.1145/53990.54022
https://compcert.org/doc/
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3428264
https://doi.org/10.1145/3428264
https://doi.org/10.1145/3332373
https://doi.org/10.1145/3332373
https://doi.org/10.1145/3332373

[30] Roberto Castafieda Lozano and Christian Schulte. “Survey on Combinatorial Register Al-
location and Instruction Scheduling”. In: ACM Comput. Surp. 52.3 (2019), 62:1-62:50.
DOI: 10.1145/3200920. URL: https://doi.org/10.1145/3200920.

[31] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, and Roger A. Bring-
mann. “Effective compiler support for predicated execution using the hyperblock”. In:
Proceedings of the 25th Annual International Symposium on Microarchitecture, Portland, Ore-
gon, USA, November 1992. Ed. by Wen-mei W. Hwu. ACM / IEEE Computer Society,
1992, pp. 45-54. DOI: 10. 1109 /MICRO. 1992.696999. URL: https://doi.
org/10.1109/MICR0.1992.696999.

[32] David Monniaux and Cyril Six. “Simple, light, yet formally verified, global common subex-
pression elimination and loop-invariant code motion”. In: LCTES °21: 22nd ACM SIG-
PLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded
Systems, Virtual Event, Canada, 22 June, 2021. Ed. by Jorg Henkel and Xu Liu. ACM, 2021,
pp. 85-96. DOI: 10.1145/3461648.3463850. URL: https://doi.org/10.
1145/3461648.3463850.

[33] David A. Patterson and John L. Hennessy. Computer Organization and Design: The Hard-
ware Software Interface ARM Edition. 1st. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2016. 1SBN: 0128017333.

[34] Silvain Rideau and Xavier Leroy. “Validating Register Allocation and Spilling”. In: Com-
piler Construction, 19th International Conference, CC 2010, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March
20-28, 2010. Proceedings. Ed. by Rajiv Gupta. Vol. 6011. Lecture Notes in Computer Sci-
ence. Springer, 2010, pp. 224-243. DOI: 10. 1007 /978-3-642-11970-5_13.
URL: https://doi.org/10.1007/978-3-642-11970-57%5C_13.

[35] Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. “Translation val-
idation for a verified OS kernel”. In: ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI °13, Seattle, WA, USA, June 16-19, 2013. Ed. by
Hans-Juergen Boehm and Cormac Flanagan. ACM, 2013, pp. 471-482. DO1: 10.1145/
2491956.2462183. URL: https://doi.org/10.1145/2491956.2462183.

[36] Cyril Six. “Optimized and formally-verified compilation for a VLIW processor”. PhD the-
sis. Kalray and Université Grenoble Alpes, July 13, 2021.

[37] Cyril Six, Sylvain Boulmé, and David Monniaux. “ Certified and efficient instruction schedul-
ing: application to interlocked VLIW processors”. In: Proc. ACM Program. Lang. 4.00P-
SLA (2020), 129:1-129:29. pO1: 10.1145/3428197. URL: https://doi.org/
10.1145/3428197.

[38] Cyril Six, Léo Gourdin, Sylvain Boulmé, and David Monniaux. “ Verified Superblock Schedul-
ing with Related Optimizations”. working paper or preprint. Apr. 2021. URL: https :
//hal.archives—-ouvertes.fr/hal-03200774%.

52

https://doi.org/10.1145/3200920
https://doi.org/10.1145/3200920
https://doi.org/10.1109/MICRO.1992.696999
https://doi.org/10.1109/MICRO.1992.696999
https://doi.org/10.1109/MICRO.1992.696999
https://doi.org/10.1145/3461648.3463850
https://doi.org/10.1145/3461648.3463850
https://doi.org/10.1145/3461648.3463850
https://doi.org/10.1007/978-3-642-11970-5_13
https://doi.org/10.1007/978-3-642-11970-5%5C_13
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1145/3428197
https://doi.org/10.1145/3428197
https://doi.org/10.1145/3428197
https://hal.archives-ouvertes.fr/hal-03200774
https://hal.archives-ouvertes.fr/hal-03200774

[39] Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. “ Evaluating value-graph trans-
lation validation for LLVM”. In: Proceedings of the 32nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-
8, 2011. Ed. by Mary W. Hall and David A. Padua. ACM, 2011, pp. 295-305. DOI: 10 .

1145/1993498.1993533. URL: https://doi.org/10.1145/1993498.
1993533.

[40] Jean-Baptiste Tristan and Xavier Leroy. “Formal verification of translation validators: a
case study on instruction scheduling optimizations”. In: Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco,
California, USA, January 7-12, 2008. Ed. by George C. Necula and Philip Wadler. ACM,
2008, pp. 17-27. p01: 10.1145/1328438.1328444. URL: https://doi.org/
10.1145/1328438.1328444.

[41] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. “Finding and understanding bugs in
C compilers”. In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011. Ed. by
Mary W. Hall and David A. Padua. ACM, 2011, pp. 283-294.D01: 10.1145/1993498.
1993532. URL: https://doi.org/10.1145/1993498.1993532.

53

https://doi.org/10.1145/1993498.1993533
https://doi.org/10.1145/1993498.1993533
https://doi.org/10.1145/1993498.1993533
https://doi.org/10.1145/1993498.1993533
https://doi.org/10.1145/1328438.1328444
https://doi.org/10.1145/1328438.1328444
https://doi.org/10.1145/1328438.1328444
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532

	Introduction
	CompCert and certified compilation
	Instruction scheduling
	Correctness of instruction scheduling
	Basic blocks
	Global code scheduling

	Certified, scalable, instruction scheduling
	RTLpath
	Simulation test via symbolic execution
	Hash-consing

	Missed scheduling opportunities
	Related work

	Register renaming modulo liveness
	Register renaming and code movement below side exits
	Register Pressure

	Live code motion below side exits
	Deciding which code to move below side exits
	Code size

	Implementation
	Register renaming
	Basic superblock-local register renaming
	Moving restoration code outside of the superblock

	Code motion past side exits
	Instrumenting instruction scheduling as code duplication heuristic
	Interpreting the results of relaxed scheduling problems

	Changes to RTLpath and the symbolic execution
	Adding ``useless'' Iconds
	Known limitation

	Evaluation
	Experimental evaluation
	Runtime performance
	Code size increase

	Discussion

