
INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE

N◦ attribué par la bibliothèque
| | | | | | | | | | |

T H È S E

pour obtenir le grade de

DOCTEUR DE L’INPG

Spécialité: “INFORMATIQUE: SYSTÈME ET LOGICIELS”

préparée au laboratoire Verimag

dans le cadre de l’École doctorale “MATHEMATHIQUES, SCIENCE ET
TECHNOLOGIES DE L’INFORMATION, INFORMATIQUE”

présentée et soutenue publiquement

par

David STAUCH

le 13 novembre 2007

Titre:

Larissa, an Aspect-Oriented
Language for Reactive Systems

Directrices de thèse:
Florence Maraninchi

Karine Altisen

JURY

Roland Groz Président
Shmuel Katz Rapporteur
Mario Südholt Rapporteur
Pascal Fradet Examinateur
Florence Maraninchi Directrice de thèse
Karine Altisen Directrice de thèse

Acknowledgements

First, I would like express my deepest gratitude to the members of the thesis committee. I
would like to thank

Roland Groz, professor at INPG, for having accepted to preside the committee,
Shmuel Katz, associate professor at the Technion, Haifa, and Mario Südholt, mâıtre de

conférence at Ecole de Mines de Nantes, for the interest they have shown in my work, for the
considerable energy they invested in reviewing it, and for the many interesting comments and
suggestions in which this resulted,

Pascal Fradet, chargé de recherche at INRIA Rhône-Alpes, for having examined my Ph.D.
as well as my master thesis, and for having guided my first steps towards understanding
aspect-oriented programming,

Florence Maraninchi, professor at INPG, for having directed my work these last four years
with discernment and kindness, and for having taught me those skills a Ph.D. student needs
to survive, and

Karine Altisen, mâıtre de conférence at INPG, for being a very accessible and helpful
supervisor, and for her endless patience in discussing technical details and in proof-reading
my thesis.

Next, I would like to thank the entire Verimag laboratory, and especially the “synchrone”
team, for creating an agreeable, friendly and inspiring atmosphere in which my research could
prosper and which made me nearly always go to the lab with pleasure. Of this atmosphere,
an important part was provided by the fellow students with whom I shared my office, my
lunch, and all kinds of interesting experiences. Without Aldric, Claude, Colas, FX, Giovanni,
Guillaume, Hugo, Jacques, Jerome, Jonathan, Laure, Louis, Ludo, Manu, Mathias, Mouaiad,
Olivier, Quentin, Simon, Sophie, and Tayeb, Verimag would not have been the same.

No praise is enough for the excellent administrative personnel at Verimag, who made ad-
ministrative tasks a nearly pleasurable experience, nor for the great computer administration
team, currently only composed of Jean-Noël, due to whose efforts I cannot remember a single
computer related problem (well, in a strict sense) in my office.

This page would be missing something essential would it not express my thanks to all the
friends I have made in the five years that I spent in Grenoble. Early (but lasting) acquain-
tances like Didier, JB, Luis, Ruben, Vass, Victor and Tob, the second year’s bunch, including
Amandine, Andrew, Antoine, Catherine, Cecile (L. and P.), Mario, Marion, Pascal, Thierry,
and later arrivals like Anna, Elise, Emiliane, Helène, Julien, Laura, Matthieu, Marcus, Pierre,

3

Sophie, and all that I forgot, will always be linked to my memories of Grenoble.
Finally, I would like to thank my parents, for everything, but especially for the “pot”.

Contents

1 Introduction 9

2 Aspect-Oriented Programming and Reactive Systems 13
2.1 Aspect-Oriented Programming . 13
2.2 Reactive Systems . 15

2.2.1 The Synchronous Approach . 16
2.3 Adding Aspects to Reactive Systems . 17

2.3.1 Criteria for a Synchronous Aspect Language 17
2.3.2 Choosing a Base Language . 18

3 Argos 21
3.1 Syntax and Intuitive Semantics . 21
3.2 Formal Semantics . 23

3.2.1 Traces and Trace Semantics . 23
3.2.2 Automata . 24
3.2.3 Argos Operators . 26

3.3 Synchronous Observers . 29
3.4 Some Examples of Encoding Aspects . 30
3.5 Conclusion on Argos . 31

4 Larissa 33
4.1 Designing an Aspect Extension for Argos . 33
4.2 A first Kind of Aspects: toInit and toCurrent 35

4.2.1 The Pasteurizer Controller . 35
4.2.2 Variants of the Aspect Language . 39
4.2.3 Formal Definition . 40

4.3 Recovery Aspects . 45
4.3.1 Example: the Blender . 45
4.3.2 Formal Definition . 49

4.4 Conclusion . 52

5

CONTENTS

5 Case Study: Modelling the Interface of a Complex Wristwatch 55
5.1 Introduction . 55
5.2 Modeling Interfaces of Small Devices . 56
5.3 Case Study: Suunto1 Watches . 57

5.3.1 The Base Program . 57
5.3.2 The Altimax Watch . 57
5.3.3 The Vector Watch . 59

5.4 Related Work . 60
5.5 Conclusion . 61

6 Larissa Aspects as Argos Operators 63
6.1 Introduction . 63
6.2 Preservation of Determinism and Completeness 64

6.2.1 Proof for Theorem 1 . 66
6.3 Preservation of Equivalence . 67

6.3.1 Proof for Theorem 2 . 67
6.4 Trace Transformation Semantics . 69
6.5 Conclusion . 71

7 Interference between Aspects 73
7.1 Introduction . 73
7.2 Example . 76
7.3 Interfering Aspects . 77

7.3.1 Extension to recovery Aspects . 78
7.3.2 Defining Interference . 79

7.4 Proving Non-Interference . 79
7.4.1 Interference between the Shortcut Aspects 80
7.4.2 Interference between a Shortcut and the No-DTM Aspect 81

7.5 Proofs . 82
7.5.1 Proof for Theorem 5 . 82
7.5.2 Proof for Theorem 4 . 86

7.6 Related Work . 86
7.7 Conclusion . 87

8 Contracts for Aspects 89
8.1 Introduction . 89

8.1.1 Synchronous Languages and Design-by-Contract 89
8.1.2 Combining Contracts and Aspects . 90

8.2 Contracts for Argos . 91
8.3 Weaving Aspects in Contracts . 92

8.3.1 Formal Definitions . 92
8.3.2 Proof of Theorem 6 . 96

8.4 Example: The Tramway Door Controller . 99
8.4.1 Adding the Gangway . 100
8.4.2 Verification of the Woven Controller 101

8.5 Related Work . 102
1Suunto, Altimax and Vector are trademarks of Suunto Oy.

6

CONTENTS

8.6 Conclusion . 103

9 Implementation 105
9.1 Introduction . 105
9.2 Implementation of the Compiler . 106
9.3 Syntax of Argos . 106

9.3.1 A Simple Example . 106
9.3.2 Parallel Product and Encapsulation 107
9.3.3 Process Calls . 108
9.3.4 Refinement . 108
9.3.5 Inhibition . 109

9.4 Syntax of Larissa . 109
9.4.1 Aspect Calls . 109
9.4.2 toInit Aspects . 109
9.4.3 Recovery Aspects . 110
9.4.4 Inserting Advice Programs . 110

9.5 Extensions . 111
9.5.1 Integer Variables . 111
9.5.2 Support for Contracts . 113
9.5.3 File Inclusion . 114

9.6 Towards Structure-Preserving Weaving . 114
9.6.1 Structure-Preserving Weaving . 115
9.6.2 Discussion . 118

10 Related Work 121
10.1 Aspects for Automata Languages . 121
10.2 Stateful Pointcut Models . 122
10.3 Formal Semantics and Properties for AOP . 123
10.4 AOP and Modular Reasoning . 125

11 Conclusion 127
11.1 Context . 127
11.2 Comments on the Contributions . 128

11.2.1 Cross-cutting Concerns in Reactive Systems 128
11.2.2 Larissa, an Aspect Language for Argos 128
11.2.3 Semantic Analysis Tools for Larissa 129
11.2.4 Aspects for Parallel and Formally-Defined Languages 129

11.3 Perspectives . 131
11.3.1 Extension to Integer Variables . 131
11.3.2 Aspect Languages for Other Synchronous Languages 132
11.3.3 Non-Functional Concerns in Reactive Contexts 132

11.4 Concluding Remarks . 134

Bibliography 135

7

Chapter 1

Introduction

Software is used to solve more and more difficult problems since the invention of the computer.
Thus, software systems increase in size, and are becoming harder to write, understand, and
maintain. To master the inherent complexity, they are separated into modules, that fulfill
different subtasks of the system. The way this decomposition is performed is decisive for the
quality of software. Systems should be decomposed into modules in a way that is natural for
the developer to think about them, and such that each module has a clearly defined task to
solve. Ideally, each module should contain exactly one concern of the system, i.e. it should
be responsible for implementing one functionality or concept. It should then be possible to
modify the implementation of one concern by modifying only the module which implements
it. This concept has been introduced by Parnas [Par72], and is generally termed “separation
of concerns”.

To perform the decomposition into modules, developers are constrained by the facilities
that their programming language offers them. Numerous approaches propose different ways of
creating modules, for example procedural, functional or object-oriented programming. These
approaches have been very successful, and have allowed the construction of big systems that
are clearly structured and easy to understand. However, the goal of isolating exactly one
concern in a module cannot always be achieved with these approaches. Isolating a number
of concerns into modules often means that other concerns cannot be placed in a module of
their own, but have to be distributed over the existing modules. The code related to these
concerns is then scattered, which means that it is distributed over several modules and not
localized in a single one, and tangled, which means that it is mixed with the code of other
concerns. This makes code difficult to write, understand, and maintain. Such concerns are
called cross-cutting concerns, because they cut across the module structure.

Aspect-oriented programming (AOP) aims at isolating such cross-cutting concerns into a
new kind of module, called an aspect. In AOP, non cross-cutting concerns are programmed
in a base programming language, constituting the base program. Cross-cutting concerns are
expressed as aspects in an aspect-oriented programming language, which extends the base
language. The aspects are then woven (i.e. compiled) into the base program with an aspect
weaver. This allows the expression of cross-cutting concerns in a module of their own, instead
of being scattered and tangled into the base program.

9

CHAPTER 1. INTRODUCTION

Despite its relatively young age, AOP is being used widely. It has been particularly
successful at encapsulating non-functional concerns in middleware for distributed enterprise
applications written in Java, but it has also been applied to many other domains and pro-
gramming languages. One field for which the use of aspect-oriented techniques has so far not
been investigated, however, is the domain of safety-critical reactive systems. This thesis takes
a first step in that direction.

The term reactive systems designates control systems which are in constant interaction
with their environment, and which must respect real-time constraints imposed on them by
their environment. They are common as embedded systems in the transportation domain,
or as control systems for large industrial processes. They are very often safety critical, and
must be verified with formal methods before they can be put into use. Therefore, they must
be developed with programming languages with formal semantics. Furthermore, reactive
systems are characterized by the need to perform different tasks in parallel. This should also
be supported by the programming language.

Reactive systems are often developed in domain-specific programming languages, which
support the use of formal methods, have a first class notion of parallelism, and are specially
adapted to the input/output style of reactive systems. An example is the family of syn-
chronous languages, which is widely used in industry. It is composed of different languages
with different styles, including data-flow languages (Lustre [Hal93], Signal [LGLL91]) and im-
perative languages (Esterel [BG92], Argos [MR01]). All share a common semantics, centered
around an explicit, high-level parallel composition of components.

Some cross-cutting concerns are also known to exist in these languages, e.g. the reinitial-
ization of components. Due to the very different language constructs, they are usually quite
different from those in general-purpose programming languages. To date, the concept of cross-
cutting concern has never been explicitly studied in the context of synchronous programming
languages.

This thesis investigates the notion of cross-cutting concerns and aspects in reactive systems
written in synchronous languages. One first goal is to understand better what characterizes
cross-cutting concerns in reactive systems. Therefore, we examine different examples of reac-
tive systems and identify cross-cutting concerns. The examples we found are different from
many common examples in Java in that they encapsulate functional concerns, i.e. concerns
that model a part of the core functionality of the program. This suggests that cross-cutting
non-functional concerns are less common in reactive systems. Our examples show that aspect-
oriented programming is useful to encapsulate functional cross-cutting concerns.

Second, we consider how these cross-cutting concerns can be expressed with aspects. To
this end, we have developed an aspect language for Argos, called Larissa. Argos has been
chosen as base language because it is the simplest synchronous language. Its base element are
Mealy automata, restricted to Boolean signals, which can be composed with a small number
of operators. Unlike the other synchronous languages, Argos contains just the essence of
synchrony. By developing an aspect language for it, we hope to get insight into aspect-
oriented programming for synchronous languages in general.

To integrate well into Argos, aspect weaving should be considered another operator of the
language, and an aspect a module. This means that the aspect weaving must respect the
encapsulation of the module it advises, and only refer to its semantics, but not to its internal
structure. Such formal properties ease understanding of programs both by programmers
and formal analysis tools, and are strongly demanded by developers of reactive systems. In
Argos, the respect of the encapsulation is formalized by requiring that operators must preserve

10

semantic equivalence, i.e. applying an operator to two semantically equivalent programs yields
two semantically equivalent programs. This ensures that operators can only refer to the
semantics of the program, and not the way it is implemented. This differs from most other
aspect languages, where aspects can refer to the internal structure of the programs they
advise.

A clean definition of Larissa, which respects the encapsulation, has other advantages, too:
it allows us to provide powerful tools to statically analyze programs written in Argos and
Larissa, that are rarely available for aspect-oriented languages. We provide two such tools.
One allows to analyze aspect interference precisely, and a second allows us to apply aspects
not only to programs, but also to a specification of programs in the form of a contract.

Thus, the thesis claims that cross-cutting concerns exist in reactive systems, and that
isolating these into aspects could benefit the development of reactive systems. It also discusses
ways of specifying and implementing such aspects. It could hence be a first step towards the
development of a full aspect language for reactive systems, which would be designed to be
used in production environments.

The thesis is also interesting from an AOP point of view. It advocates the use of aspects
with a firm semantic foundation, and illustrates the advantages of such an approach. Further-
more, the aspects in Larissa are placed in an uncommon setting, and are quite different from
most other aspect languages. E.g., there are no methods in Argos, and thus the advice differs
from the usual before/after/around advice which is predominant in most aspect languages.

Summary of Contributions

This thesis has thus the following contributions to make:

• The identification of examples of cross-cutting concerns in synchronous languages, most
of them functional concerns. These examples are presented in Sections 4.2.1, 4.3.1, 5.3,
and 8.4, and have been published in [AMS06a, AMS06b, Sta07b].

• The development of Larissa, an aspect language for the synchronous programming lan-
guage Argos, including a formal definition, an implementation and the proof of im-
portant semantic properties. Larissa is presented in Chapter 4 and [AMS06a], the
implementation is presented in Chapter 9 and available at [Lar], and formal properties,
including the preservation of equivalence between programs, are proven in Chapter 6
and have been published in [AMS06a].

• Two semantic analysis tools for Larissa, namely a powerful interference analysis for
Larissa aspects, and an algorithm to apply an aspect to a specification of programs in
form of a contract. The interference analysis is presented in Chapter 7 and has been
published in [SAM06] and [Sta07a], and the contract weaving is presented in Chapter 8
and published in [Sta07b] and [Sta07a].

• A discussion of specific requirements formally-defined and parallel languages have to-
wards aspect-oriented languages. It takes place in Section 2.3 and in Section 11.2.4 in
the conclusion.

11

CHAPTER 1. INTRODUCTION

Outline of the Document

The remainder of the document is structured as follows. Chapter 2 explains the context
of this thesis, i.e. aspect-oriented programming and reactive systems. We also discuss re-
quirements for aspect-oriented extensions for synchronous languages, and further motivate
the choice of Argos as a base language. Chapter 3 presents Argos, the base language for
Larissa. Chapter 4 introduces the different kind of aspects in Larissa, and explains them with
a typical example of a reactive system. Larissa is also defined formally. Chapter 5 presents
a case study performed using Argos and Larissa, the modeling of the interface component
of a complex wristwatch. Larissa is used to modularly express cross-cutting concerns, and
to build a product-line of several watches. Chapter 6 postulates that aspect weaving can be
considered as a new operator, by proving some important properties, namely the preservation
of determinism and completeness of programs, and the preservation of equivalence between
programs.

The next two chapters make use of the semantic properties of Larissa, and offer powerful
analysis tools for aspects. Chapter 7 studies interference between aspects, and allows to
prove non-interference in certain cases. Two aspects can be shown not to interfere, either
independently of the program they are applied to, or for a specific program. This analysis is
performed statically and at low cost. Chapter 8 proposes a way to apply an aspect to a class
of programs specified by a contract, instead of applying it to a specific program. This yields
a new contract, which holds for any program which fulfilled the original contract, with the
aspect applied to it. An example illustrates how this mechanism can be used for modular
verification.

Chapter 9 explains the implementation for Argos and Larissa, and Chapter 10 exposes
related work for Larissa in general. Related work specific to one of the earlier chapters is
discussed there. Chapter 11 concludes the thesis, and gives some perspectives.

12

Chapter 2

Aspect-Oriented Programming and
Reactive Systems

2.1 Aspect-Oriented Programming

A recurrent problem in software development are cross-cutting concerns, which are concerns
that cannot be encapsulated into modules using standard decompositions. Aspect-oriented
programming aims at the encapsulation of cross-cutting concerns into aspects, which can
then be woven into the program. It is a relatively new programming paradigm, having been
introduced over the last ten years. Whereas the first aspect-oriented languages were tai-
lored for specific problems [KLM+97], such as performance optimisation or synchronization,
general-purpose aspect languages were soon developed, most prominently among them As-
pectJ [KHH+01, Asp]. These languages offer a number of constructs to the programmer, the
most important being the possibility to attach advice to join points, which are selected by a
pointcut.

Join points are well-defined points in the execution of the program, e.g. a call to a method
foo, or the writing or reading of a variable v. A pointcut is an abstract description of a set
of join points in a program execution. Examples are “all calls of method foo”, “all calls to
methods whose name begins with set”, or “all calls to method foo inside method bar”. A
pointcut thus selects certain join points during the execution of a program. Finally, a piece
of advice is executed at the join points selected by the pointcut. The advice can be any piece
of code, with access to the context of the intercepted join point. E.g., advice can change
the parameters of method foo, or prevent its execution. Thus, an aspect is composed of a
pointcut and a piece of advice, and it modifies the execution of a program by executing the
advice at join points selected by the pointcut.

There are aspect-oriented extensions to many different languages, but the most widely
used is AspectJ, an extension to Java. Consider the simple example in Figure 2.1, which
has been taken from the compiler for Argos and Larissa presented in Chapter 9. This aspect
measures the time taken by the different passes of the compiler. Each pass is performed by
a public method of the class argos.ArgosCompiler. Therefore, we first write a pointcut
that selects all calls to these methods (lines 6 and 7). It consists of the keyword pointcut,

13

CHAPTER 2. ASPECT-ORIENTED PROGRAMMING AND REACTIVE SYSTEMS

1 public aspect P r o f i l i n g {
2

3 private St r ing message = ”” ;
4 private long s t a r t =0, sum=0;
5

6 pointcut pass () :
7 ca l l (public ∗ argos . ArgosCompiler . ∗ (. .)) ;
8

9 before () : pass () {
10 s t a r t = System . cur r entT imeMi l l i s () ;
11 }
12

13 after () : pass (){
14 long durat ion = System . cur rentT imeMi l l i s () − s t a r t ;
15 sum += durat ion ;
16 message = message + thisJoinPoint . g e tS ignature ()
17 + ” took ” + durat ion + ”ms” ;
18 }
19 . . .
20 }

Figure 2.1: Example of an AspectJ aspect.

its name pass, the keyword call, that signifies that we are selecting method calls, and the
signature of the methods we are selecting, here all public methods in argos.ArgosCompiler,
with any return type, name and parameters. Arbitrary types or names are specified with a
*, and an arbitrary parameter list is specified by ...

AspectJ offers three kinds of advice: before, after, and around advice, which are re-
spectively executed before, after, or instead of an intercepted event. In the example, we use a
before advice (line 8) to remember the time at which the method was called, and an after
advice (line 12) to calculate the time it took. An advice starts with the keyword denoting
its type, followed by the pointcut it advises, and the Java code that is to be executed at the
selected join points. Pointcuts and advice are included into an aspect, which is a module
similar to a Java class. Besides pointcuts and advice, it can contain methods and variables
(e.g. lines 3–4 in Figure 2.1).

AspectJ is much richer than the part that is illustrated by the example above. Pointcuts
can select join points using many different criteria, including the current call stack, the textual
locality of the code, and the dynamic type of the executing object. Advice can also access the
context of join points, e.g. the calling object. Aspects can also change the static type structure
of programs: methods and variables can be declared in an aspect, and then introduced into a
class or an interface at compile time. Furthermore, aspects can also modify the type hierarchy
of a class, by making it implement another interface or extend another class.

Although AspectJ is the most successful and mature aspect language, aspect extension
for many different languages exists, e.g. AspectC++ [SGSP02] for C++, AspectC [CK03] for
C, Eos [RS03] for C#, or extensions to functional languages like Aspectual Caml [MTY05]

14

2.2. REACTIVE SYSTEMS

for Caml or PolyAML [DWWW05] for ML. These aspect languages share these features to
a greater or lesser extent, and they introduce new features, which are adapted to their base
language or specific needs. However, the pointcut/advice model is common to all aspect
languages, and all pointcut languages can select method calls or executions.

Aspect-oriented programming is being used to modularize different cross-cutting concerns
in very different applications. It has met particular success in middleware for distributed
enterprise applications. In such systems, aspects are very successfully used to modularize
non-functional concerns. Non-functional concerns implement a functionality that is not part
of core- or business logic of the program, and tend to be cross-cutting. Common exam-
ples include transaction management and data persistence (e.g. [KG06, RC03]), synchro-
nization and distribution (e.g. [NSV+06, SLB02]), exception handling (e.g. [MG07]), caching
(e.g. [SDMML03]), and security (e.g. [DW06, VBC01]). Aspects that help the development
process are also very popular, e.g. tracing, logging, profiling, or the enforcement of program-
ming rules (e.g. [CC04]).

However, there are also many functional concerns that are cross-cutting and that can be
modeled with aspects. A classical toy example is the updateDisplay aspect [KHH+01], which
updates a display whenever the state of the displayed object has changed. Aspects are also
used to build product lines (e.g. in [LHB05]), i.e. to add additional functionality to a product
to build different versions. Besides middleware, AOP has been applied to many other domain,
e.g. operating systems [CK03].

2.2 Reactive Systems

Reactive systems are systems that are in constant interaction with their environment. They
constantly receive inputs from their environment, and emit outputs to it, thus producing an
infinite input/output trace. They have been distinguished by [HP85] from transformational
systems (e.g. compilers), that calculate a result from some initial data. They can be further
separated from interactive systems like user interfaces or operating systems, which are also
in constant interaction with their environment, but can impose their own rhythm, by letting
the environment wait until they finished their computations. Reactive systems, on the other
hand, must react to inputs from the environment within a given time, which is imposed by
the environment.

Typical examples of reactive systems are control systems in the transportation domain
(e.g. in airplanes, trains, and automobiles) or for large industrial systems (e.g. power plants).
They are thus very often highly safety critical, and erroneous behavior of the software may
have fatal consequences. Furthermore, once a system is in use, it is rarely possible to update
the software. For these reasons, formal methods are usually used in the development process,
for the specification, verification, or testing of the software. This in turn requires programming
languages with formal semantics. Usually, a suitable model of the program is verified, with
techniques such as model checking, abstract interpretation or theorem proving. Such a model
can be derived from the code directly, or from a specification from which the code is generated.

Reactive systems are further characterized by the need to fulfill several tasks in paral-
lel. E.g., a safety system controller in a car must survey many sensors, measuring different
parameters of the automobile, and take different actions, e.g. switch a warning light on or
activate the airbag. Some of these tasks are independent, others need to interact. There-
fore, programming languages for reactive systems must offer explicit support for the parallel

15

CHAPTER 2. ASPECT-ORIENTED PROGRAMMING AND REACTIVE SYSTEMS

combination of program modules, and the communication between them.
Furthermore, reactive systems are usually required to be complete. This means that the

program should emit a sequence of outputs for every possible sequence of inputs. This is
expected of a reactive systems which should run forever, without any blocking. A second
important property is determinism, which requires that a program always emits the same
sequence of outputs for a sequence of inputs. Determinism makes testing and verifications of
programs easier, but cannot always be guaranteed, e.g. in distributed systems.

2.2.1 The Synchronous Approach

Most reactive systems are not distributed, but executed on a single processor. However, they
often execute several tasks in parallel, and are most naturally described as parallel units,
and not as a monolithic program. This is true for most computer programs, and is gener-
ally addressed by executing multiple threads on the same processor. However, dynamically
scheduling threads makes programs non-deterministic and verification much more difficult.
Synchronous languages offer a different solution to this problem. They describe programs
as parallel components, but compile them into sequential code. The parallel composition of
components has a clear semantics, and programs are checked at compile time for determinism
and completeness. Because the parallel composition is deterministic, the global state space
of the program is reduced, and verification becomes much easier.

The semantics of synchronous languages is based on the synchrony hypothesis. This hy-
pothesis divides time into instants, and assumes that reactions are atomic, i.e. that in each
instant, each component instantly updates its outputs following the new inputs. Components
composed in parallel communicate with the synchronous broadcast, meaning that each com-
ponent can read the outputs of the other components in the instant as inputs. This allows an
easy and elegant way of communication, because emitting components do not have to know
who is reading their outputs, and need not explicitly send messages to other components.

Finally, all synchronous programs can be compiled into a simple program of the following
form:

initialize memory m ;
while (true) {

read inputs i ;
compute outputs o (depending on m and i) ;
update memory m (depending on m and i) ;
emit outputs o ;

}

Of course, such a compiled program emits the outputs some time after it received the inputs,
and thus is not truly synchronous. However, if this time is smaller than the minimal reaction
time of the environment of the system, it can be considered as such. Therefore, we must be
able to give an upper bound on the cycle time. Before a program is put into an environment,
it is verified that the cycle time of the program is smaller than the reaction time of the envi-
ronment. Because they must give an upper bound of the cycle time, synchronous languages
do not contain any constructs that would make the calculation of the worst case execution
time difficult, such as recursion or unbounded loops.

Starting in the eighties, several synchronous languages have been developed in France,
namely Lustre [Hal93], Esterel [BG92], Signal [LGLL91], and Argos [MR01]. Lustre and

16

2.3. ADDING ASPECTS TO REACTIVE SYSTEMS

Signal are data-flow languages, and share a declarative style. Each variable is considered to
be a flow, with a value at each instant. Programs are structured into data-flow networks,
and the outputs of each node in the network are defined by a system of equations. Not
all nodes must be active at each instant, but they can be activated individually by clocks.
Lustre and Signal differ in the treatment of clocks attached to signals. Whereas each Lustre
program has a base clock, and all other clocks are slower than this base clock, Signal can
have several independent clocks. Lustre is commercialized in the Scade tool [Sca] by Esterel
Technologies, which offers a graphical description of Lustre. Because Scade includes a code
generator certified for safety-critical aeronautical applications, it is being used successfully
to develop such systems. E.g., much of the safety-critical software of the Airbus A380 is
developed using Scade. Signal, on the other hand, is commercialized in the Sildex tool, which
is offered by TNI Software [TNI].

Esterel is an imperative language, which is particularly suited for describing control struc-
tures. It has been used in the aviation industry, and is also used to synthesize circuits. It is
industrialized by Esterel Technologies in Esterel Studio Suite [Est].

Unlike the other synchronous languages presented here, Argos is not a production language
and is not used in an industrial context. It is a small and elegant language, which contains
the central constructs of synchronous languages, like the parallel composition. Argos is an
automata language, its basic elements are Mealy automata, which can be combined with a
number of operators. It is similar to Statecharts [Har87], although it does not include all of
Statecharts’ features, and it has a well-defined synchronous semantics.

2.3 Adding Aspects to Reactive Systems

2.3.1 Criteria for a Synchronous Aspect Language

Some cross-cutting concerns are known to exist in reactive systems written in synchronous
languages. E.g., it is common that a system should be re-initializable, i.e. one should be
able to put the system back in its initial state with a special input “reset”. This can be done
modularly in Esterel or Argos, but needs a modification of every line of code in Lustre. It is
thus a typical cross-cutting concern in this language. In Esterel, some specific needs such as re-
initialization have led to the introduction of dedicated constructs. Such dedicated constructs
improve the language as long as their number is limited. Introducing too many of them,
however, makes code difficult to understand. Furthermore, each time a new cross-cutting
concerns appears, a new construct must be introduced. Introducing a generic aspect-oriented
language, on the other hand, may express a large variety of cross-cutting concerns with a
small number of new constructs.

These cross-cutting concerns suggest that synchronous languages could profit from aspect-
oriented programming. It seems therefore justified to investigate the combination further, to
support or refute this claim. Therefore, we must first develop an aspect-oriented extension to
a synchronous language. One option would be the adaption of an existing aspect language like
AspectJ to a synchronous language, thus introducing pointcuts which intercept functions calls
based on method names, and before, after, and around advice. However, this approach has
several disadvantages.

A first problem stems from the fact that synchronous languages are parallel languages,
whereas the common concepts of aspect languages apply to sequential language. Being par-
allel languages, synchronous languages are structured into parallel modules, such as nodes

17

CHAPTER 2. ASPECT-ORIENTED PROGRAMMING AND REACTIVE SYSTEMS

in Lustre, in the same way that object-oriented languages are structured into classes and
methods, or functional programming languages into packages and functions. This parallel
structure is the main decomposition of the synchronous languages, and any aspect must thus
naturally cut across it. Unlike methods or functions, these parallel units are each executed
at each instant, in parallel. before, after, and around thus loose their meaning.

We can try another comparison between parallel and sequential languages. Instead of
equating the parallel modules to the structuring units in sequential language, we can take
the point of view that aspects have interface elements as join points in sequential languages,
and could also do so in parallel languages. Thus, we could take inputs and outputs as
join points, and then insert traditional advice, e.g. we could emit another signal after a
certain in- or output becomes true. However, this can already be done with parallel modules.
It is easy to modularly intercept input or output signals of a synchronous program with
the parallel composition. The signal can then be delayed, suppressed or replaced by other
signals, something that would require an aspect in other programming languages. Thus, as
has also been noted by Bruns et al [BJJR04, 219], the parallel composition in synchronous
languages already includes a part of the power of aspects in sequential languages. Indeed,
Andrews [And01] uses a variant of Process Algebra [Hoa85, Mil80], a formalism similar to
synchronous languages, to encode an AspectJ-like aspect extension of a simple imperative
language. We show in Section 3.4 how some typical concerns that are often expressed with
aspects in sequential languages can be expressed with the existing Argos operators.

A second problem arises because synchronous languages are formally-defined, and are
used to develop safety-critical applications. This imposes a number of restrictions on all
language extensions, including aspect languages. Thus, aspects should have a clear and
simple semantics, and must not disrupt the connection between the programs and the formal
analysis tools. This can be achieved by a definition of weaving that produces code in a format
that the tools can read, preferably the base language. In addition, aspects for formally-defined
languages should maintain the semantic properties of the language, which guarantee programs
to be correct-by-construction. In synchronous languages, aspects should especially preserve
determinism and completeness. Furthermore, modules in synchronous languages are strongly
encapsulated, only their in- and outputs are visible from the outside, but not their inner
structure. Aspects should also respect the encapsulation of their base program. They must
hence not refer to the inner structure of the program they are applied to, such as the names
of processes or local variables. This is different from most other aspect languages, which can
refer to invisible elements such as private methods.

Thus, although an aspect-oriented extension for a synchronous language must be inspired
by existing aspect languages, it cannot directly adopt all the common concepts that they
share. It must instead change these concepts to adapt to the specific requirements of the host
language, and to be able to express recurrent cross-cutting concerns.

2.3.2 Choosing a Base Language

An important choice to make is the base language. Given the very different styles of syn-
chronous languages, aspect languages for the different synchronous languages are likely to
look quite different. However, there are also commonalities among them, most notably the
parallel composition, which is the main structuring element in all the languages. Thus, we
hope that developing an aspect extension for one language will provide insight into the nature
of aspect languages for synchronous languages in general.

18

2.3. ADDING ASPECTS TO REACTIVE SYSTEMS

Extending Lustre, Esterel, or Signal would have the advantage to be working with a real
production language, with many real-world examples and potential users available. However,
these languages are rather complicated, and extending them would be a considerable effort,
such that playing with different alternatives would become difficult. Furthermore, any exten-
sion would likely solve specific problems of the chosen language, instead of exploring aspect
orientation to synchronous languages in general.

Thus, given that there is no prior work on aspects in synchronous languages, a simple
language is more appropriate for a first experimentation. Argos seems a good candidate.
Indeed, a module of a synchronous language consists in its simplest form of its interface, a
representation of its internal state, and a function relating the outputs to the internal state
and the inputs. The basic modules of Argos are Mealy automata and thus correspond exaclty
to this description. Furthermore, it should be possible to compose modules in parallel, and
to let them communicate with the synchronous broadcast. Argos contains little more than
this, and can thus be situated not far from the simplest synchronous language possible. Using
Argos as base language has the following advantages:

• it has a simple semantics that can be understood and extended with little difficulty; it
may also be possible to obtain interesting semantic properties for the aspect language.

• the language is small and thus simple to implement, allowing easy experimentation with
different features and approaches.

• it is nonetheless expressive enough to write meaningful examples, and has all the char-
acterizing elements of a synchronous language, thus being a viable representative of the
other synchronous languages.

For these reasons, we chose Argos as base language for a synchronous aspect language.
The next chapter presents Argos in more detail.

19

Chapter 3

Argos

This chapter defines Argos, the base language for the aspect language introduced in the next
chapter. We first introduce the graphical syntax and the intuitive semantics of Argos, and
then give formal definitions. Argos has been first published in [Mar91], and is discussed in
detail in [MR01].

3.1 Syntax and Intuitive Semantics

We first describe the basic element of Argos, flat Mealy automata, and then introduce the
four existing operators. The first two, the parallel product and the encapsulation, are central
to the definition of aspects, and the remaining two will be used in example programs.

Figure 3.1 shows a simple automaton with input a and output b which emits a b every
two a’s. Rounded-corner boxes are automaton states, in the example states 0 and 1. State 0
is the initial state, designated by an arrow without a source state. States are connected by
transitions, displayed as arrows. A set of states and transitions which are connected together
constitutes an automaton. Transitions are labeled by a Boolean condition on input signals,
and a set of emitted signals. We use the concrete syntax condition / emitted signals.
In the condition, negation is denoted by overlining and conjunction is denoted by a dot.
When the output set is empty, it can be omitted. Examples are a/b or a.c. States are
named, but names should be considered as comments: they cannot be referred to in other
components nor are they used to define the semantics of the program. An arrow can have
several labels — and stand for several transitions, in which case the labels are separated
by a comma. By convention, every automaton is complete: if a state has no transition for
some input valuations, we suppose that there is a self-loop transition with these valuations as
triggering condition and no outputs. E.g., the automaton in Figure 3.1 is supposed to have

a/b

a
1 0

Figure 3.1: A simple automaton, which emits a b every two a’s.

21

CHAPTER 3. ARGOS

C1 C0c

c/end

B1 B0
b

b/c

A1 A0
a/b

a

b,c

Figure 3.2: A modulo-8-counter, composed of three one bit counters.

such transitions in states 0 and 1 for condition a.
Figure 3.2 shows a modulo-8-counter, which has been constructed with the parallel product

and the encapsulation. The three automata whose states are respectively {A0, A1}, {B0, B1},
and {C0, C1} are put in parallel: they are separated by dashed lines. The rectangular box
with the cartridge at its bottom is the graphical syntax for the encapsulation. The signals
in the cartridge, b and c, are declared local to the program in the box. They can be neither
written nor read from the outside of the box. Each signal is used as input by some of the
parallel automata, and it is used as output by others: a communication will take place between
the emitting and the reading automata.

Figure 3.2 constructs a modulo-8-counter by putting three 1-bit counters in parallel, and
using encapsulation for the carry signals b and c. The lowest automaton emits a b every two
a’s, the one in the middle emits a c every two b’s, and the upper automaton emits an end
every two c’s. The complete program thus emits an end every eight a’s.

We now extend the modulo-8-counter with two additional features, a “stop counting” but-
ton, which interrupts the counting process, and the possibility to turn the counter completely
off.

The “stop counting” button sc interrupts the counting process while it is pressed, and
the counting resumes where it stopped when the button is released. This is implemented
with inhibition, which is another unary operator: the notation is again a cartridge below a
rectangular box, with the cartridge containing a fresh variable between “<” and ”>”. Fresh
means that the inhibition signal must not be used in the inhibited program.

To have the possibility to turn the counter completely off, we give an automaton with
two states Counting and Not Counting in Figure 3.3. The Counting state is said to be
refined, because it contains the modulo-8-counter. Each time the refined automaton leaves
state Counting, the refining program (i.e. the modulo-8-counter) is killed, and is created from
scratch when the automaton comes back to Counting again, and thus starts counting from
0. Note that emitting end also finishes the counter, it goes to state Not Counting. When a
program terminates itself by emitting a signal that makes the refined program leave the state,
it is said to commit suicide.

In the graphical syntax, the interface of a program is implicitely defined. Inhibition
variables and all signals which appear in a left-hand (resp. right-hand) side of a label, and
are not declared to be local to some part of the program are global inputs (resp. global outputs).
Together, they constitute the interface of the program. E.g., the program in Figure 3.1 has
input a and output b, the program in Figure 3.2 has input a and output end, whereas the
program in Figure 3.3 has inputs a, sc, start, and stop, and no outputs.

22

3.2. FORMAL SEMANTICS

<sc>

end

C1 C0c

c/end

B1 B0
b

b/c

A1 A0
a/b

a

b,c

Counting

end

Not counting

stop.end

start

(a)

Figure 3.3: The modulo-8-counter, with an additional “stop counting” input sc, and
start and stop buttons.

3.2 Formal Semantics

In this section, we define the semantics of Argos formally. We first define a trace semantics,
which is common to all synchronous languages, then formally define flat automata, and finally
define the Argos operators.

3.2.1 Traces and Trace Semantics

All synchronous languages have a common semantics based on traces. We here define it
formally. A trace corresponds to one infinite execution of a program, and records the values
of the inputs and the outputs at each instant, but does not contain the internal state of the
program. It can therefore be defined independently of any programming language.

Definition 1 (Traces). Let I, O be sets of Boolean input and output variables representing
signals from and to the environment. An input trace, it , is a function: it : N −→ [I −→
{true, false}]. An output trace, ot, is a function: ot : N −→ [O −→ {true, false}]. We
denote by InputTraces (resp. OutputTraces) the set of all input (resp. output) traces over
I (resp. O). A pair (it , ot) of input and output traces (i/o-traces for short) provides the
valuations of every input and output at each instant n ∈ N. We denote by it(n)[i] (resp.
ot(n)[o]) the value of the input i ∈ I (resp. the output o ∈ O) at the instant n ∈ N.

By abuse of notation, we sometimes write it(n) for {i|it(n)[i] = true} and ot(n) for
{o|ot(n)[o] = true}. A set of traces is a way to define the semantics of a program P , given
its inputs and outputs. We can now define equality of single traces, and then determinism
and completeness of a set of i/o-traces.

Definition 2 (Equality of Traces). Two traces t1 and t2 are equal, noted t1 = t2, if they
range over the same set of variables V , and ∀n ∈ N . ∀v ∈ V . t1(n)[v] = t2(n)[v]. Two pairs
of i/o traces (it1, ot1) and (it2, ot2) are equal if it1 = it2 and ot1 = ot2.

23

CHAPTER 3. ARGOS

Definition 3 (Determinism and Completeness). A set of pairs of i/o-traces S = {(it, ot) | it ∈
InputTraces∧ot ∈ OutputTraces} is deterministic iff ∀(it , ot), (it ′, ot ′) ∈ S . (it = it ′) =⇒
(ot = ot ′), and it is complete iff ∀it ∈ InputTraces . ∃ot ∈ OutputTraces . (it , ot) ∈ S.

From the above definition, a program P is deterministic if from the same sequence of
inputs it always computes the same sequence of outputs. It is complete whenever it allows
every sequence of every valuations of inputs to be computed.

Finally, we define a trace combination operator, which combines an input and an output
trace to a single trace. It will be useful later in the document.

Definition 4 (Trace Combination). Let it : N −→ [I −→ {true, false}] and ot : N −→
[O −→ {true, false}] be traces, with I ∩ O = ∅. Then, it.ot : N −→ [I ∪ O −→
{true, false}] is a trace such that ∀i ∈ I . it .ot(n)(i) = it(n)(i) ∧ ∀o ∈ O . it .ot(n)(o) =
ot(n)(o).

3.2.2 Automata

We now define flat automata, their semantics, and determinism, completeness, and equiva-
lence for them.

We first define Boolean formulas. Instead of the dot which we use for conciseness in the
automata to denote conjunction, we use a more conventional ∧.

Definition 5 (Boolean Expressions). A Boolean expression B over variables V is defined by
the following grammar:

B ::= B ∧B conjunction
| B ∨B disjunction

| B negation
| v v ∈ V .

Bool(V) denotes the set of Boolean expressions with variables in V.

We can now formally define an automaton.

Definition 6 (Automaton). An automaton A is a tuple A = (Q, s0, I,O, T) where Q is the
set of states, s0 ∈ Q is the initial state, I and O are the sets of Boolean input and output
variables respectively, T ⊆ Q×Bool(I)×2O×Q is the set of transitions. For t = (s, `, O, s′) ∈
T , s, s′ ∈ Q are the source and target states, ` ∈ Bool(I) is the triggering condition of the
transition, and O ⊆ O is the set of outputs emitted whenever the transition is triggered.
Without loss of generality, we consider that automata only have complete monomials as input
part of the transition labels.

Complete monomials are conjunctions that for each i ∈ I contain either i or i. Requiring
complete monomials as input labels makes the definition of the operators easier. A transition
with an arbitrary input label can be easily converted in a set of transitions with complete
monomials, and can thus be considered as a macro notation. We use such transitions in the
examples.

The semantics of an automaton is defined by the set of traces produced by all its execu-
tions.

24

3.2. FORMAL SEMANTICS

Definition 7 (Semantics of an Automaton). Let A = (Q, s0, I,O, T) be an automaton. Its
semantics is given in terms of a set of pairs of i/o-traces, Traces(A). This set is built using
the following functions:

S stepA : Q× InputTraces×N −→ Q
O stepA : Q× InputTraces×N \ {0} −→ 2O

S step(s, it, n) is the state reached from state s after performing n steps with the input trace
it; O step(s, it, n) are the outputs emitted at step n:

n = 0 : S stepA(s, it, n) = s

n > 0 : S stepA(s, it, n) = s′ O stepA(s, it, n) = O

where ∃(S stepA(s, it , n− 1), `, O, s′) ∈ T ∧ ` has value true for it(n− 1) .

Let it ∈ InputTraces and ot ∈ OutputTraces. We denote by Traces(A) the set of all traces
such that

(it , ot) ∈ Traces(A) ⇐⇒
∀n > 0 . ∀o ∈ O . o ∈ O step(s0, it , n) ⇐⇒ ot(n− 1)(o) . (3.1)

Equation (3.1) states that at each step n, the outputs emitted when executing the input
trace it from the initial state are exactly the ones of ot .

The automaton A is said to be deterministic (respectively complete) iff its set of traces
Traces(A) is deterministic (resp. complete), as defined in Definition 3. We can give an
equivalent definition using the determinism and the completeness of states as defined by
Definition 8.

Definition 8 (State Determinism and Completeness). Let A = (Q, s0, I,O, T) and s ∈ Q
a state. s is complete iff

∧
(s,`,O,s′)∈T ` = true and deterministic iff (s, `1, O1, s

′
1) ∈ T ∧

(s, `2, O2, s
′
2) ∈ T ⇒ (`1 ∧ `2 = false ∨ (O1 = O2 ∧ s′1 = s′2).

An automaton is complete and deterministic if all its reachable states are so. We can now
define a semantic equivalence between automata.

Definition 9 (Trace Equivalence). Two automata A1, A2 are trace-equivalent, noted A1 ∼
A2, iff Traces(A1) = Traces(A2).

As an example for equivalent automata, consider the automata in Figure 3.4(a) and (b).
Both have the same set of traces, namely all traces where a and b occur at the same time,
and are thus equivalent.

(a) (b)

a/b
a/b

a/b

Figure 3.4: Two equivalent automata.

25

CHAPTER 3. ARGOS

(b)(a)

A0,B1

A1,B1

A1,B0

A0,B0

B1 B0
b

b/c

A1 A0
a/b

a

a.b

a.b/b,c

a.b/c

a.b/c

a.b/c
a.b/b

a.b/b

a.b/b

a.b

a.b

a.b

a.b

a.b

a.b a.b

a.b

Figure 3.5: The parallel product of two one bit counters. The hierarchical automaton
is shown to the left, and the flat automaton to the right.

3.2.3 Argos Operators

We now formally define the four existing operators of Argos by giving translations to flat
automata, starting with the synchronous product.

Definition 10 (Synchronous Product). Let A1 = (Q1, s01, I1,O1, T1) and A2 =
(Q2, s02, I2,O2, T2) be automata. The synchronous product of A1 and A2 is the automa-
ton A1‖A2 = (Q1 ×Q2, (s01, s02), I1 ∪ I2,O1 ∪ O2, T) where T is defined by:

(s1, `1, O1, s
′
1) ∈ T1 ∧ (s2, `2, O2, s

′
2) ∈ T2 ⇐⇒ ((s1, s2), `1 ∧ `2, O1 ∪O2, (s′1, s

′
2)) ∈ T .

The synchronous product of automata is both commutative and associative, and it is
easy to show that it preserves both determinism and completeness. As an example, consider
Figure 3.5 (b). It shows the parallel product of the two lower one bit counters from Figure 3.2,
shown again in Figure 3.5 (a).

Next, we define encapsulation, which introduces local signals, that can be used for com-
munication between parallel automata.

Definition 11 (Encapsulation). Let A = (Q, s0, I,O, T) be an automaton and Γ ⊆ I ∪O be
a set of inputs and outputs of A. The encapsulation of A with respect to Γ is the automaton
A \ Γ = (Q, s0, I \ Γ,O \ Γ, T ′) where T ′ is defined by:

(s, `, O, s′) ∈ T ∧ `+ ∩ Γ ⊆ O ∧ `− ∩ Γ ∩O = ∅ ⇐⇒ (s, ∃Γ . `, O \ Γ, s′) ∈ T ′

`+ is the set of variables that appear as positive elements in the monomial ` (i.e. `+ = {x ∈
I | (x ∧ `) = `}). `− is the set of variables that appear as negative elements in the monomial
l (i.e. `− = {x ∈ I | (x ∧ `) = `}).

Intuitively, a transition (s, `, O, s′) ∈ T is still present in the result of the encapsulation
operation if its label satisfies a local criterion made of two parts: `+ ∩ Γ ⊆ O means that a
local variable which needs to be true has to be emitted by the same transition; `−∩Γ∩O = ∅
means that a local variable that needs to be false should not be emitted in the transition.

If the label of a transition satisfies this criterion, then the names of the encapsulated
variables are hidden, both in the input part and in the output part. This is expressed by

26

3.2. FORMAL SEMANTICS

(a) (b)

A0,B1

A1,B1

A1,B0

A0,B0

B1 B0
b

b/c

A1 A0
a/b

a

a

a

a

a/c

a

a

a

a

b

Figure 3.6: An hierarchical 2-bit counter to the left, that is flattened into the automaton
to the right.

∃Γ . ` for the input part, and by O \ Γ for the output part. ∃Γ . ` is formally defined as
∃Γ . ` =

∧
a∈`+\Γ a ∧

∧
a∈`−\Γ a.

Figure 3.6 (b) shows the encapsulation of Figure 3.5 by b. Note that only the transitions
whose conditions fulfill the criterion for b are still there, and that b has disappeared from
their conditions. Figure 3.6 (a) shows the hierarchical program that is flattened in Figure 3.6
(b).

In general, the encapsulation operation does not preserve determinism nor completeness.
As an example, consider the product of two automata in Figure 3.7 (a). Both automata are
deterministic and complete, their product, encapsulated by a,b in Figure 3.7 (b), however,
is neither. The combination of state A with state 0 is not deterministic. When i is true,
two reactions are possible: either transition i.a in state A and transition i.b in state 0 or
transition i.a/b in state A and transition i.b/a in state 0. The combination of state A with
state 1, on the other hand, is not complete, no reaction is possible when i is true.

i, i

i

i

A1

(a) (b)

0 A0

1

A

i.a, i.a, i.a, i.a/b

i.b/a i.b/a

i.b, i.b, i.b

i.b, i.b, i.b

a,b

Figure 3.7: An example of the encapsulation preserving neither determinism nor com-
pleteness.

This is related to the so-called “causality” problem intrinsic to synchronous languages
(see, for instance [BG92]). It occurs when parallel automata depend on each other’s outputs

27

CHAPTER 3. ARGOS

<sc>

sc

sc
sc

sc

(a) (b)

C1 C0c

c/end

B1 B0
b

b/c

A1 A0
a/b

a

b,c

C1,B1,A0

C1,B1,A1 C0,B0,A1

C0,B1,A0

C0,B1,A1C1,B0,A1 a.sc

a.sc

scsc

a.sc

a.sc
a.sc

sc

a.sc/end

C1,B0,A0
sc

C0,B0,A0

a.sca.sc

Figure 3.8: The 3-bit counter inhibited by sc is shown in the left automaton, the result
of its flattening in the right one.

in the same instant, forming a circular dependency, and there is not exactly one possible val-
uation for the encapsulated signals. In practice, however, such cases are rare: communicating
components do not usually form circular dependencies between each other. Lustre forbids
them altogether, and this is not a major constraint for programmers.

The inhibition operator is used to momentarily freeze the Argos component to which it is
applied.

Definition 12 (Inhibition). Let A = (Q, s0, I,O, T) be an automaton and a /∈ I a signal.
The inhibition of A by a is defined as A whennot a = (Q, s0, I ∪ {a},O, T ′), where T ′ is
defined by

(s, `, O, s′ ∈ T)⇒ (s, ` ∧ a, O, s′) ∈ T ′ ∧ (s, ` ∧ a, ∅, s) ∈ T ′ .

Figure 3.8 shows the automaton of Figure 3.2 with the inhibition by sc applied to it. Each
transition has sc added to its condition, and each state has a new loop transition with sc as
condition and no outputs.

The refinement operator refines the behavior of states by putting Argos automata into
them.

Definition 13 (Refinement). Let A = (Q, s0, I,O, T) be an automaton with states Q =
{s0, . . . , sn}, and let Ai = (Qi, s0i, Ii,Oi, Ti), i = 0 . . . n be automata with states Qi =
{s0i . . . snii}, which refine the states of A. The refinement of A by {Ai}i=0...n is defined by
A.{Ai}i=0...n = (S.{Ai}i=0...n, s0.s00, I ∪

⋃
Ii,O ∪

⋃
Oi, T ′), where the refined set of states

is defined by
S.{Ai}i=0...n = {si.sji|i ≤ n, j ≤ ni}

and T ′ is defined by the following equations

(si, `, O, si′) ∈ T ∧ (sji, `′, O′, sj′i) ∈ Ti ⇒ (si.sji, ` ∧ `′, O ∪O′, si′.si′0) ∈ T ′ (3.2)

(sji, `′, O′, sj′i) ∈ Ti ⇒ (si.sji, `′ ∧
∧

(si,`,O,si′)

`, O′, si.sj′i) ∈ T ′ . (3.3)

When a transition (si, `, O, si′) in A is taken, the instance of Ai, i.e. the automaton that
refines si, is killed at the end of the instant, and an instance of Ai′ starts executing in the
next instant. However, the outputs emitted by Ai are still emitted. This is expressed by

28

3.3. SYNCHRONOUS OBSERVERS

C0,B0,A0

C1,B0,A0

stop
sc.a.stop,

C1,B0,A1

C0,B1,A0

C0,B0,A1

C0,B1,A1

C1,B1,A1

C1,B1,A0
a.stop.sc

a.stop.sc

a.stop.sc

a.stop.sc

stop

start

stopstop

a.stop.sc

a.stop.sc

a.stop.sc

Not counting

Figure 3.9: The flattened automaton of Figure 3.3.

Equation (3.2): the transition in T ′ goes to the initial state of Ai′ , but emits both the outputs
of (si, `, O, si′) and the outputs of the transition of Ai, O′.

If there is no transition in A to take, only the transition the refining automaton is taken.
This is expressed by Equation (3.3).

The inhibition and refinement operators both preserve determinism and completeness.
Figure 3.9 shows the automaton from Figure 3.3, with the definition of the operators applied
to it.

Finally, we define a grammar for Argos.

Definition 14 (Grammar of Argos). The set of Argos expressions is defined by the grammar:

P ::= P‖P parallel product
| P \ Γ encapsulation
| P whennot a inhibition
| A.{Ri}i=0...n refinement

R ::= P | NIL refining objects,

where A is an automaton as defined in Definition 6, Γ a set of signals, and a a signal. NIL

represents a state that is not refined.

3.3 Synchronous Observers

A very useful feature of synchronous languages, which we will use in this thesis, is that they
allow to define observers in a natural and simple way [HLR93]. Intuitively, an observer is a
program that observes the behavior of another program by reading its inputs and outputs,
and without modifying its behavior. It can compute any safety property (in the sense of
safety/liveness properties as defined in [Lam77]).

An Argos observer is thus a program which has as inputs the inputs and outputs of the
observed program, and usually a single output which indicates if the observed safety property
is true. The observer is composed with the program in parallel, and the observed outputs are
encapsulated. It can then be checked if the safety property is true for a certain sequence of
inputs, or, by looking at the structure of the program, if it is always true. Thus, observers
are well suited for testing and verification of synchronous programs.

29

CHAPTER 3. ARGOS

i’

...

.../i’

i

P [i’/i]

Figure 3.10: Simulating before advice in Argos.

i’,p

<p>

P [i’/i] ...

.../i’

i/p .../p

Figure 3.11: Simulating before advice in Argos, with inhibition.

3.4 Some Examples of Encoding Aspects

In Section 2.3.1, we claimed that some of the functionalities that need an aspect in sequential
languages can be encoded with the parallel product in synchronous ones. In this section, we
show some examples to support this claim, and also discuss limitations of the approach.

As a first example, consider a program P with inputs I and outputs O. We now want to
modify P in such a way that when P receives some input i ∈ I, it emits an output o. Such
a kind of modification could e.g. be used to log the occurrence of certain events, and is often
implemented with an aspect in sequential languages. In Argos, this can be done easily by
putting an automaton in parallel, which emits o when it receives i.

The parallel product alone allows us only to implement aspects that do not influence the
execution of the base program, called spectative aspects [Kat06]. We can, however, implement
more powerful aspects using other operators. E.g., we can implement a kind of before advice,
by retaining inputs while the advice is executed. To insert advice before an input i, we let P
accept a new input i′ instead of i. Then, whenever i is true, we first emit our advice before
emitting i′, which is encapsulated. Figure 3.10 illustrates this example. After receiving i, we
execute some Argos code (denoted by the dots on the right), before emitting i′ and returning
to the initial state.

Note that in the modification presented above, P continues executing during the execution
of the advice, we only prevent it from receiving i as input. P thus continues updating its
state and emitting outputs based on its other inputs, which are not delayed. This may not
be desirable in certain situations. In such cases, we can interrupt the execution of P by
inhibiting it while the advice executes. This is illustrated in Figure 3.11. Note that while the
advice is executing, it must emit the inhibition signal p all the time, otherwise P will continue
executing.

With inhibition, we can also implement a kind of around advice, with proceed. If the
advice wants the program to proceed, it stops emitting p. It can then also emit i′, thus
relaying the intercepted signal i to P . Of course, P never terminates by itself, as does a call
to proceed in sequential aspect languages, but the advice can observe the in- and outputs,

30

3.5. CONCLUSION ON ARGOS

../p

<p>

P [i’/i]

...

...

i/p

..

../p proceed../p../p

c

../i’

i’,p

Figure 3.12: Simulating around advice in Argos.

and can inhibit P and continue emitting advice when it chooses. Figure 3.12 illustrates this
concept of around advice. When i becomes true, the program is inhibited, and the advice
starts executing, denoted by the two states in the top of Figure 3.12. Then, the advice
can stop emitting p, and also emit i′, the input that replaced i, thus letting P execute the
proceed. When some condition c becomes true, the advice ends the proceed by emitting p,
and starts executing advice again. When the aspects has finished execution, it returns to the
initial state and stops emitting p.

In the above examples, we have always used an input as a join point. We can also use an
output o in the same way, although we have to use an encapsulated copy o′, which can be
read by the parallel program. o′ can also be used to delay emitting o. We can even describe
an arbitrary safety property over the in- and outputs with an observer (see Section 3.3).

Using an output o to define join points, however, has a limitation when combined with
inhibition. We cannot immediately inhibit the execution of P depending on o. That would
also prevent o from being emitted, and thus lead to an incomplete program, where no reaction
for o is defined. Thus, when we want to activate advice for o, we must let P finish the step
that produced o, and start executing the advice only in the following step.

Thus, the examples show that we can implement some typical aspect-oriented tasks with
the Argos operators, without modifying the base program. Indeed, the modifications pre-
sented in this section resemble to some extent the aspect-oriented Composition Filters ap-
proach [BA04], which intercepts and modifies messages between components. In the next
chapter, we will introduce some modifications that cannot be expressed with the existing
operators alone, and that thus need an aspect language.

3.5 Conclusion on Argos

Argos is a language with Mealy automata as base elements, which can be combined with
a set of operators. It is a useful minimal synchronous languages: with four operators, it is
reasonably small, but expressive enough to model meaningful programs, as we will see in the
following chapters.

The semantics of the operators is purely synchronous, and we defined it formally, as the
translation of an automaton built with an operator into a flat automaton. The semantics of
flat automata is in turn defined by the set of traces they produce. The operators also have
some nice properties: except for encapsulation, they preserve determinism and completeness
of programs, and all operators preserve semantic equivalence between programs (see [Mar92]
for a proof). Argos programs are thus strongly encapsulated, only their interface is visible
from the outside, but not their internal structure. Thus, we can always replace any part
of an Argos program with a semantically equivalent one, without changing the semantics of

31

CHAPTER 3. ARGOS

the program. The parallel composition is very expressive: many typical examples of aspects
in sequential languages can be expressed with it in Argos. There are, however, remaining
cross-cutting concerns, as we will see in the next chapter.

32

Chapter 4

Larissa

4.1 Designing an Aspect Extension for Argos

This chapter introduces Larissa, an aspect-oriented extension for Argos. An earlier version
of this work has been published in [AMS06a].

Requirements for Larissa. As an aspect extension for a synchronous language, Larissa
should fulfill the requirements discussed in Section 2.3.1. Thus, Larissa must be able to
express recurrent cross-cutting concerns that occur in synchronous programs written in Argos.
It must add additional expressiveness to Argos, and also model concerns that cannot be
expressed with the parallel product. It must also fulfill the requirements imposed by the
formal nature of synchronous languages: it must preserve determinism and completeness,
and most importantly the equivalence between programs. This last point entails important
restrictions: aspects must not refer to the to implementation details of the base program, but
only its semantics.

Furthermore, Larissa should integrate well into Argos. This can be achieved best if aspect
weaving can be considered another operator of Argos, along with e.g. the parallel product and
the encapsulation. Besides preserving the equivalence, programmers should therefore be able
to use aspects anywhere in the structure of their program, just as the other operators, and
the use of aspects should also be invisible from the outside. Finally, Larissa aspects should
be expressed in a way familiar to Argos programmers.

Elements of Larissa. As the other operators in Argos, we apply Larissa aspects to flat
automata. Like aspects in other languages, Larissa aspects consist of a pointcut and a piece
of advice. Join points denote well-defined points in the execution of the program. Such points
correspond to transitions in Argos programs, which represent the step a program makes during
one instant. Transitions seem thus well suited as join points. Note that a transition groups
many different steps, because it can be taken several times during the same execution, under
different circumstances. However, pointcuts may wish to select only a subset of the steps a
transition represents. In such a case, the weaving process splits the transition into different

33

CHAPTER 4. LARISSA

transitions, to separate the steps chosen by the pointcut from the other steps. We call the
transitions identified by the pointcut join point transitions.

Indeed, specifying join points independently of the transitions of the base program is
necessary to respect the encapsulation of the base program. Which steps of the execution are
grouped in one transition is an implementation choice, and thus aspects must not depend on
it.

Once a pointcut has identified the join point transitions, a piece of advice changes them
into advice transitions. To respect the requirements given above, advice must not modify
the join point transitions arbitrarily. A transition consists of a source and a target state, a
condition, and the emitted outputs. The advice does not modify the source state and the
condition of the join point transitions, because these are part of the steps chosen as join points
by the pointcut, and must thus not be changed. Furthermore, leaving the source state and
the condition preserves determinism and completeness of the base program.

However, the advice changes the outputs and target state of the transitions. These ele-
ments change the behavior of the program in the current and future steps. To preserve the
equivalence, this modification is also specified in terms of the program semantics, and not in
terms of the implementation.

In this chapter, we will introduce Larissa as an aspect language that follows these lines,
using a running example.

Introductory Examples. This chapter introduces two different kinds of aspects. Each
aspect is first presented with an example, and then formally defined as a translation into a
flat automaton, in the same way as the other Argos operators.

The examples for both kinds of aspects are extracted from the same case study, a juice
processing plant [FvS99]. The plant is divided into three departments. The first one produces
the juice, the second one pasteurizes it and the last one packages it. As we discussed above,
Larissa only depends on the interface of its base program, and not on its implementation
details. Therefore, it should be possible to write Larissa aspects without knowing the im-
plementation of the base program, but by referring only to the interface, and an informal
description of its semantics. We will adopt this approach in the introductory examples in this
chapter.

The introductory examples are structured as follows. We first describe the physical system
to be controlled, and then the interface of its controller, i.e. its inputs and outputs. The inputs
of the controller are signals from sensors in the plant (e.g. “tank full”) and commands from the
user (e.g. “start pasteurizing”), and the outputs of the controller are commands that are sent
to the plant (e.g. “close a valve”). This interface is precisely known and well documented, but
the implementation of the program is not known. The second part of the example describes a
functionality to be added to a controller. We there introduce our notion of aspect and show
how to use it to express the new functionality. Finally, we give a sample controller and show
how the additional functionality is added by weaving the aspect.

After introducing each aspect informally in the example, we define it formally. Formal
properties of the aspects are described and proved in Chapter 6.

34

4.2. A FIRST KIND OF ASPECTS: TOINIT AND TOCURRENT

sensor:
fullO

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

User Interface

button:
button: clean
past

output:
cleaned

command:
Clean

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

Pasteurizer

sensor:
emptyI

sensor:
emptyO

sensor:
cold

PastOn, PastOff

buffer tank
Output

buffer tank
Input

Cleaner

commands:
openValve, closeValve

commands:

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

tester
qualityOk
sensor:

Figure 4.1: A simplified view of the pasteurization department

4.2 A first Kind of Aspects: toInit and toCurrent

Section 4.2.1 introduces aspects for Argos using an example taken from the pasteurization
department of a juice factory. Section 4.2.2 discusses some extensions, and Section 4.2.3
defines aspects formally.

4.2.1 The Pasteurizer Controller

4.2.1.1 The Pasteurizer

A simplified view of the pasteurization department of the juice factory is shown in Figure 4.1.
The unpasteurized juice comes from the input buffer tank. When the valve is open, the
juice continuously flows to the pasteurizer where it is heated and cooled down several times.
After leaving the pasteurizer, it flows to the output buffer tank. Occasionally, the pasteurizer
and the buffer tanks must be cleaned by a cleaning unit which is part of the pasteurization
department.

4.2.1.2 The Controller Specification

The user interface panel contains two buttons, one for pasteurizing, the other for cleaning
the pasteurizer. When the machine is idle, pressing the clean button begins a cleaning cycle
and pressing the past button starts the pasteurizer. The pasteurizer cannot be used while
the cleaning unit is working. The machine has various sensors and actuators. The sensors
transmit Boolean signals to the controller; the actuators receive signals sent by the controller.
Thus the inputs of the controller are the signals from the sensors and buttons and its outputs
are the commands to the actuators. The signals and the commands are summarized in
Figure 4.2.

35

CHAPTER 4. LARISSA

Buttons and sensors:
clean clean the pasteurizer (button)
past pasteurize juice (button)
emptyI the input buffer tank is empty
emptyO the output buffer tank is empty
fullO the output buffer tank is full
cold the pasteurizer is cold
cleaned the cleaner has finished cleaning

Commands:
Clean make the cleaner work
PastOn switch the pasteurizer on
PastOff switch the pasteurizer off
OpenValve open the valve connecting the

input buffer tank and the pasteurizer
CloseValve close the valve

Figure 4.2: Meaning of the sensors, buttons and commands.

4.2.1.3 Adding a Quality Tester to the Controller

We now want to add a quality tester to the department. It will be placed between the
pasteurizer and the output buffer tank to test the quality of the juice. It is shown in italic
in Figure 4.1. It is a sophisticated sensor whose signal qualityOk is false when a quality
problem is detected and true otherwise.

When the tester detects a problem, we should stop the pasteurization process, and clean
the pasteurizer. This new behavior has to be added to the normal behavior of the controller.
We can specify it precisely as follows: “If qualityOk is false while pasteurizing, then stop the
pasteurization process and start cleaning”.

The new behavior could be implemented in the following way: 1) identify points in the
execution of the program where the condition “If qualityOk is false while pasteurizing” holds,
2) place instructions at these points that “stop the pasteurization process and start cleaning”.
In an Argos program, the program points identified by 1) are transitions, which must be
replaced by other transitions which fulfill the specification of 2).

In the sequel, we propose to use the specification “If qualityOk is false while pasteurizing,
then stop the pasteurization process and start cleaning” as the definition of an aspect, and to
weave it automatically in the existing controller. We will show that it requires that we know
the specification of the controller, but not its internal structure.

4.2.1.4 A Notion of Aspect

To perform the kind of transformation described above for the controller, we must change some
transitions. Therefore, we need to specify: (1) which transitions we modify, this corresponds
to the pointcut of the aspect. (2) how to modify the selected transitions, this corresponds to
the advice of the aspect. For this example, we first specify the advice, and then the pointcut.

Specifying the advice. In this example, the advice specifies the new outputs and the new
target state of the selected transitions. This is sufficient, because only individual transitions

36

4.2. A FIRST KIND OF ASPECTS: TOINIT AND TOCURRENT

have to be changed, and the source state and the triggering condition are selected by the
pointcut, so changing these could make the program non-deterministic and incomplete. In
the example, the controller has to emit the outputs Clean (to start cleaning), PastOff and
CloseValve (to stop the pasteurization process) when the aspect is activated. To define the
target state of the advice transitions, we use a finite sequence of input values, which we call
the input trace σ. It uniquely determines a state in a complete and deterministic program:
it is the state that would be reached by executing σ from the initial state of the program.

We call this kind of advice a toInit advice: all advice transitions go to the same target
state identified by the finite input trace σ executed from the initial state. In the example,
we need to specify the state where the cleaner begins to work. When the machine is idle (as
it is in its initial state), pushing the user button clean starts the cleaner. Hence the state
where the cleaner begins to works can be reached from the initial state in one step if the input
clean is true, i.e. by the finite input trace σ = (clean).

Selecting join points with a pointcut. The join points are the transitions where the
behavior must be modified, called join point transitions. We have to specify transitions in a
system whose internal structure is not known. We cannot repeat the trick we used to select
the target state (a finite sequence of inputs, to be played from the initial state) here, because
it would break the preservation of the behavior equivalence. Indeed, specifying states by the
execution of a finite input trace from the initial state, would be able to distinguish equivalent
states, if they are reachable by input sequences of different lengths. For example, the two

automata A1 = {q a/b−→ q} and A2 = {q a/b−→ q′, q′
a/b−→ q} are equivalent; they both represent

the traces where a = b in every instant. But the states q and q′ of A2 are distinguished by the
finite input trace σ′ = (a.a): modifying the transition chosen by σ′ in A1 and in A2 leads to
non equivalent automata. (Note that distinguishing equivalent states by a finite trace was not
problematic for the selection of target states, because the notion of state equivalence is based
on the future execution from these states, which does not change when adding transitions to
these states.)

For Larissa, we choose to specify join point transitions with a special Argos program,
called the pointcut. It is a synchronous observer (see Section 3.3) of the base program, that
emits a single fresh output JP each time a join point is reached. An observer as pointcut has
the advantage of describing the join points independently of the program. The synchronous
product between the base program and pointcut separates the transitions selected by the
pointcut from those that are not selected, and marks them with JP. This way of selecting
the join point transitions respects the encapsulation: it uses only the parallel product and
encapsulation, which both respect it.

In the example, the transitions we need to replace are the transitions where the pasteurizer
is working and qualityOK is false. The pointcut listens to the inputs and outputs of the
program in order to deduce when such a transition is taken. To decide whether the pasteurizer
is working, the pointcut listens to the commands issued to the actuators, in this case the
commands PastOn and PastOff. The automaton in Figure 4.3 emits JP when the pasteurizer
is working and qualityOK is false, and thus selects all the corresponding transitions in the
base program.

37

CHAPTER 4. LARISSA

PastOff/JP
PastOn

PastOff qualityOK.

Figure 4.3: Pointcut program for the quality tester.

clean
/Clean

Waiting

Off

Cleaning

Pasteurizing

Cooling Down
clean/Clean

past/closeValve, PastOff

past/PastOff

past.clean/PastOn, openValve

past

/openValve

cleaned.cold

cleaned
.cold

emptyI
.emptyO

/closeValve
(emptyI∨ fullO)

past.clean.cold
Emptying .emptyI

.fullO

Figure 4.4: A sample pasteurizer controller.

4.2.1.5 A sample controller

Figure 4.4 shows a sample controller. It can either be cleaning or pasteurizing. The pas-
teurizing is suspended for a while by closing the valve if the input buffer tank is empty or
the output buffer tank is full (state Waiting). The process is interrupted when the signal
past becomes false. Before returning to the Off state, the controller has to empty the buffer
tanks (state Emptying) and wait for the pasteurizer to be cold (state Cooling Down). The
pasteurizer can be cleaned when cooling down.

Note that the controller is deterministic: when exiting, e.g. the state Off, one can go
either to Cleaning if clean is true or to Pasteurizing if past is true, if past and clean
are both true, priority is given to clean.

This controller explicitly contains states that represent the requirement “between an occur-
rence of PastOn and the following occurrence of PastOff”, namely the states Pasteurizing
and Waiting. Thus, the parallel product with the pointcut does not create new states. All
outgoing transitions of the states Pasteurizing and Waiting where qualityOK is false are
selected by the pointcut in Figure 4.3. These transitions are not explicitly present in Fig-
ure 4.4, but they can be easily created by replacing each outgoing transition of these states
by two transitions, one with an additional qualityOK in the condition, and the other with
qualityOK.

The trace σ selects the state reached from the initial state when clean is true, namely
Cleaning: this is the target state of the advice transitions. Finally the weaving aspect
mechanism will replace the selected join point transitions with advice transitions pointing to
the Cleaning state. These transitions will have outputs PastOff, CloseValve, and Clean.

Weaving an aspect into the controller has modified its interface: the input qualityOk has
been added. The woven controller is given in Figure 4.5. Modified transitions and conditions
are shown in bold.

38

4.2. A FIRST KIND OF ASPECTS: TOINIT AND TOCURRENT

clean
/Clean

Waiting

/closeValve
(emptyI∨ fullO)

past.qualityOK.

Off

Cleaning

Emptying

Pasteurizing

Cooling Down
clean/Clean

past.clean/PastOn, openValve

past

/openValve

cleaned.cold

cleaned
.cold

emptyI
.emptyO

clean.cold

past/closeValve, PastOff

.qualityOK

qualityOK.
past/PastOff

qualOK/PastOff, Clean, closeValve

qualOK/PastOff, Clean, closeValve

qualityOK.

.emptyI

.fullO

Figure 4.5: The sample pasteurizer controller from Figure 4.4, with the aspect woven
into it.

4.2.2 Variants of the Aspect Language

This section discusses two variants of toInit advice that are not illustrated in the example
in the previous section. An example of the first variant, toCurrent advice, can be found in
Chapter 5. The second variant, advice programs, is introduced with a modification of the
pasteurizer example from the previous section.

4.2.2.1 toCurrent Advice

With toInit advice, we always jump to a the same location for all advice transitions. However,
we sometimes want to jump to different locations depending on the current join point transi-
tion. This is closer to the way other aspect languages work, where aspects usually return to
the location in the code where they started (or remove a single method call), and where the
state of the program is modified starting from state of selected join point.

Therefore, the first variant changes the way we select the target state using the trace σ.
Instead of executing σ from the initial state of the automaton, it can be executed from the
initial state of the join point transition. This kind of advice is called toCurrent advice. The
mechanism is illustrated by Figure 4.6. Instead of jumping to a fixed location, this corresponds
to jumping forward from the current location. As opposed to toInit advice, the location of
the target state of the advice transition is not the same for all transitions, but depends on
where the advice is activated. An example for toCurrent advice can be found in Chapter 5.

4.2.2.2 Advice Programs

Imagine that the pasteurizer must be empty when it is cleaned. Then, the quality tester
from Section 4.2.1.3 must be modified, such that it empties the buffer before it goes to state
Cleaning. This cannot be addressed by changing just the target state of the aspect, e.g. to

39

CHAPTER 4. LARISSA

JPJP

JP

JP
σ1

σn
σn

σ1

target state T

σnσ1
target state T

target state T

(a) toInit aspect (b) toCurrent aspect

`1/Oad

`2/Oad

`1/Oad

`2/Oad

Figure 4.6: Schematic toInit and toCurrent aspects. (Advice transitions are in bold.)

I

b

a

...
...

I

b

a

...

(c) the woven program(b) inserted automaton Ains(a) base program

...

join point J

target state T target state T

`/JP `/Oad

Figure 4.7: Inserting an advice program.

state Emptying, because we cannot force the controller to go to state Cleaning once it has
emptied the tanks. Thus, we must modify the advice transitions, such that they do not go to
Cleaning directly, but they must first execute some code which empties the buffer.

This is specified with an advice program Padv that terminates. When an aspect is activated,
the advice program is executed until it terminates, and then the woven program goes to the
target state specified by the aspect. Since Argos has no built-in notion of termination, the
programmer of the aspect has to identify a final state F in the advice program. We denote
F by filled black circles in the figures.

Inserting an advice program is quite similar to inserting a transition. We first specify a
target state T by a finite input trace, starting either from the initial state (toInit) or from the
source state (toCurrent) of the join point transition. Note that there may be more than one
target state for toCurrent advice. Then, for each T, a copy of the automaton Padv is inserted,
which means: 1) replace every join point transition J with target state T by a transition to
the initial state I of the instance of Padv associated with T. As for advice transitions, the
input part of the label is unchanged and the output part is replaced by the advice outputs
Oadv ; 2) connect the transitions that went to the final state F in Padv to T. This is illustrated
by Figure 4.7.

In the example, we use such an advice program to empty the tanks, and then go to state
Cleaning. The modified aspect then insert the advice program shown in Figure 4.8 and
emits the advice outputs PastOff and CloseValve. Pointcut and trace are the same as in
the aspect in the previous section. The woven program is shown in Figure 4.9.

4.2.3 Formal Definition

After we introduced the concepts of toInit and toCurrent advice informally, we define them
formally in the same way as the Argos operators, by giving translations into flat automata.

40

4.2. A FIRST KIND OF ASPECTS: TOINIT AND TOCURRENT

Emptying’
emptyI.emptyO/Clean

Figure 4.8: The advice program inserted to empty the pasteurizer before cleaning.

clean
/Clean

Waiting

/closeValve
(emptyI∨ fullO)

past.qualityOK.

Off

Cleaning

Emptying

Pasteurizing

Cooling Down
clean/Clean

past.clean/PastOn, openValve

past

/openValve

cleaned.cold

cleaned
.cold

emptyI
.emptyO

clean.cold

past/closeValve, PastOff

.qualityOK

qualityOK.
past/PastOff

Emptying’

qualOK/PastOff, closeValveemptyI.emptyO/Clean

qualityOK.

.emptyI

.fullO

qualOK/PastOff, closeValve

Figure 4.9: The sample pasteurizer controller from Figure 4.4, with an aspect woven
into it that empties the buffer before starting the cleaning.

41

CHAPTER 4. LARISSA

We first formally define an aspect, then we define how to select join point transitions, and
finally how to weave toInit and toCurrent advice into a program, also taking into account
advice programs.

Definition 15 (toInit/toCurrent Aspects). A toInit or toCurrent aspect, for a program P on
inputs I and outputs O, is a tuple (PJP, adv) where

• PJP = (Qpc, s0pc, I ∪O, {JP}, Tpc) is the pointcut program, and JP occurs nowhere else
in the environment.

• adv = (type, Oadv , σ, Padv) is the advice, which contains four items:

– type ∈ {toInit, toCurrent} defines how the target state of the transitions is deter-
mined, by executing the trace either from the initial or the current state.

– Oadv ⊆ O is the set of outputs emitted by the advice transitions.

– σ : [0, ..., `σ] −→ [I −→ {true, false}] is a finite input trace of length `σ + 1. It
defines the single target state of the advice transitions by executing the trace either
from the initial state or the current state.

– Padv = (Qins ∪ {F}, s0ins, Iins,Oins, Tins), with Iins ⊆ I and Oins ⊆ O, is the
advice program, which is executed after every advice transition. The final state F
designates the return point to the program. If this item is not given, we assume it
to be ({F}, F, ∅, ∅, ∅): we are then weaving advice transitions.

In the definition, aspects do not have the right to add new in- and outputs to the program,
but we did so in the examples. Although this is an important functionality of aspects,
forbidding it in the definition is no restriction: we can always add new signals to the interface
of the base program before we apply the aspect. Inputs added that way then have no effect
on the program, and added outputs are never emitted. On the other hand, this restriction
makes the formal definition of weaving easier.

4.2.3.1 Join Point Weaving

Join point transitions are selected in a program P by an observer PJP, which has P ’s inputs
and outputs as inputs, and has one output JP. A transition is selected as a join point
transition if PJP emits JP while the transition is taken during the parallel execution of P and
PJP.

If we simply put a P and PJP in parallel, we must encapsulate P ’s outputs O, so that PJP

can read them. They will become synchronization signals, and are thus no longer emitted
by the product. We avoid this problem by introducing a new output o′ for each output o of
P : o′ will be used for the synchronization with PJP, and o will still be visible as an output.
We duplicate each output of P by putting P in parallel with one single-state automaton per
output o, which emits o if o′ is true.

Definition 16 (Join Point Weaving). Let P be a program on inputs I and outputs O = {o1, ...
, on}, and let PJP a pointcut of an aspect for P . Then, let P ′ be P and P ′JP be PJP, where ∀o ∈
O, o is replaced by o′. Furthermore, let duplo = ({q}, q, {o′}, {o}, {(q, o′, o, q), (q, o’, ∅, q)}).
Then, let the join point program of P and PJP, noted P(P, PJP), be defined as

P(P, PJP) = (P ′‖P ′JP‖duplo1‖ ... ‖duplon) \ {o′1, ..., o′n} .

42

4.2. A FIRST KIND OF ASPECTS: TOINIT AND TOCURRENT

4.2.3.2 toInit and toCurrent Advice Weaving

A piece of toInit or toCurrent advice replaces the join point transitions by advice transitions:
it redefines the target states and the outputs of the join point transitions, and optionally
inserts an advice program before the new target states. The new target state of the advice
transitions is defined by a finite input trace σ, which, for the toInit advice, is executed from
the initial state, or, for the toCurrent advice, from the source state of the join point transition.
The outputs Oadv of the advice transitions are given by the advice.

We first define weaving for toInit and toCurrent advice without advice programs in Defi-
nition 17, before giving the full definition of weaving in Definition 18, which also takes advice
programs into account. Definition 17 is not strictly necessary and is not used in the remainder
of the document, because it is generalized by Definition 18. However, it is easier to understand
than Definition 18.

Weaving without Advice Programs. To make the understanding of the weaving process
easier, Definition 17 defines a simplified form of weaving, not taking into account advice
programs, i.e. we assume the last item of the advice to be Padv = ({F}, F, ∅, ∅, ∅). We first
define the targ function, which determines the final state of an advice transition, and then
define how weaving changes the transitions of the base program.

Definition 17 (toInit/toCurrent Advice Weaving without Advice Programs). Let A =
(Q, s0, I,O, T) be an automaton and adv = (type, Oadv , σ) a piece of advice, with type ∈
{toInit, toCurrent}, σ : [0, ..., `σ] −→ [I −→ {true, false}] and a finite input trace of length
`σ + 1.

Let the target state determination function targ be defined as follows:

targ(s) =

{
S stepA(s0, σ, `σ) iff type = toInit
S stepA(s, σ, `σ) iff type = toCurrent

(4.1)

The advice weaving operator without advice programs, /′JP, weaves adv into A and returns
the automaton A/′JPadv = (Q, s0, I,O, T ′), where T ′ is defined as follows:

(s, `, O, s′) ∈ T ∧ JP /∈ O =⇒ (s, `, O, s′) ∈ T ′ (4.2)
(s, `, O, s′) ∈ T ∧ JP ∈ O =⇒ (s, `, Oadv , targ(s)) ∈ T ′ (4.3)

The targ function (defined by Equation (4.1)) determines the target state of an advice
transition with source state s by executing σ either from the initial state, in case of a toInit
advice, or from s, in case of a toCurrent advice. Therefore, S stepA from Definition 7 (which
has been naturally extended to finite input traces) executes the trace during `σ steps. Equa-
tions (4.2) and (4.3) define the changes to the transitions of A. Transitions (4.2) are not join
point transitions and are copied unchanged from P . Transitions (4.3) emit JP and are thus
replaced by the advice transitions, which have the same source state and condition, but Oadv

as outputs and a new final state, given by targ.

Complete Weaving Definition. We now define the complete weaving algorithm for toInit
and toCurrent advice. An aspect can contain an advice program Padv , which is an Argos
program with a special final state F . Padv is executed after each advice transition, and F
represents the re-entry point back to the program. The weaving inserts a copy of Padv for

43

CHAPTER 4. LARISSA

every target state, and redirects the advice transitions to the initial state of the copy of Padv

corresponding to its target state. Furthermore, all the transitions that pointed to F in Padv

go to the corresponding target state in the copy.
Thus, in addition to the steps present in Definition 17, Definition 18 collects the target

states in the base program, and creates a copy of Padv for each target state it collected. The
target states are collected into the set TargSt, and the states of the created copies in set InsSt.
Furthermore, Definition 18 modifies the targ function, which determines the final state of the
advice transitions. If an advice program is inserted, targ reconnects the advice transitions to
the initial state of the corresponding copy of Padv .

Definition 18 (toInit/toCurrent Advice Weaving). Let A = (Q, s0, I,O, T) be an au-
tomaton and adv = (type, Oadv , σ, Padv) a piece of advice, with type ∈ {toInit, toCurrent},
σ : [0, ..., `σ] −→ [I −→ {true, false}] a finite input trace of length `σ + 1, and Padv =
(Qins, s0ins, Iins,Oins, Tins) an advice program with final state F .

Furthermore, let TargSt = {S stepA(s0, σ, `σ)} if type = toInit or TargSt = {s|∃s′ ∈ Q .
s = S stepA(s′, σ, `σ)} if type = toCurrent be the set of all target states, and let InsSt =
{st|s ∈ Qins \ {F}, t ∈ TargSt} be the set of the new states inserted by Padv . Then, let the
target state determination function targ be defined as follows:

targ(s) =

S stepA(s0, σ, `σ) iff type = toInit ∧ s0ins = F

S stepA(s, σ, `σ) iff type = toCurrent ∧ s0ins = F

(s0ins)S stepA(s0,σ,`σ) iff type = toInit ∧ s0ins 6= F

(s0ins)S stepA(s,σ,`σ) iff type = toCurrent ∧ s0ins 6= F

(4.4)

The advice weaving operator, /JP, weaves adv into A and returns the automaton
A/JPadv = (Q∪InsSt, s0, I,O, T ′), where T ′ is defined as follows:

(s, `, O, s′) ∈ T ∧ JP /∈ O =⇒ (s, `, O, s′) ∈ T ′ (4.5)
(s, `, O, s′) ∈ T ∧ JP ∈ O =⇒ (s, `, Oadv , targ(s)) ∈ T ′ (4.6)

(s, `, O, s′) ∈ Tins ∧ s′ 6= F ∧ t ∈ TargSt =⇒ (st, `, O, s′t) ∈ T ′ (4.7)
(s, `, O, F) ∈ Tins ∧ t ∈ TargSt =⇒ (st, `, O, t) ∈ T ′ (4.8)

TargSt is the set of all states that are selected by executing the trace σ. We insert a copy
of Padv before each of these. The states that are added to the woven program are created in
InsSt, which contains a copy of each state of Padv for each state in TargSt.

The target state determination function defined by Equation (4.4), targ(s), computes the
target state of an advice transition whose source is s. It distinguishes whether there is an
advice program, and whether the type of the advice is toInit or toCurrent. If there is no advice
program, it returns directly the state reached by executing the trace σ, as in Definition 17.
If there is an advice program, targ does not return the state reached by executing σ, but the
initial state of the copy of Padv that has been inserted before it.

Equations (4.5) to (4.8) define the transitions of the woven program. Transitions (4.5) are
not join point transitions and are copied unchanged from P . Transitions (4.6) emit JP and
are thus replaced by the advice transitions, which have the same source state and condition,
but Oadv as outputs and a new final state. The final state is given by the targ function
(Equation (4.4)).

44

4.3. RECOVERY ASPECTS

Transitions (4.7) are the transitions from the advice program that are copied for each
instance. Transitions (4.8) lead from the advice program back into the base program, they
replace the transitions that led to F in the advice program. They point to the state chosen
by σ, before which their copy of Padv was inserted.

Note that the complete weaving definition includes the weaving definition without advice
programs: if Padv = ({F}, F, ∅, ∅, ∅), A/′JPadv and A/JPadv modify A syntactically in the
same way, and then also A/′JPadv ∼ A/JPadv .

4.2.3.3 Aspect Weaving for toInit/toCurrent Aspects

We now define the weaving of a toInit or a toCurrent aspect. It is woven into a program by
first determining the join point transitions as defined in Definition 16 and then weaving the
advice, as defined in Definition 18.

Definition 19 (toInit/toCurrent Weaving). Let P be a program and asp = (PJP, adv) an
aspect for P . The weaving of asp on P is defined as follows:

P/asp = P(P, PJP)/JPadv .

4.3 Recovery Aspects

This section introduces another kind of aspect, recovery aspects. In the first example, the
pasteurizer in Section 4.2.1, aspect weaving modifies the program by adding transitions to a
given point in the program, which is entirely specified by a finite input trace from the initial
state (and thus is independent of a particular execution). This section gives an example
where an aspect should be able to make a program go backwards in a particular execution.
In Section 4.3.1, we first introduce the aspect informally on an example taken from the juice
production department of the juice factory, and then give a formal definition in Section 4.3.2.

4.3.1 Example: the Blender

4.3.1.1 The Blender and its Specification

The blender is the unit of the production process where the various ingredients of a juice are
mixed. The blender is connected to a manifold, which provides different juice concentrates,
namely for apple, orange, and tomato juice. The blender mixes one of these juice concentrates
with water in a tank. The different juices may have different water/juice ratios. Once the
tank is full, the product is pumped to the next processing unit, the pasteurizer.

The blender provides a user interface with a command for each juice. To start the blender,
one must first choose a juice. The blender then tells the manifold to connect to the correspond-
ing juice concentrate. When the manifold is connected, the blender starts the production of
the juice. Once the tank is full, the blender pumps its content to the next processing unit,
and waits for a command to start a new round of production. Figure 4.10 shows the blender
in its environment, and its interface is detailed in Figure 4.11.

4.3.1.2 Modifying the Blender Controller

The blender controller has the disadvantage that production has to be manually restarted
each time the tank is full, and that the manifold reconnects each time a process restarts

45

CHAPTER 4. LARISSA

Orange

pump

cncted addWater
addJuicecnctA

cnctT
cnctO

empty

full

interface

OA T

Tomato

Apple

Water

Figure 4.10: The blender and its environment.

Buttons and sensors:
A produce apple juice (button)
T produce tomato juice (button)
O produce orange juice (button)
cncted the manifold has connected to a pipe
full the tank is full
empty the tank is empty
tick a timer signal; true every n seconds

Commands:
cnctA connect to apple juice concentrate
cnctT connect to tomato juice concentrate
cnctO connect to orange juice concentrate
addW add water to the tank
addJC add fruit juice concentrate to the tank
pump pump content of the tank to the next unit

Figure 4.11: The blender interface.

46

4.3. RECOVERY ASPECTS

cnctO∨cnctA∨cnctT

(b)

pump

(a)

pump∧empty∧restart/JP cncted/REC

Figure 4.12: The pointcut (a) and the recovery program (b) for the recovery aspect.

(which takes time), even though this would not be necessary when the choice of juice has
not changed. Therefore, we want to add a new command restart that tells the blender to
restart the current production after the tank has been emptied. When restart is true, we
do not want the manifold to reconnect, but we want to restart the production of the same
juice directly.

4.3.1.3 recovery Advice

We specify the additional functionality as follows: “when restart is true immediately after
the tank has been emptied, go back to the point where the production of the current juice
started”. As in the previous example, this aspect will select join point transitions and replace
them with advice transitions.

Specifying join points. As before, we use a pointcut program to identify the join points
transitions. To capture the condition “immediately after the tank has been emptied”, we can
refer to the output pump, and wait until it switches from true to false, or we can refer to
the sensor empty, and wait until it switches from false to true. We decide to use the output
pump, because a sensor is more likely to show unpredicted behavior; e.g., it may send spurious
signals while the tank is cleaned. We require, however, that the tank must also be empty, such
that we do not capture cases where the controller just interrupted the emptying of the tank,
e.g. because the next tank was full. Of course, the new input restart is also a condition for
a join point. The pointcut that implements these requirements is shown in Figure 4.12(a).

Specifying the recovery advice. We have to specify where to go, backwards. We cannot
simply use a trace to be played backwards, because programs are usually not deterministic
in this direction. For example, in the sample pasteurizer controller in Figure 4.4, if we want
to go backwards from the Emptying state by past, there is no way to know if we should take
the transition to Waiting or to Pasteurizing.

Therefore, we propose a different mechanism to specify how to jump backwards. Some
recovery transitions are defined globally and the program will only be able to return to the
target state of the last recovery transition it has passed. To specify the recovery transitions,
the same mechanism as for join points is used: a recovery program observes the inputs and
outputs of the program and emits a single fresh output REC . The transition in the program
that is taken when REC is emitted is then selected as a recovery transition. We call the
target states of the recovery transitions, to which the program jumps back to, recovery states.

Restarting the juice processing should bring the program to the point where it started
producing juice, i.e. just after cncted was true for the first time after we told the manifold
to connect to a juice. The recovery program is shown in Figure 4.12(b).

47

CHAPTER 4. LARISSA

Start

ConnectO

full

empty/pump

emptying

cncted

tick tick

cncted
ConnectA

cnctedConnectT

empty
O/cnctO

tick/addW

A/cnctA

T/cnctT

tick/addW tick

full/pump

tick ∧full/addJC

tick∧full

tick∧full
tick ∧full/addJC

WaterO JuiceO

WaterAT

JuiceAT

JuiceAT

tick/addJC

Figure 4.13: A sample blender controller.

Note that, again, we defined the aspect in a completely oblivious way w.r.t. the actual
implementation of the blender controller; the knowledge of its specification was sufficient.

4.3.1.4 A Sample Blender Controller

Figure 4.13 shows a sample implementation. From the Start state, a connection to the
manifold is made. Then the juice is mixed using different proportions for different juices, one
unit of water and one unit of juice for orange juice, one unit of water and two units of juice for
tomato and apple juice. Finally, the content of the buffer is pumped to the next processing
unit, before the controller goes back to state Start.

The only transition selected as join point transition is the one from state Emptying to
state Start. It is split into two transitions, one where restart is false, and another one
where restart is true. The latter is a join point transition.

The recovery program emits REC when cncted is emitted after the manifold has been
asked to connect to some juice concentrate. This means that the aspect will go back in the
controller to the point where it went after it received cncted, i.e. when it starts producing
the juice. In the controller, it can either go back to state WaterO, if the last juice was orange
juice, or to state WaterAT, if the last juice was apple or tomato juice. WaterO and WaterAT
are thus the recovery states.

Once the join point transition and recovery states have been identified, advice transitions
are added which replace the join point transition and which point to the recovery states. The
upper half of the modified controller is displayed in Figure 4.14(a). However, the program
must decide at runtime which of these transitions to take, because it has to go back to the
last recovery state it has encountered. Thus, the controller must know which of the recovery
states it passed last. This information is recorded in a memory automaton, which emits the
information to the modified controller, and which is run in parallel.

The memory automaton for the blender controller is shown in Figure 4.14(b). It has three
states: state init means that no recovery state has been passed so far, state recO means the
last recovery state was WaterO and state recAT means the last recovery state was WaterAT.
The modified controller and the memory automaton communicate through four encapsulated
signals. Each time the controller passes a recovery transition, it emits either inO or inAT,

48

4.3. RECOVERY ASPECTS

cncted
/inO

restart∧empty∧recAT∧recO

∧(restart∨recO∧recAT)

restart∧empty∧recO

Start

ConnectO

tick

tick∧full

Emptying

(a)

...

empty
O/cnctO

recO

inAT/recO

inAT recAT

inAT
/recO

/recAT
inO

inO/recAT(b)

init

JuiceO inO
empty/pump

WaterO

tick/addW tick ∧full/addJC

full/pump

Figure 4.14: Result of weaving the blender aspect in the controller. Added states,
transitions and modified conditions are written in italic.

depending on whether the transition led to WaterO or WaterAT. This makes the memory
automaton update its state by entering the state recO or recAT. On the other hand, when
the memory automaton is in its state recO (resp. recAT), it permanently emits the signal
recO (resp. recAT). Consequently, when an advice transition is taken (the program is in the
state Emptying and restart and empty are both true), the signal recO or recAT decides to
which recovery state the controller goes back to.

The triggering condition of the advice transition to the recovery state WaterO is thus
not only the activation signal restart∧empty, but restart∧empty∧recO, which indicates
that WaterO was the last recovery state passed. A similar transition goes to WaterAT, with
condition restart∧empty∧recAT∧recO, where the additional recO is needed to keep the
automaton deterministic. If recO ∧recAT is true, this means that no recovery state has been
passed yet. In this case, the aspect does not modify the behavior of the controller; it does
thus not modify the join point transition. The whole woven program controller is the parallel
composition of the modified controller in Figure 4.14(a) and of the memory automaton in
Figure 4.14(b), with an enclosing encapsulation of the signals recO, recAT, inO, and inAT.

4.3.2 Formal Definition

This section defines the weaving of recovery aspects formally. We first define recovery aspects,
then the weaving of recovery advice, split into three parts, and finally the weaving of recovery
aspects.

Definition 20 (recovery Aspect). A recovery aspect, for a program P on inputs I and outputs
O, is a tuple (PJP, adv) where

• PJP = (Qpc, s0pc, I ∪ O, {JP}, Tpc) is the pointcut program, and JP occurs nowhere else
in the environment.

• adv = (recovery, Oadv , Prec, Padv) is the advice, which contains four items:

– recovery defines that this is an recovery aspect.

– Oadv ⊆ O is the set of outputs emitted by the advice transitions.

49

CHAPTER 4. LARISSA

– Prec = (Qrec , s0rec , I ∪O, {REC}, Trec) is the recovery automaton, which selects the
recovery transitions, to which the aspect jumps back to.

– Padv = (Qins ∪ {F}, s0ins, Iins,Oins, Tins), with Iins ⊆ I and Oins ⊆ O, is the
advice program, which is executed after every advice transition. The final state F
designates the return point to the program. If this item is not given, we assume it
to be ({F}, F, ∅, ∅, ∅).

The selection of the join point transition is the same as for toInit and toCurrent advice,
we re-use the operator P(P, PJP) defined in Definition 16. We also use the same operator to
select the recovery transitions.

4.3.2.1 recovery Advice Weaving

The recovery advice weaving is split into three parts: Definition 21 adds advice transitions
to recovery states, Definition 22 adds the signals that inform the recovery automaton when a
recovery state is reached, and Definition 23 defines the memory automaton, which remembers
which recovery state was passed last. Definition 24 defines the weaving of recovery aspects,
using the previous definitions.

Definition 21 (Recovery Transition Weaving). Let A = (Q, s0, I,O, T) be an automaton,
adv = (recovery, Oadv , Prec, Padv) a recovery aspect for a program on I and O, and let the set
of recovery states R = {r1, ..., rn} ⊆ Q be the states that have an incoming transition that
emits REC . Let Padv = (Qins, s0ins, Iins,Oins, Tins), and InsSt = {st|s ∈ Qins \ {F}, t ∈ R} be
the set of all states inserted by Padv . The target state of the advice transition is then defined
by

targR(ri) =

{
ri iff s0ins = F

(s0ins)ri otherwise .
for ri ∈ R. (4.9)

Furthermore, let Rec = {rec1, ..., recn} be fresh signals, and let the automaton A/RJP,Radv be
defined as (Q∪ InsSt, s0, I ∪ Rec,O, T ′), where T ′ is defined by

(s, `, O, s′) ∈ T
∧JP ∈ O

=⇒ (s, ` ∧ reci ∧
∧

j=i+1..n

recj , Oadv , targR(ri)) ∈ T ′ (4.10)

(s, `, O, s′) ∈ T
∧JP ∈ O

=⇒ (s, ` ∧
∧

j=1..n

recj , O \ {JP}, s′) ∈ T ′ (4.11)

(s, `, O, s′) ∈ T
∧JP /∈ O

=⇒ (s, `, O, s′) ∈ T ′ (4.12)

(s, `, O, s′) ∈ Tins

∧s′ 6= F ∧ t ∈ R
=⇒ (st, `, O, s′t) ∈ T ′ (4.13)

(s, `, O, F) ∈ Tins

∧t ∈ R
=⇒ (st, `, O, t) ∈ T ′ (4.14)

Transitions (4.10) are the advice transitions: every join point transition is replaced by
transitions to all recovery states. The transition to state ri is taken when the memory au-
tomatonM emits reci (meaning that the actual recovery state is ri). We also add all negated

50

4.3. RECOVERY ASPECTS

recj for j > i to the condition, otherwise the automaton would not be deterministic if two
reci were true at the same time. Transitions (4.11) treat the case when a join point transition
is taken, but no recovery state has been passed yet (i.e., no rec signals are present). Then
the original join point transition is left unmodified. Transitions (4.12) consider non join point
transition, they are not modified.

Transitions (4.7) are the transitions from the advice program that are copied for each
instance. Transitions (4.8) lead from the advice program back into the base program, they
replace the transitions that led to F in the advice program. They point to the recovery state
before which the corresponding copy of Padv was inserted.

The next definition adds the In signals to the program, which inform the memory au-
tomaton when a recovery transition is taken.

Definition 22 (I Recovery State Signals). Let A = (Q, s0, I,O∪ {REC}, T) be an automa-
ton, and R = {r1, ..., rn} ⊆ Q be the states that have an incoming transition that emits REC .
Then, A/IR = (Q, s0, I,O ∪ In, T ′), where In = {in1, ..., inn} and T ′ is defined as follows:

(s, `, O, ri) ∈ T ∧ REC ∈ O =⇒ (s, `, O \ {REC} ∪ {ini}, ri) ∈ T ′ (4.15)

(s, `, O, s′) ∈ T ∧ REC /∈ O =⇒ (s, `, O, s′) ∈ T ′ (4.16)

Transitions (4.15) lead to recovery state ri, and thus additionally emit ini, such that the
memory automaton can go to its corresponding state. Transitions (4.16) do not lead to a
recovery state, they are left unchanged.

The following definition creates the memory automaton, and defines an operator that
performs the parallel product with the program, and the encapsulation of the communication
signals.

Definition 23 (Memory Automaton). Let A = (Q, s0, I ∪Rec,O∪In, T) be an automaton,
Rec = {rec1, ..., recn} and In = {in1, ..., inn} signals, and R = {r1, ..., rn} ⊆ Q a set of
recovery states. The memory automaton M is then defined as (QM, q0, In,Rec, TM), where
QM = R∪ {q0} and TM is defined by

∀i ≤ n . ∀j ≤ n . (ri, inj ∧
∧

j<k≤n
ink, {reci}, rj) ∈ TM

∧ ∀i ≤ n . (ri,
∧

1≤j≤n
inj , {reci}, ri) ∈ TM

∧ ∀i ≤ n . (q0, ini ∧
∧

i<j≤n
inj , ∅, ri) ∈ TM .

(4.17)

Furthermore, A/MR is defined as (A‖M) \ (Rec ∪ In).

4.3.2.2 Aspect Weaving for recovery Aspects

Finally, we put together Definitions 16, 21, 22, and 23 to define the weaving of recovery
aspects.

Definition 24 (Recovery Weaving). The weaving of an recovery aspect asp = (PJP, adv =
(recovery, Oadv , Prec)) into an automaton A, noted A /asp, is defined as

(P(P(P, PJP), Prec)/RJP,Radv)/IR/
M
R . (4.18)

51

CHAPTER 4. LARISSA

4.4 Conclusion

In this chapter, we have defined Larissa, an aspect language for Argos. The definition of
aspects is given as a transformation of a flat automaton and an aspect into a flat automaton,
in the same way as the other Argos operators. It respects one of the requirements given
in Section 2.3.1 and in the introduction of this chapter, namely that it should be possible
to syntactically combine aspect weaving freely with the other operators, and that the use
of aspects should not be visible from the outside. The other requirements, the preservation
of determinism and completeness, and of equivalence between base programs, are proven in
Chapter 6.

Larissa selects transitions as join points, using a synchronous observer as a pointcut.
Observers are a well-understood concepts in synchronous languages, that can express any
safety property about a program. This property ranges only over the interface of the program,
and it is completely independent of the implementation of the base program, thus respecting
its encapsulation. Observers are easily understood by Argos programmers, because they are
Argos programs themselves, and extensively used for testing and verification of synchronous
programs.

Larissa has three kinds of advice, toInit, toCurrent and recovery advice. toInit advice
allows to jump to a fixed point in the program, toCurrent advice to jump forward from the
join point, and recovery backwards, to some statically selected recovery states. toInit and
toCurrent advice specify the target states of the advice transitions by a finite trace over the
inputs of the program, executed either from the initial state, or from the source state of
the join point transition. This way of specifying the target state respects the encapsulation,
because it does not refer to the implementation details, as would e.g. giving the name of the
target state directly. The selection of the recovery states is made with observers, and thus
has the same advantages as their use as a pointcut.

Furthermore, instead of jumping directly to a location in a program, Larissa can execute an
advice program first, and go to the selected location afterwards. This considerably increases
the expressive power of aspects: complete automata can be easily inserted, instead of just
modifying transitions. As for the other parts of Larissa, advice programs are a familiar
concept for the Argos programmer, and the way they are inserted respects the encapsulation
of the base program.

The modifications performed by the aspects are quite general: we can select a set of
transitions in an automaton, and then modify their target states and outputs, or insert a
complete automaton at their place. The way we select transitions and target states are
limited by our goal to respect the encapsulation of the program: we do not refer to the
implementation of the base program, but only to its interface. We believe that, inside these
limits, Larissa covers the ground of possible aspect extensions to Argos quite well, and can
implement most cross-cutting concerns in Argos. However, further experimentation with
Larissa will surely lead to modifications of the language. E.g., it may sometimes be useful to
reuse the outputs from join point transition on the advice transition. It is also possible, as
proposed by Shmuel Katz, to let an inserted program have several final states with different
traces attached to them.

In this chapter, we used Larissa to encapsulate cross-cutting concerns in two examples,
where it was used to add additional functionality to controllers in a juice processing plant.
Because Larissa only refers to the interface of the base program, we could write the example
aspects in this chapter without knowledge of the actual implementation of the base program.

52

4.4. CONCLUSION

This would not have been possible if the language referred to implementation details like state
names. A larger example of Larissa is presented in Chapter 5.

53

Chapter 5

Case Study: Modelling the
Interface of a Complex Wristwatch

5.1 Introduction

This chapter presents a case study, which uses Argos and Larissa to model the interface
component of a complex wristwatch. The example is larger than the examples in the previous
chapter, and it demonstrates the capability of Larissa to encapsulate cross-cutting concerns
in an application for which Argos is a well-suited programming language. Furthermore, we
show the value of using Larissa in the particular context of developing man-machine interfaces
of small electronic devices.

The man-machine interface is a crucial component in a small electronic device like a
wristwatch, as a great number of functions have to be controlled using a small set of buttons.
These functions are ranged in a hierarchy of modes, and the buttons are used to traverse
the modes and select the functions. In the implementation of such a device, the interface
component is usually separated from the functional component, and is responsible for deciding
the meaning of each button, depending on the current context.

Argos is well-suited to model such hierarchic interfaces, but some problems remain. One
are cross-cutting concerns, which can not be encapsulated with the existing Argos operators.
Furthermore, when building interfaces for related models, one would like to reuse components
that have large parts in common, but differ in other parts. The latter parts often cannot be
put in an Argos module of their own, and then we must maintain two slightly different
versions of the same component. We use Larissa to address these problems: we encapsulate
cross-cutting concerns, and assemble components such that we can build a product line of
two watches by assembling smaller components, thus improving reuse.

This chapter is organized as follows: Section 5.2 presents the challenges of programming
man-machine interfaces of small electronic devices, and Section 5.3 presents the case study,
the implementation of a product line of wristwatches with Argos and Larissa. Section 5.4
presents some related work, and Section 5.5 concludes. The work presented in this chapter
has been published in [AMS06b].

55

CHAPTER 5. CASE STUDY: MODELLING THE INTERFACE OF A COMPLEX WRISTWATCH

5.2 Modeling Interfaces of Small Devices

Man-Machine Interfaces of small electronic devices. Small electronic devices – e.g.
wristwatches, alarm clocks or car radios – usually have a small number of buttons which
control a large number of functionalities. For instance, the same button of a wristwatch means
“toggle alarm” or “increment minutes”, depending on the running mode. These buttons have
different meanings depending on the state in which the device is currently.

Interface
component compoment

Functional
environment

...Buttons

...
Display

... Physical

Figure 5.1: Typical structure of a small electronic device.

Therefore, controllers of such devices usually have a structure like the one shown in Fig-
ure 5.1: it contains an interface component, which interprets the meaning of the buttons the
user presses, and then calls the corresponding function in the underlying functional compo-
nent. The functional component has a much larger set of inputs (e.g. “toggle alarm” and
“increment minutes”) than the interface component. The functional component also obtains
the necessary information of the environment of the device (e.g. a quartz crystal to mea-
sure time), reads and writes persistent memory, and updates the display. This case study
concentrates on the design of the interface component of such small electronic devices.

Programming Man-Machine Interfaces. Man-machine interfaces are typical interactive
systems. Using reactive languages for programming or modeling them is quite natural, as
reactive systems are a special case of interactive systems. Moreover, among the formalisms
and languages that are used to describe reactive systems, those that are based on explicit
automata, like Argos, are particularly well adapted. The user documentation of a small
electronic device is often given with partial graphical automata, because it is the more natural
way of thinking about it. However, some additional functions are difficult to express in a
modular way.

Our case study shows two of these functions: additional modes and shortcuts. When a
company proposes several variants of the same device, it is often the case that a large part
of the internal components can be reused, provided the interface is modified to interpret new
combinations of buttons, or new modes. A first kind of variant we consider consists of the
addition of a new function, e.g. adding a barometer to a watch that already offers time-keeping
functionalities. This often corresponds to the addition of a new “mode”, with all the related
functions: set a particular value, reset, etc.

Another kind of variants consists in adding shortcuts. A shortcut is the possibility, in
some given modes, to use a single button to activate a function that would otherwise need
a long sequence of buttons. Adding shortcuts modifies the interface, but not the internal
components.

56

5.3. CASE STUDY: SUUNTO WATCHES

5.3 Case Study: Suunto1 Watches

As a case study, we implement the interface components of two wristwatches, the Altimax1

and the Vector1 models by Suunto1. Both have numerous (20 – 30) functionalities, which
are controlled by a complex interface. Both watches share the same casing, display, and a
large set of their functionalities: time, altimeter and barometer functions are nearly equal
in both models, but the Vector also has an integrated compass. Carefully following the
documentation [Suu], we propose Argos components and aspects to describe the interfaces of
the two watches.

We structure the interfaces into the following components. A base program, written in
Argos, contains the functionalities that both watches share. The behavior specific for one
watch is added to the base program with aspects, including the aspects that model the
shortcuts.
5.3.1 The Base Program

In both watches, each main functionality is represented by a main mode, which in turn has
several submodes, that offer numerous functionalities. The interfaces of both watches contain
four buttons, the Mode, the Select, the Plus, and the Minus button. The Mode button circles
through the main modes, or, in a submode, returns to the main mode. The Select button
selects a submode, and the Plus and Minus buttons modify current values. All main modes
and many submodes have an associated configuration mode, where settings for the mode can
be modified. A configuration mode can be reached by holding the select button pressed for
two seconds in the corresponding mode. The interface then receives a special input, s2s.

Figure 5.2 shows the implementation of the interface component for the base program, i.e.
the modes both wristwatches have in common. Each mode consists of a main mode, some
submodes, and the associated configuration modes, that are reached through the input s2s.
When the interface enters a (sub-)mode, it informs the functional component by emitting an
output, such that it can update the display. Figure 5.2 is not complete: only some of the
outputs (i.e., the commands to the functional component) are shown, namely Time-Mode,
Bari-Mode, Alti-Mode and mainMode, which is emitted when a submode returns to its main
mode. Furthermore, most of the states are further refined, and can emit commands, like
activateAlarm in the Daily Alarms submode. Finally, the signal toMainMode is encapsu-
lated: the submodes can emit it to force a return to their main mode. To save space, the
encapsulation is not included in Figure 5.2.

5.3.2 The Altimax Watch

The first model we build, the Altimax, has the behavior of the base program, and a shortcut.

The Fast Cumulative Shortcut. The altimeter in the watches can record vertical move-
ments in so called logbooks, so that the user can evaluate his performance after a hike. A
logbook records the distances the user vertically ascents and descends from the moment it
is started until it is stopped, and the number of runs accomplished in this period, i.e. the
vertical movements of at least 50 meters. However, a logbook can only be read after record-
ing stopped, and it is quite complicated to display the logbook (one has to go to the third
submode of the altimeter main mode). Therefore, the Altimax model has the fast cumulative

1Suunto, Altimax and Vector are trademarks of Suunto Oy.

57

CHAPTER 5. CASE STUDY: MODELLING THE INTERFACE OF A COMPLEX WRISTWATCH

<mode>

toMainMode∨
mode/mainMode

toMainMode∨
mode/mainMode

<mode>

toMainMode∨
mode/mainMode

toMainMode∨
mode/mainMode

toMainMode∨
mode/mainMode

toMainMode∨
mode/mainMode

Altimeter

config
Alti

select

mode/Bari-Mode

config

Barometer

Baro

s2ss2s

select

Daily
Alarms

Stop
watch

Countdown
Timer

Dual
Time

config
DA

<mode>

select

select

select

config
DM

24 hour
Memory

Logbook

LBH
Logbook
History

s2s

s2s Difference
Measurement

toMainModeselect/

Time

config
Time

select

s2s

Time-Mode
mode/

select

select
s2s

config
DM

4 days
memory

Sea Level
PressureSLP

s2s
Difference

Measurement

toMainModeselect/

mode/Alti-Mode

select

select

s2s

s2s

s2s

toMainModeselect/

CDT

DT
config config

configconfig

select/
DT-Mode

Figure 5.2: The base-program component. Its interface is: inputs = {Mode, Select,
plus, minus, s2s}, outputs = {Time-Mode, Bari-Mode, Alti-Mode, mainMode},
toMainMode is encapsulated.

minus/showDesc

minus/showNbRuns

minus/mainMode

(b) visit-logbook(a) main-modes-PC

mainMode

select∨s2sminus/JP

Figure 5.3: Pointcut (a) and advice program (b) for the Fast-Cumulative aspect.

shortcut: in any main mode, when the Minus button is pressed, some information from the
current logbook is displayed. First the total vertical ascent rate is shown until the Minus
button is pressed, then the total vertical descend rate and then the number of runs, before
the watch returns to the main mode in which it was.

The fast cumulative mode is a typical shortcut and is implemented here with an aspect.
The pointcut main-modes-PC in Figure 5.3 (a) chooses transitions which have a main mode
of the base program as source state and minus as input part of the label. Visiting the
current logbook is done in several steps: it first displays the ascent rate (output showAsc),
then the descend rate (showDesc), and then the number of runs (showNbRuns). Therefore,
the aspect emits first showAsc and then inserts the automaton visit-logbook, shown in
Figure 5.3(b). As target state, we choose a trace of length zero (noted ε) from the current
state, so that the program returns to the main mode in which it was when the aspect was
activated. The aspect for the fast cumulative shortcut is fully specified by Fast-Cumulative
= (main-modes-PC, (toCurrent, {showAsc}, ε, visit-logbook)).

58

5.3. CASE STUDY: SUUNTO WATCHES

config
DA

toMainMode
select/

<mode>

toMainMode
mode∨

config
Comass

toMainMode
mode∨

select

Config
CC

s2s

s2s Declination
Adjustment

Compass
Calibration

select
Compass

mode/
Time-mode

s2sBaro-Mode

main-Mode

mode/JP

(b) Compass(a) baro-mode-PC

select∨
s2s

Figure 5.4: Pointcut (a) and advice program (b) for the Compass-mode aspect

Composing The Altimax Model. The controller of the Altimax watch is the
base program (Figure 5.2) with the fast cumulative aspect woven to it: Altimax =
base-program/Fast-Cumulative.

5.3.3 The Vector Watch

We program a controller for the Vector wristwatch by applying three aspects to the base
program, which are explained in the sequel.

The Compass Mode. The Vector has a fourth main mode, the compass mode. We
add it to the base program with an aspect. The transition going from the Barome-
ter main mode to the Time main mode is the sole join point transition (chosen by the
pointcut baro-mode-PC in Figure 5.4 (a)). The only advice output is Comp-Mode which
displays the compass. The aspect inserts the automaton Compass (see Figure 5.4 (b)),
which contains the interface for the compass. After leaving the compass mode, the inter-
face goes back to the Time main mode, thus the target state is set to the initial state:
this is a toInit advice with σ being the empty trace ε. The resulting aspect is thus
Compass-Mode = (baro-mode-PC, (toCurrent, {Comp-Mode}, ε, Compass)).

The Compass Shortcut. When the Minus button is pressed in a main mode, the Vector
does not show information from the current logbook, but goes directly to the compass mode.
This is useful when the user is hiking cross-country and wants to check regularly the bearing
of the compass. Thus, the Vector does not contain the fast-cumulative aspect, but an aspect
that adds advice transitions from the main modes to the compass main mode: Fast-Compass
= (main-modes-PC, {Comp-Mode}, toInit, mode.mode.mode.mode). Note that this aspect must
be applied after the Compass-Mode aspect, because it uses the compass mode. Indeed, after
the compass mode has been added, it can be reached by pressing four times the Mode button
from the initial state. The trace mode.mode.mode.mode ends in state Compass; it is the target
state of the advice transitions.

No Dual Time Submode. As a last difference with the Altimax, the Vector lacks the Dual
Time submode (the fourth submode of the Time main mode of the base program in Figure 5.2),
which allows the user to simultaneously view the time in two different time zones. We cut it
out of the base program with an aspect. We choose as join points all transitions which emit

59

CHAPTER 5. CASE STUDY: MODELLING THE INTERFACE OF A COMPLEX WRISTWATCH

select

Barometer
mode/Bari-Mode

select

Altimeter

select

Time
mode/Alti-Mode

Compass

select

............

minus/Comp-Mode

Time-Mode

mode/Comp-Mode

mode/

Figure 5.5: The woven interface of the Vector model.

DT-Mode, the signal that tells the underlying component to display the information related to
the Dual Time mode. The corresponding pointcut, Countdown-PC, consists of a single state
with a loop transition with label DT-Mode/JP. Instead of going to the Dual Time mode, the
Vector goes to the Time main mode, thus the target state is defined by the empty trace. The
aspect is thus defined by No-Dual-Time = (Countdown-PC, (toInit, {Time-Mode}, ε)).

We could make the aspect more re-useable by defining the target state of the aspects
as the following mode, reached by the trace select from the current state. Then, to re-
move another submode with this aspect, we just have to replace DT-Mode in the point-
cut with the output of the submode we want to remove, and change the advice out-
puts (here Time-Mode) to the output of the next mode. The aspect is then defined as
No-Dual-Time = (Countdown-PC, (toCurrent, {Time-Mode}, select)).

Composing the Vector Model. The controller for the Vector can thus
be built by weaving the three aspects into the base program: Vector =
base-program/Compass-Mode/Fast-Compass/No-Dual-Time. Figure 5.5 shows a part
of the automaton after the weaving of the Compass-Mode and Shortcut aspects. Only the
main modes are shown, but not the sub- and configuration modes.

5.4 Related Work

We found very few papers which use AOP to build man-machine interfaces. [VH03] uses
aspect-oriented programming to reduce the constraints imposed by the model-view-controller
paradigm, which is central in many man-machine interfaces. The idea is that the type of
software architecture imposed by man-machine interfaces (for instance because of the above-
mentioned MVC paradigm) is sometimes very constraining, and aspects may be useful for
reducing the constraints.

The use of aspects to build product lines is being studied extensively. We cite a few
examples. Colyer and Clement [CC04] build a industrial product-line using AspectJ. Lopez-
Herrejon and Batory [LHB05] propose a sequential weaving tool, similar to Larissa, to ease
product-line development with aspects. Apel and Batory [AB06] combine Feature-Oriented
Programming [BSR03], a technique to modularize product lines, with AOP. Loughran et
al [LSR05] propose a tool to identify potential aspects early in the life-cycle of a product-line.
This topic is also investigated in the EU AMPLE Project [AMP].

60

5.5. CONCLUSION

5.5 Conclusion

We have modeled the interface components of two complex wristwatches using Argos and
Larissa. Larissa has been used to encapsulate shortcuts, and to build a product line of two
watches. Shortcuts are typical cross-cutting concerns which cut across the different modes
of the watches, and which cannot be expressed modularly by the Argos operators. With
the Argos operators only, we also could not have built the product line without duplicating
code. With Larissa, however, we could encapsulate into aspects the difference between the
two watches, namely an additional main mode, a different shortcut, and a missing submode.

Thus, for a programming task Argos is very well-adapted to, we showed that Larissa
is capable of expressing the cross-cutting concerns which appear in Argos programs. This
indicates that Larissa can express cross-cutting concerns of typical applications written in
Argos, and that it improves the expressiveness of Argos.

Furthermore, both shortcuts and small differences between similar models are typical for
the man-machine interfaces of small electronic devices. The case-study indicates that Larissa
is well-suited to encapsulate them, and thus that the development of such interfaces can profit
from aspect-oriented languages like Larissa.

61

Chapter 6

Larissa Aspects as Argos Operators

6.1 Introduction

Larissa integrates best into Argos if aspect weaving can be considered another operator.
Therefore, three conditions must be fulfilled: it must be possible to combine aspects freely
with other operators, aspects must preserve the determinism and completeness of programs,
and also preserve the equivalence between programs.

Because weaving is defined in the same way as the other operators, as a transformation
into a flat automaton (see Definitions 18 and 24), it can be treated just as the other operators
when building Argos programs, and thus fulfills the first criterion. Determinism and com-
pleteness are criteria which are important in the context of reactive systems. Although their
preservation is not strictly necessary to be considered an operator (the encapsulation does
not preserve them), it is very useful and should be preserved unless there is a good reason for
not doing so.

The preservation of equivalence is the most restrictive of the above conditions. It means
that the aspects must not refer to the implementation, but only to the interface of the program.
Larissa follows these lines. First, it selects join points with a synchronous observer that
only refers to the interface of the base program. The advice does not directly refer to the
implementation either: the advice program and the advice outputs are independent of the
implementation, and the return state is also selected through interface elements, a finite
input trace in the case of toInit and toCurrent aspects, and an observer in the case of recovery
aspects.

However, this alone does not guarantee the preservation of program equivalence: an aspect
may refer to implementation details through interface elements, and thus distinguish between
equivalent programs. E.g., this is the case if we select join point transitions with finite input
traces. In this chapter, we prove that Larissa indeed preserves the equivalence, and does not
indirectly distinguish between equivalent implementations.

Unlike Larissa, most aspect languages, notably AspectJ, do not preserve the equivalence.
As an example, consider the two functions implementing a factorial in Figure 6.1. We consider
them semantically equivalent, because they return the same result for any input, although
they may have different execution times, and they are implemented differently.

63

CHAPTER 6. LARISSA ASPECTS AS ARGOS OPERATORS

1 i n t f a c t (int n) {
2 int r e s u l t = 1 ;
3 while (n>1) {
4 r e s u l t = r e s u l t ∗ n ;
5 n−−;
6 }
7 return r e s u l t ;
8 }
9

10 int f a c t (int n) {
11 i f (n>1)
12 return n∗ f a c t (n−1);
13 else
14 return 1 ;
15 }
16

17 int around(int i) : ca l l (int ∗ .∗ (i n t)) && args (i){
18 return proceed (i −1);
19 }

Figure 6.1: Two equivalent implementations of factorial, and an aspect.

AspectJ Aspects can distinguish between the two implementations. Consider the aspect
in the example in Figure 6.1, which subtracts 1 from every call to fact. After its application,
the equivalent implementations of fact produce different results. This is because AspectJ
aspects advise internal method calls, which are implementation details of the module.

AspectJ can break the encapsulation of programs in other ways: by advising private meth-
ods or fields, by constructs as within, which refer to the location of code, or by privileged
aspects, which can access private members of a class in advice code. This problem has been
recognized, and a number of solutions have been proposed. They are discussed in Section 10.4.

In Section 6.2 we prove the preservation of determinism and completeness, and in Sec-
tion 6.3 the preservation of equivalence. In the proofs in this chapter, we will sometimes
write / for /JP, /R for /RJP,R and /I for /IR, where the meaning is clear from the context.
Section 6.4 gives an alternative definition of weaving for a simple kind of aspects, which is
defined directly on the traces of the base program. Defining weaving this way is only pos-
sible because aspects preserve equivalence between programs. Finally, Section 6.5 contains
some concluding remarks. The theorems have been proved for a slightly different definition
of aspects in [AMS06a].

6.2 Preservation of Determinism and Completeness

We first define a helper lemma (Lemma 1), and then prove the preservation of determinism
and completeness in Theorem 1. Lemma 1 is used in the proof for Theorem 1, to show that the
use of encapsulation in the definition of the aspect preserves determinism and completeness.

Lemma 1 identifies certain conditions that appear during the weaving process, and shows

64

6.2. PRESERVATION OF DETERMINISM AND COMPLETENESS

M1 M2

I

O2

A

B

O1

Figure 6.2: A dataflow diagram for two communicating automata, where A and B are
encapsulated.

that under these conditions, the encapsulation of two communicating automata preserves
determinism and completeness. The conditions describe a situation as depicted in Figure 6.2.
Lemma 1 states that if the communication signals A emitted by M2 in instant t do not depend
on the communication signals B emitted by M1 in instant t, no cyclic dependencies can form.

Lemma 1. Let M1 = (Q1, q1, I ∪A,O1 ∪B, T1) and M2 = (Q2, q2, I ∪B,O2 ∪A, T2) be two
complete and deterministic automata such that B ∩ O2 = ∅, A ∩ O1 = ∅ and A ∩ B = ∅.
Furthermore, let all outgoing transitions of a state s of M2 emit the same subset of A, i.e.
∀t1 = (s1, `1, o1, s

′
1) ∈ T2, t2 = (s2, `2, o2, s

′
2) ∈ T2 . s1 = s2 ⇒ o1 ∩ A = o2 ∩ A. Then,

M1‖M2 \ (A ∪B) is complete and deterministic.

Proof. All outgoing transitions of state s2 in M2 have the same subset of A in their outputs,
say a. A complete monomial over a set of variables V is a Boolean conjunction which contains
for each v ∈ V , either v or v. We note ã the complete monomial over A where the variables
in a are positive and the variables not in a are negative. Furthermore, let m̃ be a complete
monomial over I.

Because M1 is complete and deterministic, a state s1 of M1 has exactly one outgoing
transition t1 = (s1, `1, o1, s

′
1) with `1 ⇒ m̃ ∧ ã. Let b = o1 ∩B and b̃ the complete monomial

over B where the variables in b are positive and the variables not in b are negative. Because
M2 is complete and deterministic, s2 has exactly one outgoing transition t2 = (s2, `2, o2, s

′
2)

with `2 ⇒ m̃ ∧ b̃.
In M1‖M2, the combination of t1 and t2 leads to a transition t = ((s1, s2), `1 ∧ `2, o1 ∪

o2, (s′1, s
′
2)). t isn’t cut by the encapsulation and we obtain t′ = ((s1, s2),∃(A ∪ B) . `1 ∧

`2, (o1 ∪ o2) \ (A ∪ B), (s′1, s
′
2)) in M1‖M2 \ (A ∪ B). We thus have a transition for every

complete monomial m̃ in every state, the automaton is complete.
The automaton is also deterministic, because all the other transitions of the product are

cut by the encapsulation. We show that for two states s1 and s2 and a complete monomial m̃,
t′ is the only transition to survive the encapsulation. Let t′1 = (s1, `

′
1, o
′
1, s
′′
1) such that t′1 6= t1

and `′1 ⇒ m̃. Because `′1 ∧ `1 = false, we have `′1 ∧ ã = false, so there is variable x ∈ a that
either (1) appears as a positive atom in ã and negated in `′1 or (2) the other way round. The
subset of A in the outputs of all outgoing transitions of s2 is a. Thus, after a product with a
transition with source state s2, the substitution of the encapsulation of A replaces variables
in a by true, thus in (1), x is false. The substitution also replaces variables of A not in a by
false, thus in (2), x is also false. In both cases, the condition is false and the transition is cut.
Likewise, let t′2 = (s2, `

′
2, o
′
2, s
′′
2) such that t′2 6= t2 and `′2 ⇒ m̃. We have `′2 ∧ b̃ = false and

the same reasoning applies, such that the transition is cut.

We now show that aspect weaving preserves both completeness and determinism. Using
Lemma 1, we show that the encapsulations in the definition of weaving preserves completeness

65

CHAPTER 6. LARISSA ASPECTS AS ARGOS OPERATORS

and determinism, and that the modifications of transitions in the definition of advice weaving
do the same.

Theorem 1 (Preservation of determinism and completeness). Let P be a program and asp =
(PJP, adv) an aspect. Let P , PJP, and, if present in the advice, also the advice program
(except in F) and the recovery program, be deterministic and complete. Then, P /asp is also
deterministic and complete.

6.2.1 Proof for Theorem 1

We prove that weaving preserves determinism and completeness. We prove the theorem
for programs being simple automata, since weaving first flattens a program it is applied
to. Weaving an aspect is defined using the parallel product, the encapsulation and advice
weaving. The parallel product preserves determinism and completeness. We will show that
advice weaving does so, too. The encapsulation does not always preserve determinism nor
completeness. However, we will show that the particular cases in which encapsulation is used
for weaving also preserve both.

toInit/toCurrent aspects. Let A be an automaton, and let asp =
(PJP, (type, Oadv , σ, Padv)), with type ∈ {toInit, toCurrent}. We prove that if A, PJP

and Padv (with the exception of F) are deterministic and complete, then so is A/asp.
First, we proof that the computation of the join points preserves determinism and com-

pleteness: they are computed on the program P(A,PJP) = (A′‖PJP
′‖duplo1‖ . . . ‖duplon) \

{o′1, ... o′n}. Calculating a parallel product does not affect determinism nor completeness.
We then set M1 = A′, M2 = PJP

′‖duplo1‖ . . . ‖duplon , A = ∅ and B = {o′1, ..., o′n} to apply
Lemma 1. Thus P(A,PJP) is deterministic and complete.

Second, weaving the advice into P(A,PJP) preserves determinism and completeness: some
transitions are left unchanged, and some have their outputs and target states modified. This
does not alter determinism or completeness of the affected state. Furthermore, all new states
are complete and deterministic, too: F has disappeared, and we required the other states of
Padv to be complete and deterministic, as are the states to which σ points, because they were
reachable in P(A,PJP), which is deterministic and complete.

Recovery aspects. Let A be an automaton, and let asp =
(PJP, (recovery, Oadv , Prec, Padv)). We prove that if A, PJP, Prec and Padv (with the
exception of F) are deterministic and complete, then so is A/asp. The proof follows the
same steps as above.

First, as for toInit aspects, P(A,PJP) is deterministic and complete. The same reasoning
also applies to P = P(P(A,PJP)Prec).

Second, we show that applying Definition 21 preserves determinism and completeness.
Non join point transitions only have their outputs modified, which does not influence deter-
minism or completeness. A join point transitions with condition ` is replaced by different tran-
sitions: one with `∧

∧
1≤i≤n reci, and for every i ≤ n one with condition `∧reci∧

∧
i<j≤n recj .

These conditions are pairwise disjoint, the automaton is thus deterministic. Their disjunction
is `, thus the automaton is complete. Hence P/Radv is deterministic and complete. Further-
more, /I only changes outputs, and thus does not affect determinism and completeness.

66

6.3. PRESERVATION OF EQUIVALENCE

Third, the memory automaton,M is constructed in such a way that it is deterministic and
complete. Indeed, in any state ri, we create n transitions with conditions inj∧

∧
j<k≤n ink and

one transition with condition
∧
j inj . These conditions are pairwise disjoint, the automaton

is thus deterministic. Their disjunction is true, thus the automaton is complete.
Finally, A/asp is obtained by (P(P(A,PJP), Prec)/Radv/I‖M) \ (Rec ∪ In). We have

shown that P(P(A,PJP), Prec)/Radv/I and M are deterministic and complete, thus so is
their product. To show that the encapsulation does not affect determinism nor completeness,
we apply again Lemma 1 : we set M1 = P(P(A,PJP), Prec)/Radv/I , M2 =M, A = Rec and
B = In. The Rec outputs of M only depend on the current state, it always emits reci when
in state ri or ∅ when in state q0. Thus the condition Lemma 1 imposes on M2 are fulfilled.

6.3 Preservation of Equivalence

Theorem 2 shows that the trace equivalence (see Definition 9) is preserved by aspect weaving.

Theorem 2 (Preservation of equivalence). Let P1, P2 be two programs on I and O and let
asp be an aspect for a program on I and O. Then, P1 ∼ P2 =⇒ (P1/asp) ∼ (P2/asp).

6.3.1 Proof for Theorem 2

We prove the preservation of semantic equivalence for toInit, toCurrent, and recovery aspects.
We prove the theorem for programs being simple automata, since weaving effectively operates
on such automata once the Argos operators have been applied.

We first introduce a definition of equivalence between states and transitions.

Definition 25 (State and Transition Equivalence). Let A1 and A2 be two automata and let
q1 be a state of A1 and q2 a state of A2. q1 and q2 are said to be equivalent (noted q1 ∼ q2)
iff A′1 ∼ A′2 where A′1 (resp. A′2) is the automaton A1 (resp. A2) where the initial state is set
to q1 (resp. q2).

Furthermore, two transitions (q1, `, O, q
′
1) and (q2, `, O, q

′
2) are equivalent iff q1 ∼ q2 and

q′1 ∼ q′2.

Note that the definition of state equivalence only considers the future execution from the
states, but not how they can be reached. We will need this kind of equivalence in the proof.

We first prove the theorem for toInit and toCurrent aspects, and then for recovery aspects.

toInit/toCurrent aspects. Let A1 and A2 be automata, and let asp =
(PJP, (type, Oadv , σ, Padv)), with type ∈ {toInit, toCurrent}, and Padv optional. We prove
that if A1 and A2 are semantically equivalent, then A1/asp and A2/asp are also semantically
equivalent.

A1 ∼ A2 =⇒ P(A1, PJP) ∼ P(A2, PJP), because P only relies on operators ‖ and
\, which are known to preserve equivalence (see [Mar92] for a proof). Furthermore, iff a
transition in P(A1, PJP) is a join point transition, then so are all equivalent transitions in
P(A2, PJP), otherwise they would be distinguishable by JP.

If asp is applied to two equivalent join point transitions, they are modified in the same way.
They emit Oadv , and the target states selected by σ are also equivalent; otherwise the starting
states of the trace would be distinguishable. If type = toInit, the traces start in the initial
states of A1 and A2, which are equivalent because of A1 ∼ A2 =⇒ P(A1, PJP) ∼ P(A2, PJP).

67

CHAPTER 6. LARISSA ASPECTS AS ARGOS OPERATORS

If type = toCurrent, the traces start in the initial states of the join point transitions, which
are also equivalent, because they were reachable by the same trace. Trivially, adding Padv

also affects A1 and A2 in the same way. Thus, A1/asp ∼ A2/asp.

Recovery aspects. Let A1 and A2 be automata, and let asp = (PJP, adv)), with adv =
(recovery, Oadv , Prec, Padv) and PJP = (Qpc, s0pc, I ∪ O, {JP}, Tpc). We have already shown
that A1 ∼ A2 =⇒ P(A1, PJP) ∼ P(A2, PJP). We obtain P(A1, PJP) ∼ P(A2, PJP) =⇒
P(P(A1, PJP), Prec) ∼ P(P(A2, PJP), Prec) by exactly the same reasoning. We denote P ′i =
P(P(Ai, PJP), Prec) for i = 1 . . . 2. P ′1/

Radv and P ′2/
Radv are not equivalent (they may have

even different in- and outputs: the In and Rec signals), nor are M1 and M2. However,
we show that (P ′1/

Radv‖M1) \ (Rec2 ∪ In1) and (P ′2/
Radv‖M2) \ (Rec2 ∪ In2) are trace

equivalent.
Let (it, ot) be a trace of A1/asp. By induction over the length of the trace, we show that

(it , ot) is also a trace of A2/asp.
Inductive hypothesis:

∀m ≤ n . S stepA1/asp(s01, it,m) ∼JP S stepA2/asp(s02, it,m)

where the conditional equivalence ∼JP is defined by

X ∼JP Y ⇔
[
(∀(it , ot) . (∀n . O stepPJP

(s0pc, it .ot , n+ 1) = ∅)
⇒ ((it , ot) ∈ Traces(X)⇔ (it , ot) ∈ Traces(Y)))

]
.

The conditional equivalence ∼JP denotes trace equivalence for all traces where the aspect is
never activated, because the pointcut never emits JP.

Base Case: For n = 0, S step returns the initial state. We must thus show A1/asp ∼JP

A2/asp. When JP is false, only those transitions in P ′i/
Radv are taken that have not been

modified with respect to the transitions in P ′i , except for the addition of In signals. The
transitions in P ′i/

Radv that take the signals Rec into account have all been selected by the
pointcut, and do thus not influence ∼JP. Thus, the memory automaton has no effect on
P ′i/

Radv , because it only communicates through Rec. Thus, Ai/asp ∼JP P ′i and because of
P ′1 ∼ P ′2, we have A1/asp ∼JP A2/asp.

Inductive step: We show that if the hypothesis is true for n, it is also true for n+ 1, and
we also show O stepA1/asp(s01, it, n + 1) = O stepA2/asp(s02, it, n + 1)). We distinguish two
cases: either (1) PJP emits JP (i.e. we are in a join point) and Prec has already emitted REC
(i.e. we have already passed a recovery state), such that the aspect is activated, or (2) one of
the above conditions is not met, and the aspect is not activated.

(1) Both automata take advice transitions and emit Oadv , we have thus
O stepA1/asp(s01, it, n + 1) = O stepA2/asp(s02, it, n + 1)). Let tr < n be the last
instant in 1 . . . n − 1 where REC is emitted, and let r1 and r2 be the recovery states
passed in tr. In tr,M1 (resp. M2) enters r1 (resp. r2), and emits recr1 (resp. recr2) in
n. Thus, P ′1/

Radv (resp. P ′2/
Radv) takes the advice transition leading to r1 (resp. r2).

Because of the induction hypothesis we have r1 ∼JP r2.

(2) Only those transitions in P ′i/
Radv are taken that existed already in P ′i . Because

of P ′1 ∼ P ′2 and the induction hypothesis, we have S stepA1/asp(s01, it, n + 1) ∼JP

S stepA2/asp(s02, it , n+1) and also O stepA1/asp(s01, it , n+1) = O stepA2/asp(s02, it , n+
1)).

68

6.4. TRACE TRANSFORMATION SEMANTICS

jp1

σ

σ

jp2

ot ′

ot1

ot

ot2

it

Figure 6.3: Illustration of the trace weaving defined in Definition 26. (it , ot) is the
original trace, the ot i are the outputs of traces starting with σ, and ot ′ is the output part
of a trace of the woven program. The jpi are the join points.

Because we inductively showed that O stepA1/asp(s01, it , n) = O stepA2/asp(s02, it , n))
holds for any n, A1/asp and A2/asp have the same outputs for it, thus (it , ot) is also a
trace of A2/asp.

6.4 Trace Transformation Semantics

Because the semantics of aspect weaving is independent of the implementation of the base
program, it can also be defined directly on the trace semantics of the base program, without
referring to its implementing automaton. This has the advantage of giving the semantics of
weaving explicitly on the semantics of the program, i.e. its set of traces.

It is, however, less intuitive and more complicated than defining aspects on automata. We
thus give such a semantics only for toInit aspects, with no advice programs. The definition
for this simple kind of aspect is already quite complicated. Given that automata are also
formally defined, we restrain ourselves from defining the complete Larissa language this way.

The trace transformation semantics is based on a concatenation of chunks of traces from
the base program. The first chunk starts at the beginning of the trace, and ends when the
pointcut emits JP for the first time. The following chunks are all taken from traces that start
with the inputs from the input trace σ. The part from the end of σ until the next occurrence
of JP is then used to build the trace of the woven program. This process is illustrated in
Figure 6.3.

Definition 26 (Trace Weaving). Let Traces(P) be the set of traces of an deterministic and
complete automaton P , σ a finite input trace of length `σ, and let asp = (PJP, (toInit, Oadv , σ))
be an aspect. We define the trace weaving of asp into Traces(P), noted Traces(P)/asp.

Let (it , ot) ∈ Traces(P). Then, (it , ot ′) ∈ Traces(P)/asp, where ot ′ is defined by

ot ′(i) =

ot(i) if i < jp1 or if jp1 does not exist.
otn(i− jpn + `σ) if jpn < i < jpn+1

or if jpn < i and jpn+1 does not exist.
Oadv iff i = jpn,

(6.1)

where jp1, the first join point identified by PJP in (it , ot), is defined by

∃jp1 . O stepPJP
(s0PJP

, it .ot , jp1) = {JP}
∧ ∀i < jp1 . O stepPJP

(s0PJP
, it .ot , i) = ∅, (6.2)

69

CHAPTER 6. LARISSA ASPECTS AS ARGOS OPERATORS

itn is defined by

itn(i) =

{
σ(i) iff i ≤ `σ
it(jpn + i− `σ) iff i > `σ,

(6.3)

otn is defined by
∃otn . (itn, otn) ∈ Traces(P), (6.4)

and jpi for all i > 1 is defined by

∃jpn+1 > jpn . O stepPJP
(s0PJP

, itn.otn, jpn+1 − jpn + `σ) = {JP}
∧ ∀`σ < i < jpn+1 − jpn + `σ . O stepPJP

(s0PJP
, itn.otn, i) = ∅ . (6.5)

We prove that the trace weaving has the same semantics as the automata weaving defined
in Definition 18. This is another way of proving the preservation of trace equivalence by
the weaving operator: if the semantics is defined on the set of traces, the weaving for trace
equivalent automata results in the same set of traces. However, the direct proof of trace
equivalence is simpler, we thus use it to prove the preservation of trace equivalence for the
complete language.

Theorem 3 (Correctness of Trace Weaving). Let P be an automaton, and let asp =
(PJP, (toInit, Oadv , σ)) be an aspect. Then, we have

Traces(P/asp) = Traces(P)/asp .

Proof. Traces(P/asp) and Traces(P)/asp are both deterministic and complete, Traces(P/asp)
by Theorem 1, and Traces(P)/asp because Definition 26 defines exactly one trace for each
trace of P , which is deterministic and complete.

Thus, because we know that there is exactly one pair of i/o-traces for every input trace
in both Traces(P)/asp and Traces(P/asp), it is sufficient to show

(it , ot ′) ∈ Traces(P)/asp ∧ (it , ot ′′) ∈ Traces(P/asp)⇒ ot ′ = ot ′′ .

Let (it , ot) ∈ Traces(P), consistent with Definition 26. Proof by induction on the appli-
cation of advice to it .

Induction hypothesis : At step jpn, P/asp takes an advice transition.

Base case: By Equation (6.2), jp1 is the first time PJP emits JP for (it , ot), and thus
also the first time P(P, PJP) emits JP. Therefore, P/asp also has trace (it , ot) until jp1, and
takes an advice transition at jp1.

By the first case of Equation (6.1), (it , ot ′) is also equal to (it , ot) until jp1. Thus,
∀i < jp1, ot ′(i) = ot(i) = ot ′′(i).

Induction step: We show that if the induction hypothesis is true at jpn, it is also true
at jpn+1, and that ot ′ and ot ′′ have the same outputs between jpn and jpn+1.

At jpn, P/asp takes an advice transition by the induction hypothesis. Thus, ot ′′(jpn) =
Oadv by the definition of weaving (Definition 18 in Chapter 4). We also have ot ′(jpn) = Oadv

by the third case of Equation (6.1).

70

6.5. CONCLUSION

Furthermore, by Definition 18, P/asp goes to S stepP(P,PJP)(s0, σ, `σ) at jpn, the state
reached after executing σ on P(P, PJP).

By the definition of weaving, when P/asp and P(P, PJP) are leaving from the same
state, both produce the same trace until P(P, PJP) emits JP the next time. Trace itn in
Equation (6.3) concatenates σ and the part of it following jpn. Let jp′n+1 be the next time
after jpn that P/asp takes an advice transition in (it , ot ′′). If itn is applied to P(P, PJP),
between `σ and jp′n+1, it produces the same outputs as P/asp after jpn, and it emits JP
for the next time (after `σ) at jp′n+1 − jpn + `σ, i.e. when P/asp takes an advice transition.
Formally, we know that

JP ∈ O stepP(P,PJP)(s0PJP
, itn, jp′n+1 − jpn + `σ)

∧ ∀`σ < i < jp′n+1 − jpn + `σ . JP /∈ O stepP(P,PJP)(s0PJP
, itn, i) . (6.6)

Furthermore, P and P(P, PJP) emit the same traces except for JP, and otn is the output
trace produced by P for itn. Then, by definition of P , PJP emits JP for the trace itn.otn iff
P emits JP for it . We can thus rewrite Equation 6.6 into

JP ∈ O stepPJP
(s0PJP

, itn.otn, jp′n+1 − jpn + `σ)
∧ ∀`σ < i < jp′n+1 − jpn + `σ . JP /∈ O stepPJP

(s0PJP
, itn.otn, i) . (6.7)

By comparing Equation (6.7) to Equation (6.5), we see that jp′n+1 and jpn+1 denote the
same steps, and thus the induction hypothesis is true for n+1, because P/adv takes an advice
transition at jpn+1.

Finally, between jpn and jpn+1, ot ′(i) = otn(i − jpn + `σ) by the second case of Equa-
tion (6.1), and is thus equal to O stepP/asp(s0PJP

, itn, i).

6.5 Conclusion

In this chapter, we have shown that aspect weaving preserves determinism and completeness of
programs, and equivalence between programs. Furthermore, by their definition in Chapter 4,
aspects can be combined freely with other operators. Thus, aspect weaving can be considered
as another operator of Argos.

Therefore, we can give a new Grammar for Argos and Larissa, and add aspect weaving
as an additional operator. Programs are now expressions built from single automata with
synchronous product, encapsulation, inhibition, refinement, and weaving of aspects.

Definition 27 (Grammar of Argos and Larissa). The set of Argos expressions is defined by
the grammar:

P ::= P‖P parallel product
| P \ Γ encapsulation
| P whennot a inhibition
| A.{Ri}i=0...n refinement
| P/asp aspect weaving

R ::= P | NIL refining objects,

where A is an automaton as defined in Definition 6, Γ a set of signals, a a signal, and asp
an aspect. NIL represents a state that is not refined.

71

CHAPTER 6. LARISSA ASPECTS AS ARGOS OPERATORS

Furthermore, we have defined an alternative way to define the semantics of weaving for
toInit aspects without advice programs. Instead of letting an aspect transform an automaton,
it directly transforms its semantics, specified as a set of traces. This way of specifying is much
more complicated and difficult to understand, however. We therefore do not define the rest
of Larissa this way.

72

Chapter 7

Interference between Aspects

7.1 Introduction

In aspect-oriented programs, more than one aspect is often being applied to a program. These
aspects can interact in different ways, and the order in which the aspects are applied may
depend on this interaction. E.g., in the wristwatch example from Chapter 5, the compass
shortcut aspect clearly depends on the aspect that adds the compass mode, and can only be
applied if the compass mode aspect has already been woven. In this case, the interaction
between is thus desired by the programmer.

On the other hand, aspects are often designed independently of each other, and are not
meant to interact. In this case, their interaction may lead to unintended behavior of the
woven program, and we say that the aspects interfere. The interference between aspects is a
major problem in aspect-oriented programming. This has been recognized by many authors
(e.g. [DFS02, DFS04]), and much work has been devoted to detecting and resolving aspect
interferences, which we will discuss in Section 7.6. In this chapter, we discuss this problem
for Larissa aspects.

Formally, we say that aspects that should not interact interfere if applying them in a
different order yields different results. If A1 and A2 are aspects, and weaving first A1 and
then A2 yields a different program than weaving first A2 and then A1, A1 and A2 are said to
interfere.

If two aspects interfere may depend on the way they are woven. In this chapter, we
will specifically compare two different weaving definitions, that greatly influence aspect in-
terference. The approach consists in weaving aspects sequentially, i.e. one by one after one
another. Larissa weaves aspects sequentially: an aspect is applied to an automaton, and the
next aspect is applied to the resulting automaton, without taking into account that some of
the behavior comes from an aspect. This corresponds to the operator model of Argos, where
the operators are defined as automata transformers. Thus, the weaving of two aspects A1

and A2 into a program P is a two step process, which we note (P/A1)/A2.
The second approach consists in weaving aspects jointly, i.e. by applying all the aspects

together, at the same time to the same base program. Weaving A1 and A2 then cannot be
truly separated into two independent steps, and we note it P/{A1, A2}. E.g., AspectJ weaves

73

CHAPTER 7. INTERFERENCE BETWEEN ASPECTS

aspects jointly. It defines the semantics of an aspect not as a transformation of the base
program, but rather as injecting behavior in the execution of the woven program, including
the execution of other aspects. During weaving, aspects must thus know about each other.
Both aspects influence each other, as opposed to sequential weaving, where only the second
aspect influences the first one.

1 class Test {
2 public void f oo () { . . . }
3 public stat ic void main (St r ing [] args) {
4 (new Test ()) . f oo () ;
5 }
6 }
7

8 aspect A1 {
9 void bar () { . . . }

10 after () : ca l l (∗ f oo (. .)) { bar () ; }
11 }
12

13 aspect A2 {
14 after () : ca l l (∗ bar (. .)) { XXX }
15 }

Figure 7.1: A small Java program and two AspectJ aspects.

In general, sequential weaving often causes interference. As an explanation, let us look at
the example in Figure 7.1. The class Test has a method foo and a method main, which calls
foo on a Test object. Furthermore, there are two aspects. Aspect A1 has a method bar()
and adds a call to bar at the end of every call to every method named foo. After compiling
together the class Test and the aspect A1 (Test/A1), the execution of main executes foo()
and then bar().

The second aspect, A2, adds some code at the end of every method named bar. If the
class Test is compiled with A2 only (Test/A2), nothing changes. The class Test is unchanged,
since no call to method bar exists, we have Test = Test/A2.

Imagine that a weaver for AspectJ produces Java code as a backend, and that for weaving
two aspects, it first weaves the first one, obtains some Java code, and weaves the second
aspect into the result. This weaver applies a sequential weaving strategy, the same as Larissa.

Sequentially weaving A1 into Test and then A2 into the result provides a different program
from weaving first A2 and then A1. If we execute the main method in both cases, (Test/A1)/A2
executes foo, bar and then the code XXX added by A2, whereas (Test/A2)/A1 only executes
foo and bar. A2 is activated in the first case, but not in the second.

In real AspectJ, aspects are of course woven jointly. In the example, this produces the
same result as (Test/A1)/A2.

In this chapter we propose a weaving mechanism for Larissa that weaves several aspects
jointly into a program, and thus eliminates some cases of interference. As opposed to AspectJ,
pointcuts do not capture join points in the woven program, but in the base program only.
These different kinds of weaving have been discussed first in [DFS02], where the kind that

74

7.1. INTRODUCTION

captures join points in the base program only is termed silent, and the other kind visible.
Using a silent weaving algorithm has the disadvantages that joint weaving in Larissa

cannot replace sequential weaving. We still need to weave aspects sequentially in some cases,
when the second aspects must be applied to the result of the first. E.g., consider the compass
aspect from Chapter 5, which adds an additional main mode to the watch, and the compass-
shortcut aspect, which adds transitions to that main mode. The shortcut aspect and the
compass aspect cannot be woven jointly, because the shortcut aspect needs to refer to the
states that the compass aspect introduced. It must thus be sequentially woven after the
compass aspect, so that it can select the new main mode as a target state.

1 before () : execution (∗ ∗ . a ()){ b () ; }
2 before () : execution (∗ ∗ . b ()){ a () ; }

Figure 7.2: Two AspectJ aspects which will result in a stack overflow if either method
a or b is called.

On the other hand, silent weaving also has advantages. It makes the definition of weaving
easier, and it avoids the problem that aspects which recursively call each other may lead to
non-termination. Figure 7.2 contains an example of such aspects in AspectJ. In the context
of Larissa, weaving join points in advice may lead to a similar problem if two aspects create
advice transitions that are selected as join point transitions by the other aspect. This would
likely lead to a non-terminating weaving algorithm.

Introducing non-terminating aspects in AspectJ is not a big problem, because it is also
easy to build non-terminating programs with Java alone. However, Larissa aspects that may
lead to an undefined woven program or non-terminating weaving process are not acceptable.

Although they are jointly woven, aspects in AspectJ may still interfere. This is illustrated
by the example in Figure 7.3. The sets of join points selected by A3 and by A4 are the
same. The interference here is unavoidable since the advice programs have to be executed
sequentially. In such a case, AspectJ allows to describe the order of application of advice with
the declare precedence keyword, as in Line 2 in Figure 7.3.

1 aspect A3 {
2 declare precedence : A4 , A3 ;
3 before () : ca l l (∗ f oo (. .)) { . . . }
4 }
5 aspect A4 {
6 before () : ca l l (∗ f oo (. .)) { . . . }
7 }

Figure 7.3: Two interfering AspectJ aspects.

Likewise, aspects in Larissa may still interfere if they share join points, even if they are
woven jointly. In this chapter, we analyze interference of aspects that are woven jointly. We
present sufficient conditions to prove non-interference, either for two aspects in general or two
aspects and a specific program.

We do not study interference for sequentially woven aspects, and do not show how non-

75

CHAPTER 7. INTERFERENCE BETWEEN ASPECTS

interference can be proven in this case. This would be much more difficult, and it makes
no sense: if two aspects are meant not to interfere, they should be jointly woven. In cases
where we need sequential weaving, i.e. when one aspect depends on the other, interference is
unavoidable, because the aspect that depends on the other must be woven last.

The remainder of this chapter is structured as follows: Section 7.2 introduces an exam-
ple, which is used in Section 7.3 to illustrate aspect interference in Larissa and introduce
joint weaving. Section 7.4 then describes a way to formally prove non-interference, and Sec-
tion 7.3.1 extends this approach to recovery aspects. Section 7.5 contains the proofs for the
theorems introduced in the previous sections. Finally, Section 7.6 explores some related work
and Section 7.7 concludes. The work presented in this chapter has partly been published
in [SAM06] and [Sta07a].

7.2 Example

We re-use the wristwatch example from Chapter 5 in this section, but adapt it to produce
interesting cases of interference. Therefore, we apply two new shortcut aspects to the same
watch. The shortcut aspects are not those from the real watches presented in Chapter 5, but
simpler shortcuts, that just jump to a submode.

Consider the Altimax watch, with the base program shown in Figure 5.2. The plus and
the minus buttons have both no function consistent with their intended meaning in the main
modes, we can thus use both as a shortcut. We introduce one shortcut that jumps to the
logbook of the altimeter, activated by minus, and one that jumps to the four day memory
of the barometer, activated by plus. We term the aspect that introduces the first shortcut
the logbook aspect, and the one that introduces the second the memory aspect. We can re-use
the pointcut from the fast cumulative aspect in Figure 5.3 for one aspect, and must modify
the other such that it emits JP when plus is pressed in a main mode. These pointcuts are
shown in Figure 7.4. The two pointcuts emit different join point signals, JPl and JPm, for
the logbook and the memory aspect respectively.

main

subsub

main

mainMode mainModeselect select
∨s2s∨s2s

(a) : logbook-PC (b) : memory-PC

plus/JPmminus/JPl

Figure 7.4: The pointcuts for the shortcut aspects.

As advice, we specify the trace that leads to the functionality we want to
reach, i.e. σl = mode.select.select.select for the logbook aspect and σm =
mode.mode.select.select for the 4-day memory aspect, and the output that tells the
underlying component to display the corresponding information. Thus, we use the as-
pects logbook − asp = (logbook-PC, (toInit, {showLogbook}, σl)) and memory − asp =
(memory-PC, (toInit, {showBaroMemory}, σm)).

76

7.3. INTERFERING ASPECTS

7.3 Interfering Aspects

If we apply first the logbook aspect, and then, sequentially, the memory aspect to the watch
program, the aspects do not behave as we would expect. If, in the woven program, we first
press the minus button in a main mode, thus activating the logbook aspect, and then the
plus button, the memory aspect is activated, although we are in a submode. This behavior
was clearly not intended by the programmer of the memory aspect.

The problem is that the memory aspect has been written for the program without the
logbook aspect: the pointcut assumes that the only way to leave a main mode is to press
the select or the s2s button. However, the logbook aspect invalidates that assumption by
adding transitions with condition minus from the main modes to a submode. When these
transitions are taken, the pointcut of the memory aspect incorrectly assumes that the program
is still in a main mode.

Furthermore, for the same reason, applying first the memory aspect and then the log-
book aspect produces (in terms of trace-equivalence) a different program from applying
first the logbook aspect and then the memory aspect: watch/logbook-asp/memory-asp �
watch/memory-asp/logbook-asp.

As a first attempt to define aspect interference, we say that two aspects A1 and A2

interfere when their application on a program P in different orders does not yield two trace-
equivalent programs: P/A1/A2 � P/A2/A1. We say that two aspects that do not interfere
are independent.

With interfering aspects, the aspect that is woven second must know about the aspect
that was applied first. To be able to write aspects as the ones above independently from
each other, we propose a mechanism to weave several aspects jointly. The idea is to first
determine the join point transitions for all the aspects, and then apply the advice. We first
define joint weaving only for toInit/toCurrent aspects, which is easier to understand than the
full definition that also takes recovery aspects into account, and is sufficient for the example
used in this chapter. We define jointly weaving all kinds of aspects in Definition 29.

Definition 28 (Joint weaving of several toInit/toCurrent aspects). Let A1, . . . , An be some
toInit or toCurrent aspects, with Ai = (PJPi , adv i), and P a program. We define the applica-
tion of A1, . . . , An on P as follows:

P/(A1, . . . , An) = P(P, PJP1‖ . . . ‖PJPn)/JPnadvn . . . /JP1adv1 .

Note that Definition 28 reuses the advice weaving operator defined in Definition 18, and
indexes the join point signal used by each advice. Furthermore, the advice is woven in the
reverse order, i.e. we first the advice from the last aspect in the aspect list, and the advice
from the first aspect last. This way, aspects that are later in the list have higher priority: if
a join point transition is claimed by several aspects, the one that is woven first replaces the
join point transition with its advice transition, and removes the join point signals of the other
aspects. To give priority to the aspects that are applied later is consistent with sequential
weaving, where aspects that are applied later modify the aspects that have already been
applied, but not the other way round.

Jointly weaving the logbook and the memory aspect leads to the intended behavior, be-
cause both aspects first select their join point transitions in the main modes, and change the
target states of the join point transitions only afterwards.

77

CHAPTER 7. INTERFERENCE BETWEEN ASPECTS

main

subsub

main

mainMode mainModeselect select
∨s2s∨s2s

plus∧minus/JPmminus∧plus/JPl

(a) : logbook-PC’ (b) : memory-PC’

Figure 7.5: Two non interfering pointcuts for the shortcut aspects.

However, the order in which the aspects are woven still influences the program. The two
aspects share some join point transitions, namely when both buttons are pressed at the same
time in a main mode. Both aspects then want to execute their advice, but only one can. Only
the aspect that was applied last is executed. Thus the two aspects interfere with each other.
However, this problem can be solved by modifying the pointcuts, such that they do not share
any join point transitions. E.g., we can add plus to the join point transition of the logbook
aspect’s pointcut and minus to the join point transition of the memory aspect’s pointcut, as
shown in Figure 7.5. With these pointcuts, the order of weaving the two aspects does not
influence the final program.

7.3.1 Extension to recovery Aspects

Above, we defined joint weaving for toInit and toCurrent aspects only. When jointly weaving
recovery aspects, it is not sufficient to just separate the join point weaving, as we do in
Definition 28. If we first weave the complete recovery advice of the first aspect, i.e. the three
operators /R, /I , and /M defined in Definitions 21, 22, and 23 respectively, then the complete
advice of the second and so on, we have the same problem as with sequential weaving.

Consider two recovery aspects R1 and R2, with R1 woven after R2. Each time R1 takes an
advice transition, R2’s memory automaton is reset to the state in which it was when R1 last
passed a recovery state, because R1 recovers the whole automaton it was applied to, including
R2’s memory automaton. On the other hand, when R2 takes an advice transition, this does
not influence the memory automaton of R1, because it is added later. Furthermore, if we
weave first R1 and then R2, this is the other way round. Thus, even if R1 and R2 have no
join point transitions in common, they may interfere.

Therefore, we define a generalized version of joint weaving, which applies the /I and /M

operators after /R and /JP operators.

Definition 29 (Joint weaving of several aspects). Let A = A1 . . . An be some as-
pects, with Ai = (PJPi , adv i), AR = {AR1 . . . ARm} ⊆ A the recovery aspects in A,
with adv i = (recovery, Oadv i, Preci, Padv i) if Ai ∈ AR, P a program, and let Ppc =
P(P, PJP1‖ . . . ‖PJPn‖PrecR1‖ . . . ‖PrecRm). We define the application of A1 . . . An on P as
follows:

P/(A1, . . . , An) = Ppc/
?
nadvn . . . /?1adv1/

I
RRm . . . /

I
RR1

/MRRm . . . /
M
RR1

where /?i = /RJPi,Ri if Ai ∈ AR and /?i = /JPi otherwise.

Definition 29 solves the above problem: as when weaving toInit/toCurrent aspects, aspects
do not influence each other except by removing each others join point signals. Especially, all
memory automata are not influenced by other advice.

78

7.4. PROVING NON-INTERFERENCE

7.3.2 Defining Interference

Formally, we define aspect interference for the application of several aspects as follows, using
the extended definition that takes all kinds of aspects into account.

Definition 30 (Aspect Interference). Let A1 ... An be some aspects, and P a program. We
say that Ai and Ai+1 interfere for P iff

P/(A1, . . . , Ai, Ai+1, . . . , An) � P/(A1, . . . , Ai+1, Ai, . . . , An)

When two jointly woven aspects interfere, as do aspects with the pointcuts shown in
Figure 7.4, the conflict should be made explicit to the programmer, so that it can be solved
by hand, as we did for the example above. A mechanism to identify such conflicts is introduced
in the following section.

7.4 Proving Non-Interference

In this section, we show that in some cases, non-interference of aspects can be proven, if the
aspects are woven jointly, as defined in Definition 29. We can prove non-interference of two
given aspects either for any program the aspects are woven into, or for two aspects and a
given program. Following [DFS02, DFS04], we speak of strong independence in the first case,
and of weak independence in the second.

We use the jpTrans function to determine interference between aspects. It computes all
the join point transitions of an automaton, i.e. all transitions with a given output JP.

Definition 31 (jpTrans). Let A = (Q, s0, I,O, T) be an automaton and JP ∈ O. Then,

jpTrans(A, JP) = {t|t = (s, `, O, s′) ∈ T ∧ JP ∈ O} .

The following theorem proves strong independence between two aspects, i.e. it proves that
two aspects do not interfere for any base program.

Theorem 4 (Strong Independence). Let A1 . . . An be some aspects, with Ai = (PJPi , adv i),
and let P be a program. Then, the following equation holds:

jpTrans(PJPi‖PJPi+1 , JPi) ∩ jpTrans(PJPi‖PJPi+1 , JPi+1) = ∅
⇒ P/(A1 . . . Ai, Ai+1 . . . An) ∼ P/(A1 . . . Ai−1, Ai+1, Ai, Ai+2 . . . An) .

A proof is given in Section 7.3.1. Theorem 4 states that if there is no transition with both
JPi and JPi+1 as outputs in the product of PJPi and PJPi+1 , Ai and Ai+1 are independent
and thus can commute while weaving their advice. Theorem 4 defines a sufficient condition
for non-interference, by looking only at the pointcuts. When the condition holds, the aspects
are said to be strongly independent.

Theorem 5 (Weak Independence). Let A1 . . . An be some aspects, with Ai = (PJPi , adv i), P
a program, and Ppc = P(P, PJP1‖ . . . ‖PJPn). Then, the following equation holds:

jpTrans(Ppc, JPi) ∩ jpTrans(Ppc, JPi+1) = ∅
⇒ P/(A1, . . . , Ai, Ai+1, . . . , An) ∼ P/(A1, . . . , Ai+1, Ai, . . . , An) .

79

CHAPTER 7. INTERFERENCE BETWEEN ASPECTS

A proof is given in Section 7.3.1. Theorem 5 states that if there is no transition with
both JPi and JPi+1 as outputs in Ppc, Ai and Ai+1 do not interfere. This is weaker than
Theorem 4 since it also takes the program P into account. However, there are cases in which
the condition of Theorem 4 is false (thus it yields no results), but Theorem 5 allows to prove
non-interference. Section 7.4.2 contains such an example.

Note that both Theorem 4 and Theorem 5 only prove independence for aspects that
are adjacent in the weaving list. By applying the theorem repeatedly, we can also prove
independence for two non-adjacent aspects, if both aspects are independent of the aspects
between them.

Theorem 5 is a sufficient condition, but, as Theorem 4, it is not necessary: it may not be
able to prove independence for two independent aspects. One reason is that it does not take
into account the effect of the advice weaving: consider two aspects such that the only reason
why the condition for Theorem 5 is false is a transition with source state s, such that s is
only reachable through another join point transition; if the advice weaving makes this state
unreachable, then the aspects do not interfere. Another possibility for an incorrectly detected
conflict is the case where the two pieces of advice have the same effect on the program: then,
the weaving order obviously does not matter, even if the aspects share join point transitions.

The results obtained by both theorems are quite intuitive. They mean that if the pointcut
does not select any join points common to two aspects, then these aspects do not interfere.
This condition can be calculated on the pointcuts alone, or can also take the program into
account.

Note that the detection of non-interference is a static condition that does not add any
complexity overhead. Indeed, to weave the aspects, the compiler needs to build first PJP1‖ ...
‖PJPn = PallJP: the condition of Theorem 4 can be checked during the construction of PallJP.
Second, the weaver builds Ppc = P(P, PallJP), and it can check the condition of Theorem 5.
Thus, to calculate the conditions of both theorems, it is sufficient to check the outputs of
the transitions of intermediate products during the weaving. The weaver can easily emit a
warning when a potential conflict is detected.

To have an exact characterization of non-interference, it is still possible to compute the
predicate P/(A1 . . . Ai, Ai+1 . . . An) ∼ P/(A1 . . . Ai+1, Ai . . . An), but calculating semantic
equality is very expensive for large programs.

Note that the interference presented here only applies to the joint weaving of several
aspects, as defined in Definition 28. Sequentially woven aspects may interfere even if their
join points are disjoint, because the pointcut of the second aspects applies to the woven
program. A similar analysis to prove non-interference of sequential weaving would be more
difficult, because the effect of the advice must be taken into account. Indeed, the advice
of an aspect influences which transitions are selected by the pointcut of an aspect that is
sequentially woven next.

7.4.1 Interference between the Shortcut Aspects

Let us apply the formal interference analysis to the example from Section 7.2. Figure 7.6
(a) shows the product of the modified pointcuts of the logbook and the memory aspect
from Figure 7.5. There are no transitions that emit both JPl and JPm, thus, by applying
Theorem 4, we know that the aspects do not interfere, independently of the program they are
applied to.

Consider again that the original pointcuts of the logbook and the memory aspect from

80

7.4. PROVING NON-INTERFERENCE

minus∧
plus/JPl

plus/JPl

minus∧

(a)

sub

main
select
∨s2s

mainMode

sub

main

minus∧plus/JPm

select
∨s2s

mainMode

minus∧plus/JPm

minus∧plus/JPl,JPm

(b)

Figure 7.6: Interference between shortcut pointcuts.

Figure 7.4. The product of the two pointcuts is shown in Figure 7.6 (b). State main has
another loop transition, with label minus∧plus/JPl,JPm. Thus, Theorem 4 not only states
that the aspects potentially interfere, but it also states precisely where the interference may
occur: here, the problem is that when both minus and plus are pressed in a main mode, at
the same time, both aspects are activated. A compiler for Larissa can thus emits a warning,
and the programmer can solve the conflict if needed.

7.4.2 Interference between a Shortcut and the No-DTM Aspect

We now apply the formal interference analysis to another example taken from the watch in
Chapter 5. Consider the interference between shortcut aspect and the No-DTM aspect from
Section 5.3.3, which removes the Dual Time submode from the watch.

The pointcut of the No-DTM aspects emits the join point signal JPn, and is a single-state
automaton which emits JPn when the input DT-Mode, which activates the Dual Time mode,
is true. Figure 7.7 shows the initial state of the product of the pointcuts of the logbook
(Figure 7.4 (a)) and the No-DTM aspect. There is a transition that has both JPl and JPn as
outputs. Theorem 4 states that the aspects may interfere, but when applied to the wristwatch
controller, they do not. This is because the DT-Mode is an output of the controller and is
never emitted when the watch is in a main mode, where the logbook aspect can be activated.
As the DT-Mode is always false in the main modes, the conflicting transition is never enabled.
When applied to another program, however, the aspects may interfere.

In this example, the use of Theorem 5 is thus needed to show that the aspects do not
interfere when applied to the wristwatch controller. Its condition is true, as expected, because
JPl is only emitted in the main modes, and JPn only in the Time submodes.

main

(minus∨
DT-mode∧

... minus∧
DT-mode∧

minus∧
DT-mode∧

plus/JPl plus)/JPn

plus/JPl,JPn

Figure 7.7: Interference between a shortcut and No-DTM pointcuts.

81

CHAPTER 7. INTERFERENCE BETWEEN ASPECTS

7.5 Proofs

In this section, we prove Theorems 4 and 5, using the joint weaving defined in Definition 29,
which also takes the complete Larissa language into account.

We first prove a lemma we will need in the proof for Theorem 5, then Theorem 5, and
finally Theorem 4, which is a direct consequence of Theorem 5.

Lemma 2 (Distributivity of the Encapsulation). Let P1 = (Q1, I1,O1, T1) and P2 =
(Q2, I2,O2, T2) be automata, and Γ signals such that Γ ∩ (I2 ∪ O2) = ∅. Then, we have

(P1 \ Γ)‖P2 ∼ (P1‖P2) \ Γ .

Proof. By applying first Definition 11 and then Definition 10, we obtain (P1 \Γ)‖P2 = (Q1×
Q2, I1 \ Γ ∪ I2,O1 \ Γ ∪ O2, T ′), where T ′ is defined by

(s1, `1, O1, s
′
1) ∈ T1 ∧ `+1 ∩ Γ ⊆ O1 ∧ `−1 ∩ Γ ∩O1 = ∅ ∧ (s2, `2, O2, s

′
2) ∈ T2

⇐⇒ (s1s2,∃Γ . `1 ∧ `2, O1 \ Γ ∪O2, s
′
1s
′
2) ∈ T ′ .

On the other hand, by applying first Definition 10 and then Definition 11, we have
(P1‖P2) \ Γ = (Q1 ×Q2, (I1 ∪ I2) \ Γ, (O1 ∪ O2) \ Γ, T ′′), where T ′′ is defined by

(s1, `1, O1, s
′
1) ∈ T1 ∧ (s2, `2, O2, s

′
2) ∈ T2

∧ (`1 ∧ `2)+ ∩ Γ ⊆ (O1 ∪O2) ∧ (`1 ∧ `2)− ∩ Γ ∩ (O1 ∪O2) = ∅
⇐⇒ (s1s2,∃Γ . (`1 ∧ `2), (O1 ∪O2) \ Γ, s′1s

′
2) ∈ T ′ .

Because `2 does not range over Γ, `+2 ∪ Γ = ∅, `−2 ∪ Γ = ∅, and ∃Γ . `2 = `2. Furthermore,
because of Γ∩O2 = ∅, we also have (O1 ∪O2) \Γ = O1 \Γ∪O2, Γ∩ (O1 ∪O2) = Γ∩O1, and
`+1 ∩ Γ ⊆ (O1 ∪O2)⇐⇒ `+1 ∩ Γ ⊆ O1. Thus, T ′ = T ′′.

7.5.1 Proof for Theorem 5

For readability of the proof, we first consider only aspects without advice programs, and show
that the theorem also holds for aspects with advice programs afterwards.

Let AR = {AR1 . . . ARm} ⊆ A be the recovery aspects in A, with Ai ∈ AR =
(PJPi , (recovery, Oadv i , Preci)) and Ri = {ri,1 . . . ri,ni} Ai’s recovery states.

Because the parallel product is commutative we have

P(P, PJP1‖ . . . ‖PJPi‖PJPi+1‖ . . . ‖PJPn‖PrecR1‖ . . . ‖PrecRm)
= P(P, PJP1‖ . . . ‖PJPi+1‖PJPi‖ . . . ‖PJPn‖PrecR1‖ . . . ‖PrecRm) .

We note

Pi+2 = (Q, s0, I,O, T) =

P(P, PJP1‖ . . . ‖PJPn‖PrecR1‖ . . . ‖PrecRm)/?
JPnadvn . . . /?

JPi+2
adv i+2 .

Pi+2 is the program in that we weave Ai and Ai+1 in different orders. We distinguish three
cases: either (1) Ai and Ai+1 are both toInit or toCurrent aspects, or (2) they are both
recovery aspects, or (3) one is a either a toInit or toCurrent aspect, and the other a recovery
aspect.

82

7.5. PROOFS

Case (1). Both Ai and Ai+1 are either toInit or toCurrent aspects. Then Pi+2/JPi+1adv i+1

yields an automaton Pi+1 = (Q, s0, I,O, T ′), where T ′ is defined as follows:

(s, `, O, s′) ∈ T ∧ JPi+1 /∈ O =⇒ (s, `, O, s′) ∈ T ′

(s, `, O, s′) ∈ T ∧ JPi+1 ∈ O =⇒ (s, `, Oadv i+1
, targi+1(s)) ∈ T ′,

where targi(s) refers to the targ function used by the weaving of adv i as defined in Defini-
tion 18, i.e. the target state of the advice transitions of adv i.

Pi+1/JPiadv i yields an automaton Pi = (Q, s0, I,O, T ′′), where T ′′ is defined as follows:(
(s, `, O, s′) ∈ T ∧ JPi+1 /∈ O∧JPi /∈ O

)
=⇒ (s, `, O, s′) ∈ T ′′ (7.1)(

(s, `, O, s′) ∈ T ∧ JPi+1 ∈ O∧JPi /∈ O
)

=⇒
(s, `, Oadv i+1

, targi+1(s)) ∈ T ′′
(7.2)(

(s, `, O, s′) ∈ T ∧ JPi+1 /∈ O∧JPi ∈ O
)

=⇒
(s, `, Oadv i , targi(s)) ∈ T ′′

(7.3)(
(s, `, O, s′) ∈ T ∧ JPi+1 ∈ O∧JPi ∈ O

)
=⇒

(s, `, Oadv i+1
, targi+1(s)) ∈ T ′′

(7.4)

When we calculate Pi+2/JPiadv i/JPi+1adv i+1, we obtain the same automaton, except for
transitions (7.4), which are defined by(

(s, `, O, s′) ∈ T ∧ JPi+1 ∈ O∧JPi ∈ O
)

=⇒
(s, `, Oadv i , targi(s)) ∈ T ′

)
.

Transitions (7.4) are exactly the join point transitions that are in
jpTrans(P(P, PJP1‖ . . . ‖PJPn), JPi) ∩ jpTrans(P(P, PJP1‖ . . . ‖PJPn), JPi+1). By pre-
condition, there were no such transitions in P(P, PJP1‖ . . . ‖PJPn). Because we require
in Definition 15 that all the JPj outputs occur nowhere else, JPi and JPi+1 cannot be
contained in a Oadvj , thus no transition of type (7.4) has been added by the weaving of
/JPnadvn . . . /JPi+2adv i+2.

Thus, P(P, PJP1‖ . . . ‖PJPn)/JPnadvn . . . /JPi+2adv i+2/JPi+1adv i+1/JPiadv i and
P(P, PJP1‖ . . . ‖PJPn)/JPnadvn . . . /JPi+2adv i+2/JPiadv i/JPi+1adv i+1 are syntactically equal.
Weaving /JPi−1adv i−1 . . . /JP1adv1 in both expression thus yields the same result.

Case (2). Both Ai and Ai+1 are recovery aspects. We first show that

Pi+2/
R
JPi+1,Ri+1

adv i+1/
R
JPi,Riadv i ∼ Pi+2/

R
JPi,Riadv i/RJPi+1,Ri+1

adv i+1 .

Pi+2/
R
JPi+1,Ri+1

adv i+1 yields an automaton (Q, s0, I ∪ Reci+1,O, T ′), where T ′ is defined as
follows:

(s, `, O, s′) ∈ T
∧JPi+1 ∈ O

=⇒ (s, ` ∧ reci+1,k ∧ SR(i+ 1, k), Oadv i+1
, ri+1,k) ∈ T ′ (7.5)

(s, `, O, s′) ∈ T
∧JPi+1 ∈ O

=⇒ (s, ` ∧ SR(i+ 1, 0), O \ {JPi+1}, s′) ∈ T ′ (7.6)

(s, `, O, s′) ∈ T
∧JPi+1 /∈ O

=⇒ (s, `, O, s′) ∈ T ′, (7.7)

83

CHAPTER 7. INTERFERENCE BETWEEN ASPECTS

where SR(i, k) =
∧
j=k+1..ni

reci,j .
Pi+2/

R
JPi+1,Ri+1

adv i+1/
R
JPi,Riadv i then yields an automaton (Q, s0, I ∪ Reci ∪

Reci+1,O, T ′′), where T ′′ is defined as follows:

(s, `, O, s′) ∈ T
∧JPi+1 ∈ O ∧ JPi /∈ O

=⇒ (s, ` ∧ reci+1,k ∧ SR(i+ 1, k), Oadv i+1
, ri+1,k) ∈ T ′′ (7.8)

(s, `, O, s′) ∈ T
∧JPi+1 /∈ O ∧ JPi ∈ O

=⇒ (s, ` ∧ reci,k ∧ SR(i, k), Oadv i , ri,k) ∈ T
′′ (7.9)

(s, `, O, s′) ∈ T
∧JPi+1 ∈ O ∧ JPi ∈ O

=⇒ (s, ` ∧ reci+1,k ∧ SR(i+ 1, k), Oadv i+1
, ri+1,k) ∈ T ′′ (7.10)

(s, `, O, s′) ∈ T
∧JPi+1 ∈ O ∧ JPi /∈ O

=⇒ (s, ` ∧ SR(i+ 1, 0), O \ {JPi+1}, s′) ∈ T ′′ (7.11)

(s, `, O, s′) ∈ T
∧JPi+1 /∈ O ∧ JPi ∈ O

=⇒ (s, ` ∧ SR(i, 0), O \ {JPi}, s′) ∈ T ′′ (7.12)

(s, `, O, s′) ∈ T
∧JPi+1 ∈ O ∧ JPi ∈ O

=⇒ (s, ` ∧ SR(i+ 1, 0) ∧ SR(i, 0), O \ {JPi+1, JPi}, s′) ∈ T ′′

(7.13)

(s, `, O, s′) ∈ T
∧JPi+1 /∈ O ∧ JPi /∈ O

=⇒ (s, `, O, s′) ∈ T ′′, (7.14)

Transitions 7.8 to 7.10 consider advice transitions. When we weave the advice the other way
round, i.e. when we calculate Pi+2/

R
JPi,Riadv i/RJPi+1,Ri+1

adv i+1, Transitions 7.10 are different,
namely

(s, `, O, s′) ∈ T
∧JPi+1 ∈ O ∧ JPi ∈ O

=⇒ (s, ` ∧ reci,k ∧ SR(i, k), Oadv i , ri,k) ∈ T
′′ .

However, Transitions 7.10 are excluded by the precondition, because they emit both JPi+1 and
JPi. Transitions 7.11 to 7.13 are the join point transitions that are not modified because no
rec signal is present, and their combination with unmodified transitions. The weaving order
does not influence them, because they do not remove the outputs, and thus the following
aspect still finds its join point signal and modifies the transition. Transitions 7.14 are the
transitions that are not modified by either aspect.

Thus, we have

Pi+2/
R
JPi+1,Ri+1

adv i+1/
R
JPi,Riadv i ∼ Pi+2/

R
JPi,Riadv i/RJPi+1,Ri+1

adv i+1 .

We now have to show changing the order of weaving /I and /M has the same result. /I only
replaces REC with in signals, and is thus not influenced by the weaving order, because the
REC signals are different for each aspect. The /M operator first creates a memory automaton
for each aspect. The memory automata Mi and Mi+1 only depend on the recovery states
R, which are determined by /R, and do thus not depend on the weaving order of /M .

84

7.5. PROOFS

Let PR = Pi+2/
?adv i+1 . . . /

?
1adv1/

I
RRm . . . /

I
RR1

/MRRm . . . /
M
Ri+2

. We have

PR/
M
Ri+1

/MRi

=
[(

(PR‖Mi+1) \ (Reci+1 ∪ Ini+1)
)
‖Mi

]
\ (Reci ∪ Ini) by Definition 23

∼
[
(PR‖Mi+1‖Mi) \ (Reci+1 ∪ Ini+1)

]
\ (Reci ∪ Ini) by Lemma 2

∼
[
(PR‖Mi+1‖Mi) \ (Reci ∪ Ini)

]
\ (Reci+1 ∪ Ini+1) trivially by Definition 11

∼
[(

(PR‖Mi) \ (Reci ∪ Ini)
)
‖Mi+1

]
\ (Reci+1 ∪ Ini+1) by Lemma 2

=PR/MRi/
M
Ri+1

. by Definition 23

We can apply Lemma 2 above because (Reci+1 ∪ Ini+1) ∩ (Reci ∪ Ini) = ∅. Weaving
/MRi−1

. . . /MRR1
also preserves equivalence.

Case (3). Let Ai be either a toInit or a toCurrent aspect, and let Ai+1 be a recovery aspect.
Pi+2/

R
JPi+1,Ri+1

adv i+1 yields an automaton (Q, s0, I ∪ Reci+1,O, T ′), where T ′ is defined by
Transitions 7.5 to 7.7.

Pi+2/
R
JPi+1,Ri+1

adv i+1/JPiadv i yields an automaton (Q, s0, I∪Reci+1∪Reci,O, T ′′), where
T ′′ is defined by

(s, `, O, s′) ∈ T
∧JPi+1 ∈ O ∧ JPi /∈ O

=⇒ (s, ` ∧ reci+1,k ∧ SR(i+ 1, k), Oadv i+1
, ri+1,k) ∈ T ′′ (7.15)

(s, `, O, s′) ∈ T
∧JPi+1 /∈ O ∧ JPi ∈ O

=⇒ (s, `, Oadv i , targi(s)) ∈ T ′′ (7.16)

(s, `, O, s′) ∈ T
∧JPi+1 ∈ O ∧ JPi ∈ O

=⇒ (s, ` ∧ reci+1,k ∧ SR(i+ 1, k), Oadv i+1
, ri+1,k) ∈ T ′′ (7.17)

(s, `, O, s′) ∈ T
∧JPi+1 ∈ O ∧ JPi /∈ O

=⇒ (s, ` ∧ SR(i+ 1, 0), O \ {JPi+1}, s′) ∈ T ′′ (7.18)

(s, `, O, s′) ∈ T
∧JPi+1 ∈ O ∧ JPi ∈ O

=⇒ (s, ` ∧ SR(i+ 1, 0), Oadv i , s
′) ∈ T ′′ (7.19)

(s, `, O, s′) ∈ T
∧JPi+1 /∈ O ∧ JPi /∈ O

=⇒ (s, `, O, s′) ∈ T ′′, (7.20)

If we calculate Pi+2/JPiadv i/RJPi+1,Ri+1
adv i+1, we obtain the same transitions, expect

for Transitions 7.17, which become advice transitions of Ai, and Transitions 7.19, which
disappear. Again, these are exactly the transitions that are forbidden by the precondition.
Thus we have shown that

Pi+2/
R
JPi+1,Ri+1

adv i+1/JPiadv i ∼ Pi+2/JPiadv i/RJPi+1,Ri+1
adv i+1 .

As in Case (1), applying the rest of the advice to two equivalent programs yields two equivalent
programs.

Advice Programs. The join point and recovery transitions are selected before weaving
inserts advice programs. Thus, the transitions in the advice programs are not chosen as join
point transitions, nor can any of the introduced states be a recovery state. Thus, the inserted

85

CHAPTER 7. INTERFERENCE BETWEEN ASPECTS

advice programs are not modified by either /JP, /RJP,R or /IR, and it thus does not matter in
which order they are inserted.

Weaving an aspect with an advice programs modifies the existing transitions in exactly the
same way as the aspect without the advice program. Furthermore, only join point transitions
and recovery transitions are modified. Thus, adding advice programs does not influence aspect
interference.

7.5.2 Proof for Theorem 4

Theorem 4 is a consequence of Theorem 5. We show that

jpTrans(P(P, PJP1‖ . . . ‖PJPn), JPi)∩
jpTrans(P(P, PJP1‖ . . . ‖PJPn), JPi+1) = ∅

follows from

jpTrans(PJPi‖PJPi+1 , JPi)
∩ jpTrans(PJPi‖PJPi+1 , JPi+1) = ∅

JPi and JPi+1 can only occur in PJPi and PJPi+1 . Thus, if a transition that has both of them
as outputs in P(P, PJP1‖ . . . ‖PJPn), there must already exist a transition with both of them
as outputs in PJPi‖PJPi+1 .

7.6 Related Work

Some authors discuss the advantages of sequential vs. joint weaving. Lopez-Herrejon and
Batory [LHB05] propose to use sequential weaving for incremental software development.
Colyer and Clement [CC04, Section 5.1] want to apply aspects to bytecode which already
contains woven aspects. In AspectJ, this is impossible because the semantics would not be
the same as weaving all aspects at the same time.

Sihman and Katz [SK03] propose SuperJ, a superimposition language which is imple-
mented through a preprocessor for AspectJ. They propose to combine superimpositions into
a new superimposition, either by sequentially applying one to the other, or by combining them
without mutual influence, i.e. they propose the same kinds of weaving as Larissa. Superim-
positions contain assume/guarantee contracts, which can be used to check if a combination
is valid.

A number of authors investigate aspect interference in different formal frameworks. Much
of the work is devoted to determining the correct application order for interfering aspects,
whereas we focus on proving non-interference.

Sanen et al [STJ+06] propose to classify aspect interactions in four categories ranging
from “reinforcement” to “conflict”, and to document them in a standardized way.

Douence et al [DFS02, DFS04] present a mechanism to statically detect conflicts between
aspects that are applied jointly. Their analysis detects all join points where two aspects want
to insert advice. To reduce the detection of spurious conflicts, they extend their pointcuts
with shared variables, and add constraints that an aspect can impose on a program. To
resolve remaining conflicts, the programmer can then write powerful composition adaptors to
define how the aspects react in presence of each other.

86

7.7. CONCLUSION

Pawlak et al [PDS05] present a way to formally validate precedence orderings between
aspects that share join points. They introduce a small language, CompAr, in which the user
expresses the effect of the advice that is important for aspect interaction, and properties that
should be true after the execution of the advice. The CompAr compiler can then check that
a given advice ordering does not invalidate a property of an advice.

Durr et al [DSBA05] propose an interaction analysis for Composition Filters. They detect
when one aspect prevents the execution of another, and can check that a specified trace
property is ensured by an aspect.

Balzarotti et al [BDCM05] use program slicing to check if different aspects modify the
same code, which might indicate interference.

7.7 Conclusion

We present an analysis for aspect interference Larissa. First, we introduced an additional
operator which jointly weaves several aspects together into a program. Instead of weaving a
first aspect in a base program, and then a second in the result, as does the sequential weaving
defined earlier, we determine first all the join point transitions in the program, and then apply
the different pieces of advice one after the other. This kind of weaving leads to much less
interference between aspects if both aspects were designed for the same base program. It is
also closer to the way AspectJ weaves aspects, but with the difference that our joint weaving
selects join points only in the base program, whereas AspectJ aspects select join points also
in each other’s advice. The definition of joint weaving was easy: because Larissa is defined
modularly, we only had to rearrange the building steps of the weaving process.

We can analyze interference between jointly woven aspects with a simple parallel product
of the pointcuts. When a potential conflict is detected, the user has to solve it by hand, if
needed. In the examples we already studied, the conflicts were solved by simple modifications
of the pointcuts.

It seems that the interference analysis for Larissa is quite precise, i.e. we can prove inde-
pendence for most independent aspects. One reason for that are Larissa’s powerful pointcuts,
which describe join points statically, yet very precisely, on the level of transitions. Another
reason is the exclusive nature of the advice. Two pieces of advice that share a join point
transition never execute sequentially, but there is always one that is executed while the other
is not. If the two pieces of advice are not equivalent, this leads to a conflict. Thus, as opposed
to [DFS04], assuming that a shared join point leads to a conflict does not introduce spurious
conflicts.

87

Chapter 8

Contracts for Aspects

8.1 Introduction

8.1.1 Synchronous Languages and Design-by-Contract

Design-by-Contract [Mey92] is a design principle, originally introduced for object-oriented
systems, where a method is specified by a contract. A contract is a specification in form of
an implication between an assumption clause and a guarantee clause. A method fulfills its
contract if after its execution, the guarantee holds provided that the assumption was true
when the program was called.

A contract describes obligations and benefits for both the caller and the programmer of
the method with a contract. The caller of the method must ensure that the assumption holds,
and obtains the guarantee in return. The programmer only needs to consider the cases where
the assumption holds, but must ensure that the guarantee holds in these.

Contracts have been adapted to reactive systems by [MM04a, MM04b]. Reactive systems
constantly receive inputs from their environment, and emit outputs to it. Therefore, it seems
natural to let assumptions restrict the inputs, and let guarantees ensure properties on the
outputs. Additionally, what a program is allowed to do often depends to a large extent on
previous occurrences of signals. A convenient way to express such temporal properties over
input and output traces are observers, which we introduced in Section 3.3. In this chapter,
observers have a single output err, which is emitted to show that a trace is not accepted.

As an example for a contract of a reactive system, consider a mono-stable flip-flop (MFF),
which has one input a and one output b, and emits two consecutive bs when it receives an a.
We formalize this description with a contract. The guarantee consists of two automata, shown
in Figures 8.1(b) and (c), which are composed in parallel. The automaton in Figure 8.1(b)
guarantees that a single b is never emitted, and the automaton in Figure 8.1(c) guarantees
that when a occurs while no b is emitted, b is emitted in the next instant. Figure 8.1(d)
shows the product of Figure 8.1(b) and Figure 8.1(c), the guarantee of the contract.

We also introduce an assumption, that stipulates that as always occur in pairs. It is shown
in Figure 8.1(a). Finally, we introduce a sample implementation which fulfills the contract.
It is shown in Figure 8.2.

89

CHAPTER 8. CONTRACTS FOR ASPECTS

Error

ErrorErrorError

a a

a/err

(b)

b
b

b

b

ba.b

true/errb/err
b

a.b
b

a.b
b

(c)

true/err

true/err
b/err

a.b

(a): aMFF (d): gMFF

b/err
b/err

Figure 8.1: The contract for the MFF. The observers accept all traces that do not lead
to state Error.

a

true/b
true/b

Figure 8.2: An implementation of the mono-stable flip-flop.

8.1.2 Combining Contracts and Aspects

AOP and design-by-contract cannot always be used concurrently. Obviously, the contract of
a program may be invalidated when an aspect is applied to it. Consider the AspectJ example
in Figure 8.3. The pointcut (line 7) intercepts calls to method m (line 4), and the around
advice (lines 9–11) modifies the intercepted calls by adding 1 to the argument, then calling m
through the proceed statement, and adding 1 to the result. After the aspect has been applied,
neither the initial assumption (line 2) nor the initial guarantee (line 3) of m necessarily hold
any longer. I.e., if m(9) is called, the proceed statement in the aspect will call m with argument
i=10, which is outside the assumption, and we have thus no guarantee whatever about the
return value. Even if m is called within its assumption, the proceed may always return 9, and
the aspect will then return 10, which is outside the guarantee of m.

However, we can give a new contract for m in this case. To ensure that m is called according
to its initial specification, the assumption must be changed to i < 9. On the other hand, the

1 class c{
2 /∗ @assume i < 10 ∗/
3 /∗ @guarantee \result < 10 ∗/
4 int m(int i) { . . . }
5 }
6

7 po intcut pcm(int i) : ca l l (int c .m(int)) && args (i) ;
8

9 int around(int i) : pcm(i){
10 return 1 + proceed (i +1);
11 }

Figure 8.3: Example of a contract in presence of an AspectJ aspect.

90

8.2. CONTRACTS FOR ARGOS

value returned by m may be higher than specified by the original guarantee in the presence of
the aspect: we can only guarantee that \result < 11. This, however, can only be guaranteed
if m does not call itself recursively, or is otherwise affected by the aspect.

Deriving such new contracts appears to be an interesting approach to combine AOP and
contracts. However, this seems very difficult for contracts for Java programs and AspectJ, and
it is not clear if meaningful contracts could be derived. In this chapter, we present a way to de-
rive new contracts for Argos programs and Larissa aspects. The idea is to apply an aspect asp
to a contract C and obtain a new contract C ′, such that if P fulfills C, then P/asp fulfills C ′.
Furthermore, C ′ is as precise as possible, in that its assumption accepts as many programs
as possible and its guarantee accepts only as many as necessary.

The remainder of the chapter is structured as follows: Section 8.2 defines contracts for
Argos programs; Section 8.3 describes how to derive a new contract from a contract and an
aspect, and prove the correctness of the new contract; Section 8.4 validates the approach on
a larger example, modeling a tramway; Section 8.5 describes related work; and Section 8.6
concludes. A shorter version of this chapter has been published in [Sta07b], and a slightly
different version of the tramway example in [SAM07] and [Sta07a].

8.2 Contracts for Argos

In Argos, contracts can conveniently be expressed with observers. The observers we use
in contracts are slightly different from those used as pointcuts. Notably, once they start
emitting their output err, they continue emitting it forever. Such an observer specifies a class
of programs fulfilling a certain safety property, namely those programs where the observer
never emits err when combined with them. Observers are formally defined as follows.

Definition 32 (Observer). An observer over I ∪O is an automaton (Q∪{Error}, q0, I ∪O,
{err}, T) which observes an automaton with inputs I and outputs O. When an observer
emits err, it will go to state Error, where it continuously emits err. A program P is said to
obey an observer obs (noted P |= obs) iff P‖obs \ O produces no trace which emits err.

Transitions leading to the Error state are called error transitions.
A contract specifies a class of programs with two observers, an assumption and a guar-

antee. We define it formally in Definition 33, where we use the trace combination defined
in Definition 4. � denotes the trace for a single output err that always emits false, i.e.
�(err)[n] = false for all n.

Definition 33 (Contract). A contract over inputs I and outputs O is a tuple (A,G) of two
observers over I ∪O, where A is the assumption and G is the guarantee. A program P fulfills
a contract (A,G), written P |= (A,G), iff for a pair of traces (it , ot) we have(

(it .ot , �) ∈ Traces(A) ∧ (it , ot) ∈ Traces(P)
)
⇒ (it .ot , �) ∈ Traces(G) .

Definition 33 states that for a program P to fulfill a contract (A,G), all its traces that are
accepted by A must also be accepted by G.

Intuitively, a guarantee G should only restrict the outputs of a program and an assumption
A should only restrict the inputs. We do not require this formally, but contracts which do
not respect this constraint are of little use. Indeed, if G restricts the inputs more than A,
it follows from Definition 33 that there exists no program P s.t. P |=(A,G). Conversely, a
program is usually placed in an environment E, s.t. E |=A. If A restricts the outputs, no
such E exists, as the outputs are controlled by P .

91

CHAPTER 8. CONTRACTS FOR ASPECTS

8.3 Weaving Aspects in Contracts

We want to apply an aspect asp not to a specific program, as we did until now, but to a
class of programs, defined by a contract C. We then want to obtain a new class of programs,
defined by a contract C ′, such that P |= C ⇒ P/asp |= C ′. To construct C ′, we simulate the
effect that the aspect has on a program as far as possible on the assumption and the guarantee
observers of C. However, an aspect cannot be applied directly to an observer, because the
aspect has been written for a program with inputs I and outputs O, whereas for the observer,
O are also inputs.

Therefore, we transform the observers of the contract first into non-deterministic automata
(NDA), which produce exactly those traces that the observer accepts. We then weave the
aspects into the NDA, with a definition of the weaving operator that has been adapted to
NDA. The woven NDA are then transformed back into observers. The obtained observers
may still be non-deterministic, and are thus determinized.

Except for aspect weaving, all of these steps are different for the assumption and the
guarantee, as far as the error transitions are concerned. This is because the assumption and
the guarantee have different functions in a contract: the assumption states which part of the
program is defined by the contract, and the guarantee gives properties that are always true for
this part. Indeed, a contract (A,G) can be rewritten as (true,A ⇒G). Thus, the assumption
can be considered as a negated guarantee.

After weaving an aspect, the assumption must exclude the undefined part of any program
which fulfills the contract. Therefore, it must reject a trace (by emitting err) as soon as there
exists a program for which it cannot predict the behavior. The guarantee, on the other hand,
emits err only for traces which cannot be emitted by any program which fulfills the contract.
Therefore, after weaving an aspect, the new guarantee may only emit err if it is sure that
there exists no program that produces the trace.

On the other hand, we want the assumption to be as permissive as possible, to include
all possible programs, and the guarantee as restrictive as possible, to characterize the woven
program as exactly as possible. Thus, when we know exactly the behavior of the program, as
e.g. that of an inserted advice program, we do not emit err in the assumption, but we emit
err in the guarantee to exclude all input/output combinations that are never produced by
the program.

8.3.1 Formal Definitions

This paragraph describes the weaving of aspects into contracts in detail, and illustrates it on
our running example. First, Definition 34 defines the transformation of an observer into a
NDA through two functions, one for guarantee observers and one for assumption observers.

Definition 34 (Observer to NDA Transformation). Let obs = (Q ∪ {Error}, q0, I ∪
O, {err}, T) be an observer with an error state Error over inputs I and outputs O, with
I ∩ O = ∅. NDG(obs) = (Q, q0, I,O, TNDG) defines a NDA, where TNDG is defined by
(s, `I ∧ `O, ∅, s′) ∈ T ⇒ (s, `I , `+O, s

′) ∈ TNDG. NDA(obs) = (Q ∪ {Error}, q0, I,O, TNDA)
defines a NDA, where TNDA is defined by (s, `I ∧ `O, o, s′) ∈ T ⇒ (s, `I , `+O ∪ o, s′) ∈ TNDA,
where `I ∈ Bool(I), `O ∈ Bool(O), and `+O is defined as in Definition 11.

Note that the transitions in obs which emit err (i.e. the error transitions) have no cor-
responding transitions in NDG(obs). In the guarantee, these transitions correspond to in-

92

8.3. WEAVING ASPECTS IN CONTRACTS

a

a/b
a/b

a/b

a/b

Figure 8.4: An implementation of the mono-stable flip-flop, with the retriggerable aspect
ret applied to it.

Error

(a) (b) (c)

true/b
true/b

a

true/b a/b

a, a/b

a, a/b

a/b
a/b

a/b

a.b
a.ba.b

a.b

a

a.b

a/b

a
true/b

a.b

b/err

b/erraa

a

a.ba/b

Figure 8.5: The weaving of the retriggerable aspect into the guarantee of the MFF.
a: NDG(gMFF), b: NDG(gMFF)/ret, c: OBSG(NDG(gMFF)/ret).

put/output combinations which are never produced by the program and thus they must not
be considered by the aspect.

As an example, consider the MFF introduced in Section 8.1.1. We now want to make the
MFF re-triggerable, meaning that if the MFF receives an a that is emitted during several
following instants, it continues emitting b. We do this by applying the aspect ret= (PJP,
(toInit, {b}, (a))) to the MFF, where PJP =({S},S,{a,b},{JP}, {(S,a∧b,JP,S)}) is a pointcut
which selects all occurrences of a∧b as join points. Figure 8.4 shows the result of applying
ret to the MFF from Figure 8.2.

Now, consider the guarantee of the MFF in Figure 8.1 (d). Its transformation into a NDA
as defined in Definition 34 is shown in Figure 8.5 (a). Note that the Error state and the
transitions leading to it have disappeared, and thatb is now an output. Thus, the transition
label b has transformed to true/b, and label a.b to a.

In the assumption, on the other hand, the error transition correspond to inputs from
the environment to which the program may react arbitrarily. If the aspect replaces these
transitions in the assumption, they are also replaced in the program, and can thus be accepted
from the environment by the woven program. Thus, error transitions are not removed in
NDA(obs), so that the aspect weaving can modify them. The transformation of the assumption
of the MFF in Figure 8.1 is shown in Figure 8.6 (a).

We can now apply an aspect to a NDA. However, the input trace that selects the tar-
get states of the advice transitions may lead to several states, because the NDA are non-
deterministic. Thus, for each join point transition, several advice transitions must be created,
one for each target state. We give a modified definition for toInit/toCurrent advice below.
Because recovery advice involves no traces, the definition for deterministic programs in Sec-
tion 4.3.2 can also be applied to NDAs.

Definition 35 (toInit/toCurrent Advice Weaving for NDA). Let A = (Q, s0, I,O, T) be an
automaton and adv = (type, Oadv , σ, Padv) a piece of advice, with type ∈ {toInit, toCurrent},
σ : [0, ..., `σ] −→ [I −→ {true, false}] a finite input trace of length `σ + 1, and Padv =

93

CHAPTER 8. CONTRACTS FOR ASPECTS

Errora/err Error
a

Errora/err

a, a/ba, a/b

a, a/b a

a/b,a/b,err,

(a) (b) (c)

a, a/b

a, a/b

a

a/b,err, a∧b
a/err

a∧b

Figure 8.6: The weaving of the retriggerable aspect into the assumption of the MFF.
a: NDA(aMFF), b: NDA(aMFF)/ret, c: OBSA(NDA(aMFF)/ret).

(Qins, s0ins, Iins,Oins, Tins) an advice program with final state F .
Furthermore, let TargSt = {s|s = S stepA(s0, σ, `σ)} if type = toInit or TargSt = {s|∃s′ ∈

Q . s = S stepA(s′, σ, `σ)} if type = toCurrent be the set of all target states, and let InsSt =
{st|s ∈ Qins \ {F}, t ∈ TargSt} be the set of all states inserted by Padv . Then, let the target
state determination function targND be defined as follows:

targND(s) =

{s′|s′ = S stepA(s0, σ, `σ)} iff type = toInit ∧ s0ins = F

{s′|s′ = S stepA(s, σ, `σ)} iff type = toCurrent ∧ s0ins = F

{s′|s′ = (s0ins)S stepA(s0,σ,`σ)} iff type = toInit ∧ s0ins 6= F

{s′|s′ = (s0ins)S stepA(s,σ,`σ)} iff type = toCurrent ∧ s0ins 6= F

The advice weaving operator, /JP, weaves adv into A and returns the (possibly nondeter-
ministic) automaton A/JPadv = (Q∪InsSt, s0, I,O, T ′), where T ′ is defined as follows:

(s, `, O, s′) ∈ T ∧ JP /∈ O =⇒ (s, `, O, s′) ∈ T ′ (8.1)

(s, `, O, s′) ∈ T ∧ JP ∈ O ∧ s′′ ∈ targND(s) =⇒ (s, `, Oadv , s
′′) ∈ T ′ (8.2)

(s, `, O, s′) ∈ Tins ∧ s′ 6= F ∧ t ∈ TargSt =⇒ (st, `, O, s′t) ∈ T ′ (8.3)
(s, `, O, F) ∈ Tins ∧ t ∈ TargSt =⇒ (st, `, O, t) ∈ T ′ (8.4)

The targND function for nondeterministic automata returns a set of the possible target
states for the advice transitions. The advice transitions, defined by Equation (8.2), now point
to each of these. The rest of the weaving is the same as in Definition 18. Note that there is
no special treatment for error transitions: if an error transition is also a join point transition,
it is replaced by an advice transition. The error transition thus disappears, as the outputs of
the advice transition, Oadv , do not contain err.

Figure 8.5(b) and Figure 8.6(b) show the NDAs from our example with the retriggerable
aspect woven into them. For both NDAs, the trace leads to a single state, thus only one
advice transition is introduced per join point transition.

Transforming a NDA back into an observer is different for assumptions and guarantees.
In the guarantee, we add transitions to the error state from every state where the automaton
is not complete. This is correct, as these transitions correspond to traces that are never
produced by any program.

Definition 36 (NDA to guarantee transformation). Let nd = (Q, q0, I,O, T) be a NDA.
OBSG(nd) = (Q ∪ {Error}, q0, I ∪ O, {err}, T ′ ∪ T ′′) defines an observer, where T ′ and T ′′

94

8.3. WEAVING ASPECTS IN CONTRACTS

are defined by

(s, `, o, s′) ∈ T ⇒ (s, ` ∧ `o ∧ `O\o, ∅, s
′) ∈ T ′ (8.5)

(s, `, ∅, s′) /∈ T ′ ∧ s ∈ Q ∧ ` is a complete monomial over I ∪ O
⇒ (s, `, {err},Error) ∈ T ′′

(8.6)

where lO =
∧
o∈O o and lO =

∧
o∈O o for a set O of variables.

When transforming an NDA to an assumption, we do not add additional error transitions,
but only leave those already there.

Definition 37 (NDA to assumption transformation). Let nd = (Q, q0, I,O ∪ {err}, T) be a
NDA. OBSA(nd) = (Q, q0, I ∪ O, {err}, T ′) defines an observer, where T ′ is defined by

(s, `, o ∪ e, s′) ∈ T ∧ o ⊆ O ∧ e ⊆ {err} ⇒ (s, ` ∧ `o ∧ `O\o, e, s
′) ∈ T ′

Figure 8.5(c) and Figure 8.6(c) show the NDAs from our example transformed back into
observers. As expected, the obtained guarantee in Figure 8.5(c) tells us that whenever the
program receives an a, it emits b’s the two following instants. The assumption, however,
requires that if an a is emitted, it continues to be emitted until there is no b.

The resulting observer may not be deterministic. However, it can be made deterministic, as
observers are acceptor automata. Determinization for guarantees and assumptions is different:
a guarantee must only emit err for a trace σ if all programs fulfilling the contract never emit
σ, and an assumption must emit err if there exists a program fulfilling the contract which is
not defined for σ.

Existing determinization algorithms can be easily adapted to fulfill these requirements.
We do not detail such algorithms here, but instead give conditions the determinization for
assumptions and guarantees must fulfill. The new assumption and the new guarantee in the
example are already deterministic, thus there is no need to determinize them.

The assumption determinization gives precedence to error transition. If there is a choice
between an error transition and a non-error transition, the error transition is always taken.
Thus, the determinized assumption only accepts a program if all possible non-deterministic
executions of the non-determinized assumption accept it.

Definition 38 (Assumption Determinization). Let M be a NDA with outputs {err}.
DetA(M) is a deterministic automaton such that

(it , ot) ∈ Traces(DetA(M))⇔[
(it , ot) ∈ Traces(M) ∧ @ot ′ . (it , ot ′) ∈ Traces(M)

∧ ot ′(n)[err] = true ∧ ot(n)[err] = false
]
.

As opposed to the assumption determinization, the guarantee determinization gives prece-
dence to non-error transitions over error transitions. Thus. the determinized guarantee emits
err only if all possible executions of the non-determinized guarantee also emit err.

Definition 39 (Guarantee Determinization). Let M be a NDA with outputs {err}. DetG(M)
is a deterministic automaton such that

(it , ot) ∈ Traces(DetG(M))⇔[
(it , ot) ∈ Traces(M) ∧ @ot ′ . (it , ot ′) ∈ Traces(M)

∧ ot ′(n)[err] = false ∧ ot(n)[err] = true
]
.

95

CHAPTER 8. CONTRACTS FOR ASPECTS

We can now state the following theorem, which states that a contract constructed with
the above operations holds indeed for any program fulfilling the original contract with an
aspect applied to it.

Theorem 6. Let P be a program and let (A,G) be a contract. Then,

P |= (A,G) ⇒ P/asp |= (DetA(OBSA(NDA(A)/asp)),DetG(OBSG(NDG(G)/asp))) .

Theorem 6 first transforms the assumption and the guarantee into NDA with the respective
operators, then applies the aspect to both and transforms the result back in observers, which
are determinized. We prove it in the next section.

8.3.2 Proof of Theorem 6

Definitions. We first introduce a number of definitions. P (p) |= (A(a), G(g)) means that
program P fulfills contract (A,G) where the initial states of P , A and G have been set to p, a
and g respectively.

Furthermore, we introduce the following notations for terms from the theorem. Let

A′/asp = OBSA(NDA(A)/asp), A/asp = DetA(A′/asp),
G′/asp = OBSG(NDG(G)/asp), and G/asp = DetG(G′/asp) .

toInit/toCurrent Advice. We prove the theorem first for toInit and toCurrent advice,
and therefore define the structure of some of these terms. Let

P = (QP , sP0, I,O, TP),
asp = (PJP, (type, Oadv , σ, Padv)), with type ∈ {toInit, toCurrent},
PJP = (QPJP

, sPJP0, I ∪ O, {JP}, TPJP
),

A = (QA ∪ {Error}, sA0, I ∪ O, {err}, TA),
G = (QG ∪ {Error}, sG0, I ∪ O, {err}, TG),

P/asp = (QP ×QPJP
, (sP0, sPJP0), I,O, TP/),

A′/asp = ((QA ×QPJP
) ∪ {Error}, (sA0, sPJP0), I ∪ O, {err}, TA/), and

G′/asp = ((QG ×QPJP
) ∪ {Error}, (sG0, sPJP0), I ∪ O, {err}, TG/) .

We prove the theorem by induction over a trace of P /asp. Let (it , ot) ∈ Traces(P/asp).
We show that the following induction hypothesis holds for any n.

Induction Hypothesis. The induction hypothesis states that the states reached by
executing (it , ot) on P/asp, A′/asp, and G′/asp formed a valid contract in P , A, and G, i.e.
before the aspect was applied, provided (it , ot) is accepted by A/asp. Formally, we write it
as follows:

O stepA/asp((sA0, sPJP0), it .ot , n) = ∅∧
(pn, pcn) = S stepP/asp((sP0, sPJP0), it , n)
⇒∃(an, pcn) = S stepA′/asp((sA0, sPJP0), it .ot , n) .

∃(gn, pcn) = S stepG′/asp((sG0, sPJP0), it .ot , n) .

P (pn) |= (A(an),G(gn)) ∧ gn 6= Error

96

8.3. WEAVING ASPECTS IN CONTRACTS

(pn, pcn), (an, pcn) and (gn, pcn) are the states reached when executing (it , ot) for n steps
on P /asp, A′/asp and G′/asp respectively. The existential quantifiers before (an, pcn) and
(gn, pcn) are needed because A′/asp and G′/asp may be non-deterministic.

Base Case. n = 0. P |= (A,G) holds as it is the assumption of the implication in the
theorem. If the initial state of G is the error state, either A (and A /asp) do not accept any
trace, or no P exists, and in both cases we are done.

Induction Step. From n− 1 to n.
If O stepA/asp(it .ot , n) = {err}, we are done. Otherwise, O stepA′/asp(it .ot , n) = ∅ holds

because of Definition 38, and we distinguish three cases separately, either no aspect applies,
a toInit or a toCurrent aspect applies.

• First case: JP /∈ O stepPJP
(it .ot , n), we are not in a join point.

Because of P (pn−1) |= (A(an−1), G(gn−1)), there is a transition tp =
(pn−1, it(n), ot(n), pn) in TP , a transition ta = (an−1, it(n) ∧ ot(n), ∅, an) in TA, and
a transition tg = (gn−1, it(n) ∧ ot(n), ∅, gn) in TG, such that P (pn) |= (A(an),G(gn)).
tp, ta and tg are not modified by the weaving, thus there is a transition ((pn−1, pcn−1),
it(n), ot(n), (pn, pcn)) in TP/, a transition ((an−1, pcn−1), it(n) ∧ ot(n), ∅, (an, pcn)) in
TA/, and a transition ((gn−1, pcn−1), it(n) ∧ ot(n), ∅, (gn, pcn)) in TG/ with (gn, pcn) 6=
Error.

• Second case: JP ∈ O stepPJP
(it .ot , n) and type = toInit.

Let pσ = S stepP (sP0, σ, lσ) be the state in the P reached after executing σ, and let
ς be a trace of length lσ such that ∀i ≤ lσ . ς(i) = O stepP (sP0, σ, i). Then, let
S stepPJP

(sPJP0, σ.ς, lσ) = pcσ be the state of the pointcut reached after executing σ.
Then, we also have S stepP/asp((sP0, sPJP0), it , n) = (pσ,pcσ).

All join point transitions in G′/asp (resp. A′/asp) are replaced by transitions to all
possible target states, thus there is a transition tg′/ ∈ TG′/ (resp. ta′/ ∈ TA′/) to
a target state (gσ, pcσ) (resp. (aσ,pcσ)) such that S stepG(sG0, σ.ς, lσ) = gσ (resp.
S stepA(sA0, σ.ς, lσ) = aσ). Because pσ, aσ and gσ can be reached with the same trace
(σ, ς) (resp. (σ.ς, �) for aσ and gσ) from the initial state, P (pσ) |= (A(aσ),G(gσ)) follows
from P |= (A,G).

Furthermore, ot(n) = `0adv
∧ `O\0adv

, and we have ta′/ = ((an−1, pcn−1), it(n) ∧
ot(n), ∅, (aσ, pcσ)), and tg′/ = ((gn−1, pcn−1), it(n) ∧ ot(n), ∅, (gσ, pcσ)),
and thus (aσ, pcσ) = S stepA′/asp((sA0, sPJP0), it .ot , n) and (gσ, pcσ) =
S stepG′/asp((sG0, sPJP0), it .ot , n). Furthermore, we have (gσ, pcσ) 6= Error, as
otherwise aσ = Error (impossible because of O stepA′/asp((sA0, sPJP0), it .ot , n) = ∅), or
(it , ot) /∈ Traces(P), by the definition of P |= (A,G).

• Third case: JP ∈ O stepPJP
(it .ot , n) and type = toCurrent.

Let pn−1 = S stepP (sP0, it , n− 1), and let pσ = S stepP (pn−1, σ, lσ) be the state in the
P reached after executing σ from the current state, and let ς be a trace of length lσ
such that ∀i ≤ lσ . ς(i) = O stepP (pn−1, σ, i). Then, let S stepPJP

(pcn−1, σ.ς, lσ) =
pcσ be the state of the pointcut reached after executing σ. Then, we also have
S stepP/asp((sP0, sPJP0), it , n) = (pσ,pcσ).

97

CHAPTER 8. CONTRACTS FOR ASPECTS

All join point transitions in G′/asp (resp. A′/asp) are replaced by transitions to all
possible target states, thus there is a transition tg′/ ∈ TG′/ (resp. ta′/ ∈ TA′/) to
a target state (gσ,pcσ) (resp. (aσ,pcσ)) such that S stepG(gn−1, σ.ς, lσ) = gσ (resp.
S stepA(an−1, σ.ς, lσ) = aσ). Because pσ, aσ and gσ can be reached with the same trace
(σ, ς) (resp. (σ.ς, �) for aσ and gσ) from pn−1,an−1, and gn−1, P (pσ) |= (A(aσ),G(gσ))
follows from P (pn−1) |= (A(an−1),G(gn−1)).

Furthermore, ot(n) = `0adv
∧ `O\0adv

, and we have ta′/ = ((an−1, pcn−1), it(n) ∧
(ot(n), ∅, (aσ, pcσ)), and tg′/ = ((gn−1, pcn−1), it(n) ∧ (ot(n), ∅, (gσ, pcσ)),
and thus (aσ, pcσ) = S stepA′/asp((sA0, sPJP0), it .ot , n) and (gσ, pcσ) =
S stepG′/asp((sG0, sPJP0), it .ot , n). Furthermore, we have (gσ, pcσ) 6= Error, as
otherwise aσ = Error (impossible because of O stepA′/asp((sA0, sPJP0), it .ot , n) = ∅), or
(it , ot) /∈ Traces(P), by the definition of P |= (A,G).

recovery Advice. We now consider the weaving of recovery advice. First we redefine some
of the definitions from the proof for toInit and toCurrent advice. Let

asp = (PJP, adv),
adv = (recovery, Oadv , Prec, Padv)

P/asp = (QP ×QPJP
×MP , (sP0, sPJP0, sMP 0), In,O, TP/),

A′/asp = ((QA ×QPJP
×MA) ∪ {Error}, (sA0, sPJP0, sMA0), I ∪ O, {err}, TA/), and

G′/asp = ((QG ×QPJP
×MG) ∪ {Error}, (sG0, sPJP0, sMG0), I ∪ O, {err}, TG/) .

We prove the same induction hypothesis as above, to which the same base case applies. We
only reconsider the induction step, again from n− 1 to n.

• First case: JP /∈ O stepPJP
(it .ot , n), we are not in a join point.

We can apply the same argument as for non joint point transitions of toInit/toCurrent
advice. The transitions tp, ta, and tg are not affected by the product with the memory
automaton and the encapsulation, because there condition does not depend on the rec
signals.

• Second case: JP ∈ O stepPJP
(it .ot , n), we are in a join point.

Let m < n be the last instant in 1 . . . n − 1 where REC is emitted, and let rp, ra, and
rg be the recovery states entered in m in P/Radv , A/Radv , and G/Radv respectively.
In m, MP , MA, and MG enter their states rp, ra, and rg respectively, and hence
emit recrp , recrg , and recra in n. Thus, P/Radv , A/Radv , and G/Radv take the advice
transition leading to rp, ra, and rg respectively. Because rp, ra, and rg were all reached
in the same instant m, we have P (rp) |= (A(ra),G(rg)) by the induction hypothesis,
and rg 6= Error also by the induction hypothesis.

If the aspect contains an advice program, it is inserted in P , A, and G in the same manner.
Each time an advice transition is taken, the advice program is executed in all three programs,
and they finish executing it at the same time, and return to the target state specified by σ.
Thus, advice programs do not modify the induction hypothesis.

It follows from the induction hypothesis that

(it .ot , �) ∈ Traces(A/asp) ∧ (it , ot) ∈ Traces(P/asp)⇒ (it .ot , �) ∈ Traces(G′/asp)

98

8.4. EXAMPLE: THE TRAMWAY DOOR CONTROLLER

Controller Inputs:
inStation the tram is in station
leaving the tram wants to leave station
doorOpen the door is open
doorClosed the door is closed
askForDoor a passenger wants to leave the tram
timer the timer set by setTimer has run out
Controller Outputs:
doorOK door is closed and ready to leave
openDoor opens the door
closeDoor closes the door
beep emits a warning sound
setTimer starts a timer
Gangway Inputs:
gwOut the gangway is fully extended
gwIn the gangway is fully retracted
askForGW a passenger wants to use the gangway
Gangway Outputs:
extendGW extends the gangway
retractGW retracts the gangway
Helper Signals Outputs:
acceptReq the passenger can ask for the door or the gangway
doorReq the passenger has asked for the door to open
gwReq the passenger has asked for the gangway
depImm the tramway wants to leave the station

Figure 8.7: The interfaces of the controller and the gangway, and the helper signals.

and we have (it .ot , �) ∈ Traces(G′/asp)⇒ (it .ot , �) ∈ Traces(G/asp) by Definition 39. Thus,
the theorem follows from the induction hypothesis.

8.4 Example: The Tramway Door Controller

We implement and verify a larger example, taken from the Lustre tutorial [Lus], a controller
of the door of a tramway. The door controller is responsible for opening the door when the
tram stops and a passenger wants to leave the tram, and for closing the door when the tram
wants to leave the station. Doors may also include a gateway, which can be extended to allow
passengers in wheelchairs or with baby carriages enter and leave the tram.

We implement the controller as an Argos program. We first develop a controller for a door
without the gangway, and then add the gangway part with aspects. Figure 8.7 gives the in-
and outputs of the controller with their specifications, and also the in- and outputs which are
added by the gangway. The controller uses additional inputs, called Helper Signals, which
are also shown in Figure 8.7 and are calculated from the original inputs by the program in
Figure 8.8.

It is important for the safety of the passengers that the doors are never open outside
a station. We give a contract for the door controller, which focuses on this property. The

99

CHAPTER 8. CONTRACTS FOR ASPECTS

inStation/
dep

inStation doorReq

dep/
leaving

leaving/acceptReq dep/depImm

leavingdep

doorOpen

dep∨ acceptReq∧
(askForDoor

∨askForGW)

dep∧doorOpen/doorReq

dep∨
gwOut

acceptReq∧
askForGW

dep∧gwOut/gwReq

dep

Figure 8.8: The automaton producing the helper signals.

Out DepIn

Error
openDoor

inStation∧openDoor

openDoor

inStation∧openDoor

doorOK∧(doorClosed∨openDoor)

doorClosed∧doorOK∧openDoor

Figure 8.9: The guarantee of the contract of the controller.

guarantee of the contract is shown in Figure 8.9, it ensures that the controller emits doorOK
only if the doors are closed, and openDoor only if the tram is in a station. The contract has
also an assumption, which requires that the door behaves correctly (e.g., the door only opens
if openDoor has been emitted). It is given in 8.10. An implementation of the controller, which
fulfills the contract, is given in 8.11.

To formally verify that a tram door is always closed outside a station, we develop a model
that describes the possible behavior of the physical environment of the controller, i.e. the
door and the tramway. These models are expressed as Argos observers. The models for the
tramway and the door are shown in Figure 8.12 and Figure 8.10 respectively. We then prove
that the controller satisfies the contract, and that the contract in the environment never
violates the safety property.

8.4.1 Adding the Gangway

Some doors include a gangway, which must also be controlled by the door controller. Two
aspects are used to add support for the gangway to the controller: the extension aspect,
that extends the gangway before the door is opened if a passenger has asked for it, and the
retraction aspect, that retracts the gangway if it is extended and if the tram is about to leave.

The pointcut PJPext of the extension aspect selects all transitions where openDoor∧
doorReq∧doorClosed∧gwOut is true, and the pointcut PJPret of the retraction aspect selects
all transitions where doorOK∧gwIn is true.

Both aspects insert an automaton and return then to the initial state of the join point

100

8.4. EXAMPLE: THE TRAMWAY DOOR CONTROLLER

Open

Closing

Error
closeDoor

∧doorClosed

Error

Opening

openDoor

∧doorOpen

CloseddoorClosed

doorOpen

openDoor∧doorClosed∧doorOpen

closeDoor∧doorClosed∧doorOpen

doorClosed

doorOpen
doorOpen∧closeDoor

∧doorOpen

openDoor

closeDoor

∧doorClosed

doorClosed∧openDoor

Figure 8.10: The model of the door, and also the assumption of the contract.

Closing

Closed

Out

Open

Opening
doorClosed∧
(depImm∧doorReq)/

closeDoor

Beeptimer/beep

OKinStation/

doorOK

doorOpen/setTimerdepImm∧

inStation

inStation

depImm/doorOK

doorReq∧doorClosed

doorReq∧depImm/openDoor

doorOpen/openDoor
doorClosed

timer/closeDoor

depImm∨timer/beep

Figure 8.11: A sample controller for the tramway door.

transitions. The advice programs for the aspects are shown in Figure 8.13. The ex-
tension aspect is specified by (PJPext, (toCurrent, , ∅, ε, Iext)), and the retraction aspect by
(PJPret, (toCurrent, {retractGW}, ε, Iret)), where ε denotes the trace of length zero.

8.4.2 Verification of the Woven Controller

We want to check that the new controller still verifies the safety property from above, i.e.
that the doors are never open outside a station. Furthermore, we also want to verify two new
safety properties related to the gangway: the first requires that the gangway is always fully
retracted while the tram is out of station, and the second requires that the gangway is never
moved when the door is not closed, to avoid possible injuries of the ankles of the passengers.

Therefore, we weave the aspects into the contract, using the method presented in Sec-
tion 8.3. Thus, we obtain a new contract that holds for any controller which fulfills the
contract, with the aspects applied to it. We also add a model of the gangway to the en-
vironment, which is the same as the model of the door, but where the door related signals
have been replaced by their gangway related counterparts. Finally, we check then that the
environment satisfies the new assumption, and that the new guarantee satisfies the safety
requirements in the environment.

101

CHAPTER 8. CONTRACTS FOR ASPECTS

In

Out Dep

Error

OK

inStation

inStation

doorOK∧inStation
inStation

inStation
leaving
∧inStation

Figure 8.12: Model of the tramway.

gwOut/extendGW

gwOut

(a): Iext

gwIn

gwIn/retractGW

/retractGW

(b): Iret

Figure 8.13: Advice programs for the extension (a) and the retraction (b) aspect.

An alternative to this modular approach is to verify directly that the sample controller
with the aspects does not violate the given safety properties. One disadvantage of the non-
modular approach is that the woven controller may be much bigger than the woven contract.
To illustrate this problem, we verified the safety properties using our implementation (see
Chapter 9, particularly Section 9.5.2 for contract checking). The source code of the door
controller example is available at [Tra]. Verifying the woven program takes 11.0 seconds1. On
the other hand, weaving the aspects into the guarantee of the controller contract and verifying
against the environment takes 3.7 seconds1, and verifying that the sample controller verifies
the contract and verifying that the environment fulfills the assumption with the aspects takes
< 0.5 seconds1. Thus, using this modular approach to verify the safety properties of the
controller is significantly faster than verifying the complete program. Although the size of
the woven controller is not prohibitive in this example, this indicates that larger programs
can be verified using the modular approach.

8.5 Related Work

Goldman and Katz [GK07] modularly verify aspect-oriented programs using a LTL tableaux
representation of programs and aspects. As opposed to ours, their system can verify AspectJ
aspects, as tools like Bandera [CDH+00] can extract suitable input models from Java pro-
grams. A main limitation of this approach is its restriction to weakly invasive aspects [Kat06],
which only return to states already reachable in the base program, and which are only a subset
of all AspectJ aspects. Larissa aspects, on the other hand, are all weakly invasive.

Clifton and Leavens [CL03a] noted before us that aspects invalidate the specification of
modules, and propose that either an aspect should not modify a program’s contract, or that
modules should explicitly state which aspects may be applied to them.

Douence et al [DFS04] propose applicability conditions for aspects, that specify a class of
programs to which an aspect can be applied, but do not give a property that is true for the
woven program.

A number of authors (e.g. [Wam06, FBT06]) use aspects to implement design-by-contract
tools for object-oriented programs, but do not consider aspects.

1Experiments were conducted on an Intel Pentium 4 with 2.4GHz and 1 Gigabyte RAM.

102

8.6. CONCLUSION

8.6 Conclusion

We proposed a way to show how a Larissa aspect modifies the contract of a component to
which it is applied. This allows us to calculate the effect of an aspect on a specification
instead of only on a concrete program. This approach has several advantages. First, aspects
can be checked against contracts even if the final implementation is not yet available during
development. Second, if the base program is changed, the woven program must not be re-
verified, as long as the new base program still fulfills the contract. Third, woven programs can
be verified modularly, which may allow to verify larger programs, as indicates the example in
Section 8.4.

We believe that the approach is exact in that it gives no more possible behaviors for the
woven program than necessary. I.e., for a contract C and a trace t ∈ Traces(C/asp), there
exists a program P such that P |= C and t ∈ Traces(P/asp). Because observers also accept
traces that cannot be produced by finite state automata (such as abaabaaab...), we must in
addition restrict the traces t to those that can be produced by a finite state automaton. This
remains however to be proven.

Another interesting direction for future work would be to derive contracts the other way
round. Given a contract C and an aspect asp, can we automatically derive a contract C ′ such
that C ′/asp |= C? This seems difficult, as their are many possible solutions for C ′, which
may or may not make use of the aspect to fulfill C after asp has been applied.

Finally, the proposed approach is restricted to Argos and Larissa with Boolean signals. It
would be interesting to see if this approach can be extended to programs with internal integer
variables, or with integer in- and outputs.

Extending the contract weaving to automata with internal integer variables but only
Boolean in- and outputs seems possible. Transforming an observer with internal integer
variables into a NDA can be done as defined in Definition 34 without changes to the variables.
We must however adopt the weaving algorithm for NDA to integer variables.

If we allow integer in- and outputs, we have the problem that we cannot create a transition
in the NDA for each integer the observer accepts, as there may be an infinite number of them.
We thus must use an NDA with transitions that, instead of assigning each integer output an
exact value, can assign them a value out of a set. Then, we can transform a condition as
a > 0 into an assignment a = {x|x > 0}. We must also be able to split this transition.
E.g., if the pointcut has a transition with condition a < 5 the product must then split the
transition in the NDA with the above assignment into two transitions with the assignments
a = {x|5 > x > 0} and a = {x|5 > 0}.

However, introducing integers makes many things undecidable. Thus, we would need to
make conservative approximations, and contract weaving would likely become less exact than
the version presented in this chapter.

103

Chapter 9

Implementation

9.1 Introduction

This chapter introduces the compiler for Argos and Larissa, which has been developed for
practical experimentation with the language and the tools introduced in the previous chapters.
We describe the syntax of the textual Argos and Larissa that the compiler understands, and
the functionalities it offers. The compiler does not implement all the functionalities presented
previously (notably the interference analysis from Chapter 7 is not supported), but it offers
a richer set of functions than those presented in some other areas.

The compiler reads programs in Argos and Larissa, checks if they are correct, and produces
different kinds of output. It can either pretty print the input program, transform it into a
single flat automaton by applying the definition of the operators, produce Lustre [Hal93]
code, or Fast automata [Fas]. Through the translation into Lustre, Argos programs can be
transformed into executable code, and they can profit from the development environment
available for Lustre, which includes e.g. powerful verification tools (e.g. Lesar [HLR92]) or
input generators for testing (e.g. [RWNH98, RRJ07]). The compiler can also be used to
perform some naive verification on flat automata itself, which is however much less powerful
than the tools available for Lustre.

Both flat or hierarchical programs can be translated into Lustre. The possibility to trans-
late a hierarchic programs is important, because flattening large Argos programs is not always
possible. Indeed, when calculating the product of parallel automata, the number of states is
increasing very fast, a problem that is known as state explosion. However, not all hierarchical
Lustre programs generated by the compiler are legal, because Lustre does not allow cyclic
dependencies between parallel programs, whereas these are legal in Argos as long as they have
a deterministic and complete semantics. In our experience, however, most Argos program do
not contain such cycles. A more important limitation is that programs with aspects must also
be flattened, because aspects cannot be expressed modularly in Lustre. This makes compiling
impossible if an aspect is applied to a large program. We discuss a possible solution for this
problem in Section 9.6.

This chapter is structured as follows: Section 9.2 contains some notes on how the compiler
is implemented, Section 9.3 presents the textual syntax of Argos, Section 9.4 presents the

105

CHAPTER 9. IMPLEMENTATION

textual syntax of Larissa, and Section 9.5 presents different features, including support for
integer variables and contract checking. Finally, Section 9.6 discusses a way to weave an
aspect into a program without flattening it first. The compiler is available at [Lar].

9.2 Implementation of the Compiler

The compiler was originally developed by Jerôme Couston, Benjamin Dufour, and Karine
Altisen as a compiler for Argos in 2003. Since then, it has been maintained and extended by
myself, in a continued effort since then until the completion of this thesis. It is written in Java
and AspectJ. It uses JavaCC [JCC] to create a parser for Argos and Larissa programs, and the
JavaBDD library [JBD] for Boolean calculus. Although it is designed as a proof-of-concept
implementation, it can handle programs of considerable size. The main limitation is the state
space explosion that occurs when performing the parallel product of large automata. The
compiler is limited to programs of about 100,000 states and 1,000,000 transitions, much less
than what model checking tools can handle. However, to perform verification, hierarchical
Argos programs can be translated into Lustre, which is connected to the model checker
Lesar [HLR92].

9.3 Syntax of Argos

We start with introducing a simple example of a flat automaton, and then introduce the
Argos operators.

9.3.1 A Simple Example

Figure 9.1 shows the code for a simple automaton realizing a modulo-two counter, that emits
a b every two a.

main modulo2counter (a) (b)

process modulo2counter (a) (b){
controller {

in i t A
A{}
−> B with a ;

B{}
−> A with a/b ;

}
}

Figure 9.1: The textual syntax for a simple 2-state automaton.

Argos programs consist of a collection of processes, which represent automata. In our ex-
ample we have only one process called modulo2counter. It starts with the keyword process,
followed by its name, modulo2counter, a list of its inputs, here only a and a list of its outputs,

106

9.3. SYNTAX OF ARGOS

here b. The input and output variables scope over the body of the process, which follows
between braces.

Here, the body contains a flat automaton. This is specified by the keyword controller.
Between the following braces, we first specify the initial state (init A), then follows a list of
states with their transitions. Each state of the automaton is specified by its name (here A and
B). It can be refined between the following braces. After the braces follows a list of transitions
for each state. Each transition starts with -> and ends with a semicolon. Between them are
the state to which the transition goes, the keyword with and the activation condition. If the
transition has outputs, they follow after a slash after the condition. The activation condition
is an expression ranging over the inputs and the constants true and false. Connectors
are the logical “and”, written as &, the logical “or”, written as |, and the logical “not”,
written as a prefixed ~. Parentheses can also be used to write an expression. The line main
modulo2counter(a)(b) at the beginning of the file specifies which process is the top level
automaton of the program, and names its parameters.

9.3.2 Parallel Product and Encapsulation

The automaton in Figure 9.2 uses the parallel product and the encapsulation. In the body of
the process instantaneousDialogue two automata are put into parallel and the communi-
cation signal b is encapsulated. The outermost element, the encapsulation of b, is expressed
by internal b. b can be used as an input or an output between the following braces. To
express the parallel composition, we put the parallel operator || between two automata.

process i n s tantaneousDia log (a) (o){
internal b{

controller {
in i t A
A{}
−> B with a&c/b ;
B{}

}
| |
controller {

in i t C
C{}
−> D with b/o ;
D{}

}
}

}

Figure 9.2: Two automata combined in parallel, communicating with an encapsulated
signal.

The compiler supports a feature that is not included in the formal definition of Argos,
but that is useful in practice. The encapsulation can be modified by putting the keyword
exported after internal. Then, the encapsulated signals will stay output signals after the

107

CHAPTER 9. IMPLEMENTATION

encapsulation has been applied. In the above example, declaring b exported will mean that
it is emitted together with o. It must then also be declared an output.

9.3.3 Process Calls

Processes can call other processes. The process in Figure 9.3 instantiates the one-bit
counter from Figure 9.1 three times to obtain a three-bit counter. A process with the name
modulo2counter and the corresponding interface must be declared in the same file, or in one
which is imported.

process modulo8counter (a) (o){
internal b , c{

modulo2counter (a) (b)
| |
modulo2counter (b) (c)
| |
modulo2counter (c) (o)

}

Figure 9.3: An three-bit counter, built from three one-bit counters.

9.3.4 Refinement

Figure 9.4 shows an automaton with one refined state. The refining automaton is given
between the braces following the name of the state.

main R(a , x) (o)

process R(a , x) (o){
controller {

in i t X
X{

modulo2counter (a) (o)
}
−>Y with x ;

Y{}
−> X with x ;

}
}

Figure 9.4: An automaton with a refined state.

108

9.4. SYNTAX OF LARISSA

9.3.5 Inhibition

Figure 9.5 shows an example for the inhibition. Note that the compiler has not a whennot-
operator as the formal definition of Argos, but a when-operator. It is followed by a Boolean
expression between parenthesis and an Argos expression between braces. The Argos expres-
sion is only executed when the Boolean expression is true.

process i n h i b i t (a , i) (o){
when (i){

modulo2counter (a) (o)
}

}

Figure 9.5: An example for the inhibition.

9.4 Syntax of Larissa

Larissa aspects are declared similar to processes, and applied to programs with aspect calls.
Aspect Calls are unary operators similar to the encapsulation or the inhibition, which apply
an aspect to a program.

9.4.1 Aspect Calls

Aspects are applied to a program by an aspect call, an operator which takes an Argos program
and an aspect as argument. The aspect is then applied to the program. An aspect call can
occur inside a process, and must follow an Argos expression. It starts with <| followed
by the name of the aspect, a list of the aspect’s inputs and a list of its outputs, each of
these between parentheses. E.g., exampleProcess(a)(b,o) <| exampleAspect(a,b)(o,p)
applies the aspect exampleAspect to the process exampleProcess. Note that the aspect can
use outputs of the automaton to which it is applied as inputs.

9.4.2 toInit Aspects

Aspects are entities similar to processes. Both toInit and toCurrent aspect are known as
toInit aspects to the compiler, distinguished only from recovery aspects. Figure 9.6 shows an
example for the declaration of an toInit aspect.

toInit exampleAspect (a , b , c) (d) {
joinpoint jp ;
pointcut PC(a , b) (jp) ;
adviceOutputs d ;
trace in i t (a&˜b&˜c . a&b&c) ;

}

Figure 9.6: A toInit aspect.

109

CHAPTER 9. IMPLEMENTATION

A toInit aspect is composed of the following elements. toInit specifies that this is a
toInit aspect, followed by the name of the aspect, exampleAspect. Then follows the inputs
of the aspect and the outputs of the aspect. In the body of the aspect, we first specify the
join point signal, which is emitted by the pointcut to signal that we are in a join point. It is
preceded by the keyword joinpoint. Then follows the pointcut, which must be a process call
emitting the join point signal, and which is preceded by the keyword pointcut. The keyword
adviceOutputs is followed by a list of outputs, that are the outputs of the advice transitions.
This line is optional, if it is omitted, the advice transitions have no outputs.

The line trace init(a&~b&~c&.a&b&c); gives the trace that specifies the final state
of the advice transition. After the keyword trace follows either init, this, or target.
init specifies that this is a toInit advice, and this specifies that this is a toCurrent advice.
target refers to a kind of advice that is not described in the rest of the document, to keep
formalization easier to understand and because it is not used in any of the examples. It is
similar to toCurrent advice, but the trace is executed from the target state the join point
transition, instead of its source state. The actual trace follows between parentheses. The
variables of one element of the trace are separated by an &, and the elements are separated
by a dot. The trace in the example spans over the variables a, b and c and has a length of
two.

9.4.3 Recovery Aspects

Figure 9.7 shows an example for the declaration of a recovery aspect. A recovery aspect

recovery r e s ta r tProd (a , b , c) (){
joinpoint JP ;
pointcut PC(a , b) (JP) ;
recSig REC;
recAut RecoveryStates (b , c) (REC) ;

}

Figure 9.7: A recovery aspect.

is declared with the keyword recovery, followed by the name and the in- and outputs. In
the body, joinpoint, pointcut, and adviceOutputs have the same meaning as for toInit
aspects. Instead of a trace, the recovery aspect contains a second observer which determines
the recovery states. First, we specify the recovery signal, with the keyword recSig. A
process call to the recovery automaton is the given after the keyword recAut. It must emit
the recovery signal.

9.4.4 Inserting Advice Programs

The compiler also supports the insertion of advice programs. The specification of the
advice programs is however slightly different from the one presented in the rest of
the document. To insert an advice program, the programmer must insert a line like
insert inserted(advice,a)(back); in the declaration of the aspect, before the specifi-
cation of the trace. insert is a keyword indicating that an automaton is inserted, and
inserted(advice,a)(back) is the process call to the automaton that is inserted. advice

110

9.5. EXTENSIONS

and back are special signals that must not be defined in the interface of the aspect. The
process inserted should be of a special form: it should have an initial state with a single
transition waiting for the input advice. When advice becomes true, it should start executing
the advice. Instead of going to a final state F when the execution of the advice is finished, it
should go back to the initial state, and emit the output back, to reactivate the program.

The weaving will then introduce a waiting state between the source state of the join point
transition and the target state. The advice transition then goes to the waiting state and emits
advice, and there is a transition from the waiting state to the target state with condition
back. The advice program is then put in parallel with the woven program and advice and
back are encapsulated. Thus, when a join point of an aspect with an advice program is
reached, the woven program goes to the state to which the transition labeled by advice
points, executes the advice program until back is emitted, and then resumes the execution of
the woven program at the target state specified by the aspect.

9.5 Extensions

9.5.1 Integer Variables

9.5.1.1 Syntax

The ArgosCompiler also supports integer variables in Argos programs, but weaving Larissa
aspects in such programs is not defined. Applying an aspect to an Argos program with integers
may lead to undefined results, especially as far as the execution of the trace is concerned.

In a process declaration, integer variables can be declared in three different ways:

• as input variables, declared after the Boolean inputs, and each variable preceded by the
keyword int,

• as output variables, declared after the Boolean outputs, and each variable preceded by
the keyword int, and

• as internal variables, declared either in at the beginning of the body of a process,
or in automata before the initial state declaration, with the syntax int varName =
initialValue;.

The int keyword must also precede integer variables in process calls. In the main process
call, output variables are also assigned their initial values: they are followed by an = and
an initial value. Output and internal integer variables can be assigned values by transitions,
where assignments of the form varName = intExpression can be placed among the outputs.
intExpression are either integer constants, integer variables, integer variables preceded by
the keyword pre (referring to the value of the variable at the previous instant), or two
intExpressions combined by one of the operators +, -, or *.

Integer variables can be used in the assignments of the conditions using the syntax
intExpression < intExpression or intExpression > intExpression.

Figure 9.8 shows an example for a Argos program with integer variables. When in state
On, it emits the value of its internal counter variable value. value is increased by input
variable a while value is smaller then 10, otherwise is it decreased by a.

Note that determining if a state is complete and deterministic is undecidable with integer
variables. The ArgosCompiler thus only accepts a subset of all deterministic and complete

111

CHAPTER 9. IMPLEMENTATION

main counter (b , int a) (int o = 0)

process counter (b , int a) (int o){
controller {

int value = 0 ;

in i t Off

Off {}
−> On with b/ o = value ;

On{}
−> Off with b / o = 0 ;
−> On with ˜b & pre value < 10/

o = value , va lue = pre value + a ;
−> On with ˜b & pre value > 9 /

o = value , va lue = pre value − a ;
}

}

Figure 9.8: An example program with integer variables.

programs. E.g., if a transition has the condition a < b + 3, the program is only accepted
if all other transitions of the state include ˜(a < b + 3) in their condition. However, the
ArgosCompiler correctly determines determinism and completeness for expressions of the
form variable (<|>) constant, which are sufficient in most cases.

Parallel processes must never have common integer output variables. This means an
integer variable is always assigned a value by exactly one process. Integer variables cannot be
encapsulated, but integer output variables of a process can be read within the process. Thus,
all integer output variables are also internal variables.

9.5.1.2 Semantics

We informally describe the semantics of integer variables in Argos. It is close to the Lustre
semantics, so that the translation into Lustre is feasible. Input variables are assigned a value
from the environment at each instant, and internal and output integer variables a value by
the program as follows. All output and internal integer variables have an initial value, which
is defined for output variables in the main process call, and for internal variables in their
declaration. If a transition is taken which assigns a new value to a variable, it is instantly
assigned this new value, otherwise it keeps the value from the previous instant. The value
from the previous instant can be read with the pre keyword. In the first instant, pre returns
the initial value of the variable.

112

9.5. EXTENSIONS

9.5.2 Support for Contracts

The Argos compiler has some dedicated support for working with contracts expressed using
synchronous observers, as presented in Chapter 8.

9.5.2.1 Error States

When working with observers, the compiler assumes that all error states are named ERROR.
Then, in a product, the error states are combined, so that there is always only one error state.
This can make products with observers considerably smaller.

9.5.2.2 Observer Transformations

To support weaving an aspect into a contract, the compiler can transform observers into
non-deterministic automata, and vice-versa. The operator nondeterministic does the first,
and the operator observer the second. Each must be followed by the list of signals that are
to be converted from inputs to outputs or the other way round.

process property (i1 , i2 , o1 , o2) (e r r){
. . .

}

process property−nda (i1 , i 2) (o1 , o2){
nondeterministic o1 , o2{

property (i1 , i2 , o1 , o2) (e r r)
}

}

process property−obs (i1 , i2 , o1 , o2) (e r r){
observer o1 , o2{

property−nda (i1 , i 2) (o1 , o2)
}

}

Figure 9.9: An example for the transformation of an observer into a non-deterministic
automaton, and back.

Figure 9.9 shows an example. The observer property expresses some property over the
signals i1,i2,o1,o2. In the process property-nda, it is transformed into a nondeterministic
automaton with inputs i1,i2 and outputs o1,o2. The process property-obs transforms it
back into an observer, which is the same as the original property. The transformations are
not the same for guarantee and assumption observers (see Definitions 34, 36, and 37). Both
transformations are done as necessary for guarantees. To do the transformations for assump-
tions, the keyword assumption must be placed after nondeterministic and observer.

113

CHAPTER 9. IMPLEMENTATION

9.5.2.3 Contract Checking

Finally, the compiler can check a contract. Therefore, the following conventions must be
followed. The assumption and the guarantee observer must be put in parallel to the program,
and they must emit different error signals, e.g. errA and errG. Then, another automaton
must be put in parallel which emits the output fail if ~errA&errG is true. If the contract
holds, fail is never emitted. If we now call the ArgosCompiler with the option -contract,
it will check if a transition which emits fail is reachable in the flattened program, and if so,
emit a trace leading to it.

9.5.3 File Inclusion

The ArgosCompiler disposes of a primitive mechanism to include process and aspect declara-
tions from other files. Therefore, insert include pathToFile1, ..., pathToFilen; at the
beginning of the an Argos file. The path are resolved from directory where the ArgosCompiler
is executed. If the compiler cannot find an included file, it prints an error message and gives
the current directory.

9.6 Towards Structure-Preserving Weaving

Problem Description. The most efficient way to compile large Argos programs into Lustre
is to translate the hierarchic Argos program directly, without flattening it first. Indeed,
flattening is impossible for large programs, because calculating the product of large parallel
automata quickly leads to state explosion. However, we cannot translate aspects directly
into Lustre, because they cannot be expressed there modularly. Furthermore, because aspect
weaving is only defined on flat automata, we must flatten all programs to which an aspect is
applied, which is impossible for larger programs.

This problem could be easily solved if aspects were distributive. Then, we could apply
the aspects to the automata which form the leaves of an Argos expression, and thus avoid to
calculate the parallel product that leads to state explosion. As an example, consider an aspect
asp, two parallel automata A1 and A2, and some encapsulated signals Γ. If aspect weaving
were distributive, (A1‖A2 \ Γ)/asp = (A1/asp‖A2/asp) \ Γ would hold. This, however, is not
possible, for two reasons:

1. The pointcut needs to know the outputs emitted by the whole program before it can
decide whether the program is in a join point.

2. To execute the trace σ of a toInit or toCurrent aspect on one of the parallel automata
A1 or A2, we need to know all the inputs of the automaton, including those in Γ, which
are not defined in σ. The values of the signals in Γ for the execution of σ can only be
defined by executing σ on both automata together.

Thus, we cannot achieve distributivity for Larissa aspects. However, full distributivity
is not necessary to enable weaving for large programs, but it would be sufficient if we could
avoid the calculation of the expensive parallel product. It would hence already be nice if the
aspects could be woven into A1‖A2 \ Γ in such a way that we do not need to calculate the
parallel product of A1 and A2. We present such a such a weaving algorithm in this section,
and call it structure-preserving weaving.

114

9.6. TOWARDS STRUCTURE-PRESERVING WEAVING

Limitations of the Approach. The approach we present in this section has not been fully
investigated. First and foremost, it is not implemented, and we thus have not tested if it really
makes weaving larger programs possible. As we discuss below, the definitions suggest that in
certain cases, we may pay for a reduced memory consumption with a prohibitive increase in
compile time.

We think nonetheless that the approach is worthwhile, and that there are at least im-
portant special cases where it promises important gains, notably the cases where the second
problem mentioned above does not apply, e.g. if there are no encapsulated signals or if the
trace is empty.

The approach is also limited in other respects. We have not proven the equivalence of
structure-preserving weaving with the weaving defined earlier. Furthermore, we do not define
structure-preserving weaving for complete Argos and Larissa, but only for a subset. First, we
only define the weaving of toCurrent aspects without advice programs, because this simplifies
notation a great deal. Weaving toCurrent aspects is more complicated than weaving toInit or
recovery aspects. Indeed, we believe that the other kinds of weaving do not pose any major
difficulties that are not addressed in the weaving of toCurrent advice. The insertion of advice
programs is independent of the preservation of the structure.

Second, we only consider Argos expressions that consist of parallel automata and some
encapsulated signals. The parallel product and the encapsulation are the most important
operators of Argos, and we believe that the approach can be extended to more complicated
expressions and the other operators. This needs further investigation, however.

9.6.1 Structure-Preserving Weaving

Informal Explanation of the Approach. The two problems mentioned above are over-
come by the use of additional communication signals, in the following way:

1. To determine if the program is in a join point, the poincut is executed in parallel with
the program. The parallel components are modified to emit copies of the outputs they
would have emitted without the aspect. The pointcut reads these copies, uses them
to calculate if the program is in join point, and informs the parallel components about
this. In turn, the components update their state and emit the outputs of the woven
program depending on whether the program is in a join point or not.

2. For toInit aspects, the target state of the advice transitions can be determined statically.
Therefore, the trace must be executed on the parallel automata during the weaving.
For each element of σ, the values for the signals in Γ must be determined. If the
encapsulation of Γ is deterministic and complete, there is exactly one solution, and the
trace leads to a well-defined state in each automaton.
For toCurrent aspects, the execution of σ in one of the parallel automata Ai depends
on the values of Γ. These values cannot be determined once and for all during the
weaving, but depend on the transitions taken by the automata in parallel with Ai, and
thus on their current states. An advice transition may hence lead to different states,
depending on the current states of the other parallel automata. Thus, the weaving must
calculate all possible target states, and add advice transitions to them. Furthermore,
the automata must communicate to each other their current states, such that each
automaton knows which advice transition to take. There can then be a great number of

115

CHAPTER 9. IMPLEMENTATION

advice transition in each automaton, and calculating them is very expensive in certain
cases.

Formal Definitions. In this section, we present a weaving algorithm that weaves an
toCurrent aspect into some parallel automata that are also encapsulated.

Let Ai = (Qi, s0i, I,O, Ti), 1 ≤ i ≤ n be automata, Γ ⊆ I ∪ O a set of encapsulated
signals, asp = (PJP, adv) an aspect with advice adv = (toCurrent, Oadv , σ). We show how to
weave the aspect into the expression P = (A1‖ . . . ‖An) \ Γ without flattening it.

We first define the function starget which determines the target state of a trace from a
set of initial states of each automaton. Because the parallel automata can interact through
Γ, each step of the trace must be calculated together in all automata. starget is only defined
if (A1‖ . . . ‖An) \ Γ is deterministic and complete.

Definition 40 (starget). Let P = (A1‖ . . . ‖An) \ Γ be an Argos expression, Ai =
(Qi, s0i, I,O, Ti), 1 ≤ i ≤ n be automata, Γ ⊆ I ∪ O a set of encapsulated signals, and
σ a trace over I \ Γ.The target state function starget takes a trace σ and one state from each
Ai, and returns another state from each Ai. It is defined as follows:

stargetP (σ, s1 . . . sn) =

s1 . . . sn if σ = ε

stargetP (σ(1 . . . lσ), s′1 . . . s
′
n) if ∀i ≤ n . ∃(si, `i, Oi, s′i) ∈ Ti .

σ(0)⇒ `i

∧`+i ∩ Γ ⊆
⋃
i≤nOi

∧`−i ∩ Γ ∩
⋃
i≤nOi = ∅

⊥ otherwise.

starget is defined recursively over the σ. The first case is the base case: if the trace is
empty, the start states s1 . . . sn are returned.

The second case is the recursive case. Its condition selects transitions in A1 . . . An such that
they fulfill the first element of the trace, σ(0), and such that the condition of the encapsulation
is fulfilled when these transitions are taken together. It has exactly one solution if P is
deterministic and complete. The target states of the selected transitions s′1 . . . s

′
n are then used

to calculate the returned states with the rest of the trace σ(1 . . . lσ). If P is not deterministic,
the third case applies and starget is not defined.

Advice Weaving. We now define how to weave the advice in the automata Ai. Each Ai
must be prepared to execute an advice transition whenever it receives the signal JP from the
pointcut. Furthermore, the advice transitions may lead to different target states, depending
on the states in which are the parallel automata. To communicate these states, we add
input signals

⋃
j≤n

⋃
k≤mj{injk} to Ai, where each automaton Aj has mj states. Whenever

an automaton Aj is in its state k, it emits signal injk. We also add these outputs to Ai.
Furthermore, Ai emits a copy O′ of the outputs O it would have emitted if the aspect were
not activated. These signals are read by the pointcut.

Definition 41 (Structure-Preserving Advice Weaving). The structure-preserving weaving
operator /S, weaves a piece of advice adv = (toCurrent, Oadv , σ) into an automaton Ai =

116

9.6. TOWARDS STRUCTURE-PRESERVING WEAVING

(Qi, s0i, I,O, Ti), which is part of the expression P = (A1‖ . . . ‖An) \ Γ, and returns an au-
tomaton Ai/Sadv = (Qi, s0i, I∪

⋃
j≤n

⋃
k≤mj{injk},O∪

⋃
k≤mi{inik}, T

′
i), where T ′i is defined

by

(siki , `, O, s
′
i) ∈ Ti =⇒

(siki , ` ∧ JP ∧
∧
j≤n

injkj , Oadv ∪O′ ∪ {iniki}, stargetP (σ, s1k1 . . . , snkn)[i]) ∈ T ′i (9.1)

∧ (siki , ` ∧ JP, O ∪O′ ∪ {iniki}, s
′
i) ∈ T ′i (9.2)

where each automaton Ai has mi states, and O′ = {o′|o ∈ O}.

Transitions (9.1) are the advice transitions, they are taken when JP is true. There is one
for every combination of the injk signals. starget is used to calculate the respective target
states. Transitions (9.2) are not advice transitions, they are taken when JP is false. Note
that both transitions emit a copy of the original outputs O, and the signal inik that tells the
parallel automata in which state Ai is. Both O′ and inik do not depend on whether the advice
transition or the transition from the base program is taken.

Aspect weaving also affects the pointcut, but in a slightly different way than the parallel
automata. Notably, the advice transitions must not emit Oadv , but must continue emitting
JP. Thus, the weaving only changes the target state of the join point transitions, which
depends on the outputs emitted by the base program when the σ is executed. These depend
on the current state of the Ai, thus we add the injk signals to the inputs. To calculate it, we
put PJP in parallel with the Ai, and use starget on the resulting program. Furthermore, the
pointcut no longer takes the original outputs of the base program O as inputs, but its copies
O′.

Definition 42 (Structure-Preserving Pointcut Weaving). The structure-preserving weaving
operator for the pointcut, /SJP, weaves a piece of advice adv = (toCurrent, Oadv , σ) into a poin-
cut PJP = (QPJP

, s0PJP
, I∪O, {JP}, T), which is applied to a parallel expression (A1‖ . . . ‖An)\

Γ, and returns a pointcut Ai/SJPadv = (Qi, s0i, I ∪O′ ∪
⋃
j≤n

⋃
k≤mj{injk}, {JP}, T ′), where

T ′ is defined by

(s, `, ∅, s′) ∈ T =⇒ (s, `′, ∅, s′) ∈ T ′ (9.3)

(s, `, {JP}, s′) ∈ T =⇒ (s, `′ ∧
∧
j≤n

injkj , {JP}, stargetP (σ, s, s1k1 . . . , snkn)[1]) ∈ T ′ (9.4)

where P = (PJP‖A1‖ . . . ‖An) \ Γ, each automaton Ai has mi states, O′ = {o′|o ∈ O}, and `′

is ` where each o ∈ O has been replaced by o′.

Transitions (9.3) are not advice transitions, and remain unchanged. Transitions (9.4) are
advice transitions, their target state is changed. The new target state is calculated depending
on the states of the Ai, with the starget function.

Aspect Weaving. Finally, we construct the complete program by putting the Ai/Sadv
in parallel with PJP/

SJPadv , and encapsulating the additional signals.

117

CHAPTER 9. IMPLEMENTATION

Definition 43 (Structure-Preserving Weaving). Let Ai = (Qi, s0i, I,O, Ti), 1 ≤ i ≤ n be
automata, Γ ⊆ I ∪ O a set of encapsulated signals, and asp = (PJP, adv) an aspect, with
adv = (toCurrent, Oadv , σ). The structure-preserving weaving operator /S is then defined by

(A1‖ . . . ‖An) \ Γ/Sasp = (A1/
Sadv‖ . . . ‖An/Sadv‖PJP/

SJPadv

‖duplo1 . . . duplon) \ Γ ∪O′ ∪ {JP} ∪
⋃
i≤n

⋃
k≤mi

{inik} .

Note that Definition 43 does not introduce any circular dependencies, which may lead to
nondeterminism or incompleteness. The Ai only read each other’s inik signals, which do not
depend on any inputs. Furthermore, the O′ and inik signals, which are emitted by the Ai
automata and are read by the pointcut, do not depend on the JP signal, which is emitted by
the pointcut.

9.6.2 Discussion

toInit and recovery Advice. The other kinds of advice are much easier than toCurrent
advice. When weaving toInit advice, we can determine the target states statically, by execut-
ing the starget function from Definition 40 from the initial states of the parallel automata.
Thus, we can direct all advice transitions to the calculated target states, and there is no need
to communicate the current states of the Ai, and thus no need to add the injk signals.

In the case of recovery aspects, we must first determine the recovery states of each of the
Ai. This can be done the usual way, by performing a product with the recovery automaton
Prec. However, after performing the parallel product with Prec, we cannot encapsulate the
outputs, because these may be emitted by another Ai. Thus, Prec may select more recovery
transitions than actually exist. Next, we can build the memory automaton locally, in the
usual way. Because we may have selected too many recovery transitions, it may be larger
than necessary. However, this is much cheaper than calculating the parallel product of the Ai.

Complexity of the Weaving Algorithm. The weaving algorithm presented in this sec-
tion is designed to make the weaving of aspects into large programs feasible, and it does
indeed avoid the calculation of the parallel product and thus reduces memory consumption
significantly. In certain cases, however, the weaving algorithm is expensive in time. We
therefore discuss its complexity for the different kinds of aspects informally.

The most expensive part is the execution of the trace in the parallel automata. toInit
aspects must calculate one trace per automaton using starget. toCurrent aspects, however,
must calculate target states for all combinations of states of Ai, i.e. Πi|Qi| times, where |Qi|
denotes the number of states of Ai. This is the same complexity as calculating the product
of the Ai, which also has Πi|Qi| states. However, in the structure-preserving weaving, this
complexity is in time, and not in space.

Let us consider now the cost of the execution of starget. We must find the right combina-
tion of transitions in each step, such that the condition in the second case of Definition 40 is
fulfilled. In the worst case, we must try all possible valuations for Γ, which is very expensive:
in each Ai, there are up to 2|Γ| possible transitions, where |Γ| denotes the number of signals
in Γ. To execute one step of starget on n parallel automata, we must hence check up to 2|Γ|×n

combinations of transitions.

118

9.6. TOWARDS STRUCTURE-PRESERVING WEAVING

However, this worst case occurs only if there are circular dependencies between the parallel
automata, in which case we cannot translate them into Lustre anyway. If there are no circular
dependencies between the parallel automata, there is at least on automatonAi that determines
which subset of Γ it emits independently of the valuation of Γ, and then there is at least one
automaton that determines which subset of Γ it emits depending only on Ai, and so on. Thus,
there is a fixed order in which we can select the transitions in starget, and we do not need to
try different combinations of transitions. Executing the trace on an parallel automaton has
then the same cost as executing it on the flat program.

In the absence of circular dependencies, further optimizations are possible. Thus,
toCurrent aspects also do not need to calculate traces for all possible combinations of states,
and do not need all inik as communication signals. This, however, is not integrated in our
weaving algorithm.

There are also some special cases in which structure-preserving weaving is very cheap.
These are the absence of the encapsulation (i.e. Γ = ∅), and an aspect with an empty trace.
The latter case is quite common, as shown by the examples in this document: the fast-
cumulative aspect from Section 5.3.2 has an empty trace, as well as the Gateway aspects
from the Tram example in Section 8.4.

119

Chapter 10

Related Work

Although aspect-oriented programming is a relatively young paradigm, a great amount of
research has already been performed on this topic. We thus cannot presume to present all
relevant work in this area, but we will try to discuss some work that is close to this thesis, and
to compare it to our work. Aspects for automata languages are presented in Section 10.1, lan-
guages with stateful pointcuts in Section 10.2, formally-defined aspect languages and calculi
in Section 10.3, and work on the reconciliation of aspect-oriented programming and modular
reasoning in Section 10.4. Some more specific related work has already been presented in
earlier chapters, namely work on using aspects to build product lines in Section 5.4, work on
aspect interference in Section 7.6, and work on aspects and contracts in Section 8.5.

10.1 Aspects for Automata Languages

The aspect-oriented modeling community aims at representing aspects at higher level of ab-
straction. Many approaches (e.g. [CB05, SHU06, CvdBE07a]) propose to integrate repre-
sentations of aspects into UML, including StateCharts. The Weavr approach [CvdBE07a,
CvdBE07b] is probably closest to Larissa. It extends a tool for Model-Driven Engineering,
where aspects are woven in models that can be translated automatically into code, as op-
posed to the other approaches, which model aspects that must be implemented manually.
However, none of these approaches are formally defined, or have the semantic properties we
are looking for. Due to the complexity of UML, giving such properties seems very difficult, if
not impossible.

Sipma [Sip03] applies aspects to formally-defined automata languages. The author pro-
poses a notion of aspect for so-called “modular transition systems” (a kind of interpreted
automata composed in parallel with shared variables). The ideas of the approach are quite
similar to ours, including the proposal for formal automatic verification. The authors also
show that their setting allows to give a clear definition to aspect interference. They do not
study equivalences of programs, but propose to look at the properties that are preserved by
the application of an aspect. The main differences with our work are the focus on imperative
code associated with transitions and the simpler structure of programs, which are sets of
parallel automata. Argos has a general notion of programs, with any level of operators.

121

CHAPTER 10. RELATED WORK

10.2 Stateful Pointcut Models

A lot of authors have noticed before us that pointcuts which depend on the history of the
execution of the program are very useful. In AspectJ, pointcuts can refer the execution history
directly through the cflow construct, that can only depend on the stack. To write pointcuts
in AspectJ that refer to the complete history of the execution, programmers must use the
if construct. However, all the infrastructure to record the execution history must then be
written manually in Java. This has many disadvantages: writing the code is cumbersome,
the meaning of the pointcut is hidden, and formal analysis of the pointcut is impossible.

Therefore, many constructs have been proposed that allow pointcuts to explicitly refer to
the execution history in a convenient form. These pointcuts collect state of their own, and
can decide whether to match a join point depending on this state. They are hence often called
stateful pointcuts.

These constructs differ in their expressive power, ranging from restricted regular expres-
sions to Turing completeness. In general, reducing expressive power has the advantage that
formal analysis of the aspects is easier, and the runtime overhead (in execution time or mem-
ory) is smaller. Furthermore, the different approaches have different ways of expressing the
stateful pointcuts. As we will see below, many approaches use automata, others tail recursive
languages or context-free grammars.

Many languages have the expressive power of regular languages, just as Larissa pointcuts.
Larissa is special, however, because the base language has the same reduced expressive power.
If we were to extend Larissa to integer variables, it would be natural to allow the pointcuts
to have the same expressive power, too.

We now present different models of stateful pointcuts, ordered by their expressive power.
Then, we present some program monitoring approaches, that resemble stateful pointcuts
closely.

Stateful Pointcuts. In Arachne [DFL+05], aspects can be applied in sequences, which
consist of restricted regular expressions over aspects, without parentheses or “or” constructs
(ab* is allowed, but not a(bb)*, nor a+b). Due to this restriction, these aspects have an very
small runtime overhead.

Vanderperren et al [VSCF05] extend the aspect language JasCo with stateful aspects with
the power of regular expressions, but do not offer any formal analysis.

Douence et al [DFS02, DFS04, DFS05] propose Event-based AOP a simple aspect language
with tail recursion to describe pointcuts with the power of regular languages. It is independent
of the base language, as it only observes events in the execution of the base program, and
inserts advice. The weaving and the composition of several aspects are a kind of synchronous
product between base program and aspects. Because it has a restricted expressiveness, this
language can be analyzed formally. Thus, [DFS04] discusses a powerful aspect interaction
analysis.

In [DBNS06], the approach is extended concurrent EAOP, which models the concurrent
execution of advice. The product between the base program and the aspects then only syn-
chronize on a subset of the execution events. This is close to our approach because both model
aspects for parallel programs. However, we are interested in a synchronous kind of parallelism,
as it appears in synchronous languages, whereas CEAOP describes an asynchronous kind, that
can model either the execution of asynchronous threads or of distributed programs.

122

10.3. FORMAL SEMANTICS AND PROPERTIES FOR AOP

Nguyen and Südholt [NS06] extend this approach to a more expressive pointcut language,
using Visibly Pushdown Automata [AM04], which are more expressive than regular languages,
but retain many of their formal properties. They illustrate that aspects can be analyzed
for interaction, and that aspects can be proven to preserve important properties of base
programs [NS07].

Walker and Viggers [WV04] propose a temporal extension of AspectJ with the power
of context-free grammars, which is thus also situated between regular and Turing complete
languages.

Ostermann et al [OMB05] propose a pointcut language based on logic languages, which
can also refer the execution history. Klose and Ostermann [KO05] proposes to define pointcuts
with particularly powerful predicates on traces, which may also refer to the future. This poses
serious limitations: weaving is not guaranteed to terminate.

Property Enforcers. A number of approaches have been proposed for enforcing properties
of programs. They do not label themselves as aspect languages, but are similar to Larissa
and the approaches presented in this section in that an automaton runs in parallel of the
program that can modify or abort the execution. The goal of the authors is more specific,
however: they aim at executing unknown and untrusted programs in a safe way. This is
different from our motivations, because we would like the weaving operation to behave as a
normal operation on programs. In particular, it should be possible to continue composing the
woven program.

In [CF00], a program transformation technique is presented, allowing to equip programs
with runtime checks in a minimal way. Temporal properties are taken into account, and
abstract interpretation techniques are used in order to avoid the runtime checks whenever the
property can be proven correct, statically. In the general case, the technique relies on runtime
checks.

Schneider [Sch00] proposes the notion of security automata. Such a security automaton is
an observer for a safety property, that can be run in parallel with the program (performing an
on-the-fly synchronous product). When the automaton reaches an error state, the program
is stopped.

Edit automata [LBW04, LBW05] are more general. They allow a security specification
to interfere with the program execution. An edit automaton may truncate the execution,
suppress some actions, or insert some actions in the normal execution of a program. This
technique is mainly dynamic and does not seem to be designed for program transformation,
but we could probably weave such an edit automaton into an existing program by performing
a kind of compiled synchronous product between them.

10.3 Formal Semantics and Properties for AOP

Superimposition. Katz [Kat93] proposes superimpositions, a programming construct used
to impose a global property on distributed asynchronous systems. Their motivation is quite
similar to aspects, and they have the advantage of a formal definition. Indeed, Sihman and
Katz [SK03] have proposed SuperJ, a language to implement superimpositions with aspects.

Superimpositions are classified into three categories, which qualify the effect of a super-
imposition on a program. Spectative superimpositions only observe program, but do not
influence its execution, regulative superimpositions restrict the base program by forbidding

123

CHAPTER 10. RELATED WORK

certain executions, and all other superimpositions are invasive. These categories also apply to
aspects, and Katz has extended them in [Kat06], where the invasive category has been split
into weakly and strongly invasive. Those invasive superimpositions that always return control
to the base program in a state that it could have reached on its own are weakly invasive.

Superimposition is placed in a setting similar to ours, although it considers asynchronous
parallelism, whereas our parallel combination is synchronous. In the context of synchronous
languages, a spectative aspect is merely the synchronous composition with an observer (see
Section 3.3). Regulative aspects make no sense in our context, where programs are determin-
istic, complete, and cannot be terminated. Thus, there are no executions to forbid.

Larissa is a weakly invasive aspect language, because the return state is defined either by a
trace that the base program could have executed, or is a state the program has already passed.
Furthermore, all aspect languages that preserve a semantic equivalence of programs must be
weakly invasive. Indeed, for a strongly invasive aspect languages, it is easy to give equivalent
base programs that are distinguished by the aspect: let P be a module, and A an aspect that
sets P into a state v, that P could not reach on its own. Let Q be the same module as P , but
with if state=v then X endif inserted at some point in the code where the aspect returns
control. P and Q are equivalent, because state=v is always false. However, once we apply
A, state=v is true, and Q executes code X, whereas P does not.

AOP Core Calculi. A number of authors have presented different core calculi model-
ing aspect-oriented languages. Most are defined with operational small-step semantics, and
extend functional or object calculi.

Dutchyn et al [DTK06] present an aspect-oriented extension to a higher-order language,
where both pointcuts and advice are also higher-order.

Walker et al [WZL03, LWZ06] propose a core aspect language, that extends a typed
lamdba calculus with labels and advice, which runs at certain labels. They also give an
aspect language, minAML, that translate into the core language. Dantas et al [DWWW05,
DW06] follow the same principle, but extend both the core calculus and the aspect language.
[DWWW05] investigates the combination of aspect-oriented programming and polymorphism.
[DW06] present harmless advice, which does not interfere with the main computation of base
program, but can perform I/O or terminate the program. This kind of advice can perform
many typical aspect tasks, and simplifies local reasoning in the base program.

Aldrich [Ald05] presents another simple function core calculus, TinyAspects, which just
contains pointcuts and advice. This makes it easier to prove modularity properties on an
extension, Open Modules (see Section 10.4).

Clifton and Leavens [CL06] propose MiniMAO1, an aspect-oriented extension to an im-
perative, object-oriented core language. It models precisely the interaction between object-
oriented and aspect-oriented programming, including the case where the aspect changes the
target object of the advised call.

Jagadeesan et al [JJR03] propose an aspect calculus for a rich class-based language, which
includes multi-threading, and proves the correctness of their weaving algorithm. Bruns et al
propose µABC [BJJR04], a name based calculus, where aspects are the only primitive entity,
and are used to simulate methods. They also give a translation of minAML [WZL03] and the
language from [JJR03] into µABC.

Furthermore, Wand et al [WKD04] give a denotational semantics for an aspect oriented
extension of an imperative language. Lämmel [Läm02] gives a big-step semantics for an

124

10.4. AOP AND MODULAR REASONING

extension to an object-oriented language. Andrews [And01] translates a simple imperative
aspect language into process algebra.

Larissa does not easily compare to this type of work, because the notion of aspect we
chose for reactive systems is guided by the need to crosscut their parallel structure. It is quite
different from the AspectJ-like before, after, and around advice that make sense mainly for
sequential languages. [And01] is situated in framework similar to ours. However, we aim at
defining aspects that crosscut the parallel structure of reactive programs, not at formalizing
weaving for sequential programs by a kind of parallel composition.

10.4 AOP and Modular Reasoning

AspectJ does not preserve the encapsulation of Java classes. As we discussed and illustrated in
Section 6.1, aspects can distinguish between implementations which are semantically equiv-
alent, but implemented in a different manner. For example, calls to private methods of a
class can be advised. Thus, a modification of a class as simple as inlining a private method
or changing a private method’s name may break the behavior of an aspect that has been ap-
plied to it. Programmers of base modules can thus not even perform such innocuous changes
without having to verify that they do not affect an aspect. Thus, modular reasoning becomes
impossible in the presence of aspects. This problem has been recognized by many authors,
and different solutions have been proposed.

Clifton and Leavens [CL03b] propose to extend the concept of behavioral subtyping [DL95]
to aspects. Thus, aspects must modify methods in such a way that the specification of the
advised method still holds. Furthermore, they propose to split aspects into two categories,
spectators and assistants. Spectators do not change the behavior of the advised methods.
Assistants, on the other hand, may modify their behavior, and thus break the encapsulation
of the module. They propose that base modules should be able to specify which assistants
may be applied to them.

In Larissa, we follow a different approach: a module to which an aspect has been applied
becomes a new module, with a new semantics. This is consistent with the design of Argos,
where all operators transform the semantics of the module they are applied to, without
introducing problems for local reasoning inside a module.

Aldrich [Ald05] proposes the use of open modules. Aspects can only advise external calls
to methods in the interface of an open module, and exported pointcuts, which are part of
the interface of the module. If the implementation of a module is changed, the exported
pointcuts must be updated, such that they select the same join points as before. This is the
responsibility of the programmer who maintains the module. For a small aspect calculus,
Aldrich has shown that open modules preserve equivalence between programs. Onkingco et
al [OAH+06] have extended AspectJ with constructs that implement Open Modules.

This is similar to Larissa, where aspects can only advise the interface of modules. Larissa
has, however, no special mechanism to add exported pointcuts to the interface of a module,
while such a construct forms a central part of Open Modules. This can nonetheless be
simulated in Larissa by adding an additional output to a module that corresponds to such a
pointcut, and that is read by the pointcut of an aspect. However, our examples indicate that
exporting additional pointcuts is not necessary, and that Larissa is expressive enough without
them. This is an advantage, because base module programmers do not need to update the
additional pointcuts when they change the program.

125

CHAPTER 10. RELATED WORK

Sullivan, Griswold, et al propose crosscutting interfaces [GSS+06, SGS+05], a notion sim-
ilar to open modules. They do not, however, propose the extension of an aspect language
by a new module system, but rather design rules for aspects. The aspect programmer only
uses pointcuts which are declared in the crosscutting interface of a base module. These
pointcuts are declared and maintained by the base module programmer. This is similar to
Open Modules, but aspects are not allowed to advise directly the public interface of the base
program.

Aksit, Bergmans, et al propose Composition Filters [BA04], a kind of aspect-oriented
programming that also respects the encapsulation of base components. Composition Filters
intercept messages between objects, and can manipulate them in different ways. They thus
refer only to the interface of the base component, but not to its implementation details.

In Argos, such filters can be constructed easily with the existing operators, by putting a
filter program in parallel with the base program. The filter program than intercepts incoming
and outgoing signals, similar to the encoding of advice in Argos illustrated in Section 3.4. This
does not include the full expressiveness of Composition Filters, which e.g. can use wildcards.

Some authors [GB03, OMB05, RKA06] attack the problem from the opposite direction,
by making pointcut languages more powerful, instead of restricting the power of aspects.
They argue that this makes modular reasoning easier, because aspects with more expressive
pointcuts can express precisely when they want to intervene, and refer less to intermediate
structures that are likely to change. Their goal is less to preserve the encapsulation, but more
to make aspects resistant to changes in the base program, including those changes that result
in a different semantics of the base program, such that even equivalence preserving aspect
languages cannot guarantee any formal properties.

Gybels and Brichau [GB03] propose a logic programming language as pointcut language.
Ostermann et al [OMB05] also follow that line, and present Alpha, a powerful Prolog-like
pointcut language, that can in addition refer a rich data model, including the syntax of
the program, the heap, and the execution trace. Because these approaches can refer many
implementation details, it is impossible to give formal properties regarding the preservation
of the encapsulation. However, the examples of pointcuts that are presented by the authors
as being more resistant to change often refer less to implementation details: e.g., “all fields
that changed during the previous call to method m” is less implementation dependent than
enumerating the private fields that are changed at the moment the aspect was written.

Larissa follows this approach insofar as it has a powerful pointcut language, but renounces
all elements that would compromise the preservation of formal properties. We believe that
this makes aspects also more independent of changes in the base program that modify its
semantics, such that the preservation of the equivalence does not apply.

Kiczales and Menzini [KM05] argue that approaches that restricting the power of pointcuts
constrain the obliviousness [FF00] of aspects too much. Instead, they propose aspect-aware
interfaces. Theses are normal class interfaces, with information about advising aspects added
to method signatures. Such interfaces do not constrain programmers, and are implemented
in IDEs with support for aspects, such as AJDT [CCK03]. On the other hand, they do not
protect the encapsulation of the base module, and they are only available once the whole
system is assembled.

126

Chapter 11

Conclusion

11.1 Context

Aspect-oriented programming is a relatively new programming paradigm, which aims at en-
capsulating cross-cutting concerns. It is being applied with great success in many domains,
and it is being researched very actively. One domain to which it has so far not been applied,
however, is the domain of reactive systems. This thesis has taken a first step in this direction.
In particular, we have investigated cross-cutting concerns and aspect-oriented programming
in the context of synchronous languages, a family of domain-specific languages for reactive
systems, which are widely used in industry. Because there was no prior work on AOP and
synchronous languages, we used the simplest language of the family, Argos (presented in
Chapter 3), for our experiments.

As we discussed in Section 2.2, reactive systems differ from usual computer systems in a
number of ways, and this is reflected in their programming languages. First, such systems are
in constant interaction with their environment, and their programming languages are specially
adapted to an input/output style of programming. Second, reactive systems are also very
often safety-critical, and need to be verified formally. Their programming languages are thus
formally defined, and connected to verification tools. Furthermore, they often fulfill many
tasks in parallel. Thus, programming languages usually offer an explicit means to combine
program modules in parallel.

Synchronous languages (presented in Section 2.2.1) are specially designed to meet these
requirements. They are formally defined, have a clear and simple semantics, and are restricted
to programming constructs that make verification easy. They also have a well-defined and
easy-to-use parallel composition operator, which is used as the main means for decomposition
of programs. Argos also follows these lines. Its basic elements are Mealy automata, which
can be composed with a number of operators, including the parallel composition.

The characteristics of reactive systems named above impose certain restrictions on the
design of aspect-oriented languages for them, as we discussed in Section 2.3. First, they must
be formally defined, and respect certain semantic properties, notably the encapsulation of base
programs. Furthermore, aspects must crosscut the parallel structure of reactive programs, as
opposed to most existing aspect languages, which apply to programs written in sequential

127

CHAPTER 11. CONCLUSION

languages.

11.2 Comments on the Contributions

11.2.1 Cross-cutting Concerns in Reactive Systems

A first contribution of this thesis consists in the identification of cross-cutting concerns in
reactive systems. We found cross-cutting concerns in different types of reactive systems we
modeled: a process controller in a juice factory (Sections 4.2.1 and 4.3.1), a door controller
in a tram (Section 8.4), and the interface of a complex wristwatch (Chapter 5). The con-
cerns we found are all functional, i.e. they express a part of the core functionality of the
application. This is different from other aspect languages, where many popular concerns are
non-functional.

One reason for the absence of non-functional concerns in our examples may be that we
wanted semantic aspects, which in particular respect the encapsulation of the base program.
This excludes many common non-functional aspects, such as logging, profiling, or the en-
forcement of programming conventions, which often need to look at the implementation of
the base program. Another reason may be that there are less non-functional concerns in the
typical reactive systems we used as examples, and which are representative for applications
written in synchronous languages. Many typical non-functional cross-cutting concerns, such
as security or transaction management, do not occur in such systems. Others are not relevant
to programs written in synchronous languages, either because they are superfluous, such as
synchronization, or deemed unsafe, such as exception handling.

11.2.2 Larissa, an Aspect Language for Argos

As a second contribution, presented in Chapter 4, we developed an aspect-oriented language
for Argos, called Larissa, which is able to express the examples of cross-cutting concerns we
identified. The examples show that Larissa encapsulates cross-cutting concerns that occur in
reactive systems, and that it adds expressive power to Argos.

Furthermore, Larissa integrates well into Argos, and aspect weaving can be considered
another Argos operator, because it fulfills all the necessary conditions: it preserves the equiv-
alence between base programs, the determinism and completeness of base programs, and it
is possible to combine aspect weaving freely with the other operators to build programs. The
last condition is fulfilled by defining weaving in the same way as the other operators, as a
translation of a flat automaton and an aspect into a flat automaton.

The previous conditions concern the preservation of important semantic properties, where
the preservation of the equivalence is the most difficult to guarantee. It entails that the
aspect can only refer to the interface of the base program, but not its implementation. The
preservation of the equivalence is an interesting feature of Larissa, that most aspect languages
do not offer.

Indeed, the fact that most aspect languages do not preserve the equivalence between
programs has been recognized as a major drawback, and several solutions have been proposed
(see Section 10.4). Those solutions that preserve the equivalence come at a price: usually
the base module programmer must take responsibility for maintaining some pointcuts for the
base module. Larissa does impose no such condition, and nevertheless the base programs
stays strongly encapsulated.

128

11.2. COMMENTS ON THE CONTRIBUTIONS

A second interesting point of Larissa is that it extends a parallel programming language.
The existence of an explicit parallel composition in the base language had important con-
sequences for the design of Larissa, because many typical uses of aspects can be expressed
modularly with the existing operators in Argos. Larissa aspects thus look quite different from
conventional aspect languages. Notably, aspects usually return to the join point after they
executed the advice, as opposed to Larissa, which specifies a different state. Indeed, simply
returning to the join point after executing advice is not expressive enough: such a modifi-
cation can in many cases be expressed modularly with the parallel product in Argos, as we
illustrated in Section 3.4.

11.2.3 Semantic Analysis Tools for Larissa

We have presented two semantic analysis tools for Larissa aspects, the first for interference
analysis in Chapter 7, and the second in Chapter 8 which allows the combination of design-
by-contract and Larissa aspects. Both rely on the formal properties of Larissa, and thus
illustrate the advantages of formally-defined languages.

Aspect interference is a problem larger programs where many aspects are applied, espe-
cially when aspects are woven sequentially, as we demonstrated on an example. The operator
for joint weaving and the aspect interference analysis are thus helpful additions to Larissa.
With the contract weaving, it is possible to apply aspects to a specification. This can be done
earlier in the development process when an implementation is not yet available. Furthermore,
it enables modular verification of aspects, which may allow larger programs to be verified.

Formal analysis tools as the two we presented already exist for other aspect languages: as-
pect interference analysis is becoming more and more popular since the appearance of the first
algorithms [DFS02], and an approach for the modular verification of AspectJ aspects [GK06]
also exists. The analysis tools we presented, however, seem more precise than existing ap-
proaches, in that the interference analysis only detects interferences that really exist, and
the contract weaving returns a contract that does not include more programs than necessary.
This, for several reasons, is not surprising. First, Argos and Larissa are not Turing complete
languages, as most other aspect languages. This makes formal analysis easier. Second, the
semantic definition of Larissa and the powerful pointcuts describe the effect the aspect has on
a base program quite precisely, depending only on the semantics of the base program. This
allows to reason about the effect of the aspect even if the base program is not known.

11.2.4 Aspects for Parallel and Formally-Defined Languages

Larissa has two characteristics that make it interesting from an AOP point of view: it extends
a parallel base language, and it is formally defined and designed to be used in the development
of safety-critical systems. We discuss the consequences these points had on the design of
Larissa, and what conclusions can be drawn for the development of aspect languages for
similar languages.

Parallel Languages. Synchronous programs are explicitly structured into parallel units,
that can communicate in a very expressive way. Aspects for synchronous languages must cross-
cut this parallel structure, which calls for different forms of advice. Indeed, we illustrated in
Section 3.4 that we can express some typical concerns with the parallel composition in Argos
that can only be expressed modularly with aspects in sequential languages. Some of these

129

CHAPTER 11. CONCLUSION

concerns seem expressible in other parallel languages in the same way as in Argos, and thus
aspect languages for parallel languages must offer more powerful advice constructs.

We must distinguish between two kinds of languages with explicit parallelism: those that
include both a parallel construct and imperative code, and those that are purely parallel,
without any imperative code. The first group includes Argos, where the Mealy automata have
an imperative structure. Indeed, Larissa modifies the imperative structure of an automaton,
although it models cross-cutting concerns of parallel programs. Other aspect languages for
languages of the first kind will probably also modify the imperative structures in the parallel
components, but take the parallel structure into account.

The overall structure of Larissa advice may be adaptable to aspect languages for the first
kind of parallel languages: interrupt the base program, execute some aspect code, and return
to the base program in another state. A problem specific to parallel languages is that their
modules are often designed to run forever, and we must thus introduce a notion of termination,
as we did for advice programs in Larissa. However, we do not expect that Larissa’s way of
specifying the return state in the base program can be easily adapted to other languages:
executing a trace is a concept that is difficult to understand in languages that are not based
on explicit automata.

We expect aspects language for the second kind of parallel languages to look quite different
from Larissa. Indeed, as there is no imperative structure, we do not know where to insert
advice code. An example for such a language is the synchronous language Lustre [Hal93],
which is purely data-flow. There are clearly cross-cutting concerns in Lustre (e.g., making
a program reinitializable requires modifying every line of code), but aspect languages that
modify the base program in a way different from Larissa are necessary.

Formal Languages. Larissa is not the first aspect language with a formal definition and
formal properties. There are many formal calculi for aspect-oriented languages (some are
presented in Section 10.3), but their motivations are not the same as ours. Most other
approaches have been designed to understand the semantics of aspect weaving better, whereas
in the context of synchronous languages, which are used to program safety-critical software,
formal definitions and properties are also necessary to enable formal verification. Synchronous
languages, as some other formal languages, are also designed to make verification easy, and
to guarantee formal properties by construction. This imposes additional constraints on the
development of aspect-oriented languages for use in safety-critical environments.

First, having a formally defined language with a connection to verification tools as base
language constrains the aspect language. Weaving an aspect must not destroy the formal
semantics of the base program or its connection to the verification tools. The semantics of
the woven program must be defined in the same terms as the semantics of the base program,
and weaving must produce the input format of the verification tools. In Larissa, we guaranteed
that by defining aspect weaving as translation in its base languages Argos.

Second, formal languages have particularly high demands for semantic properties, as, in
the context of synchronous languages, the preservation of determinism and completeness, or,
more generally, the preservation of semantical equivalence between base programs. Aspect-
oriented programming is often criticized because it does not preserve this second property,
but in general aspect languages sacrifice it to increase their expressiveness.

We believe whether or not aspects should preserve the equivalence depends on their use.
If aspects are used to perform non-functional modifications of the base code, e.g. tracing or

130

11.3. PERSPECTIVES

profiling, they can not preserve the equivalence, as their goal is to distinguish between different
implementations. On the other hand, we claim that for functional aspects, the equivalence
between programs should be preserved. We believe that aspect languages can preserve the
encapsulation and can yet be expressive enough, if they dispose of powerful pointcuts and
advice, as e.g. those of Larissa.

11.3 Perspectives

11.3.1 Extension to Integer Variables

An interesting direction for further work is the extension of Larissa to integer variables. This
means extending the definition of an automaton to contain a set of internal integer variables,
which can be assigned values by the transitions and on which their conditions can depend.
Extending Argos to such variables is discussed in [MR01]. When extending Larissa to such
automata, we can still select join point transitions with an observer, which may also contain
integer variables. These are then added to the program in the product.

Weaving the trace is more complicated, because the conditions of the transitions depend on
the values of the integer variables. This does not present problems for toInit advice, because
we can use the initial values of the variables to execute the trace. For toCurrent advice,
however, the target state of the advice transition may depend on the current values of the
variables. Thus, we must introduce several transitions, and choose the right one depending
on the values of the variables.

It would be desirable that aspects continue to preserve semantic equivalence between
programs. The most natural choice is to define semantic equivalence as equivalence of traces,
and consider integer variables as part of the internal state of the automaton.

However, this means that when an aspect returns to a state of the base program, it must
make sure that the variables have values they could have had in this state already in the
base program. Otherwise, the behavior of the state is not defined by the semantics of the
base program. Thus, we must not allow inserted programs to modify the internal variables
of the base program. Furthermore, when executing a trace, we must take into account the
assignments of the transitions we take, and set the variables in the target state accordingly.
In the same way, recovery aspects, on returning to a recovery state, must also set the variables
to the values they had when the recovery state was passed the last time.

This is very restricting, and users may want write more powerful aspects than allowed
by these restrictions. To allow more expressive aspects, we can only preserve a stricter
equivalence by including the integer variables into the interface. Thus, we say that two
automata are equivalent if they have the same variables and produce the same traces, even
if the input part of a trace includes arbitrary modifications of the variables. This kind of
equivalence does not guarantee any encapsulation of the variables, but can be preserved by
very invasive aspects.

Once a way to weave aspects into automata with variables is defined, we can try to extend
the interference analysis and the contract weaving. We believe that the interference analysis
can be adapted without major problems, because it is mainly concerned with join point
weaving, which is not changed much by the introduction of variables. Joint weaving works
the same way, and checking the join point program for transitions with several join point
signals, too.

131

CHAPTER 11. CONCLUSION

Extending the contract weaving to variables also seems possible. Transforming an observer
with internal integer variables into a non-deterministic automaton can be done without chang-
ing the variables. Then, we must adopt the weaving algorithm for non-deterministic automata
to integer variables. If we also introduce integer in- and outputs, we cannot represent each
possible output by a transition in the non-deterministic automata. However, we believe that
this can be addressed by letting transitions non-deterministically emit an output chosen from
a set of integers. This is further discussed in Section 8.6. All this remains to be done, however.

11.3.2 Aspect Languages for Other Synchronous Languages

A second interesting field for further work concerns the development of aspect languages
for other synchronous languages, including the imperative language Esterel [BG92] and the
data-flow language Lustre [Hal93]. We believe that aspects in all synchronous languages can,
as Larissa, use a synchronous observer as pointcut. Our examples indicate that observers
are expressive enough to describe join points of aspects in reactive systems, and observers
have the nice semantic properties they have in Argos also in all the other synchronous lan-
guages. Furthermore, they can be expressed in all synchronous languages, and are known to
programmers, who use them for specification and verification of programs.

Because synchronous languages are parallel languages, the discussions in Section 11.2.4
about advice in such languages apply here. As discussed there, Lustre is quite different from
Argos, because it has no imperative constructs at all, and we thus need a different kind
of advice. Esterel, on the other hand, is similar to Argos in that it combines imperative
structures in parallel. The basic structure of Larissa advice could thus be adopted. It seems
nonetheless difficult to adapt the finite input trace, which is used to design a return state in
the base program for toInit and toCurrent advice. Such a trace has a clear semantics in an
automaton that explicitly contains states and transitions. In programming languages without
explicit states its semantics would be much harder to understand. Furthermore, it would be
nice if the aspects could be given a source transformation semantics, as we did for Larissa.
Encoding a trace into Lustre or Esterel, however, would result in bloated code, that would
be difficult to understand.

As opposed to toInit and toCurrent advice, it seems possible to adopt recovery advice to
other synchronous languages. Because the return states are specified with a observer instead
of a trace, it could be defined as source code transformation in various synchronous languages.
However, recovery advice only treats a special kind of concerns, those where we must revert
to a previous state. Thus, other kinds of advice are clearly needed.

11.3.3 Non-Functional Concerns in Reactive Contexts

Finally, this work may make contributions to systems similar to reactive systems, where
aspect-oriented programming has so far not been applied. We have identified two domains
where we believe that aspects could be used to model non-functional concerns. They concern
the modeling of Systems-on-a-chip (SoC) and the modeling and simulation of sensor networks.
In both domains, different models with a different degree of detail exists. Typically, developers
start with building a functional model of the system, and later add non-functional properties.
These non-functional properties are typical cross-cutting concerns, and adding them by hand
to the functional model is difficult and error-prone. It would therefore be much easier if they
could be modeled with aspects. We discuss an example of such a non-functional concern

132

11.3. PERSPECTIVES

for each of the domains we identified: the addition of temporal information to models of
Systems-on-a-Chip, and the addition of energy consumption to sensor network simulators.

Temporal Information for Abstract Systems-on-a-Chip Models. The development
of SoCs is similar to reactive systems, because SoCs have an input/output relation with their
environment and are also highly parallel. We have investigated cross-cutting concerns in
SystemC [SyC03], a popular description language for SoCs.

SystemC developers usually start by creating a functional Transaction Level Modeling
(TLM) model [MRR03], which models the main components of the system, and which serves
as a reference for software programmers who write software for this system. These models
have the advantage that they are much easier to write and much faster to simulate than a
complete specification on the Register Transfer Level (RTL). Such functional TLM models,
however, do not contain information about the temporal behavior of its components, and
thus cannot be used to estimate the performance of the modeled SoC. Furthermore, if the
functional properties of the TLM model hold in the SoC also depends on the temporal behavior
of the components: bad temporal properties may lead to deadlocks or race conditions in the
SoC. E.g., functional TLM models do not describe the capacities of connections between the
modules. If the capacity of such a connection is too small, certain components may not
be able to communicate, or messages may be lost arbitrarily. Therefore, an intermediate
representation is necessary, that allows performance testing and the detection of such errors,
but is still easier to write and faster to simulate than the RTL model. It has thus been
recently proposed [CMMC08, TCMM07] to add timing information to TLM models.

Adding such timing information is a non-trivial process that involves modifications that are
distributed over the entire program, and that is thus a cross-cutting concern. In his master’s
thesis [Meu07], Quentin Meunier has modeled TLM models in Argos, and has added timing
information with Larissa. Although Argos and Larissa are not suited to test performance,
they can be used to check if functional properties of a TLM model are preserved when we
add timing information. This work has shown that TLM models can be expressed in Argos,
that timing information can be added with Larissa, and that we can then check if functional
properties are preserved.

Energy Consumption in Sensor Networks. A second setting that is similar to ours
and that could profit from aspect oriented programming is the simulation of sensor networks.
Sensor networks consist of sensors with attached batteries and radios that are distributed
over a large area to measure something, e.g. radiation values. These sensors communicate
with one another, and send the measured data to a sink. When simulating such networks,
an important question is how long the batteries of the sensors are likely to last. The energy
consumption of such a sensor depends on all its modules and also on the global behavior
of the system, and is thus a cross-cutting concern, which could profit from aspect-oriented
programming.

Modeling the battery duration is quite complicated, because it depends on many factors,
e.g. the measured data and the messages it must relay. On the other hand, the state of charge
of the battery also influences the (energy consuming) behavior of the sensor, e.g. how often
it sends messages. As SoCs, models of sensor networks also have an input/output relation
with their environment, and are highly parallel. They can thus be modeled conveniently with
synchronous languages, as in the simulators Glonemo [SMMM06] and Lussensor [MSBV07].

133

CHAPTER 11. CONCLUSION

These would be good starting points to experiment with representing the energy consumption
of sensor networks with aspects that could profit from the work presented in this document.

11.4 Concluding Remarks

This thesis has investigated aspect-oriented programming in the context of reactive systems.
We have concentrated our efforts on developing a small aspect language for the simple syn-
chronous language Argos, instead of investigating aspects in this domain with a broader
scope, e.g. trying to invent aspect languages for different reactive languages, or concentrating
on more general formal properties. By investigating a small language in depth, we could iden-
tify a number of examples and develop some interesting semantic analysis, which we think
are best studied in the context of a simple language. We believe that the insights we have
gained will prove useful when reasoning about cross-cutting concerns and developing aspect
languages in the wider area of formally-defined and parallel systems, such as the modeling of
the non-functional properties we discussed in Section 11.3.3.

134

Bibliography

[AB06] Sven Apel and Don Batory. When to use features and aspects?: a case study.
In GPCE ’06: Proceedings of the 5th international conference on Generative
programming and component engineering, pages 59–68, Portland, Oregon, USA,
2006. 5.4

[Ald05] Jonathan Aldrich. Open modules: Modular reasoning about advice. In An-
drew P. Black, editor, ECOOP 2005 — Object-Oriented Programming 19th
European Conference, Glasgow, UK, volume 3586 of LNCS, pages 144–168.
Springer Verlag, Berlin, July 2005. 10.3, 10.4

[AM04] Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In STOC ’04:
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing,
pages 202–211, New York, NY, USA, June 2004. ACM Press. 10.2

[AMP] Ample project webpage. http://www.ample-project.net. 5.4

[AMS06a] Karine Altisen, Florence Maraninchi, and David Stauch. Aspect-oriented pro-
gramming for reactive systems: Larissa, a proposal in the synchronous frame-
work. Science of Computer Programming, Special Issue on Foundations of
Aspect-Oriented Programming, 63(3):297–320, 2006. 1, 4.1, 6.1

[AMS06b] Karine Altisen, Florence Maraninchi, and David Stauch. Modular design of man-
machine interfaces with Larissa. In 5th International Symposium on Software
Composition, Vienna, Austria, March 2006. 1, 5.1

[And01] James H. Andrews. Process-algebraic foundations of aspect-oriented program-
ming. In REFLECTION ’01: Proceedings of the Third International Conference
on Metalevel Architectures and Separation of Crosscutting Concerns, pages 187–
209. Springer-Verlag, 2001. 2.3.1, 10.3

[Asp] AspectJ website. http://www.eclipse.org/aspectj/. 2.1

[BA04] Lodewijk Bergmans and Mehmet Aksit. Principles and design rationale of com-
position filters. In Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet
Aksit, editors, Aspect-Oriented Software Development. Addison-Wesley, 2004.
ISBN 0-32-121976-. 3.4, 10.4

135

http://www.ample-project.net
http://www.eclipse.org/aspectj/

BIBLIOGRAPHY

[BDCM05] Davide Balzarotti, Antonio Castaldo D’Ursi, Luca Cavallaro, and Mattia
Monga. Slicing AspectJ woven code. In Gary T. Leavens, Curtis Clifton, and
Ralf Lämmel, editors, Foundations of Aspect-Oriented Languages, March 2005.
7.6

[BG92] Gérard Berry and Georges Gonthier. The Esterel synchronous programming lan-
guage: Design, semantics, implementation. Science of Computer Programming,
19(2):87–152, 1992. 1, 2.2.1, 3.2.3, 11.3.2

[BJJR04] Glen Bruns, Radha Jagadeesan, Alan Jeffrey, and James Riely. µABC: A min-
imal aspect calculus. In Philippa Gardner and Nobuko Yoshida, editors, CON-
CUR 2004: Concurrency Theory, volume 3170 of Lecture Notes in Computer
Science, pages 209–224, London, August 2004. Springer. 2.3.1, 10.3

[BSR03] Don Batory, Jack Sarvela, and Axel Rauschmayer. Scaling Step-Wise Refine-
ment. In Proc. 25th IEEE Int. Conf. Software Engineering (ICSE). IEEE, 2003.
5.4

[CB05] Siobhàn Clarke and Elisa Baniassad. Aspect-Oriented Analysis and Design.
Addison-Wesley Professional, 2005. 10.1

[CC04] Adrian Colyer and Andrew Clement. Large-scale AOSD for middleware. In Karl
Lieberherr, editor, AOSD-2004, pages 56–65, March 2004. 2.1, 5.4, 7.6

[CCK03] Andy Clement, Adrian Colyer, and Mik Kersten. Aspect-oriented programming
with AJDT. In ECOOP Workshop on Analysis of Aspect-Oriented Software,
2003. 10.4

[CDH+00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S.
Pasareanu, Robby, and Hongjun Zheng. Bandera: Extracting finite-state models
from Java source code. In 22nd International Conference on Software Engineer-
ing, pages 439–448, June 2000. 8.5

[CF00] Thomas Colcombet and Pascal Fradet. Enforcing trace properties by program
transformation. In Proceedings of the 27th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL-00), pages 54–66, Jan-
uary 19–21 2000. 10.2

[CK03] Yvonne Coady and Gregor Kiczales. Back to the future: A retroactive study of
aspect evolution in operating system code. In AOSD’03, pages 50–59, 2003. 2.1

[CL03a] Curtis Clifton and Gary T. Leavens. Obliviousness, modular reasoning, and the
behavioral subtyping analogy. Technical Report 03-15, Iowa State University,
Department of Computer Science, December 2003. 8.5

[CL03b] Curtis Clifton and Gary T. Leavens. Obliviousness, modular reasoning, and the
behavioral subtyping analogy. In SPLAT 2003: Software engineering Properties
of Languages for Aspect Technologies at AOSD 2003, March 2003. 10.4

[CL06] Curtis Clifton and Gary T. Leavens. Minimao1: An imperative core language for
studying aspect-oriented reasoning. Science of Computer Programming, Special

136

BIBLIOGRAPHY

Issue on Foundations of Aspect-Oriented Programming, 63(3):321–374, 2006.
10.3

[CMMC08] Jérôme Cornet, Florence Maraninchi, and Laurent Maillet-Contoz. A method
for the efficient development of timed and untimed transaction-level models of
systems-on-chip. In Design, Automation and Test in Europe (DATE 2008),
March 2008. To appear. 11.3.3

[CvdBE07a] Thomas Cottenier, Aswin van den Berg, and Tzilla Elrad. Motorola weavr:
Aspect orientation and model-driven engineering. Journal of Object Technology,
Special Issue on Aspect-Oriented Modeling, 6(7):55–88, August 2007. 10.1

[CvdBE07b] Thomas Cottenier, Aswin van den Berg, and Tzilla Elrad. Motorola Weavr:
Model weaving in a large industrial context. In Industry Track of the Inter-
national Conference on Aspect-Oriented Software Development (AOSD), 2007.
10.1

[DBNS06] Rémi Douence, Didier Le Botlan, Jacques Noyé, and Mario Südholt. Concur-
rent aspects. In Proc. of the 5th Int. Conf. on Generative Programming and
Component Engineering (GPCE’06). ACM Press, October 2006. 10.2

[DFL+05] Rémi Douence, Thomas Fritz, Nicolas Loriant, Jean-Marc Menaud, Marc
Ségura-Devillechaise, and Mario Südholt. An expressive aspect language for sys-
tem applications with Arachne. In Proceedings of the 4th International Confer-
ence on Aspect-Oriented Software Development (AOSD), pages 27–38, Chicago,
IL, USA, March 2005. ACM Press. 10.2

[DFS02] Rémi Douence, Pascal Fradet, and Mario Südholt. A framework for the detection
and resolution of aspect interactions. In Don Batory, Charles Consel, and Walid
Taha, editors, GPCE ’02: Proceedings of the 1st ACM SIGPLAN/SIGSOFT
conference on Generative Programming and Component Engineering, volume
2487 of Lecture Notes in Computer Science, pages 173–188, Pittsburgh, PA,
USA, 2002. Springer-Verlag. 7.1, 7.1, 7.4, 7.6, 10.2, 11.2.3

[DFS04] Rémi Douence, Pascal Fradet, and Mario Südholt. Composition, reuse and
interaction analysis of stateful aspects. In Karl Lieberherr, editor, AOSD-2004,
pages 141–150, March 2004. 7.1, 7.4, 7.6, 7.7, 8.5, 10.2

[DFS05] Remi Douence, Pascal Fradet, and Mario Südholt. Trace-based aspects. In
Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Akşit, edi-
tors, Aspect-Oriented Software Development, pages 201–217. Addison-Wesley,
Boston, 2005. 10.2

[DL95] Krishna Kishore Dhara and Gary T. Leavens. Weak behavioral subtyping for
types with mutable objects. In S. Brookes, M. Main, A. Melton, and M. Mis-
love, editors, Mathematical Foundations of Programming Semantics, Eleventh
Annual Conference, volume 1 of Electronic Notes in Theoretical Computer Sci-
ence. Elsevier, 1995. 10.4

137

BIBLIOGRAPHY

[DSBA05] Pascal Durr, Tom Staijen, Lodewijk Bergmans, and Mehmet Aksit. Reasoning
about semantic conflicts between aspects. In Kris Gybels, Maja D’Hondt, Ist-
van Nagy, and Remi Douence, editors, 2nd European Interactive Workshop on
Aspects in Software (EIWAS’05), September 2005. 7.6

[DTK06] Christopher Dutchyn, David B. Tucker, and Shriram Krishnamurthi. Seman-
tics and scoping of aspects in higher-order languages. Science of Computer
Programming, Special Issue on Foundations of Aspect-Oriented Programming,
63(3):207–239, 2006. 10.3

[DW06] Daniel S. Dantas and David Walker. Harmless advice. In Proceedings of the 33th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages
(POPL-06)”,, volume 41, 1 of SIGPLAN, pages 383–396. ACM, January 2006.
2.1, 10.3

[DWWW05] Daniel S. Dantas, David Walker, Geoffrey Washburn, and Stephanie Weirich.
Polyaml: A polymorphic aspect-oriented functional programmming language. In
International Conference on Functional Programming (ICFP), pages 306–319.
ACM, September 2005. 2.1, 10.3

[Est] The Esterel studio. http://www.esterel-technologies.com/products/
scade-suite/. 2.2.1

[Fas] Compiler for fast automata. http://www.lsv.ens-cachan.fr/fast/. 9.1

[FBT06] Yishai A. Feldman, Ohad Barzilay, and Shmuel Tyszberowicz. Jose: Aspects for
design by contract. In SEFM ’06: Proceedings of the Fourth IEEE International
Conference on Software Engineering and Formal Methods, pages 80–89, Pune,
India, September 2006. IEEE Computer Society. 8.5

[FF00] Robert E. Filman and Daniel P. Friedman. Aspect-oriented programming is
quantification and obliviousness. In Peri Tarr, Lodewijk Bergmans, Martin
Griss, and Harold Ossher, editors, Workshop on Advanced Separation of Con-
cerns (OOPSLA 2000), October 2000. 10.4

[FvS99] Jeroen J.H. Fey and Jan H. van Schuppen. VHS case study 4 - modeling and
control of a juice processing plant. http://www-verimag.imag.fr/VHS/CS4/
dcs42.ps.gz, 1999. 4.1

[GB03] Kris Gybels and Johan Brichau. Arranging language features for pattern-based
crosscuts. In Mehmet Akşit, editor, Proc. 2nd Int’ Conf. on Aspect-Oriented
Software Development (AOSD-2003), pages 60–69. ACM Press, March 2003.
10.4

[GK06] Max Goldman and Shmuel Katz. Modular generic verification of LTL properties
for aspects. In Foundations of Aspect-Oriented Languages (FOAL), March 2006.
11.2.3

[GK07] Max Goldman and Shmuel Katz. Maven: Modular aspect verification. In Orna
Grumberg and Michael Huth, editors, Tools and Algorithms for the Construction
and Analysis of Systems, volume 4424 of LNCS, pages 3–18, Braga, Portugal,
March 2007. Springer. 8.5

138

http://www.esterel-technologies.com/products/scade-suite/
http://www.esterel-technologies.com/products/scade-suite/
http://www.lsv.ens-cachan.fr/fast/
http://www-verimag.imag.fr/VHS/CS4/dcs42.ps.gz
http://www-verimag.imag.fr/VHS/CS4/dcs42.ps.gz

BIBLIOGRAPHY

[GSS+06] William Griswold, Kevin Sullivan, Yuanyuan Song, Macneil Shonle, Nishit
Tewari, Yuanfang Cai, and Hridesh Rajan. Modular software design with cross-
cutting interfaces. In IEEE Software, Special Issue on Aspect-Oriented Pro-
gramming, 2006. 10.4

[Hal93] Nicolas Halbwachs. Synchronous programming of reactive systems. Kluwer Aca-
demic Pub., 1993. 1, 2.2.1, 9.1, 11.2.4, 11.3.2

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231–274, June 1987. 2.2.1

[HLR92] Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel. Programming and
verifying critical systems by means of the synchronous data-flow programming
language lustre. IEEE Transactions on Software Engineering, Special Issue
on the Specification and Analysis of Real-Time Systems, September 1992. 9.1,
9.2

[HLR93] Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond. Synchronous ob-
servers and the verification of reactive systems. In M. Nivat, C. Rattray,
T. Rus, and G. Scollo, editors, Algebraic Methodology and Software Technol-
ogy, AMAST’93, June 1993. 3.3

[Hoa85] Charles A. R. Hoare. Communication Sequential Processes. Prentice Hall, En-
glewood Cliffs, NJ, 1985. 2.3.1

[HP85] David Harel and Amir Pnueli. On the development of reactive systems. Logics
and models of concurrent systems, NATO ASI Series, F-13:477–498, 1985. 2.2

[JBD] JavaBDD library. http://javabdd.sourceforge.net/. 9.2

[JCC] The Java compiler compiler tool. https://javacc.dev.java.net/. 9.2

[JJR03] Radha Jagadeesan, Alan Jeffrey, and James Riely. A calculus of untyped aspect-
oriented programs. In Luca Cardelli, editor, Proceedings of the European Con-
ference on Object-Oriented Programming, volume 1853 of Lecture Notes in Com-
puter Science, pages 415–427, Geneva, July 2003. Springer-Verlag. 10.3

[Kat93] Shmuel Katz. A superimposition control construct for distributed systems.
ACM Transactions on Programming Languages and Systems, 15(2):337–356,
April 1993. 10.3

[Kat06] Shmuel Katz. Aspect categories and classes of temporal properties. Transactions
on Aspect-Oriented Software Development I, 3880:106–134, 2006. 3.4, 8.5, 10.3

[KG06] Jörg Kienzle and Samuel Gélineau. Ao challenge - implementing the acid proper-
ties for transactional objects. In AOSD ’06: Proceedings of the 5th international
conference on Aspect-oriented software development, pages 202–213, 2006. 2.1

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. In Proceedings European Confer-
ence on Object-Oriented Programming, volume 2072, pages 327–353, 2001. 2.1,
2.1

139

http://javabdd.sourceforge.net/
https://javacc.dev.java.net/

BIBLIOGRAPHY

[KLM+97] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In
Mehmet Akşit and Satoshi Matsuoka, editors, Proceedings European Conference
on Object-Oriented Programming, volume 1241, pages 220–242, 1997. 2.1

[KM05] Gregor Kiczales and Mira Mezini. Aspect-oriented programming and modular
reasoning. In ICSE ’05: Proceedings of the 27th international conference on
Software engineering, pages 49–58, 2005. 10.4

[KO05] Karl Klose and Klaus Ostermann. Back to the future: Pointcuts as predicates
over traces. In Workshop on the Foundations of Aspect-Oriented Languages
(FOAL), 2005. 10.2

[Lam77] Leslie Lamport. Proving the correctness of multiprocess programs. ACM Trans-
actions on Programming Languages and Systems, SE-3(2):125–143, 1977. 3.3

[Läm02] Ralf Lämmel. A Semantical Approach to Method-Call Interception. In Proc.
of the 1st International Conference on Aspect-Oriented Software Development
(AOSD 2002), pages 41–55, Twente, The Netherlands, April 2002. ACM Press.
10.3

[Lar] Compiler for Larissa. http://www-verimag.imag.fr/~stauch/
ArgosCompiler/. 1, 9.1

[LBW04] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: Enforcement mech-
anisms for run-time security policies. International Journal of Information Se-
curity, October 2004. 10.2

[LBW05] Jay Ligatti, Lujo Bauer, and David Walker. Enforcing non-safety security poli-
cies with program monitors. In Proceedings of the 10th European Symposium
on Research in Computer Security (ESORICS), September 2005. 10.2

[LGLL91] Paul LeGuernic, Thierry Gautier, Michel LeBorgne, and Claude LeMaire.
Programming real time applications with signal. Proceedings of the IEEE,
79(9):1321–1336, September 1991. 1, 2.2.1

[LHB05] Roberto E. Lopez-Herrejon and Don Batory. Improving incremental develop-
ment in AspectJ by bounding quantification. In Lodewijk Bergmans, Kris Gy-
bels, Peri Tarr, and Erik Ernst, editors, Software Engineering Properties of
Languages and Aspect Technologies, March 2005. 2.1, 5.4, 7.6

[LSR05] Neil Loughran, Américo Sampaio, and Awais Rashid. From requirements doc-
uments to feature models for aspect oriented product line implementation. In
Workshop on MDD in Product Lines (held with MODELS 2005), volume 3844
of Lecture Notes in Computer Science, pages 262–271. Springer, 2005. 5.4

[Lus] The Lustre tutorial. http://www-verimag.imag.fr/~raymond/edu/tp.ps.gz.
8.4

[LWZ06] Jay Ligatti, David Walker, and Steve Zdancewic. A type-theoretic interpretation
of pointcuts and advice. Science of Computer Programming, Special Issue on
Foundations of Aspect-Oriented Programming, 63(3):240–266, 2006. 10.3

140

http://www-verimag.imag.fr/~stauch/ArgosCompiler/
http://www-verimag.imag.fr/~stauch/ArgosCompiler/
http://www-verimag.imag.fr/~raymond/edu/tp.ps.gz

BIBLIOGRAPHY

[Mar91] Florence Maraninchi. The argos language: Graphical representation of automata
and description of reactive systems. In IEEE Workshop on Visual Languages,
oct 1991. 3

[Mar92] Florence Maraninchi. Operational and compositional semantics of synchronous
automaton compositions. In CONCUR. Springer Verlag, LNCS 630, August
1992. 3.5, 6.3.1

[Meu07] Quentin Meunier. Modeling non-functional properties with aspect-oriented pro-
gramming. Master’s thesis, Université Joseph Fourier, Grenoble, June 2007. In
french. 11.3.3

[Mey92] Bertrand Meyer. Applying ”Design by Contract”. Computer, 25(10):40–51,
1992. 8.1.1

[MG07] Mike Mortensen and Sudipto Ghosh. Refactoring idiomatic exception han-
dling in c++: Throwing and catching exceptions with aspects. In Industry
Track of the International Conference on Aspect-Oriented Software Develop-
ment (AOSD), 2007. 2.1

[Mil80] Robin Milner. A calculus of communicating systems. Volume 92 of Lecture
Notes in Computer Science, 1980. 2.3.1

[MM04a] Florence Maraninchi and Lionel Morel. Logical-time contracts for reactive em-
bedded components. In 30th EUROMICRO Conference on Component-Based
Software Engineering Track, ECBSE’04, Rennes, France, August 2004. 8.1.1

[MM04b] Florence Maraninchi and Lionel Morel. Logical-time contracts for the de-
velopment of reactive embedded software. In 30th Euromicro Conference,
Component-Based Software Engineering Track (ECBSE), Rennes, France,
September 2004. 8.1.1

[MR01] Florence Maraninchi and Yann Rémond. Argos: an automaton-based syn-
chronous language. Computer Languages, 27(1/3):61–92, 2001. 1, 2.2.1, 3,
11.3.1

[MRR03] Wolfgang Müller, Wolfgang Rosenstiel, and Jürgen Ruf. SystemC Methodologies
and Applications, chapter 2. Kluwer, 2003. 11.3.3

[MSBV07] Florence Maraninchi, Ludovic Samper, Kevin Baradon, and Antoine Vasseur.
Lustre as a system modeling language: Lussensor, a case-study with sensor
networks. In Proceedings of Model-driven High-level Programming of Embedded
Systems, Braga, Portugal, March 2007. 11.3.3

[MTY05] Hidehiko Masuhara, Hideaki Tatsuzawa, and Akinori Yonezawa. Aspectual
caml: an aspect-oriented functional language. In Olivier Danvy and Benjamin C.
Pierce, editors, ICFP, pages 320–330. ACM, 2005. 2.1

[NS06] Dong Ha Nguyen and Mario Südholt. Vpa-based aspects: Better support for
aop over protocols. In SEFM ’06: Proceedings of the Fourth IEEE International
Conference on Software Engineering and Formal Methods, pages 167–176, Pune,
India, September 2006. IEEE Computer Society. 10.2

141

BIBLIOGRAPHY

[NS07] Dong Ha Nguyen and Mario Südholt. Property-preserving evolution of com-
ponents using vpa-based aspects. In Proc. of the 4th Workshop on Reflection,
AOP and Meta-Data for Software Evolution (RAM-SE’07) at ECOOP, July
2007. 10.2

[NSV+06] Luis Daniel Benavides Navarro, Mario Südholt, Wim Vanderperren, Bruno De
Fraine, and Davy Suvée. Explicitly distributed aop using AWED. In AOSD
’06: Proceedings of the 5th international conference on Aspect-oriented software
development, pages 51–62, New York, NY, USA, 2006. ACM Press. 2.1

[OAH+06] Neil Ongkingco, Pavel Avgustinov, Laurie Hendren, Oege de Moor, Ganesh
Sittampalam, and Julian Tibble. Adding open modules to aspectj. In Hidehiko
Masuhara and Awais Rashid, editors, 5th International Conference on Aspect-
Oriented Software Development (AOSD). ACM Press, 2006. 10.4

[OMB05] Klaus Ostermann, Mira Mezini, and Christoph Bockisch. Expressive pointcuts
for increased modularity. In Andrew P. Black, editor, Proceedings of the Euro-
pean Conference on Object-Oriented Programming (ECOOP), volume 3586 of
LNCS, pages 214–240. Springer-Verlag, 2005. 10.2, 10.4

[Par72] David L. Parnas. On the criteria to be used in decomposing systems into mod-
ules. Communications of the ACM, 5(12), 1972. 1

[PDS05] Renaud Pawlak, Laurence Duchien, and Lionel Seinturier. Compar: Ensuring
safe around advice composition. In FMOODS 2005, volume 3535 of lncs, pages
163–178, jan 2005. 7.6

[RC03] Awais Rashid and Ruzanna Chitchyan. Persistence as an aspect. In AOSD
’03: Proceedings of the 2nd international conference on Aspect-oriented software
development, pages 120–129, New York, NY, USA, 2003. ACM Press. 2.1

[RKA06] Tobias Rho, Günter Kniesel, and Malte Appeltauer. Fine-grained generic as-
pects. In Gary Leavens, Curtis Clifton, Ralf Lämmel, and Mira Mezini, editors,
Workshop on Foundations of Aspect-Oriented Languages (FOAL’06), AOSD
2006. Workshop on Foundations of Aspect-Oriented Languages (FOAL’06), in
conjunction with Fifth International Conference on Aspect-Oriented Software
Development (AOSD.06), March 20-24, 2006, Bonn, Germany, Mar 2006. 10.4

[RRJ07] Pascal Raymond, Yvan Roux, and Erwan Jahier. Specifying and executing reac-
tive scenarios with lutin. In Workshop on Model-driven High-level Programming
of Embedded Systems (SLA++P), Braga, Portugal, March 2007. 9.1

[RS03] Hridesh Rajan and Kevin Sullivan. Eos: instance-level aspects for integrated
system design. In ESEC/FSE-11: Proceedings of the 9th European software en-
gineering conference held jointly with 11th ACM SIGSOFT international sym-
posium on Foundations of software engineering, pages 297–306, New York, NY,
USA, 2003. ACM Press. 2.1

[RWNH98] Pascal Raymond, Daniel Weber, Xavier Nicollin, and Nicolas Halbwachs. Auto-
matic testing of reactive systems. In 19th IEEE Real-Time Systems Symposium,
Madrid, Spain, December 1998. 9.1

142

BIBLIOGRAPHY

[SAM06] David Stauch, Karine Altisen, and Florence Maraninchi. Interference of Larissa
aspects. In Foundations of Aspect-Oriented Languages (FOAL), Bonn, Germany,
March 2006. 1, 7.1

[SAM07] David Stauch, Karine Altisen, and Florence Maraninchi. Larissa, un langage
d’aspects pour le développement des systèmes réactifs sûrs. In 3ème Journée
Francophone sur le Développement de Logiciels Par Aspects (JFDLPA 2007),
Toulouse, France, March 2007. 8.1.2

[Sca] The Scade suite. http://www.esterel-technologies.com/products/
scade-suite/. 2.2.1

[Sch00] Fred B. Schneider. Enforceable security policies. ACM Transactions on Infor-
mation and System Security, 3(1):30–50, February 2000. 10.2

[SDMML03] Marc Ségura-Devillechaise, Jean-Marc Menaud, Gilles Muller, and Julia Lawall.
Web cache prefetching as an aspect: Towards a dynamic-weaving based solution.
In Proceedings of the 2nd international conference on Aspect-oriented software
development, pages 110–119, Boston, Massachusetts, USA, March 2003. ACM
Press. 2.1

[SGS+05] Kevin Sullivan, William Griswold, Yuanyuan Song, Yuanfang Cai, Macneil
Shonle, Nishit Tewari, and Hridesh Rajan. Information hiding interfaces for
aspect-oriented design. In Joint 10th European Software Engineering Confer-
ence and 13th ACM SIGSOFT Symposium on the Foundations of Software En-
gineering (ESEC/FSE 2005), September 2005. 10.4

[SGSP02] Olaf Spinczyk, Andreas Gal, and Wolfgang Schröder-Preikschat. AspectC++:
An aspect-oriented extension to C++. In Proceedings of the 40th International
Conference on Technology of Object-Oriented Languages and Systems (TOOLS
Pacific 2002), 2002. 2.1

[SHU06] Dominik Stein, Stefan Hanenberg, and Rainer Unland. Expressing different
conceptual models of join point selections in aspect-oriented design. In AOSD
’06: Proceedings of the 5th international conference on Aspect-oriented software
development, pages 15–26, New York, NY, USA, 2006. ACM Press. 10.1

[Sip03] Henny Sipma. A formal model for cross-cutting modular transition systems.
In Workshop on Foundations of Aspect-Oriented Languages (FOAL’03), March
2003. 10.1

[SK03] Marcelo Sihman and Shmuel Katz. Superimpositions and aspect-oriented pro-
gramming. The Computer Journal, 46(5):529–541, September 2003. 7.6, 10.3

[SLB02] Sergio Soares, Eduardo Laureano, and Paulo Borba. Implementing distribu-
tion and persistence aspects with aspectj. In OOPSLA ’02: Proceedings of
the 17th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 174–190, 2002. 2.1

[SMMM06] Ludovic Samper, Florence Maraninchi, Laurent Mounier, and Louis Mandel.
GLONEMO: Global and accurate formal models for the analysis of ad-hoc sensor

143

http://www.esterel-technologies.com/products/scade-suite/
http://www.esterel-technologies.com/products/scade-suite/

BIBLIOGRAPHY

networks. In Proceedings of the First International Conference on Integrated
Internet Ad hoc and Sensor Networks (InterSense’06), Nice, France, May 2006.
11.3.3

[Sta07a] David Stauch. Formal analysis tools for the synchronous aspect language larissa.
Submitted to EURASIP Journal on Embedded Systems, Special Issue on Se-
lected Papers from SLA++P 2007 Model-driven High-level Programming of
Embedded Systems, 2007. 1, 7.1, 8.1.2

[Sta07b] David Stauch. Modifying contracts with Larissa aspects. In Workshop on Model-
driven High-level Programming of Embedded Systems (SLA++P), Electronic
Notes in Theoretical Computer Science, Braga, Portugal, March 2007. To ap-
pear. 1, 8.1.2

[STJ+06] Frans Sanen, Eddy Truyen, Wouter Joosen, Andrew Jackson, Andronikos Nedos,
Siobhán Clarke, Neil Loughran, and Awais Rashid. Classifying and document-
ing aspect interactions. In Yvonne Coady, David H. Lorenz, Olaf Spinczyk,
and Eric Wohlstadter, editors, Proceedings of the Fifth AOSD Workshop on
Aspects, Components, and Patterns for Infrastructure Software, pages 23–26,
Bonn, Germany, March 2006. Published as University of Virginia Computer
Science Technical Report CS–2006–01. 7.6

[Suu] Manual for the Altimax and Vector models. available at the Suunto website.
http://www.suunto.com/. 5.2

[SyC03] Open SystemC Initiative. SystemC v2.0.1 Language Reference Manual, 2003.
http://www.systemc.org/. 11.3.3

[TCMM07] Claus Traulsen, Jérôme Cornet, Matthieu Moy, and Florence Maraninchi. A
SystemC/TLM semantics in Promela and its possible applications. In 14th
Workshop on Model Checking Software SPIN, July 2007. 11.3.3

[TNI] TNI Software. http://www.tni-software.com/. 2.2.1

[Tra] Argos source code for the tram example. http://www-verimag.imag.fr/

~stauch/ArgosCompiler/contracts.html. 8.4.2

[VBC01] John Viega, Joshua T. Bloch, and Pravir Chandra. Applying aspect-oriented
programming to security. Cutter IT Journal, 2001. 2.1

[VH03] Matthias Veit and Stephan Herrmann. Model-view-controller and object teams:
A perfect match of paradigms. In Mehmet Akşit, editor, AOSD’03, pages 140–
149, 2003. 5.4

[VSCF05] Wim Vanderperren, Davy Suvée, Maŕıa Agustina Cibrán, and Bruno De Fraine.
Stateful aspects in jasco. In Thomas Gschwind, Uwe Aßmann, and Oscar Nier-
strasz, editors, Proceedings of the 4th International Symposium on Software
Composition (SC’05), pages 167–181, April 2005. 10.2

[Wam06] Dean Wampler. Contract4J for design by contract in Java: Design pattern-
like protocols and aspect interfaces. In Yvonne Coady, David H. Lorenz, Olaf

144

http://www.suunto.com/
http://www.systemc.org/
http://www.tni-software.com/
http://www-verimag.imag.fr/~stauch/ArgosCompiler/contracts.html
http://www-verimag.imag.fr/~stauch/ArgosCompiler/contracts.html

BIBLIOGRAPHY

Spinczyk, and Eric Wohlstadter, editors, Proceedings of the Fifth AOSD Work-
shop on Aspects, Components, and Patterns for Infrastructure Software, pages
27–30, Bonn, Germany, March 2006. Published as University of Virginia Com-
puter Science Technical Report CS–2006–01. 8.5

[WKD04] Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A semantics for
advice and dynamic join points in aspect-oriented programming. ACM Trans-
action on Programming Languages and Systems, 26(5):890–910, 2004. 10.3

[WV04] Robert J. Walker and Kevin Viggers. Implementing protocols via declarative
event patterns. In SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM SIG-
SOFT twelfth international symposium on Foundations of software engineering,
pages 159–169, New York, NY, USA, 2004. ACM Press. 10.2

[WZL03] David Walker, Steve Zdancewic, and Jay Ligatti. A theory of aspects. In Pro-
ceedings of the ACM SIGPLAN International Conference on Functional Pro-
gramming, August 2003. 10.3

145

ABSTRACT

Title: Larissa, an Aspect-Oriented Language for Reactive Systems

Aspect-oriented programming encapsulates cross-cutting concerns into aspects. Although
these concepts have met great success in software engineering, they have never been studied
in the context of reactive systems. This thesis takes a first step in that direction. We have
developed Larissa, an aspect-oriented extension for the small synchronous programming
language Argos. We also studied several examples of cross-cutting concerns in reactive
systems, and modeled them with Larissa. Larissa differs from most other aspect languages
in two points. First, it crosscuts the parallel structure of synchronous languages. Second,
it is formally defined and has important semantic properties, notably the preservation of
the equivalence of base programs. We also present two analysis tools for Larissa. The first
statically analyzes interferences between aspects, and the second combines Larissa aspects
with design-by-contract, and thus enables modular verification.

Keywords: Aspect-oriented programming, reactive systems, synchronous languages, formal
semantics

RÉSUMÉ

Titre: Larissa, un langage aspect pour les systèmes réactifs

La programmation par aspects encapsule des préoccupations transverses dans des aspects.
Alors que ces notions ont eu un grand succès dans le génie logiciel, elles n’ont jamais été
étudiées dans le cadre des systèmes réactifs. Cette thèse fait un premier pas dans cette
direction. Nous présentons Larissa, un langage d’aspect pour le langage simple synchrone
Argos. Nous avons aussi étudié plusieurs exemples de préoccupations transverses dans le
domaine des systèmes réactifs, que nous avons modélisés avec Larissa. Les aspects Larissa
se distinguent en deux points de la plupart des langages aspects existants. D’abord, ils
encapsulent des préoccupations qui sont transverses à la structure parallèle du programme
de base. Deuxièmement, ils sont définis formellement et ils ont des propriétés sémantiques
importantes, tel que la préservation de l’équivalence entre des programmes de base. La
définition sémantique nous a aussi permis de développer deux outils d’analyse puissants,
un pour l’interférence des aspects, et l’autre pour la combinaison des aspects avec la
programmation par contrat.

Mots-clés: Programmation par aspects, systèmes réactifs, langages synchrones, sémantique
formelle

	Introduction
	Aspect-Oriented Programming and Reactive Systems
	Aspect-Oriented Programming
	Reactive Systems
	The Synchronous Approach

	Adding Aspects to Reactive Systems
	Criteria for a Synchronous Aspect Language
	Choosing a Base Language

	Argos
	Syntax and Intuitive Semantics
	Formal Semantics
	Traces and Trace Semantics
	Automata
	Argos Operators

	Synchronous Observers
	Some Examples of Encoding Aspects
	Conclusion on Argos

	Larissa
	Designing an Aspect Extension for Argos
	A first Kind of Aspects: toInit and toCurrent
	The Pasteurizer Controller
	Variants of the Aspect Language
	Formal Definition

	Recovery Aspects
	Example: the Blender
	Formal Definition

	Conclusion

	Case Study: Modelling the Interface of a Complex Wristwatch
	Introduction
	Modeling Interfaces of Small Devices
	Case Study: SuuntoSuunto, Altimax and Vector are trademarks of Suunto Oy. Watches
	The Base Program
	The Altimax Watch
	The Vector Watch

	Related Work
	Conclusion

	Larissa Aspects as Argos Operators
	Introduction
	Preservation of Determinism and Completeness
	Proof for Theorem 1

	Preservation of Equivalence
	Proof for Theorem 2

	Trace Transformation Semantics
	Conclusion

	Interference between Aspects
	Introduction
	Example
	Interfering Aspects
	Extension to recovery Aspects
	Defining Interference

	Proving Non-Interference
	Interference between the Shortcut Aspects
	Interference between a Shortcut and the No-DTM Aspect

	Proofs
	Proof for Theorem 5
	Proof for Theorem 4

	Related Work
	Conclusion

	Contracts for Aspects
	Introduction
	Synchronous Languages and Design-by-Contract
	Combining Contracts and Aspects

	Contracts for Argos
	Weaving Aspects in Contracts
	Formal Definitions
	Proof of Theorem 6

	Example: The Tramway Door Controller
	Adding the Gangway
	Verification of the Woven Controller

	Related Work
	Conclusion

	Implementation
	Introduction
	Implementation of the Compiler
	Syntax of Argos
	A Simple Example
	Parallel Product and Encapsulation
	Process Calls
	Refinement
	Inhibition

	Syntax of Larissa
	Aspect Calls
	toInit Aspects
	Recovery Aspects
	Inserting Advice Programs

	Extensions
	Integer Variables
	Support for Contracts
	File Inclusion

	Towards Structure-Preserving Weaving
	Structure-Preserving Weaving
	Discussion

	Related Work
	Aspects for Automata Languages
	Stateful Pointcut Models
	Formal Semantics and Properties for AOP
	AOP and Modular Reasoning

	Conclusion
	Context
	Comments on the Contributions
	Cross-cutting Concerns in Reactive Systems
	Larissa, an Aspect Language for Argos
	Semantic Analysis Tools for Larissa
	Aspects for Parallel and Formally-Defined Languages

	Perspectives
	Extension to Integer Variables
	Aspect Languages for Other Synchronous Languages
	Non-Functional Concerns in Reactive Contexts

	Concluding Remarks

	Bibliography

