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Abstract:

We present two tools for the formal analysis of the aspect language Larissa, which extends the simple
synchronous language Argos. The first tool concerns the combination of design-by-contract with Larissa
aspects, and shows how we can apply an aspect not only to a program, but to a specification of programs
in form of a contract, and obtain a new contract. The second concerns aspect interferences, i.e. aspect that
influence each other in an unintended way if they are applied to the same program. We present a way to
weave aspects in a less conflict-prone manner, and a means to detect remaining conflicts statically. These
tools are quite powerful, compared to those available for other aspect languages.

1 Introduction
Aspect-oriented programming (AOP) offers programming constructs to a base language which aim at en-
capsulating crosscutting concerns. These are concerns that cannot be properly captured into a module by
the decomposition offered by the base language. AOP languages express crosscutting concerns in aspects,
and weave (i.e. compile) them in the base program with an aspect weaver. All the aspect extensions of
existing languages (like AspectJ [13]) share two notions: pointcuts and advice. A pointcut describes, with
a general property, the program points (called join points) where the aspect should intervene (e.g., all meth-
ods of the class X, or all methods whose names begin with set). The advice specifies what has to be done
at each join point (e.g., execute a piece of code before the normal code of the method).

Reactive systems are control systems that are in constant interaction with their environment. They are
often programmed in dedicated languages, which must fulfill specific requirements. First, reactive systems
often fulfill safety-critical functions, and thus require the use of formal methods in their development.
Programming languages for them must thus be formally defined, and have a connection to verification
tools. Furthermore, they usually fulfill several tasks in parallel, and programming languages must thus
offer an explicit parallel composition of components.

The family of synchronous languages are such dedicated languages, which are very successfully used
to program safety-critical reactive systems, e.g. control systems in airplanes or nuclear power stations.
Synchronous languages are all based on the same semantic principle, the synchrony hypothesis, which
divides time into instants and assumes that reactions of parallel components are atomic, i.e. that outputs
are emitted as soon as the inputs are received. A second principle is the synchronous broadcast, which
allows outputs of a component to be read by other components in parallel. These principles allow to
develop synchronous languages that are very expressive and have a clear and simple semantics with strong
semantic properties. The family of synchronous languages contains languages with different styles, e.g.
the dataflow language Lustre [11] and the imperative language Esterel [4]. The simplest language of the
family is Argos [20], a hierarchical automata language, based on Mealy machines, which can be composed
by different operators.

There are also crosscutting concerns in synchronous programs, which cannot be encapsulated with
the parallel composition and other operators of synchronous languages. They are however different from
crosscutting concerns in programs written in general-purpose languages, because they crosscut the parallel
structure of reactive programs. Therefore, and because they are usually not formally defined, existing
aspect languages cannot be applied to reactive systems. Thus, we developed an aspect-oriented extension
for Argos, called Larissa [1].

When designing Larissa, we took great care to give it a clean and simple semantics and strong semantic
properties, as they are common in synchronous languages. Thus, pointcuts are specified as synchronous
observers [12], i.e. Argos programs that, via the synchronous broadcast, observe the inputs and the outputs
of the base program, and compute a safety property on them. This is a semantic and at the same time
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very expressive mechanism. Larissa has different kinds of advice, and all are specified depending only on
the interface of the base program, but not on its implementation. Due to this semantic definition, Larissa
aspects preserve the equivalence of base programs.

Having a clean and simple semantics has the advantage of making programs easier to understand for
programmers. Furthermore, it allows the semantic analysis of programs. In this paper, we present two tools
for semantic analysis.

The first combines Larissa aspects with another successful programming technique, Design-by-Contr-
act [21], which has been originally introduced for object-oriented systems. There, a method is specified by
a contract, which consists of an assumption clause and a guarantee clause. It fulfills its contract if after its
execution, the guarantee holds whenever the assumption was true when the program was called.

Contracts have been adapted to reactive systems by [19], where assumptions and guarantees are ex-
pressed as observers, in the same way as Larissa pointcuts. Because reactive systems constantly receive
inputs and emit outputs, it seems natural to let the assumption observer restrict the inputs, and let the
guarantee observer ensure properties on the outputs.

Aspect-oriented programming and design-by-contract can hardly be used concurrently: when an aspect
is applied to a method, it changes its semantics, such that its contract is no longer valid. The approach
we present solves this problem for Argos and Larissa by generating a new contract that is valid after the
application of the aspect. We show how to apply an aspect asp to a contract C and derive a new contract
C ′, such that for any program P which fulfills C, P with asp fulfills C ′. Although an observer is also an
Argos program, we cannot directly apply aspects, because it has a different interface, where the outputs of
the program have become inputs. We therefore transform the observers first into non-deterministic Argos
programs, which produce exactly the execution traces the observer accepted, and apply the aspect to these.
A second difficulty comes from the fact that we must treat assumption and guarantee differently to preserve
the correctness of our algorithm. We demonstrate this approach on an example which models a tramway
door controller.

The second semantic analysis we present treats interference between aspects. Applying several aspects
to the same program may lead to unintended results because of conflicts between the aspects. We say that
two aspects interfere when weaving them in different orders does not yield the same result.

Whether two aspects interfere depends on the way they are woven in the program. We distinguish
sequential and joint weaving. Sequential weaving means weaving the aspects one by one, where the next
aspect is woven in the result of the previous weaving. Argos operators are defined that way, and also
Larissa aspects. On the other hand, joint weaving means weaving several aspects together, into the same
base program. AspectJ is defined that way: its semantics is not defined as a transformation of the base
program, but as injecting behavior in the running program, including other aspects.

Sequential weaving often causes interference between aspects, because the second aspects is applied
to the first, but not the other way round. Therefore, we present a joint weaving mechanism for Larissa,
which applies aspects to the same base program, and thus reduces interferences. As opposed to AspectJ,
however, all jointly woven aspects only affect the base program, but not each other. Therefore, we still
need sequential weaving, in cases where one aspect needs to affect another.

Joint weaving removes many cases of interference, which we also demonstrate with an example. How-
ever, interference is unavoidable when two aspects want to modify the base program in the same point.
Such cases should be made explicit to the programmer. We therefore present a interference analysis for
jointly woven aspects, that can either determine that two aspects do not interfere for a given base program,
or that they never interfere for any base program. In the first case, we apply both pointcuts to the base
program and check if there are common join points. In the second case, it is sufficient to perform a parallel
product of the two pointcuts. All these steps must be performed during the compilation process anyway,
and thus add no additional cost.

Both tools we present in this paper are only possible because of the semantic definition of Larissa. Thus,
the contract weaving can apply aspects to programs whose implementation is unknown. The interference
analysis also depends on the semantic definition of Larissa, notably on the precise description of join
points with observers, which makes it possible to determine statically the points where several aspects
want to introduce their advice.

The structure of the paper is as follows: Section 2 introduces Larissa and Argos, Section 3 shows how
to weave contracts in aspects, and Section 4 contains an example for this. Next, Section 5 explains the inter-
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ference analysis, using a second example. Section 6 discusses related work, and Section 7 concludes. Work
on the combination of contracts and aspects has been published in [25], and work on aspect interference
in [26].

2 Argos and Larissa
This section presents a restriction of the Argos language [20], and the Larissa extension [1]. Argos is de-
fined as a set of operators on complete and deterministic input/output automata communicating via Boolean
signals. The semantics of an Argos program is given as a trace semantics that is common to a wide variety
of reactive languages.

2.1 Traces and Trace Semantics
Definition 1 (Traces). Let I, O be finite sets of Boolean input and output variables representing signals
from and to the environment. An input trace, it, is a function: it : N −→ [I −→ {true,false}].
An output trace, ot, is a function: ot : N −→ [O −→ {true,false}]. We denote by InputTraces
(resp. OutputTraces) the set of all input (resp. output) traces. A pair (it, ot) of input and output traces
(i/o-traces for short) provides the valuations of every input and output at each instant n ∈ N . We denote
by it(n)[i] (resp. ot(n)[o]) the value of the input i ∈ I (resp. the output o ∈ O) at the instant n ∈ N .

A set of pairs of i/o-traces S = {(it, ot) | it ∈ InputTraces ∧ ot ∈ OutputTraces} is deterministic
iff ∀(it, ot), (it′, ot′) ∈ S . (it = it′) =⇒ (ot = ot′), and it is complete iff ∀it ∈ InputTra-
ces . ∃ot ∈ OutputTraces . (it, ot) ∈ S.

A set of traces is a way to define the semantics of an Argos program P , given its inputs and outputs.
From the above definitions, a program P is deterministic if from the same sequence of inputs it always
computes the same sequence of outputs. It is complete whenever it allows every sequence of every eligible
valuations of inputs to be computed. Determinism is related to the fact that the program is indeed written
with a programming language (which has deterministic execution); completeness is an intrinsic property
of the program that has to react forever, to every possible inputs without any blocking.

2.2 Argos
The core of Argos is made of input/output automata, the synchronous product, and the encapsulation. The
synchronous product allows to put automata in parallel which synchronize on their common inputs, and
the encapsulation is the operator that expresses the communication between automata. The semantics of an
automaton is defined by a set of traces, and the semantics of the operators is given by translating expressions
into flat automata.

Definition 2 (Automaton). An automaton A is a tuple A = (Q, sinit, I,O, T ) where Q is the set of states,
sinit ∈ Q is the initial state, I and O are the sets of Boolean input and output variables respectively,
T ⊆ Q × Bool(I) × 2O × Q is the set of transitions. Bool(I) denotes the set of Boolean formulas with
variables in I. For t = (s, `, O, s′) ∈ T , s, s′ ∈ Q are the source and target states, ` ∈ Bool(I) is the
triggering condition of the transition, and O ⊆ O is the set of outputs emitted whenever the transition is
triggered. Without loss of generality, we consider that automata only have complete monomials as input
part of the transition labels.

The semantics of an automaton A = (Q, sinit, I,O, T ) is given in terms of a set of pairs of i/o-traces.
This set is built using the following functions:

S stepA : Q× InputTraces×N −→ 2Q

O stepA : Q× InputTraces×N \ {0} −→ 2(2O)

S step(s, it , n) returns the set of states that are reachable from state s after performing n steps with the
input trace it ; O step(s, it , n) contains the different combinations of outputs that can be emitted at step n
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after executing it from s:

n = 0 : S stepA(s, it, n) = {s}
n > 0 : s′ ∈ S stepA(s, it, n) O ∈ O stepA(s, it, n)

where s′′ ∈ S stepA(s, it, n− 1) ∧ ∃(s′′, `, O, s′) ∈ T
∧ ` has value true for it(n− 1) .

Note that if the automaton is deterministic and complete, S step and O step always return a set with a
single element.

We denote Traces(A) the set of all traces built following this scheme: Traces(A) defines the semantics
of A. The automaton A is said to be deterministic (resp. complete) iff its set of traces Traces(A) is
deterministic (resp. complete) (see Definition 1). Two automata A1, A2 are trace-equivalent, noted A1 ∼
A2, iff Traces(A1) = Traces(A2). We assume that Argos programs are deterministic and complete, as
these are important properties for reactive systems.

Definition 3 (Synchronous Product). Let A1 = (Q1,sinit1, I1,O1, T1) and A2 = (Q2, sinit2, I2,O2, T2)
be automata. The synchronous product ofA1 andA2 is the automatonA1‖A2 = (Q1×Q2, (sinit1, sinit2),
I1 ∪ I2,O1 ∪ O2, T ) where T is defined by:

(s1, `1, O1, s
′
1) ∈ T1 ∧ (s2, `2, O2, s

′
2) ∈ T2 ⇐⇒ ((s1, s2), `1 ∧ `2, O1 ∪O2, (s′1, s

′
2)) ∈ T .

The synchronous product of automata is both commutative and associative, and it is easy to show that
it preserves both determinism and completeness.

Definition 4 (Encapsulation). Let A = (Q, sinit, I,O, T ) be an automaton and Γ ⊆ I ∪ O be a set of
inputs and outputs ofA. The encapsulation ofA w.r.t. Γ is the automatonA\Γ = (Q, sinit, I\Γ,O\Γ, T ′)
where T ′ is defined by:

(s, `, O, s′) ∈ T ∧ `+ ∩ Γ ⊆ O ∧ `− ∩ Γ ∩O = ∅ ⇐⇒ (s,∃Γ . `, O \ Γ, s′) ∈ T ′

`+ is the set of variables that appear as positive elements in the monomial ` (i.e. `+ = {x ∈ I | (x ∧ `) =
`}). `− is the set of variables that appear as negative elements in the monomial l (i.e. `− = {x ∈ I |
(x ∧ `) = `}). ∃Γ . ` is then defined as ∃Γ . ` =

∧
a∈`+\Γ a ∧

∧
a∈`−\Γ a.

Intuitively, a transition (s, `, O, s′) ∈ T is still present in the result of the encapsulation operation if its
label satisfies a local criterion made of two parts: `+ ∩ Γ ⊆ O means that a local variable which needs to
be true has to be emitted by the same transition; `−∩Γ∩O = ∅means that a local variable that needs to be
false should not be emitted in the transition. If the label of a transition satisfies this criterion, then the names
of the encapsulated variables are hidden, both in the input part and in the output part. This is expressed by
∃Γ . ` for the input part, and by O \ Γ for the output part. In general, the encapsulation operation does
not preserve determinism nor completeness. This is related to the so-called “causality” problem intrinsic
to synchronous languages (see, for instance [4]).

An example

Figure 1 (a) shows a 3-bits counter. Dashed lines denote parallel compositions and the overall box denotes
the encapsulation of the three parallel components, hiding signals b and c. The idea is the following: the
first component on the right receives a from the environment, and sends b to the second one, every two
a’s. Similarly, the second one sends c to the third one, every two b’s. b and c are the carry signals. The
global system has a as input and d as output; it counts a’s modulo 8, and emits d every 8 a’s. Applying the
semantics of the operator (first the product of the three automata, then the encapsulation) yields the simple
flat automaton with 8 states (Figure 1 (b)).
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a/d
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0

1

b

0

1

cc/d

b,c

b/c

(a) (b)

Figure 1: A 3-bits counter. Notations: in each automaton, the initial state is denoted with a little arrow; the
label on transitions are expressed by “triggering condition / emitted outputs”, e.g. the
transition labelled by “a/b” is triggered when a is true and emits b.

2.3 Larissa

Argos operators are already powerful. However, there are cases in which they are not sufficient to modu-
larize all concerns of a program: a small modifications of the global program’s behavior may require that
we modify all parallel components, in a way that is not expressible with the existing operators.

The goal of aspects being to specify such cross-cutting modifications, we proposed an aspect-oriented
extension for Argos [1], which allows the modularization of a number of recurrent problems in reactive
programs, like the reinitialization. This leads to the definition of a new operator (the aspect weaving
operator), which preserves determinism and completeness of programs, as well as semantic equivalence
between programs. Similar to aspects in other languages, a Larissa aspect consists of a pointcut, which
selects a set of join points, and an advice, which modifies these join points.

2.3.1 Join Point Selection

To preserve semantical equivalence, pointcuts in Larissa are not expressed in terms of the internal structure
of the base program (as e.g. state names), but refer to the observable behavior of the program only, i.e., its
inputs and outputs. In the family of synchronous languages, where the communication between parallel
components is the synchronous broadcast, observers [12] are a powerful and well-understood mechanism
which may be used to describe pointcuts. Indeed, an observer is a program that may observe the inputs and
the outputs of the base program, without modifying its behavior, and computes a safety property (in the
sense of safety/liveness properties as defined in [14]).

Therefore, observers are well suited to express pointcuts. A pointcut is thus an observer which selects a
set of join point transitions by emitting a single output JP, the join point signal. A transition T in a program
P is selected as a join point transition when in the concurrent execution of P and the pointcut, JP is emitted
when T is taken.

Technically, we perform a synchronous product between the program and the pointcut and select those
transitions in the product which emit JP. However, if we simply put a program P and an observer PC
in parallel, P ’s outputs O will become synchronization signals between them, as they are also inputs of
PC. They will be. encapsulated, and are thus no longer emitted by the product. We avoid this problem by
introducing a new output o′ for each output o of P : o′ will be used for the synchronization with PC, and o
will still be visible as an output. First, we transform P into P ′ and PC into PC′, where ∀o ∈ O, o is replaced
by o′. Second, we duplicate each output of P by putting P in parallel with one single-state automaton per
output o defined by: duplo = ({q}, q, {o′}, {o}, {(q, o′, o, q)}). The complete product, where O is noted
{o1, ..., on}, is given by:

P(P,PC) = (P ′‖PC′‖duplo1‖ ... ‖duplon
) \ {o′1, ..., o′n}

The join point transitions are those transitions of P(P,PC) that emit JP. Fig. 2 illustrates the pointcut
mechanism. The pointcut (b) specifies any transition which emits c: in base program (a), the loop transition
in state B is selected as a join point transition.
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Figure 2: Example pointcut.

σ1

σn

σn

σ1

σn

`2/Oins

`2/Oins

`2/O2, JP

`1/Oins

`1/O1, JP
`1/Oins

`2/O2, JP`1/O1, JP

σ1

(a) toInit aspect (b) toCurrent aspect

target state T
target state T

target state T

Figure 3: Schematic toInit and toCurrent aspects. Advice transitions are in bold, join point transitions are
dotted.

2.3.2 Specifying the Advice

In aspect oriented languages, the advice expresses the modification applied to the base program. In Larissa,
we define two types of advice: in the first type, an advice replaces the join point transitions with advice
transitions pointing to an existing target states; in the second type, an advice introduces a Argos program
between the source state of the join point transition and an existing target state. In both cases, target states
have to be specified without referring explicitly to state names.

An advice adv has two ways of specifying the target state T among the existing states of the base
program P. T is the state of P that would be reached by executing a finite input trace from either the initial
state of P, adv is then called toInit advice, or from the source state of the join point transition, adv is then
called toCurrent advice. As the base program is deterministic and complete, executing an input trace from
any of its states defines exactly one state.

The advice weaving operator/JPadv weaves a piece of advice adv in a program.

Advice Transitions. The first type of advice consists in replacing each join point transition with an
advice transition. Once the target state is specified by a finite input trace σ = σ1 . . . σn, the only missing
information is the label of these new transitions. We do not change the input part of the label, so as to keep
the woven automaton deterministic and complete, but we replace the output part by some advice outputs
Oadv. These are the same for every advice transition, and are thus specified in the aspect. Advice transitions
are illustrated in Fig. 3.

Formal Definition. We only define toInit advice formally. A formal definition of the complete Larissa
language can be found in [24, Chapter 4].

Definition 5 (toInit advice weaving). LetA = (Q, sinit, I,O, T ) be an deterministic and complete automa-
ton and adv = (Oadv, toInit, σ) a piece of advice, with σ : [0, ..., `σ] −→ [I −→ {true,false}] a finite
input trace of length `σ+1. The advice weaving operator,/JP, weaves asp onA and returns the automaton
A/JP adv = (Q, sinit, I,O ∪Oadv, T ′), where T ′ is defined as follows, with {targ} = S stepA(sinit, σ, `σ)
being the new target state:(

(s, `, O, s′) ∈ T ∧ JP /∈ O
)

=⇒ (s, `, O, s′) ∈ T ′ (1)(
(s, `, O, s′) ∈ T ∧ JP ∈ O

)
=⇒ (s, `, Oadv, targ) ∈ T ′ (2)
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(a) inserted automaton Ains (b) woven program
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Figure 4: Inserting an advice automaton.

a

true/b
true/b

(a) (b)

a

a/b
a/b

a/b

a/b

Figure 5: A mono stable flip-flop (a), made retriggerable (b).

Transitions (1) are not join point transitions and are left unchanged. Transitions (2) are the join point
transitions, their final state targ is specified by the finite input trace σ. S stepA (which has been naturally
extended to finite input traces) executes the trace during `σ steps, from the initial state of A.

Advice Programs. It is sometimes not sufficient to modify single transitions, i.e. to jump to another
location in the automaton in only one step. It may be necessary to execute arbitrary code when an aspect is
activated. In these cases, we can insert an automaton between the join point and the target state.

Therefore, we use an inserted automaton Ains that can terminate. Since Argos has no built-in notion of
termination, the programmer of the aspect has to identify a final state F (denoted by filled black circles in
the figures).

We first specify a target state T as explained above. Then, for every T, a copy of the automaton Ains

is inserted, which means: 1) replace every join point transition J with target state T by a transition to the
initial state I of this instance of Ains. As for advice transitions, the input part of the label is unchanged and
the output part is replaced by Oadv; 2) connect the transitions that went to the final state F in Ains to T.
Advice programs are illustrated in Fig. 4.

2.3.3 Fully Specifying an Aspect

An aspect is given by the specification of its pointcut and its advice: asp = (PC, adv), where PC is the
pointcut and adv is the advice. adv is a tuple which contains 1) the advice outputs Oadv; 2) the type of
the target state specification (toInit or toCurrent); 3) the finite trace σ over the inputs of the program; and
optionally, 4) Padv, the advice program. Thus, advice can be a tuple < Oadv,type, σ >, or, with an advice
program, a tuple < Oadv,type,σ, Padv >, with type ∈ {toCurrent, toInit}. An aspect is woven into a
program by first determining the join point transitions and then weaving the advice.

Definition 6 (Aspect weaving). Let P be a program and asp = (PC, adv) an aspect for P . The weaving
of asp on P is defined by

P / asp = P(P,PC)/JP adv .

2.3.4 Example

As an example, consider a mono-stable flip-flop (MFF) with one input a and one output b, which emits
two bs after it received an a. Fig. 5(a) shows an implementation of the MFF in Argos. We want to
make the MFF retriggerable, meaning that if an a is emitted during several following instants, the MFF
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continues emitting b. We do this by applying the aspect Atri = (PC, < b, toInit, (a) >) to the MFF, where
PC =({S},S,{a,b},{JP}, {(S,a.b,JP,S)}) is a pointcut which selects all occurrences of a.b as join points.
Fig. 5(b) shows the result of applying Atri to the implementation.

3 Combining Contracts and Aspects
In this section, we show how to apply aspects to a specification of programs in form of a contract. First, we
formally define contracts for Argos, then explain informally how to weave aspects into them, and finally
define this process formally.

3.1 Contracts for Argos
The observers we use in contracts are slightly different from those used as pointcuts. Notably, once they
start emitting their output err, they continue emitting it forever. This is done in an Error State Error. Such
an observer specifies a class of programs fulfilling a certain safety property, namely those programs where
the observer never emits err when combined with them. The Error State is thus a way to refuse certain
inputs while keeping the observer complete.

Definition 7 (Observer). An observer is an automaton (Q∪{Error}, q0, I ∪O, {err}, T ) which observes
an automaton with inputs I and outputsO. When an observer emits err, it will go to state Error and also
emit err in the next instant. A program P is said to obey an observer obs (noted P |= obs) iff P‖obs \ O
produces no trace which emits err.

Transitions leading to the Error State are called Error transitions.
A contract specifies a class of programs with two observers, an assumption and a guarantee. Definition 8

is an auxiliary definition, used to formally define contracts in Definition 9. � denotes the trace for a single
output err that never emits err, i.e. �(err)[n] = false for all n. An observer that accepts a trace
emits �.

Definition 8 (Trace Combination). Let it : N −→ [I −→ {true,false}] and ot : N −→ [O −→
{true,false}] be traces, with I ∩O = ∅. Then, it.ot : N −→ [I ∪O −→ {true,false}] is a trace
s.t. ∀i ∈ I . it.ot(n)(i) = it(n)(i) ∧ ∀o ∈ O . it.ot(n)(o) = ot(n)(o).

Definition 9 (Contract). A contract over inputs I and outputs O is a tuple (A,G) of two observers over
I ∪ O, where A is the assumption and G is the guarantee. A program P fulfills a contract (A,G), written
P |= (A,G), iff

(it .ot , �) ∈ Traces(A) ∧ (it , ot) ∈ Traces(P )⇒ (it .ot , �) ∈ Traces(G) .

Intuitively, a guarantee G should only restrict the outputs of a program and an assumption A should
only restrict the inputs. We do not require this formally, but contracts which do not respect this constraint
are of little use. Indeed, if G restricts the inputs more than A, it follows from Definition 9 that there exists
no program P s.t. P |=(A,G). Conversely, a program is usually placed in an environment E, s.t. E |=A. If
A restricts the outputs, no such E exists, as the outputs are controlled by P .

As an example for a contract, consider the following contract for the MFF from Section 2.3.4. The
contract is composed of an assumption, shown in Fig. 6(a), which states that a’s always occur in pairs, and
a guarantee consisting of two automata, shown in Fig. 6(b) and (c), which are composed in parallel. The
automaton in Fig. 6(b) guarantees that a single b is never emitted, and the automaton in Fig. 6(c) guarantees
that when a occurs while no b is emitted, b is emitted in the next instant. The product of Fig. 6(b) and
Fig. 6(c) is shown in Fig. 6(d).

3.2 Weaving Aspects in Contracts
We want to apply an aspect asp not to a specific program P , but to a class of programs defined by a contract
C, and obtain a new class of programs, defined by a contract C ′, such that P |= C ⇒ P / asp |= C ′. To
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Figure 6: The contract for the MFF.

construct C ′, we simulate the effect that the aspect has on a program as far as possible on the assumption
and the guarantee observers of C. However, an aspect cannot be applied directly to an observer, because
the aspect has been written for a program with inputs I and outputs O, whereas for the observer, O are
also inputs.

Therefore, we transform the observers of the contract first into non-deterministic automata (NDA),
which produce exactly those traces that the observer accepts. We then weave the aspects into the NDA, with
a modified definition of the weaving operator. The woven NDA are then transformed back into observers.
The obtained observers may still be non-deterministic, and are thus determinized.

Except for aspect weaving, all of these steps are different for the assumption and the guarantee, as far
as the Error transitions are concerned. This is because the assumption and the guarantee have different
functions in a contract: the assumption states which part of the program is defined by the contract, and
the guarantee gives properties that are always true for this part. Indeed, a contract (A,G) can be rewritten
as (true,A⇒G), where A⇒G is an observer that emits err when G emits err but not A. Thus, the
assumption can be considered as a negated guarantee.

After weaving an aspect, the assumption must exclude the undefined part of any program which fulfills
the contract. Therefore, it must reject a trace (by emitting err) as soon as there exists a program for which
it cannot predict the behavior. The guarantee, on the other hand, emits err only for traces which cannot be
emitted by any program which fulfills the contract. Therefore, after weaving an aspect, the new guarantee
may only emit err if it is sure that there exists no program that produces the trace.

On the other hand, we want the assumption to be as permissive as possible, to include all possible
programs, and the guarantee as restrictive as possible, to characterize the woven program as exactly as
possible. Thus, when we know exactly the behavior of the program, as e.g. that of an inserted advice pro-
gram, we do not emit err in the assumption, but we emit err in the guarantee to exclude all input/output
combinations that are never produced by the program.

3.3 Formal Definitions

This section describes the weaving of aspects into contracts in detail, and illustrates it on the MFF example.
First, Definition 10 defines the transformation of an observer into a NDA through two functions, one for
guarantee observers and one for assumption observers.

Definition 10 (Observer to NDA transformation). Let obs = (Q ∪ {Error}, q0, I ∪ O, {err}, T ) be
an observer with an error state Error over inputs I and outputs O, with I ∩ O = ∅. NDG(obs) =
(Q, q0, I,O, TNDG

) defines a NDA, where TNDG
is defined by (s, `I ∧ `O, ∅, s′) ∈ T ⇒ (s, `I , `+O, s

′) ∈
TNDG

. NDA(obs) = (Q ∪ {Error}, q0, I,O, TNDA
) defines a NDA, where TNDA

is defined by (s, `I ∧
`O, o, s

′) ∈ T ⇒ (s, `I , `+O ∪ o, s′) ∈ TNDG
.

Note that the transitions in obs which emit err (i.e. the Error transitions) have no corresponding
transitions in NDG(obs). In the guarantee, these transitions correspond to input/output combinations which
are never produced by the program and must not be considered by the aspect. The other transitions are
transformed such that part of the condition concerning O disappears, and those outputs that appeared as
positive atoms in the condition (i.e., `+O) become outputs.
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As an example, consider the guarantee of the MFF (Fig. 6(d)). Its transformation into a NDA is shown
in Figure 7(a). Note that the Error State and the transitions leading to it have disappeared, and that b is now
an output. Thus, the transition label b has been transformed to true/b, and label a.b to a.

Error

(a) (b) (c)

true/b
true/b

a

true/b a/b

a, a/b

a, a/b

a/b
a/b

a/b

a.b
a.ba.b

a.b

a

a.b

a/b

a
true/b

a.b

b/err

b/erraa

a

a.ba/b

Figure 7: a: NDG(gMFF), b: NDG(gMFF)/ Atri, c: OBSG(NDG(gMFF)/ Atri).

In the assumption, on the other hand, the Error transition correspond to inputs from the environment
to which the program may react arbitrarily. If the aspect replaces these transitions in the assumption, they
are also replaced in the program, and can thus be accepted from the environment by the woven program.
Thus, error transitions are not removed in NDA(obs), so that the aspect weaving can modify them. The
transformation of the assumption of the MFF (Fig. 6(a)) is shown in Fig. 8(a).

Errora/err Error
a

Errora/err

a, a/ba, a/b

a, a/b a

a/b,a/b,err,

(a) (b) (c)

a, a/b

a, a/b

a

a/b,err, a.b
a/err

a.b

Figure 8: a: NDA(aMFF), b: NDA(aMFF)/ Atri, c: OBSA(NDA(aMFF)/ Atri).

We can now apply an aspect to a NDA. However, a trace may lead to several states. Thus, for each
join point transition, several advice transitions must be created, one for each target state. We only give a
definition for toInit advice, but the extension to toCurrent advice and advice programs is straightforward,
and can be found in [24, Chapter 8].

Definition 11 (toInit weaving for NDA). Let A = (Q, sinit, I,O, T ) be an automaton and adv = (Oadv,
toInit, σ) a piece of toInit advice, with σ : [0, ..., `σ] −→ [I −→ {true,false}] a finite input trace of
length `σ + 1. The advice weaving operator/, weaves adv into A and returns the automaton A/ adv =
(Q, sinit, I,O ∪Oadv, T ′), where T ′ is defined as follows:(

(s, `, O, s′) ∈ T ∧ JP /∈ O
)

=⇒ (s, `, O, s′) ∈ T ′ (3)(
(s, `, O, s′) ∈ T ∧ JP ∈ O

)
=⇒ ∀targ ∈ S stepA(sinit, σ, `σ) . (s, `, Oadv, targ) ∈ T ′ (4)

Transitions (3) are not join point transitions and are left unchanged. Transitions (4) are the join point
transitions, their final state targ is specified by the finite input trace σ. S stepA (which has been naturally
extended to finite input traces) executes the trace during `σ steps, from the initial state of A. Fig. 7(b) and
Fig. 8(b) show the NDAs from our example with the retriggerable aspect from Section 2.3.4 woven into
them. For both NDAs, the trace leads to a single state, thus only one advice transition is introduced per
join point transition.

Transforming a NDA back into an observer is different for assumptions and guarantees. In the assump-
tion, we do not add additional error transitions, but only leave those already there. In the guarantee, we add
transitions to the error state from every state where the automaton is not complete. This is correct, as these
transitions correspond to traces that are never produced by any program.
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Definition 12 (NDA to guarantee transformation). Let nd = (Q, q0, I,O, T ) be a NDA. OBSG(nd) =
(Q∪ {Error}, q0, I ∪ O, {err}, T ′ ∪ T ′′) defines an observer, where T ′ and T ′′ are defined by

(s, `, o, s′) ∈ T ⇒ (s, ` ∧ `o ∧ `O\o, ∅, s
′) ∈ T ′ (5)

(s, `, ∅, s′) /∈ T ′ ∧ s ∈ Q ∧ ` is a complete monomial over I ∪ O
⇒ (s, `, {err},Error) ∈ T ′′

(6)

where lO =
∧
o∈O o and lO =

∧
o∈O o for a set O of variables.

When transforming an NDA to an assumption, we do not add additional error transitions, but only leave
those already there.

Definition 13 (NDA to assumption transformation). Let nd = (Q, q0, I,O ∪ {err}, T ) be a NDA.
OBSA(nd) = (Q, q0, I ∪ O, {err}, T ′) defines an observer, where T ′ is defined by

(s, `, o ∪ e, s′) ∈ T ∧ o ⊆ O ∧ e ⊆ {err} ⇒ (s, ` ∧ `o ∧ `O\o, e, s
′) ∈ T ′

Fig. 7(c) and Fig. 8(c) show the NDAs from our example transformed back into observers. As expected,
the obtained guarantee in Fig. 7(c) tells us that whenever the program receives an a, it emits b’s the two
following instants. The assumption, however, requires that if an a is emitted, it continues to be emitted
until there is no b.

The resulting observer may not be deterministic. However, it can be made deterministic, as observers
are acceptor automata. Determinization for guarantees and assumptions is different: a guarantee must only
emit err for a trace σ if all programs fulfilling the contract never emit σ, and an assumption must emit
err if there exists a program fulfilling the contract which is not defined for σ.

Existing determinization algorithms can be easily adapted to fulfill these requirements. We do not detail
such algorithms here, but instead give conditions the determinization for assumptions and guarantees must
fulfill. The new assumption and the new guarantee in the example are already deterministic, thus there is
no need to determinize them.

The assumption determinization gives precedence to error transition. If there is a choice between an
error transition and a non-error transition, the error transition is always taken. Thus, the determinized
assumption only accepts a program if all possible non-deterministic executions of the non-determinized
assumption accept it.

Definition 14 (Assumption Determinization). Let M be a NDA with outputs {err}. DetA(M) is a deter-
ministic automaton such that

(it , ot) ∈ Traces(DetA(M))⇔
(it , ot) ∈ Traces(M)∧ @ot ′ . (it , ot ′) ∈ Traces(M)∧ ot ′(n)[err] = true∧ ot(n)[err] = false .

As opposed to the assumption determinization, the guarantee determinization gives precedence to non-
error transitions over error transitions. Thus. the determinized guarantee emits err only if all possible
executions of the non-determinized guarantee also emit err.

Definition 15 (Guarantee Determinization). Let M be a NDA with outputs {err}. DetG(M) is a deter-
ministic automaton such that

(it , ot) ∈ Traces(DetG(M))⇔
(it , ot) ∈ Traces(M)∧ @ot ′ . (it , ot ′) ∈ Traces(M)∧ ot ′(n)[err] = false∧ ot(n)[err] = true .

We can now state the following theorem, which states that a contract constructed with the above oper-
ations holds indeed for any program fulfilling the original contract with an aspect applied to it.

Theorem 1. Let P be a program and let (A,G) be a contract. Then,

P |= (A,G) ⇒ P / asp |= (DetA(OBSA(NDA(A) / asp)),DetG(OBSG(NDG(G) / asp))) .

Theorem 1 first transforms the assumption and the guarantee into NDA with the respective operators,
then applies the aspect to both and transforms the result back in observers, which are determinized. We
prove it in Appendix A.
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Controller Inputs: Controller Outputs:
inStation Tram is in station doorOK door is closed and ready to leave
leaving Tram wants to leave station openDoor opens the door
doorOpen the door is open closeDoor closes the door
doorClosed the door is closed beep emits a warning sound
askForDoor a passenger wants to leave the tram setTimer starts a timer
timer the timer set by setTimer has run out
Gangway Inputs: Gangway Outputs:
gwOut the gangway is fully extended extendGW extends the gangway
gwIn the gangway is fully retracted retractGW retracts the gangway
askForGW a passenger wants to use the gangway
Helper Signals Outputs:
acceptReq the passenger can ask for the door or the gw
doorReq the passenger has asked for the door to open
gwReq the passenger has asked for the gangway
depImm the tramway wants to leave the station

Figure 9: The interfaces of the controller and the gangway, and the helper signals.

In

Out Dep

Error

OK

inStation

inStation

doorOK.inStation
inStation

inStation
leaving
.inStation

Figure 10: Model of the tramway, MTram.

4 Example: The Tramway Door Controller
We implement and verify a larger example, taken from the Lustre tutorial [18], a controller of the door of
a tramway. The door controller is responsible for opening the door when the tram stops and a passenger
wants to leave the tram, and for closing the door when the tram wants to leave the station. Doors may also
include a gangway, which can be extended to allow passengers in wheelchairs enter and leave the tram.

We implement the controller as an Argos program. We first develop a controller for a door without the
gangway, and then add the gangway part with aspects. Fig. 9 gives the in- and outputs of the controller
with their specifications, and also the in- and outputs which are added by the gangway. The controller uses
additional inputs, called Helper Signals, which are also shown in Fig. 9 and are calculated from the original
inputs.

It is important for the safety of the passengers that the doors are never open outside a station. We call
this property PSafety, and formally express it as an observer that emits err whenever doorClosed.inStation
is true. to formally verify this property, we must first develop a model that describes the possible behavior
of the physical environment of the controller, which consists of the door and the tramway. These models
are also expressed as Argos observers. The models for the tramway (called MTram) and the door (called
MDoor) are shown in Fig. 10 and Fig. 11 respectively. These models require that the environment behaves
correctly (e.g., the door only opens if openDoor has been emitted).

Furthermore, we give a contract for the door controller, which focuses on PSafety. The guarantee GContr
of the contract is shown in Fig. 12, it ensures that the controller emits doorOK only if the doors are closed,
and openDoor only if the tram is in a station. The contract has also an assumption AContr, which is the
model of the door given in Fig. 11, i.e. AContr =MDoor. An implementation IContr of the controller, which
fulfills the contract, is given in Fig. 13.

We can now prove that the controller satisfies the contract (IContr |= (AContr, GContr)), and that the
contract in the environment never violates the safety property. Formally, this is expressed as MDoor ‖
MTram ‖ GContr |= PSafety, where the synchronous product of observers means that the properties expressed
by all the observers must be fulfilled.

Adding The Gangway. Two aspects are used to add support for the gangway: one aspect Aext that
extends the gangway before the door is opened if a passenger has asked for it, and one aspect Aret that
retracts the gangway when the tram is about to leave, if it is extended.
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.doorOpen

Error

Error

closeDoor
.doorClosed
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openDoor.doorClosed.doorOpen

closeDoor.doorClosed.doorOpen

doorOpen

doorClosed

doorOpen

doorClosed

.doorClosed
closeDoor

doorOpen.closeDoor

openDoor

doorClosed.openDoor

.doorOpen

Figure 11: Model of the door, MDoor.

Out DepIn

Error
openDoor

inStation.openDoor

openDoor

inStation.openDoor

doorOK.(doorClosed∨openDoor)

doorClosed.doorOK.openDoor

Figure 12: The guarantee of the contract of the controller, GContr.

The pointcut PCext of Aext selects all transitions where openDoor.doorReq .doorClosed.gwOut is
true, and the pointcut PCret of Aret selects all transitions where doorOK.gwIn is true.

Both aspects insert an automaton and return then to the initial state of the join point transitions. The
inserted automata for the aspects are shown in Fig. 14. Aext is specified by (PCext, < ∅, toCurrent, (), Iext >
), and Aret by (PCret, < {retractGW}, toCurrent, (), Iret >). Weaving these aspects into IContr adds one
state between Closed and OK, where the gangway is retracted, and one state before Opening, where it
is extended.

Modularly Verifying the Safety Properties. We want to check that the new controller IContr/ Aext/ Aret
still verifies the safety property from above, and also verifies two new safety properties, which require that
the gangway is always fully retracted while the tram is out of station, and that the gangway is never moved
when the door is not closed. We express these three properties as an observer and call it PSafeties. To verify
this, we first weave the aspects into the contract, and thus obtain a new contract that holds for controller
with the aspects. Then, we check then that the environment, to which we added a model of the gangway
MGW, satisfies the new assumption (i.e., MDoor ‖ MTram ‖ MGW |= AContr / Aext / Aret), and that the new

Open
Closing

Beep

Closed

Opening

OutOK

doorClosed.
(depImm.doorReq)/
closeDoor

inStation/
doorOK

depImm∨timer/beep

doorOpen/setTimer

doorReq.depImm/openDoor
inStation

doorOpen/openDoor

timer/beep

inStation

depImm/doorOK

timer/closeDoor

depImm.
doorReq.doorClosed

doorClosed

Figure 13: A sample controller for the tramway door, IContr.
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gwOut/extendGW

gwOut

(a): Iext

gwIn

gwIn/retractGW

/retractGW

(b): Iret

Figure 14: Inserted automata for Aext (a) and Aret (b).

guarantee satisfies the safety requirements in the environment (i.e., MDoor ‖MTram ‖MGW ‖ GContr/ Aext/
Aret |= PSafeties).

An alternative to this modular approach is to verify directly that the sample controller with the aspects
does not violate the given safety properties (i.e., MDoor ‖ MTram ‖ MGW ‖ IContr / Aext / Aret |= PSafeties).
One disadvantage of the alternative approach is that the woven controller may be much bigger than the
woven contract. To illustrate this problem, we verified the safety properties using our implementation [15].
The source code of the door controller example is available at [16]. Verifying the woven program takes
11.0 seconds1. On the other hand, weaving the aspects into the guarantee of the controller contract and
verifying against the environment takes 3.7 seconds1, and verifying that the sample controller verifies the
contract and verifying that the environment fulfills the assumption with the aspects takes < 0.5 seconds1.
Thus, using this modular approach to verify the safety properties of the controller is significantly faster
than verifying the complete program. Although the size of the woven controller is not prohibitive in this
example, this indicates that larger programs can be verified using the modular approach.

5 Aspect Interference
A key point when dealing with aspects is the notion of interferences, which is closely related to the way
aspects are woven. We illustrate the problem of interfering aspects on an example presented in Section 5.1.
Next, we also present a new weaving algorithm in Section 5.2, that weaves aspects jointly, and removes
aspect interferences in many cases. Finally, we introduce an algorithm in Section 5.3 that proves non-
interference of aspects or identifies remaining interferences in jointly woven programs.

5.1 Example

As an example, we present a simplified view of the interface of a complex wristwatch, implemented with
Argos and Larissa. The full case study was presented in [2]. The interface is a modified version of the
Altimax2 model by Suunto2.

5.1.1 The Watch

The Altimax wristwatch has an integrated altimeter, a barometer and four buttons, the mode, the select,
the plus, and the minus button. Each of the main functionalities (time keeping, altimeter, barometer)
has an associated main mode, which displays information, and a number of submodes, where the user can
access additional functionalities. An Argos program that implements the interface of the watch is shown in
Fig. 15. For better readability, only those state names, outputs and transitions we will refer to are shown.

In a more detailed model (as in [2]) the submode states would contain behavior using the refinement
operator of Argos (see [20] for a definition). We do not present this operator in this paper since we do
not need it to define aspect weaving. Adding refinement changes nothing for the weaving definition, as it
works directly on the transformation of the program into a single trace-equivalent automaton. For the same
reason, the interference analysis presented in Section 5.2 is also the same.

The buttons of the watch are the inputs of the program. The mode button circles between modes,
the select button selects the submodes. There are two more buttons: the plus and the minus button

1Experiments were conducted on an Intel Pentium 4 with 2.4GHz and 1 Gigabyte RAM.
2Suunto and Altimax are trademarks of Suunto Oy.
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Figure 15: The Argos program for the Altimax watch.

which modify current values in the submodes, but their effect is not shown in the figure. The buttons have
different meanings depending on the mode in which the watch is currently.

The interface component we model here interprets the meaning of the buttons the user presses, and then
calls a corresponding function in an underlying component. The outputs are commands to that component.
E.g., whenever the program enters the Time Mode, it emits the output Time-Mode, and the underlying
component shows the time on the display of the watch.

5.1.2 Two Shortcut Aspects

The plus and the minus buttons have no function consistent with their intended meaning in the main
modes: there are no values to increase or decrease. Therefore, they are given a different function in the
main modes: when one presses the plus or the minus button in a main mode, the watch goes to a certain
submode. The role of the plus and minus buttons in the main modes are called shortcuts since it allows
to quickly activate a functionnality, which would have needed, otherwise, a long sequence of buttons.

Pressing the plus button in a main mode activates the logbook function of the altimeter, and pressing
the minus button activates the 4-day memory of the barometer. These functions are quite long to reach
without the shortcuts since the logbook is the third submode of the altimeter, and the 4-day memory is the
second submode of the barometer.

Alti-Mode∨
Time-Mode∨

Baro-Mode
Alti-Mode∨
Time-Mode∨

Baro-Mode
select

(b)

main

sub

(a)

select

sub

main

minus.plus/JPl minus.plus/JPm

Figure 16: The pointcuts for the aspects.

These shortcuts can be implemented easily with Larissa aspects. Fig. 16 (a) shows the pointcut for
the logbook aspect, and Fig. 16 (b) the pointcut for the memory aspect. In both pointcuts, state main
represents the main modes and state sub represents the submodes. When, in a main mode, plus (resp.
minus) is pressed, the pointcut emits JPl (resp. JPm), thus the corresponding advice is executed; when
select is pressed, the pointcut goes to the sub state, and JPl or JPm are no longer emitted. Fur-
thermore, we use toInit advice with traces leading to the functionality we want to reach, i.e. σl =
mode.select.mode.mode for the logbook aspect and σm = mode.mode.select.mode for the
4-day memory aspect, and the output that tells the underlying component to display the corresponding
information.

15/24



5.2 Applying Several Aspects
If we apply first the logbook aspect, and then, sequentially, the memory aspect to the watch program, the
aspects do not behave as we would expect. If, in the woven program, we first press the minus button in a
main mode, thus activating the logbook aspect, and then the plus button, the memory aspect is activated,
although we are in a submode. This behavior was clearly not intended by the programmer of the memory
aspect.

The problem is that the memory aspect has been written for the program without the logbook aspect:
the pointcut assumes that the only way to leave a main mode is to press the select button. However,
the logbook aspect invalidates that assumption by adding transitions from the main modes to a submode.
When these transitions are taken, the pointcut of the memory aspect incorrectly assumes that the program
is still in a main mode.

Furthermore, for the same reason, applying first the memory aspect and then the logbook aspect pro-
duces (in terms of trace-equivalence) a different program from applying first the logbook aspect and then
the memory aspect: watch/ logbook/ memory � watch/ memory/ logbook.

As a first attempt to define aspect interference, we say that two aspects A1 and A2 interfere when their
application on a program P in different orders does not yield two trace-equivalent programs: P/A1/A2 �
P /A2/A1. We say that two aspects that do not interfere are independent.

With interfering aspects, the aspect that is woven second must know about the aspect that was applied
first. To be able to write aspects as the ones above independently from each other, we propose a mechanism
to weave several aspects at the same time. The idea is to first determine the join point transitions for all the
aspects, and then apply the advice.

Definition 16 (Joint weaving of several aspects). Let A1 . . .An be some aspects, with Ai = (PJPi , advi),
and P a program. We define the application of A1 . . .An on P as follows:

P / (A1, . . . ,An) = P(P, PJP1‖ . . . ‖PJPn
)/JPn

advn . . ./JP1 adv1

Note that Definition 16 reuses the advice weaving operator defined in Definition 5, and indexes the join
point signal used by each advice. Furthermore, the advice is woven in the reverse order, i.e. we first the
advice from the last aspect in the aspect list, and the advice from the first aspect last. This way, aspects
that are later in the list have higher priority: if a join point transition is claimed by several aspects, the one
that is woven first replaces the join point transition with its advice transition, and removes the join point
signals of the other aspects. To give priority to the aspects that are applied later is consistent with sequential
weaving, where aspects that are applied later modify the aspects that have already been applied, but not the
other way round.

Jointly weaving the logbook and the memory aspect leads to the intended behavior, i.e. both aspects can
be activated only when the program is in a main mode. Furthermore, the weaving order does not influence
the result, because both aspects first select their join point transitions in the main modes, and change the
target states of the join point transitions only afterwards.

Note that Definition 16 does not make sequential weaving redundant. We still need to weave aspects
sequentially in some cases, when the second aspects must be applied to the result of the first. For instance,
imagine an aspect that adds an additional main mode to the watch. Then, the shortcut aspects must be
sequentially woven after this aspect, so that they can select the new main mode as join point.

Definition 16 does not solve all conflicts. Indeed, the Ai in P / (A1, . . . ,An) do not commute, in
general, since the advice weaving is applied sequentially. We define aspect interference for the application
of several aspects.

Definition 17 (Aspect Interference). Let A1 ... An be some aspects, and P a program. We say that Ai
and Ai+1 interfere for P iff

P / (A1 . . .Ai,Ai+1 . . .An) � P / (A1 . . .Ai+1,Ai . . .An)

As an example for interfering aspects, assume that the condition of the join point transition of the
pointcut of the logbook aspect (Fig. 16 (a)) is only minus and the condition of the join point transition of
the pointcut of the logbook aspect (Fig. 16 (b)) is only plus. In this case, the two aspects share some join
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point transitions, namely when both buttons are pressed at the same time in a main mode. Both aspects
then want to execute their advice, but only one can, thus they interfere. Only the aspect that was applied
last is executed.

In such a case, the conflict should be made explicit to the programmer, so that it can be solved by hand.
Here, it was resolved by changing the pointcuts to the form they have in Fig. 16, so that neither aspect
executes when both buttons are pressed.

5.3 Proving Non-Interference
In this section, we show that in some cases, non-interference of aspects can be proven, if the aspects are
woven jointly, as defined in Definition 16. We can prove non-interference of two given aspects either for
any program, or for a given program. Following [8], we speak of strong independence in the first case, and
of weak independence in the second.

We use the operator jpTrans to determine interference between aspects. It computes all the join point
transitions of an automaton, i.e. all transitions with a given output JP.

Definition 18. Let A = (Q, sinit, I,O, T ) be an automaton and JP ∈ O. Then,

jpTrans(A, JP) = {t|t = (s, `, O, s′) ∈ T ∧ JP ∈ O} .

The following theorem proves strong independence between two aspects.

Theorem 2 (Strong Independence). Let A1 . . .An be some aspects, with Ai = (PJPi
, advi). Then, the

following equation holds:

jpTrans(PJPi
‖PJPi+1 , JPi) ∩ jpTrans(PJPi

‖PJPi+1 , JPi+1) = ∅
⇒ P / (A1 . . .Ai,Ai+1 . . .An) ∼ P / (A1 . . .Ai+1,Ai . . .An)

See appendix B for a proof. Theorem 2 states that if there is no transition with both JPi and JPi+1

as outputs in the product of PJPi
and PJPi+1 , Ai and Ai+1 are independent and thus can commute while

weaving their advice. Theorem 2 defines a sufficient condition for non-interference, by looking only at the
pointcuts. When the condition holds, the aspects are said to be strongly independent.

Theorem 3 (Weak Independence). Let A1 . . .An be some aspects, with Ai = (PJPi
, advi), and Ppc =

P(P, PJP1‖ . . . ‖PJPn
). Then, the following equation holds:

jpTrans(Ppc, JPi) ∩ jpTrans(Ppc, JPi+1) = ∅
⇒ P / (A1 . . .Ai,Ai+1 . . .An) ∼ P / (A1 . . .Ai+1,Ai . . .An)

See appendix C for a proof. Theorem 3 states that if there is no transition with both JPi and JPi+1

as outputs in Ppc, Ai and Ai+1 do not interfere. This is weaker than Theorem 2 since it also takes the
program P into account. However, there are cases in which the condition of Theorem 2 is false (thus it
yields no results), but Theorem 3 allows to prove non-interference, e.g. in the case of the gangway aspects
from Section 4, which is discussed in Section 5.3.2.

Theorem 3 is a sufficient condition, but, as Theorem 2, it is not necessary: it may not be able to prove
independence for two independent aspects. The reason is that it does not take into account the effect of the
advice weaving: consider two aspects such that the only reason why the condition for Theorem 3 is false is
a transition sourced in some state s, and such that s is only reachable through another join point transition;
if the advice weaving makes this state unreachable, then the aspects do not interfere.

The results obtained by both Theorems are quite intuitive. They mean that if the pointcuts do not select
any join points common to two aspects, then these aspects do not interfere. This condition can be calculated
on the pointcuts alone, or can also take the program into account.

Note that the detection of non-interference is a static condition that does not add any complexity over-
head. Indeed, to weave the aspects, the compiler needs to build first PJP1‖ ... ‖PJPn

= Pall JP: the
condition of Theorem 2 can be checked during the construction of Pall JP. Second, the weaver builds
Ppc = P(P, Pall JP). Afterwards, it can check the condition of Theorem 3. Thus, to calculate the conditions
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of both Theorems, it is sufficient to check the outputs of the transitions of intermediate products during the
weaving. The weaver can easily emit a warning when a potential conflict is detected.

To have an exact characterization of non-interference, it is still possible to compute the predicate
P / (A1 . . .Ai,Ai+1 . . .An) ∼ P / (A1 . . .Ai+1,Ai . . .An), but calculating semantic equality is very
expensive for large programs.

Note that the interference presented here only applies to the joint weaving of several aspects, as defined
in Definition 16. Sequentially woven aspects may interfere even if their join points are disjoint, because the
pointcut of the second aspects applies to the woven program. A similar analysis to prove non-interference
of sequential weaving would be more difficult, because the effect of the advice must be taken into account.
Indeed, the advice of an aspect influences which transitions are selected by the pointcut of an aspect that is
sequentially woven next.

5.3.1 Interference between the Shortcut Aspects

Fig. 17 (a) shows the product of the pointcuts of the logbook (Fig. 16 (a)) and the memory aspect (Fig. 16
(b)). There are no transitions that emit both JPl and JPm, thus, by applying Theorem 2, we know that the
aspects do not interfere, independently of the program they are applied to.

openDoor.doorReq.doorClosed.gwOut
.doorOK.gwIn/JPext

openDoor.doorReq.doorClosed.gwOut
.doorOK.gwIn/JPret

openDoor.doorReq.doorClosed.gwOut
.doorOK.gwIn/JPext,JPret

(a)

select

sub

(b)

minus.
mainplus/JPl

Alti-Mode∨
Time-Mode∨

Baro-Mode

minus.plus/JPm

Figure 17: Interference between pointcuts.

Let us assume again that the condition of the join point transition of the pointcut of the logbook aspect
(Fig. 16 (a)) is only minus and the condition of the join point transition of the pointcut of the logbook
aspect (Fig. 16 (b)) is only plus. In this case, the state main in Fig. 17 (a) would have another loop tran-
sition, with label minus.plus/JPl,JPm. Thus, Theorem 2 not only states that the aspects potentially
interfere, but it also states precisely where: here, the problem is that when both minus and plus are
pressed in a main mode, at the same time, both aspects are activated. Larissa thus emits a warning and the
user can solve the conflict.

5.3.2 Interference between the Gangway Aspects

As an example for weak interference, let us examine the gangway aspects from the Tram example in
Section 4. Fig. 17 (b) shows the product of their pointcuts. There is a transition that has both JPext and
JPret as outputs. Theorem 2 states that the aspects may interfere, but when applied to the tram controller
from Fig. 13, they do not. This is because doorOK and openDoor are outputs of the controller, and are
never emitted at the same time.

In this example, the use of Theorem 3 is thus needed to show that the aspects do not interfere when
applied to the wristwatch controller. As expected, JPext and JPret are never emitted at the same time in Ppc,
and Theorem 3 thus shows that the aspects do not interfere for this base program.

6 Related Work
Contracts and Aspects. Goldman and Katz [10] modularly verify aspect-oriented programs using a
LTL tableau representation of programs and aspects. As opposed to ours, their system can verify AspectJ
aspects, as tools like Bandera [7] can extract suitable input models from Java programs. It is, however,
limited to so-called weakly invasive aspects, which only return to states already reachable in the base
program.
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Clifton and Leavens [5] noted before us that aspects invalidate the specification of modules, and propose
that either an aspect should not modify a program’s contract, or that modules should explicitly state which
aspects may be applied to them.

Aspect Interference. Some authors discuss the advantages of sequential vs. joint weaving. Lopez-
Herrejon and Batory [17] propose to use sequential weaving for incremental software development. Colyer
and Clement [6, Section 5.1] want to apply aspects to bytecode which already contains woven aspects. In
AspectJ, this is impossible because the semantics would not be the same as weaving all aspects at the same
time.

Sihman and Katz [23] propose SuperJ, a superimposition language which is implemented through a
preprocessor for AspectJ. They propose to combine superimpositions into a new superimposition, either by
sequentially applying one to the other, or by combining them without mutual influence. Superimpositions
contain assume/guarantee contracts, which can be used to check if a combination is valid.

A number of authors investigate aspect interference in different formal frameworks. Much of the work
is devoted to determining the correct application order for interfering aspects, whereas we focus on proving
non-interference.

Douence, Fradet, and Südholt [8] present a mechanism to statically detect conflicts between aspects
that are applied in parallel. Their analysis detects all join points where two aspects want to insert advice.
To reduce the detection of spurious conflicts, they extend their pointcuts with shared variables, and add
constraints that an aspect can impose on a program. To resolve remaining conflicts, the programmer can
then write powerful composition adaptors to define how the aspects react in presence of each other.

Pawlak, Duchien, and Seinturier [22] present a way to formally validate precedence orderings between
aspects that share join points. They introduce a small language, CompAr, in which the user expresses
the effect of the advice that is important for aspect interaction, and properties that should be true after
the execution of the advice. The CompAr compiler can then check that a given advice ordering does not
invalidate a property of an advice.

Durr, Staijen, Bergmans, and Aksit [9] propose an interaction analysis for Composition Filters. They
detect when one aspect prevents the execution of another, and can check that a specified trace property is
ensured by an aspect.

Balzarotti, Castaldo D’Ursi, Cavallaro and Monga [3] use program slicing to check if different aspects
modify the same code, which might indicate interference.

7 Conclusion

We presented two formal analysis tools for Larissa, which both exploit its semantic definition. The first
combines Larissa with design-by-contract, and shows exactly how a Larissa aspect modifies the contract
of a component to which it is applied. This allows us to calculate the effect of an aspect on a specification
instead of only on a concrete program. This approach has several advantages. First, aspects can be checked
against contracts even if the final implementation is not yet available during development. Furthermore, if
the base program is changed, the woven program must not be re-verified, as long as the new base program
still fulfills the contract. Finally, woven programs can be verified modularly, which may allow to verify
larger programs.

The second approach is an analysis for aspect interference in Larissa. We introduced an additional
operator which jointly weaves several aspects together into a program, closer to the way AspectJ weaves
aspects. Because Larissa is defined modularly, we only had to rearrange the building steps of the weaving
process. Then, we could analyze interference with a simple parallel product of the pointcuts. When a
potential conflict is detected, the user has to solve it by hand, if needed. In the examples we studied, the
conflicts were solved by simple modifications of the pointcuts.

These analysis are only possible because Argos and Larissa are very simple languages with clean and
simple semantics. They thus illustrate the advantage of using a programming language with simple seman-
tics. Because of this simplicity, both approaches seem quite precise. Indeed, We believe that the contract
weaving is exact in that it gives no more possible behaviors for the woven program than necessary. I.e., for
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a contract C and a trace t ∈ Traces(C/asp), there exists a program P s.t. P |= C and t ∈ Traces(P/asp).
This remains however to be proven.

The interference analysis for Larissa seems also quite precise, i.e. we can prove independence for
most independent aspects. One reason for that are Larissa’s powerful pointcuts, which describe join points
statically, yet very precisely, on the level of transitions. Another reason is the exclusive nature of the advice.
Two pieces of advice that share a join point transition never execute sequentially, but there is always one
that is executed while the other is not. If the two pieces of advice are not equivalent, this leads to a conflict.
Thus, as opposed to [8], assuming that a shared join point leads to a conflict does not introduce spurious
conflicts.

There are some interesting points for further work. In the context of contract weaving, an interesting
question is if we can derive contracts the other way round. Given a contract C and an aspect asp, can we
automatically derive a contract C ′ such that C ′/asp |= C? Finally, both approaches work only because we
have restricted Argos and Larissa to Boolean signals. It would be interesting to see if they can be extended
to programs with variables.
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A Proof for Theorem 1

Definitions. We first introduce a number of definitions.
P (p) |= (A(a), G(g)) means that program P fulfills contract (A,G) where the initial states of P , A

and G have been set to p, a and g respectively.
Furthermore, we introduce the following notations for terms from the theorem. Let

A′/ asp = OBSA(NDA(A)/ asp), A/ asp = DetA(A′/ asp),
G′/ asp = OBSG(NDG(G)/ asp), and G/ asp = DetG(G′/ asp) .
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We now define the structure of some of these terms. Let

P = (QP , qP0, I,O, TP ),
asp = (PC, < Oadv, toInit, σ >),
PC = (QPC, qPC0, I ∪ O, {JP}, TPC),
A = (QA ∪ {Error}, qA0, I ∪ O, {err}, TA),
G = (QG ∪ {Error}, qG0, I ∪ O, {err}, TG),

P / asp = (QP ×QPC, (qP0, qPC0), I,O, TP/),
A′/ asp = ((QA ×QPC) ∪ {Error}, (qA0, qPC0), I ∪ O, {err}, TA/), and
G′/ asp = ((QG ×QPC) ∪ {Error}, (qG0, qPC0), I ∪ O, {err}, TG/) .

We prove the theorem by induction over a trace of P / asp. Let (it , ot) ∈ Traces(P / asp). We show
that the following induction hypothesis holds for any n.

Induction hypothesis. The induction hypothesis states that the states reached by executing (it , ot) on
P / asp, A′/ asp, and G′/ asp formed a valid contract in P , A, and G, i.e. before the aspect was applied,
provided (it , ot) is accepted by A/ asp. Formally, we write it as follows:

O stepA/asp((sA0, sPC0), it .ot , n) = ∅∧
(pn, pcn) = S stepP/asp((sP0, sPC0), it , n)
⇒∃(an, pcn) ∈ S stepA′/asp((sA0, sPC0), it .ot , n) .
∃(gn, pcn) ∈ S stepG′/asp((sG0, sPC0), it .ot , n) .
P (pn) |= (A(an), G(gn)) ∧ gn 6= Error

(pn, pcn), (an, pcn) and (gn, pcn) are the states reached when executing (it , ot) for n steps on P / asp,
A′/ asp and G′/ asp respectively.

Base case. n = 0. P |= (A,G) holds as it is the assumption of the implication in the theorem. If the
initial state of G is the Error State, either A (and A/ asp) do not accept any trace, or no P exists, and in
both cases we are done.

Induction step. From n− 1 to n.
If O stepA/asp(it .ot , n) = {{err}}, we are done. Otherwise, from O stepA/asp(it .ot , n) = {∅}

follows O stepA′/asp(it .ot , n) = {∅}, because Definition 14, which defines the determinization of A′,
gives precedence to error transitions. We distinguish two cases:

• First case: {JP} /∈ O stepPC(it .ot , n), we are not in a join point.

Because of P (pn−1) |= (A(an−1), G(gn−1)), there is a transition tp = (pn−1, it(n), ot(n), pn)
in TP , a transition ta = (an−1, it(n) ∧ ot(n), ∅, an) in TA, and a transition tg = (gn−1, it(n) ∧
ot(n), ∅, gn) in TG, such that P (pn) |= (A(an), G(gn)). tp, ta and tg are not modified by the weav-
ing, thus there is a transition ((pn−1, pcn−1), it(n), ot(n), (pn, pcn)) in TP/, a transition ((an−1,
pcn−1), it(n)∧ot(n), ∅, (an, pcn)) in TA/, and a transition ((gn−1, pcn−1), it(n)∧ot(n), ∅, (gn, pcn))
in TG/ with (gn, pcn) 6= Error.

• Second case: {JP} ∈ O stepPC(it .ot , n), we are in a join point.

Let pσ = S stepP (sP0, σ, lσ) be the state in the P reached after executing σ, and let ς be a trace of
length lσ such that ∀i ≤ lσ . ς(i) = O stepP (sP0, σ, i). Then, let S stepPC(sPC0, σ.ς, lσ) = pcσ be
the state of the pointcut reached after executing σ. Then, we also have S stepP/asp((sP0, sPC0), it , n) =
(pσ, pcσ).

All join point transitions in G′/ asp (resp. A′/ asp) are replaced by transitions to all possible target
states, thus there is a transition tg′/ ∈ TG′/ (resp. ta′/ ∈ TA′/) to a target state (gσ, pcσ) (resp.
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(aσ, pcσ)) such that S stepG(sG0, σ.ς, lσ) = gσ (resp. S stepA(sA0, σ.ς, lσ) = aσ). Because pσ ,
aσ and gσ can be reached with the same trace (σ, ς) (resp. (σ.ς, �) for aσ and gσ) from the initial
state, P (pσ) |= (A(aσ), G(gσ)) follows from P |= (A,G).

Furthermore, ot(n) = `0adv∧`O\0adv
, and we have ta′/ = ((an−1, pcn−1), it(n)∧ot(n), ∅, (aσ, pcσ)),

and tg′/ = ((gn−1, pcn−1), it(n) ∧ ot(n), ∅, (gσ, pcσ)), and thus (aσ, pcσ) = S stepA′/asp((sA0,
sPC0), it .ot , n) and (gσ, pcσ) = S stepG′/asp((sG0, sPC0), it .ot , n). Furthermore, we have (gσ, pcσ) 6=
Error, as otherwise aσ = Error (impossible because of O stepA′/asp((sA0, sPC0), it .ot , n) = ∅), or
(it , ot) /∈ Traces(P ), by the definition of P |= (A,G).

It follows from the induction hypothesis that

(it .ot , �) ∈ Traces(A/ asp) ∧ (it , ot) ∈ Traces(P / asp)⇒ (it .ot , �) ∈ Traces(G′/ asp)

and we have (it .ot , �) ∈ Traces(G′ / asp) ⇒ (it .ot , �) ∈ Traces(G/ asp) by Definition 15. Thus, the
theorem follows from the induction hypothesis.

B Proof for Theorem 2
Theorem 2 and Theorem 3 are both implications with the same consequent.

We show that the antecedent of the implication in Theorem 3,

jpTrans(P(P, PJP1‖ . . . ‖PJPn), JPi)∩
jpTrans(P(P, PJP1‖ . . . ‖PJPn), JPi+1) = ∅,

follows from the antecedent of the implication in Theorem 2,

jpTrans(PJPi‖PJPi+1 , JPi)
∩ jpTrans(PJPi‖PJPi+1 , JPi+1) = ∅ :

JPi and JPi+1 can only occur in PJPi
and PJPi+1 . Thus, if a transition that has both of them as outputs in

P(P, PJP1‖ . . . ‖PJPn
), there must already exist a transition with both of them as outputs in PJPi

‖PJPi+1 .
Thus, because of the transitivity of the implication, Theorem 2 is a consequence of Theorem 3.

C Proof for Theorem 3
Because the synchronous product is commutative P(P, PJP1‖ . . . ‖PJPi‖PJPi+1‖ . . . ‖PJPn) and P(P, PJP1‖ . . . ‖PJPi+1‖PJPi‖ . . . ‖PJPn)
are the same.

Let P(P, PJP1‖ . . . ‖PJPn
)/JPn

advn . . ./JPi+2 advi+2 = (Q, sinit, I,O, T ) = Pi+2. Then Pi+2/JPi+1

advi+1 yields an automaton Pi+1 = (Q, sinit, I,O ∪Oadvi+1 , T ′), where T ′ is defined as follows:(
(s, `, O, s′) ∈ T ∧ JPi+1 /∈ O

)
=⇒ (s, `, O, s′) ∈ T ′(

(s, `, O, s′) ∈ T ∧ JPi+1 ∈ O
)

=⇒
(s, `, Oadvi+1 , S stepP ′(sinit, σi+1, lσi+1)) ∈ T ′

and Pi+1/JPi advi yields an automaton Pi = (Q, sinit, I,O∪Oadvi+1 ∪Oadvi , T ′′), where T ′′ is defined
as follows: (

(s, `, O,s′) ∈ T ∧ JPi+1 /∈ O ∧ JPi /∈ O
)

=⇒ (s, `, O, s′) ∈ T ′ (7)(
(s, `, O,s′) ∈ T ∧ JPi+1 ∈ O ∧ JPi /∈ O

)
=⇒

(s, `, Oadvi+1 , S stepP ′(sinit, σi+1, lσi+1)) ∈ T ′
(8)(

(s, `, O,s′) ∈ T ∧ JPi+1 /∈ O ∧ JPi ∈ O
)

=⇒
(s, `, Oadvi

, S stepP ′(sinit, σi, lσi
)) ∈ T ′

(9)(
(s, `, O,s′) ∈ T ∧ JPi+1 ∈ O ∧ JPi ∈ O

)
=⇒

(s, `, Oadvi+1 , S stepP ′(sinit, σi+1, lσi+1)) ∈ T ′
(10)
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If we calculate Pi+2/JPi advi/JPi+1 advi+1, we obtain the same automaton, except for transitions (10),
which are defined by (

(s, `, O, s′) ∈ T ∧ JPi+1 ∈ O ∧ JPi ∈ O
)

=⇒
(s, `, Oadvi , S stepP ′(sinit, σi, lσi)) ∈ T ′

)
Transitions (10) are exactly the join point transitions that are in jpTrans(P(P, PJP1‖ . . . ‖PJPn

), JPi) ∩
jpTrans(P(P, PJP1‖ . . . ‖PJPn

), JPi+1). By precondition, there were no such transitions in P(P, PJP1‖ . . . ‖PJPn
).

Because we require that all the JPj outputs occur nowhere else, JPi and JPi+1 cannot be contained in a
Oadvj , thus no transition of type (10) has been added by the weaving of/JPnadvn . . ./JPi+2 advi+2.

Thus, we have P(P, PJP1‖ . . . ‖PJPn
)/JPn

advn . . ./JPi+2advi+2/JPi+1advi+1/JPi
advi = P(P, PJP1‖ . . . ‖PJPn

)/JPn

advn . . ./JPi+2 advi+2/JPi
advi/JPi+1 advi+1. Weaving/JPi−1advi−1 . . ./JP1 adv1 trivially yields the same

result.
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