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Abstract. In this work, we introduce a supervised learning framework
for inferring temporal logic specifications from labelled patterns in sig-
nals, so that the formulae can then be used to correctly detect the same
patterns in unlabelled samples. The input patterns that are fed to the
training process are labelled by a Boolean signal that captures their oc-
currences. To express the patterns with quantitative features, we use
parametric specifications that are increasing, which we call Increasing
Parametric Pattern Predictor (IPPP). This means that augmenting the
value of the parameters makes the predicted pattern true on a larger
set. A particular class of parametric specification formalisms that we use
is Parametric Signal Temporal Logic (PSTL). One of the main contri-
butions of this paper is the definition of a new measure, called ε-count,
to assess the quality of the learned formula. This measure enables us
to compare two Boolean signals and, hence, quantifies how much the
labelling signal induced by the formula differs from the true labelling
signal (e.g. given by an expert). Therefore, the ε-count can measure the
number of mismatches (either false positives or false negatives) up to
some error tolerance ε. Our supervised learning framework can be ex-
pressed by a multicriteria optimization problem with two objective func-
tions: the minimization of false positives and false negatives given by the
parametric formula on a signal. We provide an algorithm to solve this
multi-criteria optimization problem. Our approach is demonstrated on
two case studies involving characterization and classification of labeled
ECG (electrocardiogram) data.

Keywords: Signal Pattern Matching · Monotonic Specification Learn-
ing · Pareto Multi-criteria Optimization · Signal Temporal Logic

1 Introduction

Complex systems consist of various inter-connected components for which rigor-
ous modelling is difficult. Due to technological advances a large amount of data

? Supported by the UGA Project SYMER.



2

from such systems is available. However, to ensure that systems behave correctly,
formal specifications defining the intended behaviour are needed. Data-driven
modelling involves the process of learning models and specifications of systems
from the traces they generate. Once learnt they can be used for analysing and
monitoring these systems. This is particularly useful when rigorous mathemati-
cal models based on first principles are difficult to obtain.

In this context, supervised learning involves designing a specification from
a given set of labelled signals, so that the specification is later used to label
signals via monitoring. One approach is to start from nothing but a sample
of labelled signals and learn a logical specification, essentially by enumerating
formulae of increasing size (using suitable heuristics) to come up with one that
is good enough w.r.t. the sample. A more suitable approach is to exploit prior
knowledge made available in the form of a parametric specification. For instance,
an engineer observing the behaviours of a concrete collection of cars would ask for
the parameter valuations p1 and p2 for the following emergency brake pattern:
“the car can pass from speed 30 m/s to p1 m/s within less than p2 seconds.”

Our work is of the second kind, following the trend initiated by [6] with
parametric specifications written in Parametric Signal Temporal Logic (PSTL).
We are inspired by several works on PSTL [6,10] whose aim was to compute
the validity domain of a parametric formula, i.e., the set of parameter valuations
that makes the formula true on a (or a set of) signal. Though in our experiments
we use PSTL with the extended semantics of [7], our framework is not specific
to it and can be applied to other specification formalisms. To provide a generic
approach which is not tied to a specific specification formalism, we introduce the
notion of parametric pattern predictors (PPP). A PPP is a parametric operator
Ψp that transforms unlabelled signal s to a labelling Boolean signal Ψp(s) that
is true on time points where the pattern is predicted. We focus our attention on
PPPs that are increasing: when the value of p increases for any given signal s,
the set of time points where Ψp(s) is true expands.

In our framework, we allow the learned specification Ψp to produce some
false positives and false negatives on parts of the training signals, i.e., there are
time points where Ψp predicts a pattern while there is none, or misses it. We
are interested in computing several sets of parameter valuations (called solution
sets3) which ensure that the “quantities” of false positive and/or false negatives
are lower than given bounds. To define such quantities, we can use neither counts
of time points or of intervals nor the Lebesgue measure since, as we will see later,
these measures are not suitable. Instead we adapt the notion of ε-separated set
from information theory [17] to propose a new measure, called ε-count, with
suitable properties (Prop. 1). Our method for computing solution sets is similar
to the method for approximating monotonic validity domains, proposed in [6].
The main difference is that the constraints on false positives and false negatives

3 Since a learned specification is allowed not to be valid everywhere on a signal, we
prefer to use the new term of solution set rather than validity domain.
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involve two sets monotonic in opposite directions. To this end, we develop an
algorithm that computes the intersection of an upset and a downset in Rn.

The main contributions of the paper can be summarized as follows:

• A generic framework of learning parameter valuations for increasing para-
metric pattern predictors with quantitative constraints on false positives and
false negatives.

• A measure called ε-count for expressing “how often” a Boolean signal is true
and its application to extend the quantitative notions of false positives and
false negatives to Boolean labelling signals.

• An algorithm to compute the intersection of an upset and a downset that
are queried from a membership oracle.

Section 2 presents our specification learning framework. Section 3 describes
the algorithm that computes the intersection of an upset and a downset in Rn.
Section 4 demonstrates our approach on two case studies involving ECG signals.

Related work on PSTL. Parameters in PSTL can be used to express con-
straints both on values and time bounds. They are called space and timing pa-
rameters respectively in [10]. In [6] two different methods for computing validity
domains for PSTL formulae are presented. The first method demonstrates how
exact validity domains can be computed using quantifier elimination, in principle.
Though complete and exact, the main drawback of this approach is the expo-
nential worst case complexity in nested depth of formulae. The second method
computes approximations of monotonic validity domains using query functions.
This method forms the foundation of our contributions regarding monotonic va-
lidity domains. Another method which computes validity domains recursively
is proposed in [10]. This method deals only with space parameters and leaves
handling timing parameters for future work.

Other works which utilize PSTL for the tasks of clustering and classification
are as follows. They concentrate on extracting features and computing a single
solution rather than complete validity domains. In [27], template PSTL formulae
are used to extract features. These features are then used in an unsupervised
learning context to cluster traces. In [28], Hausdorff distance based on mono-
tonic validity domains boundaries [21] is used as a distance metric for traces.
Clustering was used to generate labelling and then construct specifications from
monotonic PSTL templates. In [23], monotonic PSTL formulae are enumerated
using formula signatures. Computation of validity domain boundaries [21] is
combined with checks for misclassification rate for parameter estimation. The
resulting algorithm is used to search for an STL formula to classify traces. An-
other enumeration based method for classifying traces using robustness value
based decision trees is proposed in [22]. Grid sampling is used to estimate tim-
ing parameters. Both the aforementioned enumeration based methods deal with
learning classifiers from example labelling (i.e. supervised learning). In [16], pa-
rameter estimation for PSTL is formulated as multi-objective optimization with
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respect to robustness. For inferring the structure of STL formulae in the absence
of templates, they propose an incremental construction approach.

It is to be noted that we explicitly capture certain features using the quanti-
tative semantics of extended STL [7]. This simplifies the task by avoiding their
encoding as unknown parameters.

Other related work. Temporal logic and timed automata provide a framework
to describe and reason about occurrence of events and their correlations in time.
Unsupervised learning of hybrid timed automata from real-valued signals was
investigated in [29]. In [13] and [20] Timed Regular Expressions (TRE) and LTL
specifications respectively are mined from system traces using formula templates
and event binding. Quantitative Regular Expressions (QRE) have been used to
express specifications for arrhythmia-detection algorithms [4]. Recently, shape
expressions have been proposed for learning specifications and features from
signals [26]. The problem of learning Linear Temporal Logic (LTL) formulae
without any requirements of a priori information in the form of formula templates
has been recently explored in [25]. Learning STL specifications using different
restrictions on the syntax has been studied in a series of papers by others. A sub-
class of STL called reactive STL is investigated in [18]. The formulae in this sub-
class are enumerated by defining a partial order and simulate annealing is used
for parameter estimation. Another sub-class named inference PSTL is proposed
in [19] for learning formulae that detect anomalies. A decision tree approach
combined with a restricted set of PSTL primitives using impurity measures is
proposed in [11].

2 Specification Learning Framework

Before introducing our specification learning framework we need few preliminar-
ies on signals and partial order on Rn.

Signals. A signal s is a function from R to R. A Boolean signal w is a signal
that takes its values in B = {0, 1}, with the common interpretation of 1 and 0
as true and false. The support of a signal w denoted by supp(w) is the smallest
closed set that contains the set {t | w(t) 6= 0}. We consider only signals with
bounded support (aka. compact support4). The signal t 7→ 0 which is always
false is denoted by 0.

Partial order on Rn. Given two vectors p, q ∈ Rn, we say that p is lower than
q, denoted by p ≤ q, if ∀i, pi ≤ qi. A set X is an upset if for all p, q ∈ Rn such
that p ≤ q if p ∈ X then q ∈ X. A set X is a downset if for all p, q ∈ Rn such that

4 A subset of R is compact if and only if it is closed and bounded.
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q ≤ p if p ∈ X then q ∈ X. The boundary consisting of all the minimal elements
of an upset (or all the maximal elements of a downset) is called a Pareto front
in the field of multi-criteria optimization. The box between two vectors x and x
with x ≤ x is bx, xe = {y | x ≤ y ≤ x}.

2.1 Parametric Pattern Predictor

The labels of patterns in our problem are modelled using Boolean signals that
we call labelling signals. A labelling signal λs for a signal s being 1 or 0 at a
time point indicates respectively the occurrence or absence of a pattern in s at
this time point. Particular cases of labelling signals are those whose support is
a list of time points where patterns occur. In these cases, a pattern is a discrete
event, and several labelling signals can be merged together to form what is called
a timed word in timed automata theory [5]. We prefer using Boolean signals
in continuous time for two main reasons. We want to allow patterns to have
duration, that is their occurrence lasts continuously throughout a time interval
(composed thus of uncountable number of points). They can be considered both
as input or output signals for monitoring tools for temporal properties in dense
time, such as StlEval [7] which we will use for our experiments.

Fig. 1: Showing the single false positive of Ψ ch(8.20,0.64,−0.44) for ECG 221

Example 1. Consider electro-cardiograms (ECG) from the MIT-BIH Arrhyth-
mia Database of Physionet [15,24]. They are provided with annotations of time-
stamps where normal or abnormal peaks occur. The annotations for the normal
peaks can be modelled into a labelling signal that is 1 when a normal peak occurs
and 0 everywhere else. A portion of ECG 221 is depicted as in Fig. 1 where the
blue labelling signal comes from the database.

Our aim is to develop a pattern predictor, a tool that generates a labelling
signal for a given signal. For ECG signals, it is used to annotate them with
normal peaks, such as in Fig. 1 the red signal is predicted by our tool.



6

Definition 1 ((Increasing) Parametric Pattern Predictor (IPPP)). A
parametric pattern predictor (PPP) is a function that maps a vector p of reals
to an operator Ψp that maps real-valued signals to Boolean-valued signals. Ψ is
said increasing if for all p ≤ p′, for all signal s, ∀t ∈ [0, l) with l the length of s,
Ψp(s)(t) ≤ Ψp′(s)(t).

Example 2. Formula (1) specified in the extended STL5 [7] gives a simple
and rough characterization of a normal ECG peak. Ψ ch(p1,p2,p3)(s)(t) = 1 if the

maximum of s on [t − p1, t + p1] is above −p3, and its variation is within the
bound p2 on [t − c, t − p1] and on [t + p1, t + c]. The parameter domains are
p1 ∈ [0, 70], p2 ∈ [0, 1] and p3 ∈ [−1, 0]. Here, c = 70 is a constant representing
an upper limit on p1. Note that if one increases (p1, p2, p3), the property is easier
to achieve.

Ψ ch(p1,p2,p3) := ((Max[−c,−p1] s−Min[−c,−p1] s) ≤ p2) ∧
((Max[−p1,p1] s) ≥ −p3) ∧ ((Max[p1,c] s−Min[p1,c] s) ≤ p2) (1)

We remark again that although our work uses the extended STL [7], our
framework can be applied to other specification formalisms. Indeed, many match-
ing problems can be cast into an IPPP, for instance matching as closely as possi-
ble a signal for the longest time possible. More formally, we can define an IPPP
Ψπ such that Ψπ(p1,p2)(s) is 1 at time t if the signal s restricted on the interval

[t, t+ T − p1] is point-wise p2-close to a given signal π (representing a shape of
interest), that is, ∀t′ ∈ [0, T − p1], |s(t+ t′)− π(t′)| ≤ p2. The idea of matching
such predefined shapes is inspired by the work on shape expression [26].

2.2 Quantifying Mismatches via ε-count

A labelled signal (s, λs) is a pair of signal s and labelling signal λs. We aim
at learning parameters p for an IPPP Ψp so that for every given labelled signal
(s, λs), the labelling signals Ψp(s) and λs should match together as much as
possible. We measure two kind of mismatches by measuring “how often” the two
following signals are true. The false positive signal ¬λs ∧ Ψp(s) indicates when
the predictor predicts an occurrence when there is none. The false negative signal
λs ∧ ¬Ψp(s) indicates when the predictor misses an actual occurrence.

The phrase “how often” may make one think of counting events like occur-
rences of a peak. However we cannot count the points where a Boolean formula
is true since they are in general uncountable. Counting the intervals where a
Boolean signal is true is also problematic since it is not always increasing with the
support of the signal. For example, a Boolean signal defined as b(t) := s(t) < p
has support that increases with p, but such interval counting is not monotoni-
cally increasing with p.Also there can be infinitely many intervals. Last but not

5 Here and in the rest of the paper we slightly simplified the syntax of [7] by replacing
(On[a,b] Max s) by (Max[a,b] s) whose value in t is maxt′∈[t+a,t+b] s(t

′).
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least, the most standard measure of subsets of R is the Lebesgue’s measure. This
is not convenient for our purpose because a signal whose support is the disjoint
union of many intervals of almost-null measure which are quite far apart will
entails a small measure while for such a signal we want instead a big “count”
because it can represent the number of mismatches. In this work we introduce
the notion of ε-count, inspired by the notions of ε-separated sets and ε-capacity
proposed in [17].

Definition 2 (ε-separated set and ε-count). Given a boolean signal w, a set
S of reals is ε-separated w.r.t. w if S ⊆ supp(w) and for every t, t′ ∈ S with
t 6= t′, it holds that |t − t′| ≥ ε. The ε-count of a signal w is cε(w) = max{|S| |
S is ε-separated w.r.t. w}.

Proposition 1. The ε-count of a signal w is determined in a greedy manner
with the following recursive equations: cε(0) = 0 and cε(w) = 1 + cε(w

′) where
w′(t) = 0 if t < ε+ min(supp(w)) and w′(t) = w(t) otherwise.

Proof. Intuitively, the support of the signal w′ is obtained from that of the
signal w by removing an interval of length not greater than ε, meaning that
in the difference between the two supports we cannot put two points that are
ε-separated. More formally, let S be a maximal ε-separated set w.r.t. w and tmin

be the minimum of S, we first show that the set S′ = S \ {tmin} is ε-separated
w.r.t. w′. Every point t of this set satisfies |t − tmin| ≥ ε and thus t > tmin + ε.
This means that S′ ⊆ supp(w′). Hence |S′| ≤ cε(w′). Since |S′| = |S| − 1 and S
is maximal we have that cε(w) − 1 ≤ cε(w

′). It remains to show the inequality
cε(w)−1 ≥ cε(w′) to establish the equality. Let now S′ be a maximal ε-separated
w.r.t. w′ and let S = S′ ∪{min(supp(w))}. Then S is ε-separated w.r.t. w, from
which we know that |S| ≤ cε(w). Since |S| = |S′|+ 1 = cε(w

′) + 1, we obtain the
suited inequality.

The following proposition states useful properties of the ε-count. The first
two statements are not hard to see. We prove only the third statement.

Proposition 2. 1. The ε-count is null iff it is applied to the constant signal 0.

2. The ε-count is increasing: if w ≤ w′ then cε(w) ≤ cε(w′).
3. The ε-count satisfies a triangular inequality: cε(w ∨ w′) ≤ cε(w) + cε(w

′).

Proof. Let S′′ be a maximal ε-separated set w.r.t. w∨w′ so that |S′′| = cε(w∨w′).
Let S = S′′ ∩supp(w). The set S is hence ε-separated w.r.t. w and we thus have
|S| ≤ cε(w). Let S′ = S′′ \ S so that in particular |S′′| = |S| + |S′|. S′ is
included in supp(w ∨ w′) \ supp(w) so it is included in supp(w′). The set S′ is
hence ε-separated w.r.t. w′ and we thus have |S′| ≤ cε(w

′). We can conclude
cε(w ∨ w′) = |S′′| = |S|+ |S′| ≤ cε(w) + cε(w

′).
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2.3 Parameter Identification Problems

Given bounds f+, f− on the allowed ε-count of false-positives and false-negatives,
we are interested in the following three sets:

Dom+(Ψ,S, f+) = {p | ∀(s, λs) ∈ S, cε(Ψp(s) ∧ ¬λs) ≤ f+}, (2)

Dom−(Ψ,S, f−) = {p | ∀(s, λs) ∈ S, cε(¬Ψp(s) ∧ λs) ≤ f−}, (3)

DomInter(Ψ,S, f+, f−) = Dom+(Ψ,S, f+) ∩ Dom−(Ψ,S, f−). (4)

For convenience, we call them respectively the positive, negative and intersection
solution sets. It is also of great interest to compute the set of couples (f+, f−),
called set of feasible error bounds, for which a solution exists:

P(Ψ,S) = {(f+, f−) | DomInter(Ψ,S, f+, f−) 6= ∅}. (5)

In addition, we are interested in a relaxed version of the identification problem
for false positive bounding, by tolerating a difference of σ time units in matching
the labels. This can be done by replacing λs with the signal6 F[−σ,σ] λs in (2).
More concretely, the solution set of the corresponding σ-relaxed problem is:

Dom+σ(Ψ,S, f+) = {p | ∀(s, λs) ∈ S, cε(Ψp(s) ∧ ¬F[−σ,σ] λs) ≤ f+}.

Hence, the corresponding relaxed version of the intersection solution set (4) is

DomInterσ(Ψ,S, f+, f−) = Dom+σ(Ψ,S, f+) ∩ Dom−(Ψ,S, f−). (6)

Note that Dom+(Ψ,S, f+) is a downset and Dom−(Ψ,S, f−) is an upset (see the
beginning of Section 2) because Ψ is increasing. Sets of this kind can be learned
from membership queries as proposed in [8,21]. The set DomInter(Ψ,S, f+, f−)
is the intersection of an upset and a downset, we thus face a new problem that
we address in Section 3. The set P(Ψ,S) is an upset and its minimal elements
form a Pareto front. We compute it via membership-queries for couples (f+, f−).
They are done via non-emptiness checking of DomInter(Ψ,S, f+, f−) which is an
easier problem than computing the whole set.

3 Intersecting an Upset and a Downset in Rn

In this section, we describe our algorithm for estimating the intersection of an
upset and a downset in Rn which is required to compute DomInter(Ψ,S, f+, f−).
The upset and downset are accessed via membership oracles, that is, two Boolean-
valued functions ρ+ : Rn → B and ρ− : Rn → B which are respectively mono-
tonically increasing and decreasing with respect to the input.

A point where ρ+ and ρ− are both 1 (resp. 0) is called a positive (resp. neg-
ative) intersection point. Our approach involves intersection search on the diag-
onal of a hyper-rectangular parameter space.

6 where (F[−σ,σ] λs)(t) = 1 iff ∃t′ ∈ [t− δ, t+ δ], s(t′) = 1.
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Algorithm 1 builds on linear intersection search to compute the positive in-
tersection of an upset and a downset for the multi-dimensional case. An alterna-
tive approach is to compute separately the two sets and then their intersection.
Computing directly the intersection has the advantage of quickly eliminating the
regions that surely do not contain a solution to focus on examining the rest. We
can also modify Algorithm 1 to make queries about emptiness of the intersection
without computing it exhaustively.

Intersection on a line and expansion. The procedure boundary finds the
Pareto boundary of a monotonically increasing function on a given line using
the classical idea of binary search. The procedure intersect finds the intersec-
tion of two monotonic Boolean functions ρ+ (increasing) and ρ− (decreasing)
on a line 〈x, x〉. Before starting intersection search on a line, by simple queries
on the endpoints we can sometimes altogether discard (oc=discard) or fully ac-
cept (oc=accept) the bounding hyper-rectangle. This happens when the hyper-
rectangle is wholly contained in a negative or a positive intersection. When this
is not the case, we query for the values of ρ+ and ρ− at the midpoint. If a point
in the intersection is found we return with the result on whether it is positive
(oc=splitpos) or negative (oc=splitneg). Otherwise, we continue the search re-
cursively by discarding the half segment not containing an intersection. This
is possible because ρ+ and ρ− are monotonically increasing and decreasing re-
spectively. In this way we end up either finding an intersection or returning a
line segment of length equal to an error bound ε containing the intersection
(oc=notfound).On a line (p0, p1), we can have three outcomes of the search. The
first two outcomes are when a point pc in the positive intersection (Fig. 2b)
or the negative intersection (Fig. 2a) is found. For these cases, we can divide
the line into two segments (p0, pc) and (pc, p1). On these segments we can ap-
ply the classical binary search to find the Pareto fronts corresponding to the
monotonically decreasing and monotonically increasing functions. We call this
operation an expansion. In Fig. 2a,2b, the points p+, p− represent the points
where the Pareto fronts for the monotonically increasing and decreasing func-
tions respectively intersect with the line (p0, p1). The third and last case is when
no intersection has been found.

p0 p1
pcp− p+

(a) Negative intersection.

p0 p1
pcp+ p−

(b) Positive intersection.

Fig. 2: Intersection on a line.

Decomposing the box and continuing the search. Algorithm 1 uses the
result of the binary intersection search on the diagonal of a box to deduce which
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regions (inside the box) do or do not contain a solution and which are unde-
cided. Then, it decomposes the undecided region into sub-boxes and recursively
processes the resulting sub-boxes (see Fig. 3)There are three cases:

• No intersection has been found (see Fig. 3c). As a result of monotonicity, we
know that the sub-boxes R1 and R2 do not contain a solution, and proceed
with the remaining region which is decomposed into two overlapping sub-
boxes U1 and U2. This decomposition is formulated in Section 3.1.

• A negative intersection has been found (see Fig. 3a). We can identify a line
segment on the diagonal where a solution can not exist and deduce that
the regions R1 and R2 do not contain a solution. The decomposition of the
undecided region leads to two sub-boxes U1 and U2 (see Section 3.2).

• A positive intersection has been found (see Fig. 3b). We obtain the sub-boxes
U1 and U2 as in the previous cases but use the procedure in Section 3.1 twice
to obtain overlapping sub-boxes U3, U4, U5 and U6.

The decompositions into non-overlapping and overlapping sub-boxes are denoted
by Inov and Iov in Algorithm 1 and explained in detail in Sections 3.1 and 3.2.

Algorithm 1 Pareto front intersection algorithm

1: Input: A box X = b0,1e; ρ+ and ρ− are respectively monotonically increasing
and decreasing Boolean-valued functions; error bounds δ and ε.

2: Output: A set of boxes S containing the positive intersection of ρ+ and ρ− and a
set L representing the undecided region such that |L| ≤ δ. All sets are represented
by unions of boxes.

3: L = {X}; S = ∅ . initialization
4: repeat
5: pop first bx, xe ∈ L . take the largest box
6: {〈y, y〉, oc} = intersect(〈x, x〉, ρ+, ρ−, ε) . intersect search on the diagonal
7: if oc == splitpos then . found a positive intersection.
8: 〈zl, zl〉 = boundary(〈x, y〉, ρ+, ε)
9: 〈zu, zu〉 = boundary(〈y, x〉,¬ρ−, ε)

10: S = S ∪ bzl, zue
11: L = L ∪ Inov(x, x, zl, zu) ∪ Iov(x, zu, zl, zl) ∪ Iov(zl, x, zu, zu) . see Fig. 3b
12: else if oc == splitneg then . found a negative intersection.
13: 〈zl, zl〉 = boundary(〈x, y〉,¬ρ−, ε)
14: 〈zu, zu〉 = boundary(〈y, x〉, ρ+, ε)
15: L = L ∪ Inov(x, x, zl, zu) . see Fig. 3a
16: else if oc == accept then
17: S = S ∪ bx, xe
18: else if oc 6= discard then . no intersection found
19: L = L ∪ Iov(x, x, y, y) . see Fig 3c.

20: Vol(L) = Vol(X)− Vol(Z)
21: until Vol(L) ≤ δ
22: return S, L



Learning Specifications for Labelled Patterns 11

zl

zu

y

R1

R2U1

U2

(a) Negative intersection

zl

zu

y

zu

zl
R1

R2

G

U1

U2

U3

U4

U5

U6

(b) Positive intersection

y

y

R1

R2

U1

U2

(c) No intersection found

Fig. 3: Illustration of sub-boxes.

Before continuing, we need a formal definition of sub-boxes resulting from
subdivision based on points y < y on the diagonal of a box bx, xe. These sub-
boxes are products of sub-intervals Iαi where for each dimension, their bounds
are taken among the following sequence of coordinates xi < y

i
< yi < xi.

Definition 3 (Sub-interval encoding). A sub-interval Iαi
⊆ [x, x] is encoded

by its subscript αi ∈ {l,m, u,u, l,t} which is a letter such that αi = l for the
lower interval [xi, yi]; αi = u for its complement7 [y

i
, xi]; αi = u for the upper

interval [yi, xi]; αi = l for its complement [xi, yi]; αi = m for the middle interval
[yi, xi]; and αi = t for the whole interval [xi, xi].

Definition 4 (Sub-boxes). Given α = (α1, . . . , αn) ∈ {l,m, u,u, l,t}n and
four n-dimensional points x = (x1, . . . , xn), x = (x1, . . . , xn), y = (y

1
, . . . , y

n
),

y = (y1, . . . , yn) such that x ≤ y ≤ y ≤ x, the sub-box of bx, xe induced by α and
by, ye is Bα =

∏n
i=1 Iαi

with Iαi
defined in Definition 3.

3.1 Decomposition Into Overlapping Sub-boxes

This decomposition, proposed in [8], is useful when we have to remove from a
box bx, xe the downward closure of y (i.e. B(l,...,l) = bx, ye) and the upward-
closure of y (i.e. B(u,...,u) = by, xe). The resulting sub-boxes can overlap but this
decomposition is only used with points that are ε-close. At least in one dimension
i the overlap is restricted to the middle interval [y

i
, yi] whose length is at most ε

leading to a negligible volume when ε is small compared to the length of [xi, yi]
and [y

i
, xi].

Definition 5 (Overlapping sub-boxes). Let x, y, y, x be 4 n-dimensional points
with x < y < y < x. We define

Iov(x, x, y, y) = {Bα | α ∈ Dn}

where (Dn)n∈N is a sequence of set of words defined inductively as follows:

D2 = {lu,ul},D3 = {lut,tlu,utl}, and for n ≥ 4 Dn+1 = tDn ∪ lun ∪ uln.
7 Strictly speaking it is the topological closure of the complement. We avoid introduc-

ing open intervals so as to avoid dealing with boxes with partially open boundary.
The overlap it causes is harmless since being a null-volume set.
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As an example D4 = {tlut,ttlu,tutl, luuu,ulll}

Proposition 3. The set Inov(x, x, y, y) contains (2n− 3) boxes whose union is
the complement in bx, xe of B(l,...,l) ∪B(u,...,u).

3.2 Decomposition Into Non-overlapping Sub-boxes

In case a negative intersection has been found the set of points in the upward-
closure of y should be removed. This is the sub-box B(u,...,u) = by, xe. The same
reasoning holds for the downward-closure of y which is B(l,...,l) = bx, ye.

Definition 6 (Non-overlapping sub-boxes). We define An, Cn, En recur-
sively as follows

E0 = A0 = C0 = ∅ and for n ≥ 1

En+1 = mEn ∪ uAn ∪ lCn, An+1 = ltn ∪ uAn, Cn+1 = utn ∪ lCn.

Let x, y, y, x be 4 n-dimensional points with x < y < y < x. We define

Inov(x, x, y, y) = {Bα | α ∈ En}.

Proposition 4. The set Inov(x, x, y, y) contains (n2 − n) boxes whose union is
the complement in bx, xe of B(u,...,u) ∪B(l,...,l).

As an illustration we give An,Cn,En for the dimensions 1, 2 and 3:

n 1 2 3

An l lt ∪ ul ltt ∪ ult ∪ uul
Cn u ut ∪ lu utt ∪ lut ∪ llu
En ∅ lu ∪ ul mlu ∪mul ∪ ult ∪ uul ∪ lut ∪ llu

4 Experiments

We have implemented the algorithms proposed in this work and incorporated
them as additions to ParetoLib [9,2] (a Python library for Pareto-Front learning)
and the tool StlEval [7,3]. Implementations in the ParetoLib library only deal
with upsets (or downsets). To satisfy this, one can easily replace some of the
parameters with their opposite.

We now present some experimental results obtained by using our supervised
learning framework to analyse labelled electrocardiogram (ECG). ECG signals
capture information about electrical activity of the heart and can help detect
anomalies in its functioning. We characterize several features (e.g. peaks and
ditches) as parametric specification, and provide the intersection solution set for
the involved parameters with the best possible trade-off between false positives
and false negatives.
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4.1 Learning STL Specifications for Labelled ECGs

We present our results on three ECGs (100, 123, 221) each containing between
1500 to 2500 labelled pulses taken from the MIT-BIH Arrhythmia Database
of Physionet [15,24]. We use the formula (1) from Section 2 to characterize
a parameter predictor Ψ ch for a normal heart pulse. Given a set S of labelled
ECG signals, the upper bounds f− and f+ on the numbers of false negatives and
positives respectively and a matching tolerance value σ, we use the intersection
algorithm to find the relaxed intersection solution set DomInterσ(Ψ ch,S, f+, f−)
as defined in (6) (that is the set of parameter values p such that the predictor Ψ chp
can predict normal heart pulses on the labelled signal set S with the numbers
of false positives and false negatives bounded by f+ and f−).

Trade off between false negatives and false positives. Using a modifica-
tion of Algorithm 1, we query about emptiness of DomInterσ(Ψ ch,S, f+, f−) and
compute the set P(Ψ ch,S) of feasible error bounds as defined in (5). We recall
that Algorithm 1 explores the parameter space up to a given bound δ on volume.
In our experiments we search until we have reduced the volume of the undecided
region to Vδ percentage of the total volume of the parameter space. The Pareto
front that we obtain asymptotically becomes exact as the value of Vδ tends to
zero. In Fig. 4 we show two Pareto front approximations for ECG-100; the front
separating the brown and the green regions corresponds to Vδ = 1%. The Pareto
front separating the red and the brown regions corresponds to Vδ = 0.1% and is
more accurate owing to better exploration.

Looking at Fig. 4, it is pertinent to ask why the predictor (1) cannot match
the labelling with better accuracy for ECG-100. Actually, our formula only takes
the shape of the heart pulses into account but not their time period. Some heart
pulses in ECG-100 are not labelled as normal because they violate the natural
rhythm of the heart and arrive too soon or too late. It is thus not possible to
distinguish them by considering only the shape. For ECG-221, the predictor (1)
can match the labelling with no false negatives and only a single false positive
(shown in Fig. 1). For ECG-123, it can match with a single false negative and
no false positives.

Fig. 4: ECG 100, Vδ = 1% vs Vδ = 0.1%
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3D intersections. Once we have computed P(Ψ ch,S) with adequate accuracy,
we can use Algorithm 1 to further explore the parameter space for different
values of Vδ, f− and f+. Some exploration results are depicted in Fig. 5 and the
associated computation time in Table 1.

Table 1: Computation time for 3D intersection solution sets.
ECG n0 f− f+ Vδ = 1% Vδ = 0.1% Vδ = 0.01% τ1

221 0 1 62s 262s 1279s 19s
123 1 0 103s 592s 3189s 36s
100 0 33 758s 5273s 18670s 12s
1 τ represents the time taken to find the first point in the solution set.

(a) ECG 221,
Vδ = 0.01%, f− = 0, f+ = 1

(b) ECG 123,
Vδ = 0.01%, f− = 1, f+ = 0

Fig. 5: Case study 1: intersection solution sets in 3D

4.2 Classification of ECGs

We now demonstrate the application of our approach to binary classification of
signals, using the ECGFiveDays dataset from the UCR Time Series Classification
Archive [14]. More concretely, we consider two classes of ECGs taken 5 days
apart from the same person and want to find a classifier that can correctly
predict given an ECG, on which day it was observed (day1 or day5). In [22], an
enumerative method over STL is applied to solve this problem in the absence of a
priori information. By defining expressive and meaningful features, we show how
more informative formulae can be obtained with less training data (23 traces as
compared to 300 in [22]). The features are based on the well known theoretical
modelling of ECG signal as P and T waves combined with a QRS complex (see
e.g. [12]). For each ECG in the dataset, we observe two prominent peaks with
a ditch in between. We define STL formulae to quantify some features of the
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signal around the ditch and the peaks as shown in Table 2. The range of feature
values (D1,D5) for day1 and day5 observed in the ECGs are shown in the last
two columns of Table 2. They can be computed using a slight modification of
classical binary search.

Computation of feature range. We describe briefly the technique we use to
compute the range of values taken by a given feature (expressed as an interval).
To express the magnitude and timing features listed in Table 2, we use the PSTL
formulae given in (7a, 7b) respectively, where the first and the second formulae
become monotonically more and less true respectively as parameter p increases.
Then using the intersection algorithm we can find the interval containing the
feasible values of p (thereby feature range). The parameter c in (7b) is a user-
defined upper bound on the feature value; λ is the labelling signal.

F(λ→ ϕ ≤ p); F(λ→ ϕ ≥ p) (7a)

F(λ→ F[0,p] ϕ); F(λ→ F[p,c] ϕ) (7b)

Enumeration of formulae and finding a classifier. We rank the features
using the measure8 m = |D14D5|/|D1∪D5|. We then enumerate all the distinct
pairs (ϕi, ϕj) of features using lexicographical ordering over rank. For each pair
we use the intersection algorithm to learn the parameters which make the dis-
junction formula (Ψ := ϕi∨ϕj) classify correctly the ECGs given in the training
data. Let S1 and S2 be the labelled signals corresponding to the classes day1
and day5 of ECGs respectively. We compute the intersection of Dom−(Ψ,S1, f−)
and Dom+(Ψ,S2, f+).

Table 2: Features and formulae.
Feature Formula D1 for day1 D5 for day5
Def. of peak (s ≥ (Max[−10,10] s)) ∧ s ≥ 1 NA NA
Def. of ditch (dh) (s ≤ (Min[−10,10] s)) ∧ s ≤ −1 NA NA
Depth of the ditch (Min[0,136] s) ≤ p {or ≥ p} (-6.12, -4.767) (-6.51, -5.71)
Location of the ditch F[θ1,θ2] dh (51.00, 58.99) (51.00, 59.99)
Height of peak 1 (Max s U dh) ≤ p {or ≥ p} (1.01, 5.42) (0.77, 3.81)
Location of peak 1 F[θ1,θ2] peak (48.00, 56.99) (0.00, 55.99)
Height of peak 2 dh ∧ ((Max[0,60] s) ≤ p) {or ≥ p} (1.25, 3.296) (1.43, 2.58)
Location of peak 2 dh ∧ F[θ1,θ2] peak (25.00, 30.99) (23.00, 26.99)

Results for ECG5days classify. Table 3 summarizes our results for five dif-
ferent training and testing configurations. For the first configuration, we use the

8 4 is the symmetric difference of two sets.
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original 23 training traces and 861 testing traces from [1] without any changes.
For the other configurations we split the training set of size 861 and use one
portion for training and the other for testing. The number of traces used for
training and testing are mentioned within brackets in the first column of Ta-
ble 3. For example, in the second row we indicate that for configuration 2 we
use 100 traces for training and the remaining 761 for testing. Note that for con-
figuration 4 we use all the 861 traces for training and have no traces for testing.
For this configuration, the reason we did not find a solution could be because
we required 100% training accuracy. The 0/0 in the column for testing error is
because the test set is empty. Note that, for a PSTL formula each parameter
valuation in the solution set produces a classifier. Two such classifiers we found,
Ψ cl1(28.3,11.0,4.0) and Ψ cl2(27.5,1.0,−1.3) have error values 2/861 and 17/861 respectively

on the original testing set.

Ψ cl1(p1,p2,p3)
:= (ditch ∧ F[p1,c2−p2] peak) ∨ ( (Max s U ditch) ≥ p3)

Ψ cl2(p1,p2,p3)
:= (ditch ∧ F[p1,c2−p2] peak) ∨ (ditch ∧ (Max[0,c2] s) ≤ −p3) (8)

Table 3: Results for learning (case study 2). See Formula (8) for Ψ cl1 , Ψ cl2

Configuration
time (s) Testing error Training error

δ = 10−1 δ = 10−2 δ = 5.10−3 Ψcl1 Ψcl2 Ψcl1 Ψcl2

Confg. 1 (23, 861) 2 184 787 2/861 17/861 0/23 0/23
Confg. 2 (100, 761) 1.5 6 10 2/761 17/761 0/100 0/100
Confg. 3 (300, 561) 2 3 5 2/561 NA1 0/300 NA
Confg. 4 (861, 0) 13 79 153 NA NA NA NA
Confg. 5 (861, 0) 5 8.5 12 0/0 NA 2/861 NA
1 NA: Not Applicable. Parameter search is unsuccessful.

5 Conclusion and Future Work

In this paper, we presented a new method for extracting knowledge from labelled
signals based on monotonic parametric specifications. To this end, we introduced
the ε-count, to measure the amount of mismatch between two Boolean signals
(e.g., the Boolean signal induced by the labelled input sample, and the one
defined by our learned specification). We then formulated the learning process
as a multi-criteria optimization problem with constraints on the ε-counts of false
positives and false negatives. Finally, we proposed an algorithm to solve this
problem based on the intersection of an upset and a downset, and then applied
it in particular for learning monotonic PSTL specifications. We demonstrated
the performance of our approach on two case studies involving ECG signals.

As future work, we will investigate the computation of the exact or approxi-
mate solution sets for non-monotonic parametric specification. To partially solve
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this, we can find the minimal set of parameters according to heuristic multi-
criteria optimization. However there exist trade-offs among parameters and also
between tightness and robustness. Finding tightest parameters for the given
training examples might not generalize well. Methods that intelligently explore
the parameter space uncovering these trade-offs are needed. Second, we would
like to investigate efficient representations for solution sets. We found the need for
this when dealing with timing parameters. The formula F[τ1,τ2] ϕ is monotonic
with respect to τ1 and τ2, but τ1 and τ2 are related by an implicit constraint,
τ1 ≤ τ2. Replacing multiple occurrences of a parameter with distinct symbols
as suggested in [27] might not be straightforward for timing parameters. Con-
sequently, it becomes more difficult to use boxes to represent the solution set.
The problem of selecting optimal parameter assignments from the solution set
in order to maximize average classification accuracy can also be studied.
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A One Dimensional Search and Intersection

We first recall the classical binary search algorithm (aka. dichotomic search) and
then we give our intersection search algorithm.

Given a Boolean-valued function ρ : R→ B which is monotonically increasing
with the input, Algorithm 2 computes an interval of any specified length ε con-
taining the point on the boundary between the subset of the domain where the
function is false and the subset where it is true. See Figure 6 for an illustration
of various steps of the algorithm. Algorithm 2 can be extended to the general n-
dimensional case [8]. Algorithm 3 computes the intersection of ρ+ and ρ− which
are monotonically increasing and decreasing Boolean functions respectively.

zx x

y y

y

Fig. 6: Binary search and the successive reduction of the uncertainty interval.
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Algorithm 2 One dimensional binary search: boundary(〈x, x〉, ρ, ε)
1: Input: A line segment ` = 〈x, x〉, ρ a monotonically increasing boolean-valued

function and an error bound ε ≥ 0.
2: Output: A line segment 〈y, y〉 containing the Pareto boundary of ρ such that
y − y ≤ ε.

3: 〈y, y〉 = 〈x, x〉
4: while y − y ≥ ε do
5: y = (y + y)/2
6: if member(y) then
7: 〈y, y〉 = 〈y, y〉 . left sub-interval
8: else
9: 〈y, y〉 = 〈y, y〉 . right sub-interval

10: return 〈y, y〉

Algorithm 3 1D intersection search: intersect(〈x, x〉, ρ+, ρ−, ε)
1: Input: ` = 〈x, x〉 is a line segment, ρ+ and ρ− are monotonically increasing and

decreasing Boolean-valued functions; and ε ≥ 0 is an error bound.
2: Output: A line segment 〈y, y〉, an enum variable oc which can take values
{notfound, accept, discard, splitpos, splitneg}.

3: 〈y, y〉 = 〈x, x〉, oc = notfound
4: if ρ+(y) and ρ−(y) then
5: return 〈y, y〉, oc = accept

6: if (not ρ+(y)) and (not ρ−(y)) then
7: return 〈y, y〉, oc = discard

8: while y − y ≥ ε do
9: y = (y + y)/2

10: if ρ+(y) and ρ−(y) then
11: return 〈y, y〉, splitpos . positive intersection
12: else if (not ρ+(y)) and (notρ−(y)) then
13: return 〈y, y〉, splitneg . negative intersection
14: else if ρ+(y) and (not ρ−(y)) then
15: 〈y, y〉 = 〈y, y〉 . left sub-interval
16: else if (not ρ+(y)) and ρ−(y) then
17: 〈y, y〉 = 〈y, y〉 . right sub-interval

18: return 〈y, y〉, oc
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B Monotonicity, Solution sets and Pareto Fronts.

B.1 Interval count for b(t) := s(t) < p is not monotonic with p.

The Boolean signal s(t) < 3 is true on two intervals, while s(t) < 2 and s(t) < 6
are true on one interval.

Fig. 7: Non-monotonicity of interval count.

B.2 Solution set for ECG 100 When f− = 0 and f+ = 33.

Fig. 8: ECG 100, Vδ = 0.01%, f− = 0, f+ = 33
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B.3 Pareto Fronts Between f+ and f−.

(a) ECG 221, Vδ = 0.1%, t ≈ 252s

(b) ECG 123, Vδ = 0.1%, t ≈ 303s

Fig. 9: Pareto fronts for ECGs 221 and 123
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(a) ECG 100, Vδ = 0.1%, t ≈ 11919s

(b) ECG 100, Vδ = 1%, t ≈ 7903s

Fig. 10: ECG 100: Decreasing Vδ gives a more accurate Pareto front
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