
SBIP 2.0: Statistical Model Checking
Stochastic Real-time Systems

Braham Lotfi Mediouni, Ayoub Nouri, Marius Bozga,

Mahieddine Dellabani, Jacques Combaz, Axel Legay and

Saddek Bensalem

Verimag Research Report no

TR-2018-5

May 2, 2018

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UGA
Bâtiment IMAG
Université Grenoble Alpes
700, avenue centrale
38401 Saint Martin d’Hères
France
tel : +33 4 57 42 22 42
fax : +33 4 57 42 22 22
http://www-verimag.imag.fr/

http://www-verimag.imag.fr

SBIP 2.0: Statistical Model Checking Stochastic Real-time Systems

Braham Lotfi Mediouni, Ayoub Nouri, Marius Bozga, Mahieddine Dellabani, Jacques Combaz, Axel
Legay and Saddek Bensalem

May 2, 2018

Abstract

This paper presents a major new release of SBIP, an extensible statistical model
checker for Metric (MTL) and Linear-Time Temporal Logic (LTL) properties on re-
spectively Generalized Semi-Markov Processes (GSMP), Continuous-Time (CTMC)
and Discrete-Time Markov Chain (DTMC) models. The newly added support for
MTL, GSMPs and CTMCs allows to capture both real-time and stochastic aspects,
enabling faithful specification and modeling of real-life systems. SBIP was entirely
redesigned as an IDE including project management, model edition, compilation,
simulation, and statistical analysis. The tool has been used for various benchmarks
and case studies including models of communication protocols, embedded and IoT
systems.

Keywords: Stochastic Models, Statistical Analysis, Automated Verification

Reviewers: Marius Bozga

How to cite this report:

@techreport {TR-2018-5,
title = {SBIP 2.0: Statistical Model Checking Stochastic Real-time Systems},
author = {Braham Lotfi Mediouni, Ayoub Nouri, Marius Bozga, Mahieddine Dellabani,

Jacques Combaz, Axel Legay and Saddek Bensalem},
institution = {{Verimag} Research Report},
number = {TR-2018-5},
year = {2018}

}

Contents
1 Introduction 2

2 SBIP Design and Functionalities 2
2.1 Modular and extensible architecture. 3
2.2 Multiple integrated analysis workflows. 3
2.3 Technical info and availability. 3

3 Modeling and Specification Formalism 3
3.1 Stochastic Real-time BIP . 3
3.2 Parametric MTL . 5

4 SBIP Modules 5
4.1 Stochastic Simulation Engine . 5
4.2 Monitoring Module . 6
4.3 Statistical Model Checking Engine . 6
4.4 Parametric Exploration Module . 7
4.5 Rare-Events Engine. 7
4.6 Graphical User Interface . 8

5 Case Studies and Benchmark 9
5.1 FireWire – IEEE 1394 . 9
5.2 Bluetooth – Device Discovery . 11
5.3 A Vehicle Gear Controller . 12

5.3.1 The complete set of considered requirements . 13
5.4 Precision Time Protocol – IEEE 1588 . 15
5.5 Pacemaker Model . 15
5.6 Concurrency model . 17
5.7 Performance Analysis . 18

6 Related Work 18

7 Conclusion 19

1

1 Introduction
Statistical Model Checking (SMC) is a powerful alternative to classical numerical probabilistic model
checking techniques that fail to handle large state-space systems. SMC was successfully applied in the
assessment of different real-life systems in various application domains [32, 16, 9, 7, 10]. Classical model
checkers [26, 17, 4] now include SMC as part of their analysis engines, and have been recently joined by a
variety of specialized SMC tools [35, 21, 8].

In this paper, we present the newest release of the SBIP statistical model checker. In its previous version
[28], the tool was restricted to the analysis of DTMC models with respect to bounded LTL properties. SBIP
now supports multiple modeling formalisms ranging from DTMCs to CTMCs and GSMPs. Moreover, it
supports a parametric variant of MTL to allow expressing richer properties regarding time. Furthermore,
the LTL support was extended towards nested temporal operators and boolean combination of properties.

From the user point of view, the tool has benefited from a major revision in its workflows. It now
provides a single integrated environment where one can edit models, compile, simulate, and perform SMC
analysis. For example, given a parametric MTL formula and an instantiation domain (for the property
parameter), the tool performs automatically the necessary iterations for the analysis of different instances
of the property. Moreover, to enhance the user experience, SBIP is now organized around projects that
enclose models, properties, traces, in a structured manner. It also includes support for visualization of
obtained analysis results in standard formats, e.g., bar plots, charts.

We used SBIP for modeling and analyzing several case studies including network protocols (Firewire,
Bluetooth, PTP) and embedded systems (gear controller, pacemaker) with respect to various settings under
different requirements, timed and untimed. We provide for all these examples, analysis results with a
detailed evaluation of the tool performance.

Outline. Section 2 presents the SBIP architecture and overviews its different functionalities and mod-
ules. We provide a brief presentation of the modeling and specification formalism in Section 3 before
detailing the main modules in Section 4. In Section 5, we present different case studies addressed using
the tool. A discussion of the related tools is presented in Section 6. Finally, Section 7 concludes and
presents ongoing and future work directions. Further technical details and case studies are presented in
Appendices.

2 SBIP Design and Functionalities
The new version of SBIP was completely re-designed as an IDE including all the activities from the mod-
eling, to the simulation and the SMC analysis. It offers a set of functionalities organized in a clear and fluid
workflow as illustrated in Fig. 1. All interactions with SBIP go through a graphical user interface (GUI),
which allows for setting the inputs, running analysis and getting the outputs.

Traces
Φ MonitorStochastic

Verdict

Analyses

Global verdict
Commands

α, β, δI

Specification
System

Stochastic

S
Φ(x)

G
U

Engine

Output

Input

HT PE

Parametric SMC

IP

Figure 1: SBIP architecture

2

2.1 Modular and extensible architecture.
The tool architecture was designed modularly for more flexibility and to enable extensibility. The tool
relies on five main generic functional modules, namely, a Stochastic Simulation Engine, a Monitoring
module, an SMC Engine, a Rare-Event Engine, a Parametric Exploration module plus additional data
structures, i.e., to represent execution traces and logical formulas. The stochastic engine encapsulates an
executable model simulator and is used to produce (random) execution traces on demand. The monitor is
used to evaluate properties on traces. The SMC engine implements the main statistical model checking loop
depending on the statistical method used, namely, hypothesis testing or probability estimation. Finally, the
parametric exploration module coordinates the evaluation of a parametric property. All these modules are
fully independent and interact through well-defined Java interfaces.

The tool has been instantiated for the BIP formalism as input model, where different stochastic simu-
lation engines can be used (discrete/real-time). Regarding monitoring, the tool currently supports bounded
LTL and parametric MTL. The functionality of these modules is detailed in Section 4.1 and Section 4.2.

2.2 Multiple integrated analysis workflows.
The tool takes as inputs a stochastic system model to be analyzed/simulated, a property of interest, and
a set of parameters mainly required by the SMC algorithms. Three analysis workflows are provided by
this new version. The first one is the classical SMC procedure consisting of either an Hypothesis Testing
(HT) or a Probability Estimation (PE). It consists of triggering the stochastic simulation engine to produce
a new execution trace which is monitored against the given property. This produces a local verdict, i.e.,
regarding that specific execution trace. Depending on the used SMC algorithm, several iterations are gen-
erally required to produce a global verdict. The second workflow consists of analyzing different instances
of a parametric property by performing several iterations of the usual SMC workflow. The third workflow
allows to verify rare properties on stochastic systems. These properties are subdivided into n intermediate
properties of lower rarity and are represented as a scoring function. Details about the three workflows can
be found in Sections 4.3, 4.4 and 4.5, respectively.

Depending on the used workflow, one can visualize the analysis results as a single probability, a yes/no
answer, or a chart/bar plot. The tool also allows for visualizing the generated execution traces. Storing
execution traces can be enabled/disabled by the user as it may be memory consuming. Further details on
the features offered by the tool are provided in Section 4.6.

2.3 Technical info and availability.
SBIP is fully developed in the Java programming language, and requires the Java Runtime Environment
(JRE) 7. It uses ANTLR 4.7 [1] for LTL/MTL properties parsing, and the GNU Scientific Library (GSL) 2.3
library [2] for probability density functions manipulation. At this stage, SBIP only runs on the GNU/Linux
operating systems as it relies on BIP simulation engines. The tool is freely available for download at
http://www-verimag.imag.fr/Statistical-Model-Checking.html.

3 Modeling and Specification Formalism
In this section, we provide a brief overview of the modeling and the specification formalisms supported
natively by the SBIP tool, namely the stochastic real-time BIP and the LTL/MTL logics.

3.1 Stochastic Real-time BIP
The stochastic real-time BIP formalism is an extension of the BIP formalism [11] developed at Verimag
since more than ten years. BIP stands for Behavior-Interaction-Priority and provides concepts for mod-
eling heterogeneous component-based systems using a layered approach. In BIP, systems are obtained
by composition of atomic components (i.e., the behavior) with multiparty hierarchical interactions, and
coordinated using dynamic priorities. BIP was mainly targeted for rigorous design of component-based
systems, that is, not only formal modeling and analysis but also correct-by-construction implementation

3

http://www-verimag.imag.fr/Statistical-Model-Checking.html

and deployment. As such, BIP offers facilities to incorporate and execute external code within atomic
components and/or multiparty interactions.

The stochastic real-time BIP formalism reconciles two distinct extensions of BIP that have been de-
veloped in the past. On the one hand, real-time BIP [3] extended BIP with real-time features (clocks,
urgencies), has dense real-time semantics based on timed automata [5] with urgencies and is used for the
modeling, the analysis and the implementation of real-time systems. On the other hand, stochastic BIP
[28] extended BIP with stochastic features (probabilistic variables), has discrete-time stochastic seman-
tics based on Markov chains and is mainly used for performing analysis using statistical model checking
methods.

The stochastic real-time BIP [30] allows for defining components as timed automata extended with
stochastic constraints. Such components are composed, under specific restrictions, using two categories
of interactions, namely timed or stochastic. Timed interactions are associated only with (pure) timing
constraints expressed as lower and upper bounds over clocks valuations, as in timed automata. These
interactions are scheduled for execution with respect to an implicit uniform or exponential probability
distribution as it is generally the case in several existing frameworks [17, 26]. Stochastic interactions are
associated with one stochastic constraint (that is, a user-provided arbitrary density function), defining their
occurrence time relative to a clock value. The underlying semantics of stochastic real-time BIP is defined
as a Generalized Semi-Markov Process. It produces timed traces ω = (a0, t0)(a1, t1) . . ., where ai are
interactions and ti are timestamps. A complete formal definition is available in [30].

rcv_req

s0

s1

snd_req

rcv_ack

snd_ack

c = 0

rcv_req
[n− c > 1]
c+ +

snd_ack

s2 s3

slowfast

s4

wait

x = 0x = 0

[159 ≤ x ≤ 167]
wait

[76 ≤ x ≤ 85]

clock x

s6
rcv_req

rcv_req

rcv_req
s7

lead

s5

snd_req

snd_ack

s8

rcv_ack

rcv_req

Device(n)

rcv_req
c0

c1

snd_req

rcv_ack

snd_ack

rcv_ack

snd_ack

clock x, y

c2

snd_reqrcv_req

snd_req

[5 ≤ x ≤ 30]

[y ./ N (10, 2)]

snd_ack

Channel

y = 0

y = 0

x = 0

x = 0

Figure 2: Stochastic real-time BIP: Components of the Firewire Protocol.

As an example, Fig. 2 provides a graphical illustration of stochastic real-time components. On the left,
the Device component is essentially a timed automaton. On the right, the Channel component contains in
addition a stochastic port rcv_ack defined by a normal density function, i.e., its scheduling time is sampled
with respect to a normal function with mean 10 and standard deviation 2.

From the language point of view, stochastic interactions are defined using specific annotations @stochas-
tic(dist="...", clk=..., param="...") to tag components ports. Such annotations specify a probability den-
sity function and its parameters through, respectively, the dist and param attributes, and associate a clock
through the clk attribute. For example, the stochastic port rcv_ack of the Channel component in Fig. 2
is defined by dist="normal", clk=y, param="10,2" (see Example 1). Currently, the language supports
a number of built-in density functions (normal, gamma, χ2). Additional (empirical) functions, can be
used through the same mechanism (dist="custom", and in param= a file characterizing the underlying
cumulative distribution).

Example 1 Below, we give an example of the stochastic real-time BIP modeling language representing the
FireWire Channel component in Fig. 2.

4

atom type Channel(int id)
/* Data declaration */
data int id_channel = id
/* clocks declaration */
clock x unit nanosecond
clock y unit nanosecond
/* ports declaration */
export port ePort snd_ack(id_channel)
export port Port snd_req()
export port ePort rcv_req(id_channel)
@stochastic(dist="normal",clk=y, param="10,2")
export port Port rcv_ack()
/* control locations */
place c0, c1, c2
/* transitions descriptions */
initial to c0
on snd_req from c0 to c2 do{x=0;}
on snd_ack from c0 to c1 do{y=0;}
on rcv_ack from c1 to c0
on snd_req from c2 to c2 do{x=0;}
on snd_ack from c2 to c1 do{y=0;}
on rcv_req from c2 to c0 provided(x<=30 && x>=5)

end

3.2 Parametric MTL
Metric Temporal Logic (MTL) [24] is an expressive temporal logic that extends LTL by introducing an
explicit representation of time. MTL temporal operators are similar to LTL with the difference of having a
time interval I ⊆ N+ constraining the temporal operators. For a given Ψ, the set of (atomic) state formulas,
the syntax of an MTL formula φ is inductively defined by the following grammar:

φ ::= t | f | ψ | φ1 ∧ φ2 | φ1 ∨ φ2 | © φ | φ1 UI φ2 | φ1 RI φ2, where ψ ∈ Ψ

The operator © φ is the next operator, while φ1 UI φ2 is the Until operator, which stands for φ1 holds
until φ2 does at any time in I . The Release operatorRI is the dual of UI . The Eventually and the Globally
operators are expressed respectively as ♦Iφ ≡ t UI φ, and �Iφ ≡ f RIφ. Their meaning is respectively φ
eventually holds at some time in I , and φ always holds at any time in I .

For the sake of usability, we allow expressing parametric MTL formula φ(x), where x is an integer
parameter taking values in some bounded domain Π. The parameter can appear either in a state formula Ψ
or as a bound of time intervals I and is statically assigned a value from its domain before starting analysis.
For instance, φ(t) ≡ ♦[0,t][(node3.status = leader)] states that node3 eventually becomes the leader
before t time units, where t is the parameter of the property.

4 SBIP Modules

4.1 Stochastic Simulation Engine
The stochastic simulation engine implements the operational semantics of stochastic real-time BIP sys-
tems [30]. Given a model S, the engine produces system traces consistent with the timing and stochastic
constraints in S. Traces are generated in two modes, namely, symbol-wise, or at-once for an a priori given
length. The first is for online monitoring, since trace generation can be interrupted as soon as a verdict is
obtained. The second is interesting in the context of SMC loop as it bounds the time for obtaining a local
verdict.

The functioning of the stochastic simulation engine is depicted in Fig. 3. At every step, the engine
computes the firing (time) interval for every interaction, based on current clock valuations and interaction
guards (Evaluate). Next, an execution date is chosen for every future enabled interaction (Plan). For timed
interactions, the date is chosen by sampling a value in the associated firing interval, using either a uniform
or exponential law, depending if the firing interval is bounded or not. For stochastic interactions, the date

5

is chosen according to their associated probability density function and the clock value. Two cases are
distinguished: when the current value of the clock is zero, the date is chosen by a direct sampling of the
corresponding density. Otherwise, when the clock has a strict positive value, the execution date is planned
using the truncated density function at that value [30]. Once all the future enabled interactions are planned,
the scheduler implements a race policy and selects for execution the one having the earliest planned date.
The simulation time is advanced to that date and the interaction is executed on the system (and logged).

Enabled

dates

Chosen

Planning Memory

Update Read

Plan Schedule
Planned

Chosen interaction

C2

C1

CN
Evaluate

interaction

System State

Log
ports Inter-

actions

Trace/
Symbol

Figure 3: Functional view of the stochastic simulation engine

For efficiency reasons, planned execution dates are stored in order to avoid re-planning interactions
that remain enabled when moving to the next system state. A new execution date is chosen only for newly
enabled interactions and/or in conflict with the executed interaction. That is, when the associated clock (for
stochastic interactions) has been reset, or the firing interval has changed due to execution of the previous
interaction (see [30] for more details).

4.2 Monitoring Module
This module implements the generic infrastructure for online/offline monitoring of properties. At abstract
level, the module takes as inputs a formula and either an entire trace or an online stream of trace symbols,
and computes a verdict stating whether the trace satisfies the formula. Traces, formulas and symbols are
designed as Java interfaces that can be extended with specific implementations.

In the current version of SBIP , we integrate the monitoring of Bounded LTL and MTL formulas, un-
timed and timed BIP traces. Bounded LTL was already included in the first version of the tool. However, it
was restricted to formulas without nested temporal operators. At contrary, the monitoring of MTL formulas
represents a completely new development. The MTL monitor, illustrated in Fig. 4, implements an online
monitoring algorithm based on the rewriting rules from [14]. Given an MTL formula φ and a timed trace ω,

Atomic Prop. EvaluationProperty Φ

Trace ω
Simplify

MTL
Parser

Rewrite

Trace
Parser

Verdict

Figure 4: Functional view of the MTL Monitor

the monitor alternates rewriting and
simplification phases. Rewriting con-
sumes a timed symbol σi = (ai, ti) of
ω and partially evaluates the current for-
mula φ into φ′. Partial evaluation in-
cludes the unfolding of temporal oper-
ators and evaluation of atomic state for-
mulas to their truth value. Simplifica-
tion applies reduction rules on the for-
mula φ′ based on Boolean logic (e.g.,
(t ∧ φ′) ≡ φ′) so as to conclude or
to simplify it as much as possible before the next cycle.

4.3 Statistical Model Checking Engine
The SMC engine implements several statistical testing algorithms for stochastic systems verification, namely,
Single Sampling Plan (SSP), Simple Probability Ratio Test (SPRT) [33, 34], and Probability Estimation
(PESTIM) [18]. We briefly recall the main procedures to decide whether a given stochastic system S satis-
fies a BLTL/MTL property φ. SMC refers to a series of simulation-based techniques to answer two types

6

of questions; Qualitative: is the probability for S to satisfy φ greater or equal to a certain threshold θ? and
Quantitative: what is the probability for S to satisfy φ?

The main proposed approach to answer the qualitative question is based on hypothesis testing [34]. Let
p be the probability of S |= φ, to determine whether p ≥ θ, we can test H : p ≥ θ against K : p < θ. A
test-based solution does not guarantee a correct result but it is possible to bound the probability of making
an error. The strength (α, β) of a test is determined by two parameters, α and β, such that the probability
of accepting K (resp., H) when H (resp., K) holds is less or equal to α (resp., β). Since it is impossible
to ensure a low probability for both types of errors simultaneously, a solution is to use an indifference
region [p1, p0] (with θ in [p1, p0]) and to test H0 : p≥ p0 against H1 : p≤ p1. Several hypothesis testing
algorithms exist in the literature. [34] proposed a logarithmic-based algorithm that given p0, p1, α and β
implements the Sequential Ratio Testing Procedure (SPRT) (see [33] for details). When one has to test
θ≤1 or θ≥0, it is however better to use Single Sampling Plan (SSP) (see [12, 34] for details), an algorithm
which the number of simulations is pre-computed in advance. In general, this number is higher than the
one needed by SPRT, but is known to be optimal for the above-mentioned values. More details about
hypothesis testing algorithms and a comparison between SSP and SPRT can be found in [12].

We also implement the estimation procedure (PESTIM) proposed in [18]. It enables to compute the
probability p for S to satisfy φ. Given a precision δ, this procedure computes a value for p′ such that
|p′ − p|≤δ with confidence 1− α. The procedure is based on the Chernoff-Hoeffding bound [20].

4.4 Parametric Exploration Module

Data: system S, parametric property φ(x),
instantiation domain Π

Result: A set of SMC verdicts V
Monitor m; Engine e; V = ∅;
foreach v ∈ Π do

smc.init();
while !smc.conclude() do

tr = e.generate(S);
verdict = m.check(φ(v), tr);
smc.add(tr, verdict);

end
V = V ∪ smc.getVerdict() ;

end
Algorithm 1: Parametric exploration

Parametric exploration is an automatic way to per-
form statistical model checking on a family of
properties that differ by the value of a constant. The
family of properties is specified in a compact way
as a parametric property φ(x), where x is an inte-
ger parameter ranging over a finite instantiation do-
main Π. Algorithm 1 illustrates the different phases
of a parametric exploration workflow. The algo-
rithm returns a set of SMC verdicts correspond-
ing to the verification of the instances of φ(x) with
respect to x ∈ Π. This workflow is very useful
when exploring unknown system parameters such
as, buffers sizes guaranteeing no overflow, or the
amount of consumed energy. It automates the ex-
ploration for large parameters domains as opposed
to tedious and time consuming manual procedures.

4.5 Rare-Events Engine.

Importance Splitting (IP) [22] is a technique that allows decreasing the number of simulations required
to estimate the probability of a rare event. The core of the technique is articulated around the ability to
write the propery φ under study in an implicative form such that φ = φn ⇒ φn−1 ⇒ ... ⇒ φ1. Each φi
represents a level li and the property is verified when all the n levels are satisfied. the probability of φ to
be satisfied, denoted γ = P (ρ |= φ), is computed as the product of conditional probabilities to pass from
level li−1 to level li, i.e., γ = P (ρ |= φ) = Πn

i=1P (ρ |= φi | ρ |= φi−1). Note that the probability to be
at level l0 is relative to the probability to start a simulation at a given initial state in the model. Estimating
the probability of a rare property is driven down to the estimation of n conditional probabilities that are
less rare.

We represent the levels of a rare property as a scoring function F : Ω −→ N, that returns, for a given
trace ω ∈ Ω, the highest level i of satisfied intermediate property φi. Hence, a trace ω satisties the property
φ whenever F (ω) = n.

7

4.6 Graphical User Interface
We implemented a user-friendly graphical interface (GUI) that centralizes all the interactions with the tool.
The GUI is organized in three main regions: (1) a project explorer, (2) a toolbar and (3) a central panel as
illustrated in Fig. 5.

1 3

2

Figure 5: Screen-shot of SBIP graphical user interface

The project explorer gives a centralized and organized view of the different items of a project during
the modeling and the analysis. Such items usually include different files organized in a tree hierarchy. The
Models folder contains (.bip) models, external (.cpp/hpp) source code, custom probability distributions, and
executables. The Properties folder stores (.mtl) and (.ltl) properties. Finally, the Outputs folder contains
execution traces.

The toolbar is organized in six functional groups: (i) project management, allowing to create/remove
projects, (ii) file management for model files creation, deletion, edition and visualization, (iii) tab naviga-
tion, (iv) workflow management for model compilation, simulation and analysis, (v) configuration setup,
and (vi) help buttons.

The central panel is the main region where the designer can load/visualize/edit inputs, configure pa-
rameters, run analyses, and visualize results. Each of these operations is provided through a specific view
displayed in a separate tab:

• edition view: used to edit models and properties. This also allows for loading and saving various
files. Specific capabilities, such as code auto-completion and keyword highlighting, are provided for
BIP models.

• configuration view: used to select the simulation engine, the SMC algorithm and parameters, and the
instantiation domain for parametric properties.

• analysis view: used to initiate and track the progress of analysis.

• results view: used to provide a summary of the performed analysis, the verdict and/or the set of
verdicts on different traces, specific curves and/or plots, overall and partial running times, etc.

8

5 Case Studies and Benchmark
In this section, we present a set of case studies addressed using SBIP, namely, the FireWire and the Blue-
tooth communication protocols, a vehicle gear controller, the Precision Time Protocol, and a pacemaker
model, in addition to a concurrency model. Then, we also present an analysis of the tool performance. All
these examples are available in the tool distribution.

5.1 FireWire – IEEE 1394

FireWire is a high-performance serial communication bus dedicated for hot plug-and-play multimedia de-
vices. Devices can be organized in arbitrary topologies, where each pair of nodes is connected by two
unidirectional channels. The internal representation of topologies is a tree where the root (leader) arbi-
trates the access to the bus. The designation of the leader is performed through a leader election protocol,
namely, the tree identification protocol. Whenever the topology changes, i.e., a device joins/leaves, a reset
occurs, and a new election is triggered.

The tree identification protocol is initiated by the leaf nodes of the topology. They send requests asking

n5

n3n2

n4

n1

Firewire(2)
Firewire(3)

Firewire(5)

Figure 6: Considered Firewire topologies

their neighbors to become their parents. A par-
ent request sending mode is probabilistically de-
termined to be fast or slow. It determines the
amount of time to wait before sending. Internal
nodes of the topology keep on listening to par-
ent requests until they receive exactly n − 1 re-
quests, n being the number of neighbors. Then,
they send a parent request to their remaining neigh-
bor. When receiving a parent request, a node either
sends an acknowledgment, or detects a contention
in the case it has also sent a parent request and it
is still waiting for an acknowledgment. Intuitively, a contention means that two neighbors are mutually
asking to be leader. This situation is resolved by forcing both nodes to send new requests after a random
waiting time.

We implemented a FireWire model inspired from the case-study in [15], where the considered topol-
ogy is made of two devices. Our model is parametric, with m possible devices. We considered three
particular topologies with 2, 3 and 5 devices (Fig. 6). The models for a device and a channel are shown in
Fig. 2. We studied the expected convergence time for the three topologies with (φ1(t)) and without (φ2(t))
contentions. We also investigated the topology impact on the probability of contentions (φ3) and on the
probability for each device (regarding its position) to be elected (φ4(i)). We provide the detailed MTL
specifications of the properties verified on the FireWire model:

• the leader election procedure converges within t time units. It states that one of the nodes eventually
becomes a leader and all the other nodes become slaves. The parametric exploration is used to find
the expected time t∗ when the process is guaranteed to converge (with probability 1).

φ1(t) ≡ ♦[0,t]

m∨
i=1

[(nodei.s = 7)

m∧
j=1,j 6=i

(nodej .s = 8)]

• the leader election procedure converges within t time units if no contention occurs. The property is
basically an implication written as a disjunction of two parts. The first part of the disjunction is a
conjunction between φ1 and a second property stating that always no contention occurs during the
election phase ([0, t]). The second handles the cases where a contention eventually occurs in [0, t∗],
where t∗ is computed in φ1. Note that the election and the contentions are detected at the level of the
nodes.

φ2(t) ≡ (♦[0,t]

m∨
i=1

[(nodei.s = 7)

m∧
j=1,j 6=i

(nodej .s = 8)]

9

∧ �[0,t]

m∧
i=1

[¬nodei.contention])

∨ (♦[0,t∗]

m∨
j=1

[nodei.contention])

• a contention eventually occurs during the election phase (t∗ computed in φ1):

φ3 ≡ ♦[0,t∗]

m∨
i=1

(nodei.contention)

• the ith device eventually becomes the leader (t∗ computed in φ1):

φ4(i) ≡ ♦[0,t∗](nodei.s = 7)

We used probability estimation with (α = 10−5, δ = 10−1) for all the analysis and relied on the parametric
exploration to analyze properties φ1(t) and φ2(t).

0 2 4 6 8 10 12 14 16 18
0

0.5

1

t1 t2 t3

Convergence time (×102)

Pr
ob

ab
ili

ty

2 nodes
3 nodes
5 nodes

0 1 2 3 4

0.2

0.4

0.6

0.8

1

t1 t2 t3

Convergence time (×102)

Pr
ob

ab
ili

ty

2 nodes
3 nodes
5 nodes

Figure 7: Probability of φ1 (top) and φ2 (bottom) for different FireWire topologies

We observed that the expected convergence time increases with larger topologies, as shown in Fig. 7 for
φ1(t) (top) and φ2(t) (bottom). For φ1(t), the expected time (in time units) was respectively 1000, 1500
and 1600 for the three considered topologies. When no contention occurs (φ2(t)), the expected time drops
to 200, 230 and 390. The protocol spends more than 80% of the time resolving contentions. The analysis

FireWire φ3 φ4(1) φ4(2) φ4(3) φ4(4) φ4(5)
(2) 0.493 0.507 0.493 - - -
(3) 0.137 0.042 0.92 0.038 - -
(5) 0.289 0 0.4 0.6 0 0

Table 1: Results for properties φ3 and φ4

results for φ3 and φ4(i) are summarized in
Table 1. We noticed that in a two-device
topology, both nodes send parent requests
almost simultaneously and thus have equal
chances to become leader, but leads to
∼ 50% chance of contention. In larger
topologies, leaf nodes initiate the election
protocol, hence they have less chance to
become leaders (nodes n1,3 in FireWire(3)
and n1,4,5 in FireWire(5)). In contrast, inner nodes are more likely to become leader and this increases pro-
portionally to the number of their neighbors. Moreover, we observed that the probability of contention in
FireWire(3) is lower than the other topologies. Actually, contentions do not only depend on the number of
nodes in the network but also on the way they are interconnected.

10

5.2 Bluetooth – Device Discovery

Bluetooth is a short-range wireless communication protocol for data exchange that promises low-energy
consumption. A serious challenge in this protocol is interference. The Bluetooth standard relies on fre-
quency hopping to tackle this issue. It allows devices to rapidly alternate among predefined frequency
bands in a (pseudo-)random fashion. In order to perform data transfer, nodes in the network initially or-
ganize themselves into piconets, that is, small groups of one master and up to 7 slaves, where frequency
hopping are synchronized. The device discovery phase lets one of the devices (called inquiring) become the
master of the piconet by broadcasting messages to discover scanning devices, i.e., potential slaves. During
the discovery phase, each node of the network can be in one of two modes (1) active, where it permanently
looks to send or receive messages, and (2) sniff, where it alternates between sleeping and listening phases.

We built a model of the Bluetooth protocol (see Fig. 9), precisely the device discovery mechanism,
based on the implementation in [6] that considers one receiver (slave) and one sender (master), where the
receiver is set to the sniff mode. We improved [6] by considering a parametric model where the receiver
can be in addition in the active mode. Fig. 8 represents the model of the Bluetooth components. The
top figures show the receiver in active (left) and sniff (right) modes. The figures on the bottom show the
frequency and the sender components from left to right respectively.

In active mode, the receiver sends a start signal to wake the sender component up and starts scanning
the different frequencies through the frequency component. The receiver switches to a state where it is
ready to receive inquiries whenever it hears a transmission attempt on its frequency. Finally, the receiver
commands the sender (and the frequency) component to stop by sending a stop signal and goes back to its
initial state where other transmissions can be initiated by taking the dashed Stop transition.

Receiver(active)

Start

Hear

Stop

Done

Start

Reply

Stop

r0

r1

r2

r4

Reply

Stop Hear

r2

x = 0

Receiver(sniff)

Start

Hear

StopDone

Start

Reply

Stop

r0

r1

r2

r4

Reply

r3

Sleep

r′0

Sleep

Hear

Sleep
[x == t_sleep]
x = 0

[x < t_scan][x == t_scan]

x = 0

[x == t_resp]

energy′ = 0

energy′ = 2

energy′ = 3energy′ = 0

energy′ = 1
energy′ = 0

x = 0

phase+ 1 : 1)

Frequency

Start
Startf0

f1f2

Hop
[x == 1]

x = 0

x = 0
phase = (phase+ 1 ≤ 32?

Stop

Hear

f3

Reply

Stop

Stop

Reply

Hear

Sender

Start
Start

s0

x = 0Stop

s3

Frequency

Stop

Hear

Reply

Stop

Hear

Reply hopping loop

Figure 8: Components of the Bluetooth model

11

In the sniff mode, the receiver alternates between sleeping and scanning states. The sleeping phases of
t_sleep (2012) time slots are followed by a scanning phase of t_scan (36) time slots, where the time slot is
0.3125 ms. During this scanning phase, the receiver can detect a transmission then replies to the inquiry
that requires t_resp (2) time slots to achieve. The receiver is also enriched with a cost clock that computes
the amount of consumed energy (in energy units). In the sniff mode, no energy is consumed in sleep states
(r0, r′0), whereas the receiver consumes 2 energy units per time slot in scan state r1, and 3 units/time slot
during the reply (at state r2).

We measure the impact of the different modes on the delays of discovery and on the receiver’s en-
ergy consumption. In our model, the discovery process successfully terminates when the sender receives
one reply (sender.rec = 1). We further model energy consumption of the receiver through a reward
clock denoted energy. The first requirement is expressed in MTL as φ5(t) ≡ ♦[0,t](sender.rec = 1)

Receiver Frequency Sender

stop
start

hear
reply

Figure 9: Bluetooth model with two devices

and states that the discovery must even-
tually occur within t time units. Our
goal is to identify t∗ that satisfies this re-
quirement with probability 1. The sec-
ond requirement is expressed as φ6(e) ≡
�[0,t∗](receiver.energy ≤ e). It states that
the energy consumed by the receiver, during
the discovery phase, is always under some
threshold e. Again, the goal is to determine e∗

that satisfies the requirement with probability
1. Both properties are expressed as parametric MTL and are assessed by using the parametric exploration.

Fig. 10 summarizes the results obtained by applying the probability estimation algorithm with param-
eters (α = 10−3, δ = 10−1) for both modes. As expected, the active mode leads to a shorter discovery
phase. On the left, we see that t∗ = 350 ensures a convergence with probability 1. In the sniff mode (mid-
dle), the required time jumps to t∗ = 17000. Regarding energy (right), in the active mode, the expected
energy consumption of the receiver is e∗ = 700 units, whereas it drops to e∗ = 600 units when the receiver
works in the sniff mode. That is, an energy saving of more than 14% compared to the active mode.

0 2 4
0

0.5

1

t∗

time (×102)

Pr
ob

ab
ili

ty

Active mode

0 0.5 1 1.5
0

0.5

1

t∗

time (×104)

Sniff mode

0 2 4 6 8
0

0.5

1

e∗1e∗2

energy (×102)

Figure 10: Probability of properties φ5 (left and middle) and φ6 (right)

5.3 A Vehicle Gear Controller Interface

GearControl

GearBox Clutch Engine

Figure 11: Gear controller model

The Gear controller system is a real-time compo-
nent embedded in modern cars. It is responsible
for implementing the actual gear change requests
issued by the driver (or by an algorithm) and trans-
mitted through a communication network. The
correctness and performance of the gear controller
are important to guarantee a safe behavior of the
vehicle. For instance, an excessive time for performing a gear change makes driving unpleasant but may

12

also lead to serious safety problems.
We consider a stochastic real-time BIP model of this system based on the work in [27]. The model

is composed of the gear controller component and its environment: a gear change request interface, a
gear box, a clutch, and an engine (Fig. 11). Each of these components obeys to specific timing re-
quirements. For instance, the Clutch can open or close within 100 − 150 ms, the Gear box, which is
electrically controlled, can set (resp. release) a gear in 100 − 300 ms (resp. in 100 − 200 ms). The
engine operates in 3 modes with different constraints, i.e., normal, zero torque and synchronous speed.

0 5
0

0.5

1 tmin

tmax

time (×102 ms)

Pr
ob

ab
ili

ty

Figure 12: Probability of φ7(t)

In the first mode, the engine gives the requested torque, in the
second (resp third) it tries to find a zero torque (resp. speed) dif-
ference with the transmission (resp. the wheels). The maximum
allowed time for searching a zero torque (resp. synchronous
speed control) is 400 ms (resp. 500 ms). Missing any of these
constraints raises errors in the model.

In the original work, the authors used reachability analysis
to prove several requirements concerning functional and per-
formance aspects. We consider a subset of the original require-
ments (29 MTL properties). Here, we focus on those concerning
the system performance. We provide results for one parametric
property φ7(t), which states that a complete gear change is al-
ways performed within t time units in the case of no errors. It
is expressed in MTL as follows:

φ7(t) ≡ ♦[0,t][(¬(gb.ErrStat = 0) ∨ ¬(c.ErrStat = 0)

∨¬(e.UseCase = 0) ∨ (gc.GearChanged) ∨ (gc.Gear)) ∧ ¬(gc.SysT imer = 0)]

We used the probability estimation algorithm with parameters (α = 10−3, δ = 10−1). The obtained
results using the parametric exploration are summarized in Fig. 12. We observe that the largest time value
required to implement a gear change with probability 1 is 800 ms. In the same figure, we can also see that
the shortest time with a non-zero probability for a gear change is 210 ms.

5.3.1 The complete set of considered requirements

The complete set of verified requirements is listed below (the required verification time is given between
brackets). Note that some requirements are expressed as several MTL properties. For instance, requirement
P13 induces 6 MTL properties. We also point out the fact that requirements P9,10 were not considered since
they address events that are very unlikely to occur. Note that Importance Splitting also fails to analyse them
due to the impossibility to identify suitable levels (that are less rare).

• P1. The gear can be changed. [41s] ♦[0,1500] (gc.GearChanged)

• P2. The gear can be set to gear 5 and the reverse gear. [16m 11s]

a. ♦[0,1000000] (inf.gear = 5)

b. ♦[0,1000000] (inf.gear = −1)

• P3. The switch gear can be performed in 1000 ms. [42s] ♦[0,1500] (gc.GearChanged∧ gc.SysT imer ≤
1000)

• P4. When the gearbox is in position N, the gear is zero. [5m 16s] �[0,10000] ((gb.Neutral ∧
inf.gear = 0) ∨ ¬gb.Neutral ∨ ¬inf.stableGear)

• P5. If the gearbox is idle then the gear is never N. [10m 47s]

a. �[0,10000] (¬gb.Idle ∨ ¬inf.N)

b. �[0,10000] (¬inf.N ∨ gb.Neutral)

13

• P6. If there are no errors in gear and clutch and the engine is in normal mode, a gear switch is
guaranteed in 900 ms, a switch gear can never be performed in less than 150 ms, and if the switch is
not from/to gear N, a switch gear cannot be done in less than 400 ms. [1m 26s]

a. a gear switch is guaranteed in 900 ms
♦[0,900] (¬gb.ErrStat = 0 ∨ ¬c.ErrStat = 0 ∨ ¬e.UseCase = 0 ∨ gc.GearChanged)

b. A switch gear can never be performed in less than 150 ms
♦[0,150] (¬gb.ErrStat = 0 ∨ ¬c.ErrStat = 0 ∨ ¬ e.UseCase = 0 ∨ ¬ gc.GearChanged)

c. If the switch is not from/to gear N, a switch gear cannot be done in less than 400 ms
�[0,400] (¬gb.ErrStat = 0 ∨ ¬c.ErrStat = 0 ∨ ¬e.UseCase = 0 ∨ ¬(inf.FromGear >
0 ∨ ¬inf.ToGear > 0 ∨ ¬gc.GearChanged)

• P7. If there are no errors in gear and clutch but engine in zero torque mode, a gear switch is guaran-
teed in 1055 ms, a switch gear can never be performed in less than 550 ms, and if the switch is not
from/to gear N, a switch gear cannot be done in less than 700 ms. [1m 30s]

a. a gear switch is guaranteed in 1055 ms
♦[0,1055] (¬gb.ErrStat = 0 ∨ ¬c.ErrStat = 0 ∨ ¬e.UseCase = 1 ∨ gc.GearChanged)

b. switch gear can never be performed in less than 550 ms
♦[0,550] (¬gb.ErrStat = 0 ∨ ¬c.ErrStat = 0 ∨ ¬e.UseCase = 1 ∨ (¬gc.GearChanged ∧
¬gc.Gear))

c. If the switch is not from/to gear N, a switch gear cannot be done in less than 700 ms
�[0,700] (¬gb.ErrStat = 0 ∨ ¬c.ErrStat = 0 ∨ ¬e.UseCase = 1 ∨ ¬inf.FromGear >
0 ∨ ¬inf.ToGear > 0 ∨ ¬gc.GearChanged ∨ ¬gc.Gear)

• P8. If there are no errors in gear and clutch but engine in synchronous speed mode, a gear switch is
guaranteed in 1205 ms, a switch gear can never be performed in less than 450 ms, and if the switch
is not from/to gear N, a switch gear cannot be done in less than 750 ms. [1m 31s]

a. a gear switch is guaranteed in 1205 ms
♦[0,1205] (¬gb.ErrStat = 0 ∨ ¬c.ErrStat = 0 ∨ ¬e.UseCase = 2 ∨ gc.GearChanged)

b. switch gear can never be performed in less than 450 ms
♦[0,450] (¬ e.UseCase = 2 ∨ (¬gc.GearChanged ∧ ¬gc.Gear))

c. If the switch is not from/to gear N, a switch gear cannot be done in less than 750 ms
�[0,750] (¬gb.ErrStat = 0 ∨ ¬c.ErrStat = 0 ∨ ¬e.UseCase = 2 ∨ ¬inf.FromGear >
0 ∨ ¬inf.ToGear > 0 ∨ ¬gc.GearChanged ∨ ¬gc.Gear)

• P11. The engine is guaranteed to find synchronous speed in the case where no error occurs in it. [5m
52s]

�[0,10000] (¬gb.ErrStat = 0 ∨ ¬c.ErrStat = 0 ∨ ¬e.isError)

• P12. If the gear is N, the engine is either in initial or going to initial (i.e. ToGear = 0 and engine in
zero). [5m 22s]

�[0,10000] (¬inf.N ∨ (inf.ToGear = 0 ∧ e.Zero) ∨ e.Initial)

• P13. Torque is always indicated in the engine when the gear controller has a gear set. [31m 17s]

a. �[0,10000] (¬gc.Gear ∨ ¬ inf.gear = −1 ∨ ¬inf.stableGear ∨ e.Torque)

b. �[0,10000] (¬gc.Gear ∨ ¬ inf.gear = 1 ∨ ¬inf.stableGear ∨ e.Torque)

c. �[0,10000] (¬gc.Gear ∨ ¬ inf.gear = 2 ∨ ¬inf.stableGear ∨ e.Torque)

d. �[0,10000] (¬gc.Gear ∨ ¬ inf.gear = 3 ∨ ¬inf.stableGear ∨ e.Torque)

14

e. �[0,10000] (¬gc.Gear ∨ ¬ inf.gear = 4 ∨ ¬inf.stableGear ∨ e.Torque)

f. �[0,10000] (¬gc.Gear ∨ ¬ inf.gear = 5 ∨ ¬inf.stableGear ∨ e.Torque)

• P14. The controller is in predefined locations depending on the clutch state. [10m 31s]

a. If clutch is open
�[0,10000] (¬c.Open ∨ gc.ClutchOpen ∨ gc.ClutchOpenTwo ∨ gc.CheckGearSetTwo ∨
gc.ReqSetGearTwo∨ gc.ClutchClose∨ gc.CheckClutchClosed∨ gc.CheckClutchClosedTwo∨
gc.CheckGearNeuTwo)

b. If clutch is closed
�[0,10000] (¬c.Closed ∨ gc.ReqTorqueC ∨ gc.GearChanged ∨ gc.Gear ∨ gc.Initiate ∨
gc.CheckTorque ∨ gc.ReqNeuGear ∨ gc.CheckGearNeu ∨ gc.ReqSyncSpeed ∨
gc.CheckSyncSpeed ∨ gc.ReqSetGear ∨ gc.CheckGearSet)

• P15. The controller is in predefined locations depending on the gearbox status. [10m 32s]

a. If gear is idle
�[0,10000] (¬c.Open ∨ gc.ClutchOpen ∨ gc.ClutchOpenTwo ∨ gc.CheckGearSetTwo ∨
gc.ReqSetGearTwo∨ gc.ClutchClose∨ gc.CheckClutchClosed∨ gc.CheckClutchClosedTwo∨
gc.CheckGearNeuTwo)

b. If gear is neutral
�[0,10000] (¬gb.Neutral ∨ gc.ReqSetGear ∨ gc.CheckClutchClosedTwo∨ gc.ReqTorqueC ∨
gc.GearChanged ∨ gc.Gear ∨ gc.Initiate ∨ gc.ReqSyncSpeed ∨ gc.CheckSyncSpeed ∨
gc.ReqSetGear ∨ gc.CheckClutch ∨ gc.ClutchOpen ∨ gc.ReqSetGearTwo)

• P16. If engine regulates on torque, then the clutch must be closed. [6m 08s]

�[0,10000] (¬e.Torque ∨ c.Closed)

5.4 Precision Time Protocol – IEEE 1588
In this study, the Precision Time Protocol (PTP) is deployed as part of a distributed heterogeneous com-
munication system in an aircraft [9] to synchronize the clocks of the different devices of the system. The
reference clock is given by a specific device in the network called Master. This synchronization is essential
to guarantee a correct behavior of the whole system.

We consider an abstract stochastic model of the PTP protocol shown in Fig. 13. It is composed of a
master and a slave in addition to two communication channels. The considered model is parametric as it
represents the communication of the master with different slaves of the actual system. This is expressed
through different stochastic communication delays of the channels. Concretely, different probability den-
sity functions, depending on the position of the slave in the network. The stochastic behavior a Channel
and the deterministic behavior of the Slave components. Additional details on the models can be found
in [9].

An important property to verify on the system is that the drift between the clock of the master denoted
tm and the clock of any slave denoted ts is always bounded by a threshold ∆. This property is expressed
as φ8(∆) ≡ �[0,T] (abs(master.tm − slave.ts) ≤ ∆), where T is the period of the PTP protocol and
abs() is the absolute value function. Fig. 14b shows that the smallest bound ∆ guaranteeing the property
φ8 is ∆∗ = 70. We used the probability estimation algorithm with α = 10−5, δ = 10−1 combined with
the parametric exploration for the analysis of this property.

5.5 Pacemaker Model
A pacemaker is a device implanted on a human heart to cope with malfunctions due to aging or diseases.
Its function is to guarantee the timed relationships between atrial and ventricular contractions. This device
(see Fig. 15) acts as a monitor for these atrial and ventricular events and generates electrical pulses to
compensate missing/late events and hence, prevents the heart’s malfunctions.

15

sync

Channel 1Master

followup

reply

request

rcv_followup

rcv_sync

rcv_reply

snd_followup

snd_sync

snd_reply

sync

Slave

followup

reply

request
Channel 2

snd_request rcv_request

Figure 13: The abstract PTP model.

t1

t1

t4

rcv_sync
xs = 0

rcv_followup
xf = 0 [xs ./ ρs]

d

snd_sync

rcv_followup
xf = 0

[xf ./ ρf]d
snd_followup

rcv_reply
xr = 0

snd_reply

t1

t1

t4

[xs ./ ρs]
d

snd_sync

[xr ./ ρr]d

l4

l0

l1

l2 l3

l5

snd_sync

snd_followup

snd_replyrcv_reply

rcv_followup

rcv_sync

Channel 1

(a) Stochastic model of Channel 1

0 20 40 60 80
0

0.5

1

∆∗

Threshold ∆

Pr
ob

ab
ili

ty

(b) Probability of φ8

Figure 14: Stochastic model and analysis results

Parameter Value
TLRI 1000

TAVI/TVPR 150
TURI/Amin 400

TPVAB 50
TPVARP/Vmin 100

Vmax 200
Amax 1100

Table 2: Parameters for the pace-
maker and the heart models

Our model is a BIP translation of the case study in [23]. In
this model, the heart is represented by a component that period-
ically sends atrial and ventricular contraction events, respectively
denoted AS and VS. These events are handled by the pacemaker
that may deliver atrial pacing (AP) or ventricular pacing (VP) to
regulate the heart timed behavior. The pacemaker is a compound
component composed of four components: (i) Lower Rate Inter-
val (LRI) ensures that the heart rate is above a minimum value by
monitoring the elapsed time between ventricular events (VS, VP),
generating AP if a time limit of TLRI-TAVI is reached. (ii) Atrio-
Ventricular Interval and Upper Rate Interval (AVIURI) guarantees
the delay between an atrial event and a ventricular one by deliver-
ing a ventricular pacing in the case where no ventricular contrac-
tion is detected within TAVI. This module also tracks delays between ventricular events to avoid pacing
the ventricle too fast. (iii) Post Ventricular Atrial Refractory Period (PVARP) and Post Ventricular Atrial
Blanking (PVAB) filters noise by ignoring atrial events occuring in TPVARP. (iv) Ventricular Refractory
Period (VRP) ensures a minimum delay TVRP between ventricular events.

16

Heart Pacemaker
Atrial Pace

Atrial Event

Ventricular Event

Ventricular Pace

Figure 15: Heart and Pacemaker interactions

On the one hand, the pacemaker has to monitor the heart rate and verify that the interval between
ventricular events is bounded by TLRI (property φ9). On the other hand, it must not deliver VP too fast.
This amounts to verify that the interval between a ventricular event and VP is above TURI (property φ10).

We checked both properties on SBIP using the probability estimation algorithm with parameters (α =
10−5, δ = 10−1). The analysis required 4883 execution traces, each one representing a simulation time
of approximatively 8 minutes. Both properties have been proven true (P (φ9) = P (φ10) = 1) in less than
1h30 per property.

5.6 Concurrency model
Concurrency is a key concept in systems in general, and programs in particular. Concurrent systems are the
ones that can execute independantly which can lead to improve the overall execution-time of the systems
tasks. One of the most common way to synchronize/communicate this kind of systems is through shared
resources. However, one wants to study the fairness in the access to these shared resources.

Component c1

s10
req
cpt++

cpt=0

req

Component c2

s20
req
cpt++

cpt=0

req

Component c3

s30
req
cpt++

cpt=0

req

access

Shared resource

Figure 16: A concurrency model with three components sharing a single resource

In this case study, we consider three concurrent components that share a common resource, as depicted
in Figure 16. Each component ci memorizes the number of times it accessed the critical resource in an
integer variable cpt. The considered LTL property φ11 ≡ F{30}(

∧3
i=1(ci.cpt > 9)) states that, after 30

system steps, the components access more than 9 times to the shared resource. For φ11 to be evaluated to
true, each component must have exactly 10 accesses for an overall number of 30 accesses, corresponding
to the 30 system steps, which makes the property rare. The decomposition into n = 10 levels can be done
in a straightforward manner, that is, lk ≡

∧3
i=1(ci.cpt > k − 1), k ∈ [1, 10]. This comes from the fact

that we want the component to access the resource exactly the same number of times. The stop condition
is hence set to 3 steps (one for each component).

We first tried to estimate the probability of property φ11 using PE with the parameters (δ = 0.03, α =
0.001). This lead us to simulate 33782 traces in which the rare event has never been met (P (φ11) = 0),
in an overall execution time of 3m 37s. However, by using IP with M = 1000 traces we were able to

17

Probability P (l1|l0) P (l2|l1) P (l3|l2) P (l4|l3) P (l5|l4)
Estimate 0.215 0.234 0.217 0.222 0.227

Probability P (l6|l5) P (l7|l6) P (l8|l7) P (l9|l8) P (l10|l9) P (φ11)
Estimate 0.218 0.194 0.209 0.199 0.243 2.35× 10−7

Table 3: Results of IP on the concurrency model

estimate the probability of each level to occur and hence P (φ11), in less than 13s. Table 3, summarizes
the results of IP on the concurrency model. We can see that the probability that concurrent components
access exactly the same number of times the shared resource is very low P (φ11) = 2.35 × 10−7 but not
null. It is interesting to see that the conditional probabilities are very close which indicates that the actual
decomposition in levels is suitable, and hence reduces the relative variance of the final estimate.

5.7 Performance Analysis
We now provide performance measures of SBIP, mainly regarding time (Table 4). The first three columns

Case study #C φ
#smc
loops

avg smc
time

Firewire(2) 4

φ1 11 1m 21s
φ2 9 1m 59s
φ3 - 2m 28s
φ4 2 3m 27s

Firewire(3) 7

φ1 17 1m 53s
φ2 11 3m 34s
φ3 - 3m 38s
φ4 3 4m 43s

Firewire(5) 13

φ1 18 3m 54s
φ2 17 12m 36s
φ3 - 7m 23s
φ4 5 10m 16s

Bluetooth v1 3 φ5 9 2m 27s
φ6 16 3m 11s

Bluetooth v2 3 φ5 11 3m 0s
φ6 14 13m 05s

Gear Control 5 φ7 11 54s
PTP 4 φ8 15 8m 42s

Pacemaker 5 φ9 - 1h 28m
φ10 - 1h 30m

Table 4: Summary of performance

show respectively the considered case study, the
number of components in the associated model,
and the properties under test. The two remain-
ing columns illustrate the number of SMC loops
in case of parametric exploration and the aver-
age SMC time. We observe that depending on
the model size and the property complexity, the
SMC time can reach a dozen of minutes.

To get more insights on the reasons of the ob-
served times, we investigated the individual tasks
within an SMC loop, i.e., property parsing, trace
simulation, trace parsing, and monitoring. We
considered the processing time of a single exe-
cution trace (with lengths ranging between 105

and 2. 105) of the PTP model and one MTL prop-
erty (see Appendix 5.4). Fig. 17 summarizes the
obtained results, which show that the overall pro-
cessing time grows linearly with the trace size. A
noticeable observation is that the simulation time
takes almost 90% of the whole analysis. This is
mainly due to current prototype implementation
of the stochastic real-time engine. Moreover, in
this experiment, we systematically logged model
variables, which considerably increased the sim-
ulation time. Related to this matter, we observe
that the trace parsing (including instantiation) is
also substantial. The reason for that is mainly
strings manipulation. It grows proportionally with the size of the trace. Finally, we notice that the MTL
parsing and monitoring require relatively short time and are almost constant in this case, since we consid-
ered the same property.

6 Related Work
Several tools implement SMC analysis [21, 31, 26, 17, 13]. Some provide, in addition, distributed versions
of the statistical tests, like [4, 21, 35, 19]. The main difference between these tools is the modeling and

18

0 10 20 30 40 50 60

100

125

150

175

200

time (s)

tr
ac

e
si

ze
(×

1
0
3

)

MTL parser Simulation Trace parser Monitor

Figure 17: Detailed processing times for different trace sizes

specification formalisms, and sometimes the implemented statistical test, such as considering rare events.
Well-known tools such as UPPAAL-SMC [17] and PRISM [26] support various formalisms. The

former considers Networks of Priced Timed Automata (NPTAs), which are high-level representations of
CTMCs/DTMCs for system modeling, and weighted MTL for properties specification. Prism considers in
addition Markov Decision Processes (MDPs) and Probabilistic Timed Automata (PTAs) for modeling, and
Probabilistic Computation Tree Logic (PCTL), Continuous Stochastic Logic (CSL), and LTL, for proper-
ties specification. Other tools like Vesta [31] also support algebraic specification languages like PMaude
[25].

Our tool was extended to support GSMPs and CTMCs using the stochastic real-time BIP formalism
[30]. As opposed to the aforementioned tools, it allows for using arbitrary probability density functions.
Except Ymer [35], the first to implement sequential hypothesis testing (unfortunately no more maintained),
we are not aware of other tools offering such a general model. Furthermore, our tool provides high-level
modeling mechanisms such as multiparty interactions (i.e., n−ary synchronizations) and events urgencies
(e.g., lazy). It also allows for integrating external (legacy) code, which is not always the case in other tools.
Finally, it is worth mentioning that SBIP can also be used to generate (distributed) implementations ready
for deployment on real platforms [29].

Similarly to our tool, PlasmaLab [21] is a modular and extensible statistical model checker that may be
extended with external simulators and checkers. The default configuration supports DTMCs specified in a
variant of the Prism language and requirements expressed in bounded LTL.

7 Conclusion

We presented the release 2.0 of the SBIP tool, which offers new capabilities regarding the modeling and
specification formalism, the analysis workflows, and the whole user experience. We added support for
GSMPs and CTMCs and for MTL in addition to DTMCs and BLTL. We revisited the workflow of the tool
to offer an integrated environment for design, analysis and visualization, in addition to new features such
as the parametric exploration. We considered several case studies to show the tool’s analysis capabilities
and to assess its performance.

We identified through these investigations a bottleneck due to the current version of the simulation
engine. We are currently working on an optimized version which can significantly improve the whole
performance of the tool. Other interesting future directions are to extend the capabilities of the tool by
integrating a distributed implementation of SMC.

References

[1] ANTLR Web page. http://www.antlr.org/. Accessed: 2017-10-11. 2.3

[2] GSL Web page. https://www.gnu.org/software/gsl/. Accessed: 2017-10-11. 2.3

19

http://www.antlr.org/
https://www.gnu.org/software/gsl/

[3] T. Abdellatif, J. Combaz, and J. Sifakis. Rigorous implementation of real-time systems - from theory
to application. Mathematical Structures in Computer Science, 23(4):882–914, 2013. 3.1

[4] M. AlTurki and J. Meseguer. PVeStA: A parallel statistical model checking and quantitative analysis
tool. In Proceedings of the 4th International Conference on Algebra and Coalgebra in Computer
Science, CALCO’11, August 2011. 1, 6

[5] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–235, Apr. 1994.
3.1

[6] S. Arry and A. Kaur. Article: Formal verification of device discovery mechanism using uppaal.
International Journal of Computer Applications, 58(19):32–37, November 2012. 5.2

[7] R. Balaji, A. Nouri, D. Gangadharan, M. Bozga, M. M. Ananda Basu, A. Legay, S. Bensalem, and
S. Chakraborty. Stochastic modeling and performance analysis of multimedia socs. In International
conference on Systems, Architectures, Modeling and Simulation, SAMOS’13, pages 145–154, 2013.
1

[8] P. Ballarini, B. Barbot, M. Duflot, S. Haddad, and N. Pekergin. HASL: A new approach for perfor-
mance evaluation and model checking from concepts to experimentation. Performance Evaluation,
90:53–77, Aug. 2015. 1

[9] A. Basu, S. Bensalem, M. Bozga, B. Caillaud, B. Delahaye, and A. Legay. Statistical abstraction
and model-checking of large heterogeneous systems. In Forum for fundamental research on theory,
FORTE’10, volume 6117 of LNCS, pages 32–46. Springer, 2010. 1, 5.4

[10] A. Basu, S. Bensalem, M. Bozga, B. Delahaye, A. Legay, and E. Siffakis. Verification of an AFDX
infrastructure using simulations and probabilities. In Runtime Verification, RV’10, volume 6418 of
LNCS. Springer, 2010. 1

[11] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components in bip. In Pro-
ceedings of the Fourth IEEE International Conference on Software Engineering and Formal Methods,
SEFM’06, pages 3–12, Washington, DC, USA, 2006. IEEE Computer Society. 3.1

[12] S. Bensalem, B. Delahaye, and A. Legay. Statistical model checking: Present and future. In RV,
volume 6418 of LNCS. Springer, 2010. 4.3

[13] J. Bogdoll, L. M. F. Fioriti, A. Hartmanns, and H. Hermanns. Partial order methods for statistical
model checking and simulation. In Forum for fundamental research on theory, FMOODS/FORTE’11,
pages 59–74, June 2011. 6

[14] P. E. Bulychev, A. David, K. G. Larsen, A. Legay, G. Li, and D. B. Poulsen. Rewrite-based statistical
model checking of wmtl. RV, 7687:260–275, 2012. 4.2

[15] A. David, K. Larsen, A. Legay, M. Mikučionis, and Z. Wang. Time for statistical model checking of
real-time systems. In Computer Aided Verification, pages 349–355. Springer, 2011. 5.1

[16] A. David, K. G. Larsen, A. Legay, M. Mikucionis, D. B. Poulsen, and S. Sedwards. Statistical model
checking for biological systems. Int. J. Softw. Tools Technol. Transf., 17(3):351–367, June 2015. 1

[17] A. David, K. G. Larsen, A. Legay, M. Mikuăionis, and D. B. Poulsen. Uppaal smc tutorial. Int. J.
Softw. Tools Technol. Transf. (STTT), 17(4):397–415, August 2015. 1, 3.1, 6

[18] T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate Probabilistic Model Check-
ing. In International Conference on Verification, Model Checking, and Abstract Interpretation, VM-
CAI’04, pages 73–84, January 2004. 4.3

20

[19] T. Herault, R. Lassaigne, and S. Peyronnet. APMC 3.0: Approximate verification of discrete and
continuous time markov chains. In Proceedings of the 3rd international conference on the Quantita-
tive Evaluation of Systems, QEST ’06, pages 129–130, Washington, DC, USA, 2006. IEEE Computer
Society. 6

[20] W. Hoeffding. Probability inequalities. Journal of the American Statistical Association, 58:13–30,
1963. 4.3

[21] C. Jegourel, A. Legay, and S. Sedwards. A platform for high performance statistical model check-
ing — plasma. In Proceedings of the 18th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS’12, pages 498–503, Berlin, Heidelberg, 2012.
Springer-Verlag. 1, 6

[22] C. Jegourel, A. Legay, and S. Sedwards. Importance splitting for statistical model checking rare
properties. In CAV, volume 13, pages 576–591. Springer, 2013. 4.5

[23] Z. Jiang, M. Pajic, S. Moarref, R. Alur, and R. Mangharam. Modeling and verification of a dual
chamber implantable pacemaker. Tools and Algorithms for the Construction and Analysis of Systems,
pages 188–203, 2012. 5.5

[24] R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems,
2(4):255–299, Nov 1990. 3.2

[25] N. Kumar, K. Sen, J. Meseguer, and G. Agha. A rewriting based model for probabilistic distributed
object systems. In E. Najm, U. Nestmann, and P. Stevens, editors, FMOODS, pages 32–46, 2003. 6

[26] M. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: verification of probabilistic real-time sys-
tems. In Proceedings of the 23rd international conference on Computer aided verification, CAV’11,
pages 585–591, Berlin, Heidelberg, 2011. Springer-Verlag. 1, 3.1, 6

[27] M. Lindahl, P. Pettersson, and W. Yi. Formal design and analysis of a gear controller. International
Journal on Software Tools for Technology Transfer (STTT), 3(3):353–368, 2001. 5.3

[28] A. Nouri, S. Bensalem, M. Bozga, B. Delahaye, C. Jegourel, and A. Legay. Statistical model checking
QoS properties of systems with SBIP. Int. J. Softw. Tools Technol. Transf. (STTT), 17(2):171–185,
April 2015. 1, 3.1

[29] A. Nouri, M. Bozga, A. Molnos, A. Legay, and S. Bensalem. Astrolabe: A rigorous approach for
system-level performance modeling and analysis. ACM Trans. Embed. Comput. Syst., 15(2):31:1–
31:26, Mar. 2016. 6

[30] A. Nouri, B. L. Mediouni, M. Bozga, J. Combaz, A. Legay, and S. Bensalem. Performance evaluation
of stochastic real-time systems with the sbip framework. Technical Report TR-2017-6, Verimag
Research Report, 2017. 3.1, 4.1, 4.1, 6

[31] K. Sen, M. Viswanathan, and G. A. Agha. Vesta: A statistical model-checker and analyzer for prob-
abilistic systems. In International Conference on the Quantitative Evaluation of Systems, QEST’05,
pages 251–252, 2005. 6

[32] M. H. ter Beek, A. Legay, A. Lluch-Lafuente, and A. Vandin. Statistical analysis of probabilistic
models of software product lines with quantitative constraints. In Proceedings of the 19th Interna-
tional Conference on Software Product Line, SPLC 2015, Nashville, TN, USA, July 20-24, 2015,
pages 11–15, 2015. 1

[33] A. Wald. Sequential tests of statistical hypotheses. Annals of Mathematical Statistics, 16(2):117–186,
1945. 4.3

[34] H. L. S. Younes. Verification and Planning for Stochastic Processes with Asynchronous Events. PhD
thesis, Carnegie Mellon, 2005. 4.3

21

[35] H. L. S. Younes. Ymer: A statistical model checker. In COMPUTER AIDED VERIFICATION,
CAV’05, pages 429–433. Springer, 2005. 1, 6

22

	Introduction
	SBIP Design and Functionalities
	Modular and extensible architecture.
	Multiple integrated analysis workflows.
	Technical info and availability.

	Modeling and Specification Formalism
	Stochastic Real-time BIP
	Parametric MTL

	SBIP Modules
	Stochastic Simulation Engine
	Monitoring Module
	Statistical Model Checking Engine
	Parametric Exploration Module
	Rare-Events Engine.
	Graphical User Interface

	Case Studies and Benchmark
	FireWire – IEEE 1394
	Bluetooth – Device Discovery
	A Vehicle Gear Controller
	The complete set of considered requirements

	Precision Time Protocol – IEEE 1588
	Pacemaker Model
	Concurrency model
	Performance Analysis

	Related Work
	Conclusion

