
Quantitative Risk Assessment in the
Design of Resilient Systems

Braham Lotfi Mediouni, Iulia Dragomir, Ayoub Nouri and

Saddek Bensalem

Verimag Research Report no TR-2018-10

December 17, 2018

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UGA
Bâtiment IMAG
Université Grenoble Alpes
700, avenue centrale
38401 Saint Martin d’Hères
France
tel : +33 4 57 42 22 42
fax : +33 4 57 42 22 22
http://www-verimag.imag.fr/



Quantitative Risk Assessment in the Design of Resilient Systems?

Braham Lotfi Mediouni(�), Iulia Dragomir(�), Ayoub Nouri(�), and Saddek Bensalem(�)

Univ. Grenoble Alpes, CNRS, Grenoble INP??, VERIMAG, 38000 Grenoble, France
firstname.lastname@univ-grenoble-alpes.fr

Abstract. Deploying fault detection, isolation and recovery (FDIR) subsystems is an accepted solu-
tion to address the occurrence of faults and failures in safety-critical (real-time) systems. Yet, these
FDIR subsystems should be devised only for those faults that falsify the system’s requirements. As
a consequence, the obtained system is minimal, although complete, and robust both with respect to
safety and performance requirements. In this paper we propose a two-fold systematic and mechanized
approach based on formal methods combining (1) the evaluation of faults relevance based on quanti-
tative risk assessment, and (2) the validation of system robustness by statistical model checking. We
apply this approach on an excerpt of a real-life autonomous robotics case study, and we report on the
implementation and results obtained with the SBIP framework.

Keywords: Model-based system design · FDIR · Risk assessment · Statistical model-checking · Real-
time systems · SBIP framework · Robotics case study.

1 Introduction

The correct system design is in general a hard problem that depends on many factors such as system com-
plexity, requirements satisfaction, tool-chain constraints, etc. In the case of real-time safety-critical systems,
uncertainties at runtime also need to be taken into account at design time. Indeed, these situations may
have serious implications on the system’s execution and mission. Corrective measures to handle them after
the system deployment can prove to be very costly, and in some cases impossible to implement.

The type of uncertainties considered in this paper are faults and failures that occur at system execution.
To address these cases and allow for resilience, systems are equipped with fault detection, isolation and
recovery (FDIR) capabilities. FDIR is usually designed as software components that detect whether a fault
has happened and apply a predefined sequence of actions that bring the system in a safe mode. The current
practice for designing FDIR components follows an ad-hoc process based on the engineers expertise. This
process takes into account requirements expressed in natural language and produces implementations that are
integrated in the system. We identify several difficulties within this process mainly related to its completeness
and automation: (i) faults are identified from informal specification and requirements, (ii) the impact of faults
is evaluated manually, and (iii) FDIR implementations are validated by unitary and integration testing with
no formal guarantees.

Formal methods have been recently leveraged for correct-by-construction FDIR components [40] in the
frame of untimed [13] and real-time [19] systems. In this context, synthesis algorithms are used for building
the two parts of the FDIR components: the diagnoser for the fault detection and the controller for the
recovery. Two limitations are identified in [19] with respect to the proposed approach: (iv) a diagnoser is
devised for all detectable faults, and (v) the controller is manually modeled being left for verification by
model-checking techniques. Firstly, synthesizing a diagnoser for each detectable fault has inconveniences
since not all faults have an impact on the requirements to satisfy, and the system analysis and performance
can be greatly degraded due to the large number of unnecessary components. Therefore, it is important to
synthesize diagnosers only for those faults that are relevant with respect to the system requirements and

? This work has been supported by the European Union’s Horizon 2020 research and innovation programme under
grant agreement #730080 (ESROCOS), #730086 (ERGO) and #700665 (CITADEL).

?? Institute of Engineering Univ. Grenoble Alpes



objectives. This limitation is emphasized by the manual activity of evaluating faults, as described by item
(ii) above. Secondly, the controller validation problem is hard and often unfeasible since model-checking
techniques suffer from scalability issues.

In this paper we tackle the limitations described above by proposing a model-based development approach
that relies on quantitative risk assessment and formal methods. The aim of this approach is to design systems
resilient to faults in an incremental manner based on model transformation. We consider risk to be any
system-related changes that may alter the system nominal behavior or its performance. In our approach,
risk is introduced through model transformation, explicitly by modeling faults and implicitly by integrating
new FDIR capabilities. Quantitative risk assessment is used to study the impact of such changes and to
improve the FDIR design. To tackle limitations (ii) and (iv), we use probabilities to automatically measure
risk and to evaluate whether it is tolerable or not. When risk is deemed unacceptable, mitigation would be
either to synthesize a new FDIR component or to enhance the existing ones, e.g., with a more appropriate
recovery strategy.

In this work, we automate probabilistic risk measurement by using statistical model-checking (SMC)
[22,41] and we leverage its scalability to validate manually designed controller components as described by
limitation (v). SMC is a formal verification method that combines simulation with statistical reasoning to
provide quantitative answers on whether a stochastic system satisfies some requirements. SMC is widely used
in various domains such as biology [15], communication protocols [8], multimedia [37] and avionics [9]. It has
the advantage to be applicable to models and implementations provided that they meet specific assumptions,
in addition to capture rare events.

More precisely, the contributions of this paper are the following:

– The definition of an iterative and incremental process for the design of resilient systems equipped with
FDIR capabilities. This process is model-based and integrates quantitative risk assessment and system
validation which are partially automated using SMC as described in Section 4.

– The application of this design process on a real-life robotics case study. We devise three system designs
at different levels of granularity on which we perform quantitative risk assessment. For each design we
propose FDIR behavior that we validate against the system’s requirements. We use the SBIP formal
framework [29,33] described in Section 3 for modeling and quantitative analysis. The obtained results
are presented in Section 5 and 6.

– A discussion of the advantages and limitations of this process in the design of industrial applications is
given in Section 7.

2 Related Work

The risk asssessment activity defined in [23] can be applied to different application domains, including
computer-based systems. A survey about the challenges and current practices for risk assessment in computer-
based systems is presented in [42]. The literature tackles this activity mainly from two different aspects:
security and safety risk assessment. In the context of security risk assessment approaches are proposed in
[6,14,26], while [28,38,20,35,30] focus on the representation of risks in the system design and the corresponding
automated analysis methods. For example, [30] considers risks as attack scenarios and statistical model-
checking is used to perform risk analysis.

Safety risk assessment is studied from two points of view: qualitative or quantitative. Qualitative safety
assessment determines what scenarios lead the system from a nominal mode to a degraded mode where
safety requirements do not hold. The practice consists of building safety artifacts such as fault trees or timed
failures propagation graphs and analyzing them in order to certify the system safety. For example, automated
safety analysis for fault trees is described in [10] for the AltaRica dataflow language. In [12] the xSAP tool
is presented for the analysis of fault trees and timed failure propagation graphs in the context of symbolic
transition systems à la nuXmv.

Quantitative safety assessment provides probabilistic measures of the risks in the systems, such as the
likelihood of failure. Probabilistic computations are usually done manually on the safety artifacts build a

3



priori, on which the probability distributions for faults are added. Some safety assessment tools automate
this analysis, such as xSAP for probabilistic fault trees. The work presented in this paper contributes to
this class of risk assessment methods. In our case we use SMC in order to compute the probability for the
system to fail as described by its requirements.

The rationale to use SMC is feature-based, as briefly presented in Section 1. Firstly, compared to other
formal verification techniques such as (probabilistic) model checking [7], SMC is scalable. This feature is
inherent to the method: only a subset of the system’s executions are explored, while the underlying statistical
algorithms can be easily parallelized. Even though the obtained results are only estimations, their accuracy
is controlled with confidence parameters that bound the estimation error, and which distinguish it from
pure simulation techniques. Also, corner cases and rare events which might be missed by simulations can be
caught with SMC. Specific techniques such as importance sampling and importance splitting [25,24] have been
recently adapted to SMC in order to efficiently deal with this class of events. Another important feature of
SMC is its usability on both models and implementations, provided that implementations are obtained from
formally defined models with a purely stochastic semantics and code generation preserves the semantics.

Safety risk assessment can be seen as an optimization in the design of FDIR components in general and
diagnosers in particular, as explained in Section 1. The correct design of FDIR components from complete
system specifications has been studied from methodological point of view in [40,13,19]. Implementations are
provided in [19] for timed systems with partial observability and in [13] for untimed systems à la nuXmv.
While [13] includes the safety assessment mechanism implemented in [12] for user-modeled timed failure
propagation graphs, this question is left open in [19]. Our contribution completes the work from [19] by
defining and automating a quantitative safety assessment method for (stochastic) timed systems allowing
the efficient design of FDIR components.

Finally, our case study tackles the rigorous design of a robotics control system. In [11,3], (RT)BIP and
(RT)DFinder tool are used to model and verify safety and performance requirements such as causality in
service executions, mutual exclusion and data freshness. The TINA model checker is used in [21] to verify
schedulability properties of a robotics application tasks on a given hardware platform. In [39] safety properties
for modular robots such as conflicting commands, self-collision, etc., are checked and simulated for different
configurations. Diagnosers are implemented using formal models for robotics control software in [17] with
respect to safety properties and using the P language. In [31], differential dynamic logic is used to model
and verify the behavior of ground robots, while a diagnoser to ensure the nominal behavior is synthesized
with ModelPlex and added to the system. The contribution presented in this paper has been used for the
development of the FDIR components in the robotics systems scenarios presented in [32,34].

To the best of our knowledge, this work is the first to use statistical model-checking for quantitative risk
assessment in the design of resilient systems in general, and for FDIR behavior in particular.

3 A Rigorous Framework for Modeling and Analyzing Stochastic Timed
Systems

Stochastic models are of paramount importance in system design as they allow to capture uncertainties, a
key concept for reasoning about risk. Besides, models of real-time behavior are mandatory when designing
critical applications. To take full advantage of these models, formal and quantitative analysis techniques
allowing to handle real-life system models are primordial.

In this work, we consider SMC which takes as input an executable model of the system of interest and a
formal specification of the requirement to verify, usually given in some logic. Using SMC, it is possible to (1)
estimate the probability that the system satisfies the requirement, or (2) position the probability of satisfying
the requirement with respect to a given threshold. Answering the first type of query relies on well known
probability estimation techniques [22], while the second is handled using a hypothesis testing approach [41].
Concretely, SMC explores a sample of finite execution traces which are iteratively generated and monitored
against the desired requirement. Monitored traces produce local verdicts {true, false} which are consumed
sequentially by the statistical algorithms to compute a final probability estimation or a global verdict.

4



In this section, we briefly present the SBIP framework [29,33] that represents the foundation on which
relies our approach. It includes a stochastic real-time modeling formalism and a statistical model checking
engine.

3.1 Stochastic Real-time BIP

The stochastic real-time BIP [33] is a component-based modeling formalism that allows to construct complex
system models compositionally. This formalism is sufficiently expressive to model systems from various
application domains, including different behaviors such as real-time, uncertainties and faults. It further
allows to integrate external code in order to model complex computations.

In the stochastic real-time BIP formalism, components are designed as extended timed automata [5]
and are composed through multi-party interactions, i.e., n-ary synchronization among components actions.
Before formally defining components, we introduce some notation.

Let X be a finite set of variables called clocks. We denote by Φ(X) the set of convex constraints on X
given by the grammar: ϕ ::= true|x ∼ c|ϕ ∧ ϕ, with c ∈ Q and ∼∈ {<,≤,=, >,≥}. Similarly, we define
by V a finite set of discrete typed variables, and with Φ(V ) first-order expressions (without quantifiers) on
variables from V .

Definition 1 (Stochastic Real-time BIP component). A component is an extended timed automaton
〈L, `0, X, V, I, P, U, F, T 〉, where:

– L is a finite set of locations,

– `0 ∈ L is the initial location,

– X is a finite set of clocks,

– V is a finite set of discrete variables,

– I : L→ Φ(X) is a function associating to each location some clock constraint,

– P is a finite set of ports, and

– U is the set of urgencies {ε, d, λ},
– F is the set of update functions on X and V ,

– T is a finite set of transitions. Transitions are of the form (`, p, g, u, f, `′), where `, `′ ∈ L are the source
and target locations, p ∈ P is the triggering event, g ∈ Φ(X) ∪ Φ(V ) is the guard, f ∈ F is the update
function, and u ∈ U is the urgency.

A component is a finite automaton enriched with data and real-valued clocks that allow to measure time
delays. Time elapse is restricted in each location with a clock constraint, as modeled with I in the definition
above. A transition can be fired when its guard is enabled, that is the valuation of clocks and data satisfy the
constraint. Additionally, time elapse is controlled on transitions with urgencies, namely eager (ε), delayable
(d) or lazy (λ). Eager specifies that the transition must be fired as soon as it is enabled. Delayable states
that the transition can be delayed at most to the upper bound of the time interval. Finally, lazy specifies
that the event can be fired at any moment while enabled or never.

Uncertainty in the stochastic real-time BIP formalism concerns mainly events scheduling. It is expressed
by associating events guards with probability density functions. Hence, the precise moment of executing an
event is scheduled according to that density. We consider two types of events, namely timed and stochastic.
The former are associated to timing constraints on transitions. These events are implicitly scheduled ac-
cording to a uniform or an exponential probability distribution as it is the case in several existing modeling
formalisms e.g., Uppaal [16]. Stochastic events can be associated to arbitrary density functions, e.g., Normal
or Poisson, and scheduled accordingly. The underlying semantics of a stochastic real-time BIP model is a
Generalized Semi-Markov Process (GSMP) [27] where the interpretation of time is dense1.

1 We refer the readers to [33] for the formal definition of the stochastic real-time BIP.

5



3.2 The SMC-BIP Engine

SMC-BIP [29] considers as input stochastic real-time BIP models and requirements expressed in Linear-Time
Temporal Logic (LTL) [36] and Metric Temporal Logic (MTL) [4]. It implements both types of SMC queries in
addition to advanced features such as automatic parameters exploration, useful for system dimensioning, and
rare events analysis, important for risk assessment. The tool offers an integrated development environment
including a graphical user-interface permitting to edit, compile and simulate models, and automates the
different statistical analyses. In the context of this work, we mainly use the probability estimation and
parameter exploration capabilities offered by the tool.

4 A Model-based Approach Integrating Quantitative Risk Assessment

The proposed approach, illustrated in Figure 1, is based on idea of iterative and incremental transformation
of models Γ . Each model transformation can introduce new risks, for example due to relaxing environment
assumptions. The idea depicted in this approach is to perform at each step of the development two assess-
ments. First, quantiative risk assessment allows to measure the impact different risks have with regard to the
system requirements, and perform a model upgrade if deemed necessary. Secondly, validation ensures that
the upgrade is consistent with respect to the system requirements. Please note that the proposed approach
is general enough to be applied to different types of systems, e.g., untimed, real-time. Moreover, the notion
of risk can have different interpretations, e.g., safety, security. Our setting consists of stochastic real-time
systems designed and analyzed with the SBIP framework, where risks are understood and modeled as faults.

Γ ji
(k)

ni

(
Model M

Requirements R

)j
i

(k)
Risk

Assessment
Validation

k=0

ok: j < ni ? j++ ; k=0 :

i++ ; j=1 ; k=0

nok: k++

k > 0

ok: j < ni ? j++ ; k=0 :

i++ ; j=1 ; k=0

nok: k++

Fig. 1: Design approach based on formal methods integrating quantitative risk assessment where: Γ denotes
model transformation, i is the index of the number of performed steps, j is the index for the number of
explored models within a step bounded by ni, and k is the number of iterative transformations performed
on a model. Initially i is set to 0, and j and k to 1.

Initially, system specifications and informal general requirements are analyzed (Γ 1
0
1
) to build a nominal

application model (M1
0
(1)

) and a set of formal requirements (R1
0
(1)

). The only assessment performed at this
step is the validation (i.e., k = 1): the model should satisfy the formal requirements. While this condition
is not satisfied, the model is iteratively transformed, as denoted by the nok label and index k in Figure 1.
When the model is judged valid, one can proceed with the next model transformation step.

The model is incrementally transformed towards the concrete implementation as represented by the i
index. Transformation concerns different aspects of the system and may introduce new risks. Transformation
examples include integrating new behavior, correction of bugs in the model or legacy code, instantiation
of the model’s parameters. For the latter, one obtains a family of models indexed with j ∈ {1, . . . , ni} in
Figure 1. Similarly, the system requirements are modified based on the purpose of the performed model
transformations. By system requirements we mean those expected to be fulfilled by the system model in the
current stage of the design, that is, during the step i the exploration j and the iteration k.

6



The first analysis to perform on the system model M j
i

(0)
is the risk assessment. It implies computing

the probability for requirements Rji
(0)

to hold on the model. Based on this measurement, the risk can be
appreciated. If they are acceptable, represented with the ok label, one can continue with inspecting a new
model either from the same family if j < ni or by moving to the next step i+1. If the risks are high, represented
with the nok label, a decision on how to mitigate is taken, which usually involves the transformation of the

model architecture and/or behavior. Once all the risks have been dealt with, the obtained model M j
i

(1)
and

its requirements are subject to the iterative validation described above.
In the following sections we show how to apply this approach on a robotics control system case study. We

distinguish four levels of granularity for this case study. At level 0, we design a nominal application model that
we validate with respect to initial requirements. At level 1, we introduce risks in the form of faults and perform
risk assessment. The decision consists of introducing FDIR functionality in one of the components of the
model, which we then validate. At level 2, a performance-related model transformation is applied that impacts
only the set of requirements. We show that the FDIR behavior introduced is necessary but not sufficient
with respect to performance and we propose an improvement that is again validated. Finally, at level 3, we
introduce in the design the deployment model. We instantiate the deployed model that considers 3 aspects
and we explore several deployments using risk assessment with respect to performance-specific requirements.
All models are described in the stochastic real-time BIP formalism where time evolves probabilistically
following uniform density functions. The risk assessment and validation activities are automated using the
SMC-BIP tool.

5 Planetary Robotics Case Study

The case study considered in this paper is an excerpt of a Bridget Rover demonstrator control system
developed for the validation of the ESROCOS environment [2]. The Bridget Rover (see Figure 2) is a
representative of Martian rovers aiming for planetary exploration while providing a modular and configurable
payload bay. The payload consists at least of a panoramic camera for image acquisition aiming for biological
signatures detection and autonomous driving via map construction. The rover uses 6 wheels to drive and
steer, where the motors communicate with the locomotion system via a CAN-bus.

5.1 System and Requirements Overview

Fig. 2: The Bridget Rover (courtesy
of Airbus Defense and Space UK).

The control system developed with ESROCOS [1] aims to remotely
drive the rover using a joystick and acquire images. In consequence, the
developed system interfaces with the low level control of the locomotion
system and the CAN-bus node. We consider in the following the drive
with a joystick functionality of the developed control system as case
study [18].

More precisely, the case study consists of the software chain be-
tween the joystick and the locomotion software. The main prerequisite
for the system is that the rover is moving according to the requested
motions. This feature is formalized by many requirements based on
the granularity of the system design and assumptions made over the
environment, as listed in Table 1. For example, φ0 describes that the
requests sent by joystick are received by the locomotion software, while
φ1 describes that the locomotion software receives requests regularly
(with a given period of 100ms).

5.2 Nominal Software Design

7



ID Label Formal specification

Requirements on the nominal system

φ0 Bounded delivery �[0,10000] (is sent ⇒ ♦[0,100] is received c)
φ1 Periodic arrival �[0,10000] (is received c ⇒ ♦[1,100] is received c)

Requirements on the FDIR system

φ2 Bounded delivery �[0,10000] (is sent ⇒ ♦[0,110] is received)
φ3 Periodic arrival or timeout �[0,10000] (is received ⇒ (♦[1,110] is received) ∨ (♦[110,200] is timeout))
φ4 Consistent number of commands �[0,10000] (♦[0,200] nb received = nb sent + nb timeout)
φ5 fault1 detection �[0,10000] (cnbt ≥ MNBT ⇒ ♦[0,200] is reset)
φ6 fault1 repair �[0,10000] (is reset ⇒ ♦[0,100] is received)

Requirements on the system performance

φ7(n) Bounded inconsistency �[0,10000] (♦[0,200] nb timeout− (nb received− nb sent) ≤ n)
φ8(n) Bounded timeouts �[0,10000] (nb timeout ≤ n)
φ9(n) Bounded consecutive timeouts �[0,10000] (cnbt ≤ n)
φ10(n) Bounded Client buffer overflow �[0,10000] (nb overflow ≤ n)
φ11(x) Non-deterministic timeouts �[0,10000] (nb chosen timeout ≤ x)
φ12(y) Non-deterministic test cmd reads �[0,10000] (nb chosen read ≤ y)
φ13(n) Bounded command offset �[0,10000] (♦[0,100] period id− cmd id ≤ n)

Table 1: Requirements of the planetary robotics case study at the different levels of granularity of system
design.

Joystick

step

Dispatcher

Logger

Watchdog Client
cmd test cmd

log cmd

mot

Partition 1

Partition 2

Fig. 3: Overview of the case study software architecture.

Model As mentioned above, the case study tackles the communication of the joystick with the locomotion
control system. The software architecture is given is Figure 3.

The software design relies on a library containing two types of components: triggers and queues. The
trigger, illustrated in Figure 4a, is a component that with a customizable period P activates the component to
which it is attached (action sig out). Once activated, the trigger waits for the completion of the component’s
associated behavior (action sig return) before a deadline D. In case the associated behavior does not finish
before D, an issue is raised during the analysis. This corresponds a timelock in the system behavior, that is
a modeling error and has to be corrected.

The queue, illustrated in Figure 4b, is a component that models the asynchronous communication between
two components: a sender and a receiver. It is associated with the receiver component and it contains a
buffering structure of fixed size to store received requests (on action sig out). If the limit has been reached,
the incoming requests are discarded. When available, the receiver consumes the requests stored in its queue,
using action sig in, with a fixed minimal time between two reads, called MIAT (minimal inter-arrival time).
Similarly to the trigger, the queue waits for the completion of the receiver’s associated behavior (action
sig return), that must happen before a deadline D.

The Joystick component regularly sends a motion command denoted cmd to the rover locomotion software
to be executed. This behavior is depicted in Figure 5a by the states l0 to l4, represented in black. The
command sending is activated by the step trigger. For this case study, the step period and deadline are set
to 100ms and 15ms respectively. The cmd request has multiple fields to describe the motion to be executed:
an id of type integer records the package number, and motion records the actual data package sent to the
locomotion software consisting of translation, rotation and heading of type float.

8



l0 l1
t ≤ D

l2
t ≤ P

sig outε/
t = 0

sig returnε
[t == P ]/
sig outε/

t = 0

(a) Generic behavior of triggers
with parameters P and D

l0

l1

t ≤ D

l2

t ≤ MIAT

sig out(val)ε/
push back(q, val, size)

[length(q) > 0]/
sig in(pop front(q))ε/
t = 0

sig returnε

sig out(val)ε/
push back(q, val, size)

[t == MIAT]/
τ ε/

t = 0

sig out(val)ε/
push back(q, val, size)

(b) Generic behavior of queues with parame-
ters MIAT, D and size

Fig. 4: Library of components and their behavior: triggers represented with triangle ( ) and queues repre-
sented with square ( ) in Fig. 3.

The cmd action is first sent to a Dispatcher, provided in Figure 5b. The Dispatcher transfers this request
to two software components: first the Logger via the log cmd request and then to the Watchdog via the
test cmd request (states l0, l3, l4 and l6 in black). Both log cmd and test cmd contain the data package
received from the Joystick. The Logger records the received requests such that they can be reused later for
the validation of the system through replaying.

The Watchdog interfaces the Dispatcher (and subsequently the Joystick) with a wrapper of the locomotion
control software called Client, as illustrated in Figure 5c by the states l0 to l3 in black. Whenever a test cmd
request is received, the Watchdog transfers the data package in the mot request to the Client. For simplicity,
we do not consider the behavior of the Client, which is abstracted to discarding all received mot requests.

All these components communicate asynchronously via queues. All queues have the MIAT and D set to
50ms and 15ms respectively, while they can record only one element, i.e., size = 1.

Validation Requirements For this case study we are interested first in validating the nominal behavior
of the system when the environment assumptions are satisfied:

(A1) the Joystick issues periodically a cmd request,
(A2) no requests (data packages) are lost, and
(A3) all executions including queue writing and reading take 0ms.

The system’s prerequisite – the locomotion system executes the received motion commands – is expressed
on the nominal application by the requirements φ0 and φ1. φ0 describes that all cmd requests sent by the
Joystick, modeled with the Boolean variable is sent, are received within 100ms by the locomotion system
(Client component), modeled with the Boolean variable is received c. φ1 describes that the Client regularly
receives a request mot, within 100ms. Please note that these requirements and their formalization are relaxed
with respect to assumption (A3) as they describe cyclic behavior within periods.

Validation Results We use the SMC-BIP tool with the confidence parameters α = 0.005 and δ = 0.05
for all our experiments (at this step and after). These confidence parameters require the evaluation of 1199
system executions to come up with a global verdict, using the probability estimation technique. The computed
satisfaction probability is 1 for both φ0 and φ1. The computations took for each requirement independently
roughly 4 min.

Conclusion As the requirements on the nominal application are satisfied, we can proceed with the next
step of the approach.

9



l0

l1

l4

l3

t = 0
init()

step inε

τ ε/
set cmd(v)

cmd out(v)ε

step returnε

l9 l10

[f2 enabled ∧ t < 100]/
fault2λ

[t ≥ 150]/
τλ/
t = 0

step inε

step returnε

l6 l7

[f1 enabled ∧
bp ≤ t ∧ t ≤ bp+10]/

fault1d/t = 0

[t == bd]/
τ ε / t = 0
bp = bp/2

step inε

step returnε

l8

resetε / t = 0
resetε/
t = 0τ ε/bp =

MBP

(a) Behavior of Joystick

l0

l3l6

l4

cmd in(v)ε

log cmd out(v)εtest cmd out(v)ε

cmd returnε

l7

l8 l9

fault3ε/
t = 0

cmd returnε

cmd inε

cmd returnε

[t > 100]/
τλ

l10

begin test cmdε

test cmd out(tv)ε

(b) Behavior of Dispatcher

l0l2

l3

l5

l6

t = 0
timeout = get val()

cnbt = 0

test cmd in(v)ε

cnbt = 0mot out(v)ε/
t = 0

test cmd returnε

[t ≥ timeout]/
τ ε /set cmd stop(v)
cnbt = cnbt+ 1

[¬reset enabled ∨
cnbt < MNBT]/
mot out(v)ε/

t = 0

[reset enabled ∧ cnbt ≥ MNBT] /
resetε

mot out(v)ε/
t = 0

(c) Behavior of Watchdog

Fig. 5: Behavior of the main components from Fig. 3 represented as timed automata in SBIP, where faults,
fault detection and standard recovery action are represented in red, more complex recovery strategy in blue,
and deployment-specific actions in dark green.

10



6 Risk Assessment of the Planetary Robotics System

In the following we describe two models at different levels of granularity and the results of the risk assessment
and validation phases on them: one system level design including faults modeling relaxed assumptions and
one deployement level design additionally modeling the hardware platform.

6.1 On Robustness to Faults

Model with Faults The first transformation of the nominal model (i = 1) tackles the assumptions (A1)
and (A2) described in Section 5.2. We relax these assumptions in the new model by incorporating faults. In
order to have a systematic way of evaluating the impact of faults and their combinations on the system and
its requirements, we define Boolean constants for each fault to control their injection.

Assumption (A1) describes that the Joystick sends periodically a request. We break this hypothesis by
modeling the stop of request sending for a certain amount of time with two faults as follows. The fault1
action is related to the external code that can be embedded in the model. More specifically in this case, the
software of the Joystick component does not send cmd for a certain duration. This behavior is represented in
Figure 5a by the red states l6 and l7, as follows. The fault is injected at state l0 with the Boolean constant
f1 enabled and can be executed any time between bp and bp + 10. (bp is an integer variable that describes
the break period of not sending cmd requests.) Once the transition is picked for execution, in a uniform
way, the clock t that measures the break duration bd is initialized to 0. During the [0, bd[ time interval, any
step triggers are discarded by the Joystick as modeled with the l6 – l7 cycle. Once the break duration bd has
passed, the Joystick recovers, the clock is reset and the break period is updated. For this example, bd is equal
to 20ms and bp is set to 190ms. Please note that we model here a persistent fault since the break period is
decreasingly converging to 0ms, and therefore the Joystick will eventually be continuously failing.

The fault2 action is motivated by the risks in the hardware connections, where the Joystick can be
unplugged non-deterministically for a certain moment. This behavior is modeled in Figure 5a by the red
states l9 and l10. As before, this fault is injected at state l0 by the Boolean variable f2 enabled and can be
executed as long as 100ms have not passed since the last clock reset. If the fault occurs, the Joystick could
recover after 150ms since last time reset (the transition from l9 to l0). However, the recover action is defined
as lazy, which implies that the Joystick could fail for large time periods. During the fail, any step triggers are
discarded as above.

Assumption (A2) describes that no motion command is lost. We relax this hypothesis in the Dispatcher,
where we model the message loss with the fault3 action. This behavior is represented in Figure 5b by the
red states l7, l8, and l9. As above we inject the fault with the Boolean constant f3 enabled and we consider
that this fault can happen after a cmd is received. Then the Dispatcher has the choice of forwarding the data
package (transition between l3 and l4) or losing the data package (transition l3 to l7). If a cmd is lost, the
Dispatcher will continue to loose packages (cycle l8 – l9) unless it recovers. The recovery cannot happen before
100ms since fault3. Again, the recovery is lazy (transition from l8 to l0), which means that the Dispatcher
can loose commands for large time periods.

Risk Assessment Requirements For the risk assessment we use the requirements φ0 and φ1 defined
above, and we do not introduce other ones. These requirements are sufficient to quantify and assess the
impact all faults – fault1, fault2, and fault3 – have on the nominal behavior on the system.

Risk Assessment Results With the SMC-BIP tool we obtain the following resuls. Regarding fault1 and
fault2, φ0 is satisfied with probability 1. Indeed, if a command is not sent the implication evaluates to true.
However, this probability drops to 0 when injecting fault3. In this case, some sent commands are lost by the
Dispatcher. Therefore, they are not received by the Client. Property φ1 is not satisfied regardless of the faults
occurring, independently or combined, since commands are either not sent or lost within the [1, 100]ms time
interval. The computed probability is equal to 0. The complete results, including the time needed for the
experiments, are given in Table 2.

11



fault1
(without reset)

fault1
(with reset)

fault2 fault3
fault4

(MTD = 0/MTD = 5)
Probability /

Parameter
Time
(sec)

Probability /
Parameter

Time
(sec)

Probability /
Parameter

Time
(sec)

Probability /
Parameter

Time
(sec)

Probability /
Parameter

Time
(sec)

Nominal system

φ0 1 240 1 196 1 229 0 14 - -

φ1 0 14 0 13 0 14 0 14 - -

System with FDIR functionality

φ2 1 240 1 196 1 229 0 14 0.05 / 0 14 / 96

φ3 1 202 1 242 1 211 1 180 1 300

φ4 1 192 1 246 1 215 0 14 0.05 / 0 14 / 105

φ5 - - 1 194 - - - - - -

φ6 - - 1 217 - - - - - -

φ7(n) n∗φ7(n)
=0 140 n∗φ7(n)

=0 140 n∗φ7(n)
=0 140 n∗φ7(n)

=88 900 n∗φ7(n)
=4 2160

φ8(n) n∗φ8(n)
=88 720 n∗φ8(n)

=61 197 n∗φ8(n)
=88 720 n∗φ8(n)

=88 900 n∗φ8(n)
=49 2160

φ9(n) n∗φ9(n)
=88 720 n∗φ9(n)

=5 180 n∗φ9(n)
=35 1800 n∗φ9(n)

=30 1080 n∗φ9(n)
=1 480

Table 2: Results obtained with the SBIP framework on the system design with faults and with respect to
requirements from Table 1. n∗φ refers to the parameter value for which φ(n) is satisfied with probability 1.

Given these results, we conclude that these faults (i.e., risks) have a great impact on the system and an
FDIR behavior needs to be added such that the rover operates safely. Indeed, without a recovery strategy,
the rover’s locomotion system would keep executing the last received command and this can have important
consequences. For example, the rover could be stuck into a harmful environment and therefore not achieve
its mission. More specifically, we are interested in stopping the rover whenever such faults are detected.

Model with FDIR Behavior In order to stop the rover consistently when risks are present, we equip the
Watchdog with a data package validity checking before transferring the request to the Client. By validity we
do not mean the checking of the command content (even though this could be achieved if necessary), but
ensuring that the package must be received before a timeout event. This corresponds to the diagnoser part of
FDIR components, and it is based on the property that the Client awaits periodically for motion requests.

If this does not happen due to faults in the system, the Watchdog will ensure the rover still operates
safely with respect to the locomotion system: the motion is stopped. To achieve this, the Watchdog sets the
data package to stop – translation, rotation and heading are set to 0 – and sends mot with stop as value.
This corresponds to the controller part of FDIR components.

For simplicity2, we model this FDIR behavior directly in the Watchdog as illustrated in Figure 5c. While
waiting for a test cmd, the Watchdog checks the time elapse with the clock t. If the timeout duration has
been observed (transition from l0 to l5 in red), the stop data package is set, the corresponding mot command
is sent and the clock is reset (transition from l5 to l0 in red). We configure the value of the timeout to 110ms
in order to account for possible delays in the system execution. As a consequence, the requirements listed in
Table 1 for the FDIR component and described below use this new time interval in their formalization.

We can now proceed with validating the FDIR behavior of the Watchdog component.

Validation Requirements We define a new set of requirements φ2−4 specific to the FDIR behavior of
the Watchdog. φ2 describes that whenever a motion command is sent, it is received by the Watchdog. This
requirement is the transformation of φ0 from the Client to the Watchdog as receiver. Indeed, there is no
need to check φ1 from now on, as the new FDIR behavior should guarantee it. With φ3 we are interested
to check that the Client should receive mot requests periodically. The mot could contain either the data

2 The system architecture and specification, Watchdog included, have been provided in the frame of this case study
such that the used resources (e.g., number of components and threads) are minimal.

12



package sent by the Joystick (modeled with the is received variable) or the stop data package sent by the
Watchdog (modeled with the is timeout variable). Note that φ3 is also a transformation of φ1 from the Client
to the Watchdog by including the FDIR part. Requirement φ4 models the consistency of the data package
reception: all the data packages received by the Client are either commands generated by the Joystick or by
the Watchdog.

Validation Results The Watchdog is robust with respect to faults fault1, fault2, and fault3: the probabilities
computed for φ3 are 1, as showed in Table 2. In addition, φ2 and φ4 are also satisfied when considering the
faults of the Joystick, namely fault1 and fault2. However, in the presence of fault3 of the Dispatcher, the
probability of satisfaction for φ2 and φ4 is 0. This result is expected since fault3 models message loss.
Whichever combination of faults between the two components is considered, the results are similar: φ3 is
satisfied, while φ2 and φ4 are not.

Conclusion This step of the approach consisted of the following actions. The system model was enriched
with faults and the need of FDIR behavior was highlighted by the risk analysis and evaluation results. The
decision was to include the detection and recovery capabilities into the Watchdog component which now also
checks the validity of the received commands. We showed that the Watchdog is robust with respect to the
modeled faults. As the obtained results are satisfying, we go to the next step i = 2 in our approach.

6.2 On System Performance

Model for Performance Measurement. At this step we are interested in the performance of the FDIR

behavior of the Watchdog in the system. Therefore we do not perform any model transformation – Γ 1
2
(0)

is the
identity function. However, we enrich the set of requirements with ones evaluating the system performance
φ7−9, as described below.

Risk Assessment Requirements. φ7 explores the different bounds for inconsistency in the number of
packages. This requirement makes sense to be checked when the system looses commands, i.e., when fault3
is present or P (φ4) 6= 1. φ8 explores the maximal number of stop commands the Watchdog issues for the
given time period, while φ9 considers the number of consecutive stop commands. We are interested in this
case to have a low number of stop commands such that the rover operates smoothly.

Risk Assessment Results. The results obtained from the risk assessment are given in Table 2. We remark
that fault1 leads the Watchdog to issue a large number of (consecutive) stop commands (φ8,9) due to its
persistence. As we will see in the next refinement, we tackle this aspect by introducing a reset mechanism.
fault2 and fault3 imply the same large number of stop commands from the Watchdog as fault1. However, we
remark that in these cases, the system recovers for longer periods and acts consistently since the consecutive
number of stop commands is bounded to 35 and 30, respectively, as illustrated in Figure 6 and 7. The
maximal failure period is approximately equal to 35 × 100ms and 30 × 100ms, respectively. Therefore, the
Watchdog is able to keep the system safe, even with long failure periods.

Model with reset Mechanism for the Joystick Since fault1 is persistent and the rover will be mostly
not moving due to the stop commands issued by the Watchdog, we add a reset mechanism in the Joystick
that will allow this component to go back to its nominal behavior. This mechanism, illustrated in Figure 5a
in blue, consists of an action reset (leading to state l8) which sets the break period bp back to the maximal
allowed duration MBP (transition from l8 to l0). Then the Joystick will again issue motion commands, with
fault1 enabled.

The reset mechanism is controlled by the Watchdog since it implements FDIR behavior and it is enabled
with a Boolean constant reset enabled (as for fault injection). As illustrated in Figure 5c (in blue), the

13



0 10 20 30 40

0.5

1

t∗

Parameter value (t)

P
ro

b
a
b
il
it

y

0 10 20 30 40

1

2

3

4

Parameter value (t)

R
u
n
ti

m
e

(m
in

u
te

)

Fig. 6: Probability and runtime of φ9 for the model including fault2.

0 10 20 30

0

0.5

1

t∗

Parameter value (t)

P
ro

b
a
b
il
it

y

0 10 20 30
0

1

2

3

Parameter value (t)

R
u
n
ti

m
e

(m
in

u
te

)
Fig. 7: Probability and runtime of φ9 for the model including fault3.

Watchdog defines a variable cnbt that stores the consecutive number of stop commands issued. If cnbt is
below the MNBT threshold, the Watchdog will issue a stop command (transition from l5 to l0). Otherwise,
the Watchdog will first trigger the reset mechanism (transition from l5 to l6) and then will issue the stop
command (transition from l6 to l0). Please note that the behavior of the watchdog described in Section 6.1
is identical to the one described in this figure, when reset enabled is set to false.

Validation Requirements The efficiency of the reset mechanism is additionally validated by requirements
φ5 and φ6. φ5 describes that whenever fault1 is detected, the Watchdog triggers the reset action. φ6 validates
the efficiency of the reset mechanism modeled by the receiving of a command by the Watchdog after a reset
is triggered. We also check and compare the performance of the reset mechanism with requirements φ7−9
described above.

Validation Results For this model, we configure the Watchdog to tolerate a maximum number of 5
consecutive timeouts before triggering a Joystick reset (MNBT = 5).

In the second column of Table 2, we see that both φ5 and φ6 are satisfied with probability 1. From
the performance point of view, we observe an improvement of order of magnitude for the number of stop
commands issued by the Watchdog. More specifically, the total number of issued stop commands is reduced
by 31%, whereas the number of consecutive stop commands is bounded to 5. The latter corresponds in
general to the bound MNBT for which the reset mechanism is implemented, instead of the computed bound
of 88 without the reset mechanism.

An interesting result is obtained when combining fault1 implementing the reset mechanism and fault3.
In this case, requirement φ6 does not hold. The reason is that the reset mechanism does not guarantee the
receiving of commands by the Watchdog at the next cycle. This is mainly due to the fact that the consecutive
timeouts could be caused by the Dispatcher and in that case, resetting the Joystick will not change anything.

14



Another refinement is necessary in order to develop a more resilient system by implementing more complex
recovery strategies.

Conclusion At this step we checked the performance measurements of Watchdog in the system. We observe
that in some cases the Watchdog is efficient. In others, as for example fault1, a more complex recovery
mechanism based on the reset of the Joystick is implemented and validated. It is showed that the robustness
property (φ3) is preserved by the model with the reset mechanism, and moreover this mechanism reduces the
overhead of the Watchdog on the system performance. Therefore, we proceed by transforming and studying
a deployment model of our system.

6.3 On Deployment Impact

Deployed Model The software is deployed on two partitions due to the rover architecture. The locomotion
control software, and therefore its Client wrapper, are deployed on a partition which communicates with
the other software components via a CAN-bus. Since the Watchdog component aims to check the validity
of the requests sent to the Client, it will be deployed on the same partition with the Client – Partition2 in
Figure 3. The remaining components – Joystick, Dispatcher, and Logger – are deployed on another partition
– Partition1 in Figure 3. Between the two partitions a Channel component is considered.

The Channel is a component added to the system model and connected to the Dispatcher in writing mode
and to the Watchdog in reading mode. This component, illustrated in Figure 8, has a similar behavior to the
queues. Once a data package is received, it is written in a buffer of a predefined size. If the Channel buffer
is full, the received data package is discarded. Finally, the recorded data package is removed from the buffer
and transferred to its target when possible.

We relax here assumption (A3) and we model maximal transmission and writing delays for the Channel
with variables MTD and MWD, respectively. The maximal transmission delay describes how much time a
data package transfer can take at most. For example, such a variation in the transmission time can depend on
the network load. This behavior is modeled by the transition from l1 to l2 in Figure 8: a transfer can finish at
any moment between 0 and MTD (the delayable d urgency). Similarly, the maximal writing delay describes
the time the Dispatcher can take to write a motion command in the Channel buffer before continuing its
behavior (here, informing the Dispatcher queue that another request can be handled). Usually writing on a
channel is not instantaneous. We consider that the writing can take between 0 and MWD as described by
the guard on transition from l0 to l1 and loop transitions in states l1 and l2. The writing process is initialized
by the Dispatcher with the begin sig out action. This action can always be performed on the Channel, as
modeled by the self-loop transitions labeled with begin sig out in all states (Figure 8).

Moreover, we enable the loss of command requests with fault4. More precisely, a package stored in the
buffer (state l1) can be lost at any moment (the lazy λ urgency). Similarly to the other faults, we use the
Boolean constant f4 enabled to inject it. This fault implies the removal of the oldest data package from the
buffer. This can result in an empty buffer (transition from l1 to l0) or a buffer with at least one data package
(loop transition in l1).

In this setting, fault1 to fault3 are disabled. These faults can be considered in a further step together with
the current deployment model.

Risk Assessment Requirements We consider for evaluation requirements φ2−13 from Table 1. Please
note that φ5 and φ6 are not checked since they make sense only when fault1 is present. φ10 explores the
number of mot requests lost by the Client queue: incoming requests are lost if the queue is full. φ11−13 tackle
the freshness of the data package received by the Client. We want to determine with φ11 how many times the
Watchdog triggers a stop command when a motion command is present in its queue. φ12 is the dual of φ11:
how many times the Watchdog handles a command received at timeout. Finally, φ13 explores the discrete
time difference (in terms of periods) between when a command is received and when it is issued.

15



l0

l1l2

begin sig outε/
x = 0 [0 ≤ x ∧ x ≤ MWD] /

sig out(val)d /
push back(q, val, size)
t = 0[f4 enabled ∧

get size(q) == 1]/
fault4λ/pop front(q)

[0 ≤ x ∧ x ≤ MWD] /
sig out(val)d /
push back(q, val, size)

begin sig outε/
x = 0

[f4 enabled ∧
get size(q) > 1]/
fault4λ/pop front(q)[0 ≤ t ∧ t ≤ MTD ∧ get size(q) > 0]/τd

[get size(q) > 1]/
sig in(pop front(q))ε/

t = 0

[0 ≤ x ∧ x ≤ MWD] /
sig out(val)d /

push back(q, val, size)

begin sig outε/
x = 0

[get size(q) == 1]/
sig in(pop front(q))ε/

x = 0

Fig. 8: Behavior of the communication channel between the two partitions of Fig. 3.

Risk Assessment Results For this analysis, we consider 3 aspects of the Channel in the deployed model:

(1) M1
3
(0)

with transmission delays, (2) M2
3
(0)

with writing delays, and (3) M3
3
(0)

with command losses.

Transmission delays. This exploration concerns the MTD parameter of the model, with MWD = 0. The
results obtained with SMC-BIP for this model on requirements φ2−4,7−10 are represented in Figure 9. The
evolution of the probability estimation for φ2−4 and φ10(0) is plotted on the left, while the evolution of
the optimal parameter value for φ7−10 is displayed on the right. Notice that both the probabilities and the
optimal parameter values are functions of the maximal transmission delay (MTD) represented on the x-axis,
and which is a parameter of the model as described above. The optimal parameter value for a property φ
is the smallest parameter value for which the property is satisfied with probability 1. We write the optimal
parameter as n∗φ = minn∈N{P(φ(n)) = 1}.

0 20 40 60 80 100 120

0

0.5

1

MTD

P
ro

b
a
b
il
it

y

P(φ2)

P(φ3)

P(φ4)

P(φ10(0))

P(φ10(0))

0 20 40 60 80 100 120

0

20

40

MTD

P
a
ra

m
et

er
va

lu
e

n∗φ7

n∗φ8

n∗φ9

n∗φ10

Fig. 9: SMC-BIP results for the deployed model including transmission delays.

We start by presenting the parameter estimation results on requirements φ7−10. The total number of stop
commands as described by φ8 is in general bounded to 49. The number of consecutive stop commands, as
expressed by φ9, is bounded to 1 for MTD values below 100ms. Similarly, the number of lost commands due
to the Client queue overflow modeled in φ10 is bounded to 4 motion commands. We remark that n∗φ7

= n∗φ10
,

which shows that the Client queue overflow is the only source of command losses in the system.

16



The Client queue can discard a message due to being full if all of the following three conditions are
satisfied in the given order: (i) a test cmd arrives at exactly timeout for the Watchdog, (ii) the Watchdog
chooses to first issue a stop command, (iii) the Watchdog immediately transfers the test cmd as mot, without
the Client handling the previous stop data package. Then, the queue of the Client which size is 1 will not
be able to store the mot and this data package is dropped. This situation evolves with respect to MTD as
follows. When MTD increases, the number of stop commands issued also increases as showed for φ11 up to
a certain limit. However, the probability for the test cmd sent by the Dispatcher to take exactly timeout−P
to be delivered to the Watchdog is decreasing (i.e., it boils down to generating a single value in the growing
interval I = [0,MTD] of transmission delays).

Therefore, we observe that the probability to loose commands, represented by the negation of φ10(0) on
the left hand side of Figure 9, first increases until MTD < 20ms and then decreases. The increase is justified
by the higher impact the choice of sending stop commands instead of transferring the motion requests (see
the results for φ11 in Figure 10) has on the property. After 20ms, the aforementioned choice stabilizes and
the probability to generate a single time value in I decreases, leading P(φ10(0)) to also decrease.

Finally, on the left hand side plot of Figure 9, we observe that φ2 is satisfied when MTD is lower than
100ms. However, in the cases where the transmission delay is greater than the 100ms period of the Joystick,
the delivery of commands is no longer guaranteed in the same period. It is worth mentioning that the
Watchdog is able to detect that phenomenon and act accordingly, as reflected by requirement φ3 that is
satisfied with probability 1. With respect to requirement φ4, we remark that the interleaving of command
generation and reception also can have an effect on the probability of satisfaction, besides the command loss.
The interleaving can happen when the MTD is greater than 40ms (as expected from the timeout value) and
therefore the satisfaction probability of φ4 decreases. Up to 40ms, φ4 and φ10(0) are identical, while after
40ms they diverge.

Next, we are interested in quantifying the number of times the Watchdog has the non-deterministic choice
between issuing a stop command (φ11) or reading a command from its queue (φ12). These results are showed
in Figure 10. We observe that the number of non-deterministic choices, represented by the sum of x∗ and y∗

values, varies with the MTD then stabilizes at the value of 6 when the transmission delay is above 20ms.
Also, the Watchdog chooses fairly between the two options. An interesting observation is that the number of
chosen stop commands is relatively low in comparison with the total number of issued stop commands, as
reflected in Table 3.

0 20 40 60 80

0

1

2

3

MTD

#
ch

o
o
se

ti
m

eo
u
t

(x
∗
)

0 20 40 60 80

0

1

2

3

MTD

#
ch

o
o
se

cm
d

(y
∗
)

Fig. 10: Parameter exploration of φ11 (left) and φ12 (right) on the deployed model with transmission delays

Lastly, we focus on analyzing motion command and period identifiers to evaluate data freshness. Due
to transmission delays, a command can be received in a different period than the one it was issued in. We
express this behavior with φ13 and the results are showed in Figure 11. The left plot represents the variation
of the probability estimation of φ13(n) for different instances of n when varying the MTD. The right plot
represents the optimal value of n for different values of MTD. We can see that the difference between the
period of issued and received command identifiers is bounded and increases with the growth of MTD. Hence
the transmission delays have an important impact on data freshness.

17



MTD Max timeouts (n∗φ8
) #choose timeout (x∗) Proportion x∗/n∗φ8

10 4 2 0.5
20 25 3 0.12
30 33 3 0.09
80 45 3 0.07

Table 3: Proportion of non-deterministic stop commands when increasing MTD.

0 50 100 150
0

2
4

0

0.5

1

MTD
nφ13

P
ro

b
a
b
il
it

y

50 100 150

0

2

4

MTD

n
∗ φ
1
3

Fig. 11: Parameter exploration of φ13 on the deployed model with transmission delays.

In order to deal with lost commands in the Client queue, a refinement could be performed by increasing
the size of this queue. A binary search can be used to determine the minimal size. In our case, a queue of
size 2 is sufficient to avoid overflows, as shown in Figure 12 for acceptable (30ms) and high (100ms) values
of MTD. The probability to not loose any commands in the Client’s queue (φ10(0)) is equal to 1. In the case
where MTD = 100ms, the difference in the number of commands received by the Client and those sent by
the Joystick and Watchdog expressed by φ4 is only due to the interleaving of actions.

30 100

0.4

0.6

0.8

1

MTD

P
ro

b
a
b
il
it

y

P(φ2)

P(φ3)

P(φ4)

P(φ10(0))

Fig. 12: Results on the corrected deployed model.

Writing delays. This exploration concerns the MWD parameter of the model, with MTD = 0. Recall that the
D (deadline) of the Dispatcher queue is set to 15ms. Indeed, the Dispatcher has to transfer the cmd request
as log cmd (which takes 0ms) and as test cmd via the Channel (which takes at most MWDms). All these
actions must happen before the D implemented by the queue, otherwise the Dispatcher timelocks. Timelocks
are modeling errors that can be detected during model analysis and can be subject to model transformation:

18



for example, either set a new worst case execution time for the component and in consequence the system
scheduling is recomputed, or a recovery mechanism (similar to the reset mechanism proposed) is implemented
in the Dispatcher.

The results are provided in Figure 13. In the left hand side plot we illustrate the probabilities estimated
for φ2−4. When MWD < 15ms, we observe that the Watchdog is robust (φ3). Additionally, analysis results
for φ2,4 in this setting are similar to the results in the transmission delay setting. When MWD ≥ 15ms,
most requirements do not hold anymore due to the timelock of the Dispatcher. However, the Watchdog keeps
on guaranteeing the system’s safety, as shown by the probability of φ3 evaluated to 1. Note that φ10(0) is
equivalent to φ4 because there is no interleaving possible between the command generation and reception
when the MWD < 40ms.

10 15 20 30

0

0.5

1

MWD

P
ro

b
a
b
il
it

y

P(φ2)

P(φ3)

P(φ4)

10 15 20 30

0

50

100

MWD

P
a
ra

m
et

er
va

lu
e

n∗φ7

n∗φ8

n∗φ9

Fig. 13: SMC results for the deployed model with writing delays

On the right hand side we illustrate the optimal parameter values obtained on properties φ7−9. These
results are similar to those obtained in the transmission delay setting for MWD < 15ms. Note that in this
case φ10(n) is identical to φ7(n), and therefore it is not explored.

Command Losses. Finally, we consider the command loss aspect of the Channel. For our exploration we set
MTD ∈ {0ms, 5ms} and MWD = 0ms. The results with respect to φ2−4,8−10 are given in Figure 14. The
results for requirements φ11−13 are not relevant in this case since MTD should be greater than 10ms and
40ms for a relevant exploration of φ11−12 and φ13, respectively.

We remark that φ3 is always satisfied. Requirements φ2,4 reflect the occurrence of commands losses: the
satisfaction probability is 0.05 when MTD = 0ms, and 0 when MTD = 5ms. Property φ10(0) is satisfied
with both values of the transmission delay. This shows that commands are not lost in the client’s queue
due to an overflow; the only source of command losses in this model is fault4. Consequently, the number of
timeouts encodes the number of times the fault occurred. When there is no transmission delay, the number
of lost commands is bounded to a value of 8 (n∗φ8

) with a maximum of 3 consecutive losses (n∗φ9
), as shown

in Figure 14 for MTD = 0ms. These numbers drastically increase when MTD > 0ms. For instance when
MTD = 5ms illustrated in Figure 14, the Channel can loose up to 25 commands (n∗φ8

) with a maximum of 5
consecutive losses (n∗φ9

).

Conclusion We have modeled a deployment for our case study taking into account three risk cases: trans-
mission delays, writing delays and command losses. For each of these aspects we have explored φ2−13 to
evaluate the impact of these risks on the behavior of the rover. Based on the shown results, 2 scenarios are
further possible depending on other high level requirements. If the hardware constraints obtained through

19



0 5

0

0.5

1

MTD

P
ro

b
a
b
il
it

y
P(φ2)

P(φ3)

P(φ4)

P(φ10(0))

0 5
0

0.5

1

n∗φ8
n∗φ9

Parameter n (MTD = 0)

P(φ8(n)

P(φ9(n))

0 5 15 25

0

0.5

1

n∗φ8

n∗φ9

Parameter n (MTD = 5)

P
ro

b
a
b
il
it

y

Fig. 14: SMC results for the deployed model with command losses

exploration are implementable, the designer can continue with the deployment. Otherwise, a model trans-
formation and a new exploration are required to correct the undesired behaviors and identify the needed
hardware for the deployment, as briefly described for the transmission delay risk above.

In this design, we note that whatever the risk is, the Watchdog is robust and the system’s safety with
respect to the motion functionality is guaranteed. This is also true for the timelock modeling error present in
the Dispatcher that occurs for writing delays starting from 15ms. Before 15ms, the transmission and writing
delays have a similar impact on the system behavior. For higher values, however, these risks have an impact
on different aspects of the system. Transmission delays can imply the non-satisfaction of data freshness,
meaning that commands are no longer received in the 100ms period since their generation. Writing delays
can lead to command losses and the generation of numerous stop data packages. In the latter case, the system
enters a degraded mode where generated data packages are no longer delivered.

A shared effect of these risks on the locomotion system is the overflow in the Client queue. To address
this, a refinement can be necessary, such as the one proposed above where the Client queue size is increased
to 2. Therefore, we can safely state that the model does not loose any command and the timelock in the
Dispatcher is avoided as long as MWD < 15ms. Additionally, if MTD < 100ms, the data freshness property
is satisfied. Given the deployed system model and the explorations we performed, the values obtained here
are optimal in the sense that they guarantee all requirements desired for the system.

7 Discussion

In this paper, we propose a model-based design approach that relies on formal methods to develop real-time
resilient systems. The method is incremental: it starts from the nominal model, then transformations are
applied to take into account different sources of risks. The impact of the considered risks is evaluated using
a quantitative risk assessment method and FDIR components are introduced accordingly. These are then
validated against safety and performance properties. The approach was successfully used for the design and
validation of the control software of a planetary rover.

Approach. Following a model-based approach for the design of FDIR components and their validation pro-
vides a lot of flexibility and allows to explore various situations rapidly. Combined with formal methods,
it provides more confidence in the obtained results given that the built models are faithful, which is not
trivial and requires some expertise. Finally, the use of statistical model checking automates quantitative risk
analysis, and helps to deal with real-life system models. However, both the identification and the evaluation
of risks remain manual and subject to the designer’s interpretation.

20



Case study. The results presented in the paper are part of the work realized for the validation of the
ESROCOS environment [32] with a real-life robotics case study. Although the approach was successfully
applied and the designed system is currently being tested in field trials, we wish to share some of the
challenges we faced. Building faithful models is by far the most challenging. The choice of the appropriate
abstractions to perform and the probability distributions to use requires a deep knowledge of the system
under analysis. Using risk assessment helped to take well founded decisions in order to build robust FDIR
components. However, the notion of risk is large and several times we found ourselves analyzing risks at
different levels, such as risks due to faults then risks due to adding new FDIR behavior, etc. Moreover,
managing the transformed models and the associated requirements can quickly become cumbersome if not
methodically performed.

Tools. Risk analysis automation is primordial for the design of complex systems as the design space is
substantial and proceeding manually is not feasible. In our case, once we built a model it becomes almost
straightforward to analyze it using the SMC-BIP engine. Nevertheless, some difficulties remain to use the
tool properly, like the correct formalization of requirements in MTL or the instrumentation of the model in
order to perform SMC.

Future work. In this paper, we only considered quantitative risk assessment. Using qualitative assessment
before may help a lot in filtering irrelevant risks with respect to the requirements of interest. Moreover, risk
identification could be done in a knowledge-based manner by using machine-learning techniques for instance.
Finally, we are also interested to evaluate the applicability of the approach to security risk assessment.
Indeed, we believe that our approach is general enough to also handle security requirements.

References

1. ESROCOS Planetary Exploration Demonstrator. https://github.com/ESROCOS/plex-demonstrator-record
2. ESROCOS Project Github Repository. https://github.com/ESROCOS
3. Abdellatif, T., Bensalem, S., Combaz, J., de Silva, L., Ingrand, F.: Rigorous design of robot software: A formal

component-based approach. Robotics and Autonomous Systems 60(12), 1563–1578 (2012), https://doi.org/
10.1016/j.robot.2012.09.005

4. Alur, R., Henzinger, T.: Real-time logics: Complexity and expressiveness. Information and Computation 104(1),
35 – 77 (1993)

5. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theor. Comput. Sci. 126(2), 183–235 (Apr 1994)
6. Ashibani, Y., Mahmoud, Q.H.: Cyber physical systems security: Analysis, challenges and solutions. Computers

& Security 68, 81–97 (2017)
7. Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind Series). The MIT Press (2008)
8. Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay, A.: Statistical Abstraction and Model-

Checking of Large Heterogeneous Systems. In: Forum for fundamental research on theory, FORTE’10. LNCS,
vol. 6117, pp. 32–46. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

9. Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A., Siffakis, E.: Verification of an AFDX Infrastructure
using Simulations and Probabilities. In: Runtime Verification, RV’10. LNCS, vol. 6418. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010)

10. Batteux, M., Prosvirnova, T., Rauzy, A., Kloul, L.: The AltaRica 3.0 project for model-based safety assessment.
In: 11th IEEE International Conference on Industrial Informatics, INDIN 2013, Bochum, Germany, July 29-31,
2013. pp. 741–746. IEEE (2013), https://doi.org/10.1109/INDIN.2013.6622976

11. Bensalem, S., de Silva, L., Griesmayer, A., Ingrand, F., Legay, A., Yan, R.: A Formal Approach for In-
cremental Construction with an Application to Autonomous Robotic Systems. In: Apel, S., Jackson, E.K.
(eds.) Software Composition - 10th International Conference, SC 2011, Zurich, Switzerland, June 30 - July
1, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6708, pp. 116–132. Springer (2011), https:

//doi.org/10.1007/978-3-642-22045-6_8

12. Bittner, B., Bozzano, M., Cavada, R., Cimatti, A., Gario, M., Griggio, A., Mattarei, C., Micheli, A., Zampedri,
G.: The xSAP Safety Analysis Platform. In: TACAS 2016. pp. 533–539 (2016)

13. Bittner, B., Bozzano, M., Cimatti, A., Ferluc, R.D., Gario, M., Guiotto, A., Yushtein, Y.: An Integrated Process
for FDIR Design in Aerospace. In: IMBSA 2014. pp. 82–95 (2014)

21

https://github.com/ESROCOS/plex-demonstrator-record
https://github.com/ESROCOS
https://doi.org/10.1016/j.robot.2012.09.005
https://doi.org/10.1016/j.robot.2012.09.005
https://doi.org/10.1109/INDIN.2013.6622976
https://doi.org/10.1007/978-3-642-22045-6_8
https://doi.org/10.1007/978-3-642-22045-6_8


14. Cherdantseva, Y., Burnap, P., Blyth, A., Eden, P., Jones, K., Soulsby, H., Stoddart, K.: A review of cyber security
risk assessment methods for SCADA systems. Computers & security 56, 1–27 (2016)

15. David, A., Larsen, K., Legay, A., Mikucionis, M., Poulsen, D.B., Sedwards, S.: Statistical Model Checking for
Biological Systems. Int. J. Softw. Tools Technol. Transf. (STTT) 17(3), 351–367 (Jun 2015)

16. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC Tutorial. STTT 17(4), 397–415
(August 2015)

17. Desai, A., Qadeer, S., Seshia, S.A.: Programming Safe Robotics Systems: Challenges and Advances. In: Interna-
tional Symposium on Leveraging Applications of Formal Methods. pp. 103–119. Springer (2018)

18. Dragomir, I.: ESROCOS Planetary Exploration Demonstrator: the Watchdog component in TASTE and BIP.
https://github.com/ESROCOS/control-mc_watchdog

19. Dragomir, I., Iosti, S., Bozga, M., Bensalem, S.: Designing Systems with Detection and Reconfiguration Capa-
bilities: A Formal Approach. In: Steffen, B., Margaria, T. (eds.) Leveraging Applications of Formal Methods,
Verification and Validation - 8th International Symposium, ISoLA 2018, Lymassol, Cyprus, November 5-9, 2018.
Lecture Notes in Computer Science, Springer (november 2018)

20. Enrico, Z.: An introduction to the basics of reliability and risk analysis, vol. 13. World scientific (2007)
21. Foughali, M., Berthomieu, B., Dal Zilio, S., Hladik, P.E., Ingrand, F., Mallet, A.: Formal Verification of Complex

Robotic Systems on Resource-Constrained Platforms. In: FormaliSE: 6th International Conference on Formal
Methods in Software Engineering (2018)

22. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate Probabilistic Model Checking. In: Interna-
tional Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI’04. pp. 73–84 (January
2004)

23. Risk management - guidelines. Standard, International Organization for Standardization, Geneva, CH (Feb 2018)
24. Jegourel, C., Legay, A., Sedwards, S.: Importance Splitting for Statistical Model Checking Rare Properties. In:

CAV. vol. 13, pp. 576–591. Springer (2013)
25. Kahn, H., Marshall, A.W.: Methods of Reducing Sample Size in Monte Carlo Computations. Journal of the

Operations Research Society of America 1(5), 263–278 (1953), http://www.jstor.org/stable/166789
26. Khalid, A., Kirisci, P., Khan, Z.H., Ghrairi, Z., Thoben, K.D., Pannek, J.: Security framework for industrial

collaborative robotic cyber-physical systems. Computers in Industry 97, 132–145 (2018)
27. Kulkarni, V.G.: Introduction to Modeling and Analysis of Stochastic Systems. Springer New York (2011)
28. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: International Conference on Information Security and

Cryptology. pp. 186–198. Springer (2005)
29. Mediouni, B.L., Nouri, A., Bozga, M., Dellabani, M., Legay, A., Bensalem, S.: SBIP 2.0: Statistical Model

Checking Stochastic Real-Time Systems. In: Lahiri, S.K., Wang, C. (eds.) Automated Technology for Veri-
fication and Analysis - 16th International Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10,
2018, Proceedings. Lecture Notes in Computer Science, vol. 11138, pp. 536–542. Springer (2018), https:

//doi.org/10.1007/978-3-030-01090-4_33

30. Mediouni, B.L., Nouri, A., Bozga, M., Legay, A., Bensalem, S.: Mitigating security risks through attack strategies
exploration. In: International Symposium on Leveraging Applications of Formal Methods. pp. 392–413. Springer
(2018)

31. Mitsch, S., Ghorbal, K., Vogelbacher, D., Platzer, A.: Formal verification of obstacle avoidance and navigation
of ground robots. The International Journal of Robotics Research 36(12), 1312–1340 (2017)

32. Munoz, M., Montano, G., Wirkus, M., Hoeflinger, K., Silveira, D., Tsiogkas, N., Hugues, J., Bruyninckx, H.,
Dragomir, I., Muhammad, A.: ESROCOS: a Robotic Operating System for Space and Terrestrial Applications. In:
Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA) 2017, Leiden, Netherlands,
June 20-22, 2017 (june 2017)

33. Nouri, A., Mediouni, B.L., Bozga, M., Combaz, J., Bensalem, S., Legay, A.: Performance evaluation of stochastic
real-time systems with the SBIP framework. International Journal of Critical Computer-Based Systems 8(3-4),
340–370 (2018), https://www.inderscienceonline.com/doi/abs/10.1504/IJCCBS.2018.096439

34. Ocon, J., Colemenero, F., Estremera, J., Buckley, K., Alonso, M., Heredia, E., Garcia, J., Coles, A., Coles, A.,
Martinez, M., Savas, E., Pommerening, F., Keller, T., Karachalios, S., Woods, M., Dragomir, I., Bensalem, S.,
Dissaux, P., Schach, A., Marc, R., Weclewski, P.: The ERGO framework and its use in planetary/orbital scenarios.
In: International Astronautical Congress (IAC) 2018, Bremen, Germany, October 1-5, 2018 (october 2018)

35. Pariyani, A., Seider, W.D., Oktem, U.G., Soroush, M.: Dynamic risk analysis using alarm databases to improve
process safety and product quality: Part ii–bayesian analysis. AIChE Journal 58(3), 826–841 (2012)

36. Pnueli, A.: The Temporal Logic of Programs. In: 18th Annual Symposium on Foundations of Computer Science,
Providence, Rhode Island, USA, 31 October - 1 November 1977. pp. 46–57 (1977), https://doi.org/10.1109/
SFCS.1977.32

22

https://github.com/ESROCOS/control-mc_watchdog
http://www.jstor.org/stable/166789
https://doi.org/10.1007/978-3-030-01090-4_33
https://doi.org/10.1007/978-3-030-01090-4_33
https://www.inderscienceonline.com/doi/abs/10.1504/IJCCBS.2018.096439
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32


37. Raman, B., Nouri, A., Gangadharan, D., Bozga, M., Ananda Basu, M.M., Legay, A., Bensalem, S., Chakraborty,
S.: Stochastic Modeling and Performance Analysis of Multimedia SoCs. In: International conference on Systems,
Architectures, Modeling and Simulation, SAMOS’13. pp. 145–154 (2013)

38. Roy, A., Kim, D.S., Trivedi, K.S.: Attack countermeasure trees (ACT): towards unifying the constructs of attack
and defense trees. Security and Communication Networks 5(8), 929–943 (2012)

39. Tosun, T., Jing, G., Kress-Gazit, H., Yim, M.: Computer-aided compositional design and verification for modular
robots. In: Robotics Research, pp. 237–252. Springer (2018)

40. Wander, A., Forstner, R.: Innovative Fault Detection, Isolation and Recovery Strategies On-board Spacecraft:
State of the Art and Research Challenges. Deutscher Luft- und Raumfahrtkongress (2012)

41. Younes, H.L.S.: Verification and Planning for Stochastic Processes with Asynchronous Events. Ph.D. thesis,
Carnegie Mellon (2005)

42. Zio, E.: The future of risk assessment. Reliability Engineering & System Safety 177, 176 – 190 (2018), http:
//www.sciencedirect.com/science/article/pii/S0951832017306543

23

http://www.sciencedirect.com/science/article/pii/S0951832017306543
http://www.sciencedirect.com/science/article/pii/S0951832017306543


A Full SBIP Model of the Case Study

A.1 Architecture

cmd

sig out sig return

sig in

Joystick

cmd out

step in step return

reset

step

sig out sig return

Dispatcher

cmd in

cmd return log cmd out

test cmd out

log cmd

sig out

sig in sig return

Logger

log cmd in log cmd return

Channel

sig out sig in

test cmd

sig out sig int

sig return

Watchdog

test cmd in

test cmd return mot out

reset

mot

sig out

sig in sig return

Client

mot in mot return

Partition 1 Partition 2

Bus

Fig. 15: Deployed architecture of the case study in BIP.

A.2 Behaviour

l0

l1

l2

l4

l3

t = 0
init()

step inε

τ ε/
set cmd(v)cmd val = v

cmd out(cmd val)ε

step returnε

l5 l6

[f1 enabled ∧ t < 100]/
fault1λ

[t ≥ 150]/
τλ/
t = 0

step inε

step returnε

l7 l8

[f2 enabled ∧
BPER ≤ t ∧ t ≤ BPER+10]/

fault2d/t = 0

[t == BDUR]/
τ ε / t = 0

BPER = BPER/2

step inε

step returnε

l9

resetε / t = 0resetε/
t = 0

τ ε/BPER =
MBPER

Fig. 16: Behaviour of Joystick

24



l0

l1

l2

l3

l6

l5

l4

cmd in(cmd val)ε

v = cmd val

log cmd val = v

log cmd out(log cmd val)ε

test cmd val = v

test cmd out(test cmd val)ε

cmd returnε

l7

l8 l9

[f3 enabled]/
fault3ε/
t = 0

cmd returnε

cmd inε

cmd returnε

[t > 100]/
τλ

l10

begin test cmdε

test cmd out(test cmd val)ε

Fig. 17: Behaviour of Dispatcher

l0

l1l3

l2

log cmd in(log cmd val)ε

v = log cmd val
τ ε/

writeln(v)

log cmd returnε

Fig. 18: Behaviour of Logger

l0l1

l2

l3

l4 l5

l6

t = 0
timeout = get val()

cnbt = 0

test cmd in(test cmd val)ε

cnbt = 0mot val = test cmd val

mot out(mot val)ε/
t = 0 test cmd returnε

[t ≥ timeout]/
τ ε /

cnbt = cnbt+ 1

set cmd stop(v)

[¬reset enabled ∨ cnbt < MBNT]/
mot out(v)ε/

t = 0

[reset enabled ∧ nbct ≥ MNBT] /
resetε /
cnbt = cnbt+ 1

mot out(v)ε/
t = 0

Fig. 19: Behaviour of Watchdog

25



l0

l1

l2

l4

l5

l6

l7

l3

l8

mot in(mot val)ε

v = mot val

[v == stop cmd]/
τ ε

τ ε/
write(′Command stop′)

[v! = stop cmd]/
τ ε

τ ε/
write(′Command rec′)

mot returnε

Fig. 20: Behaviour of Client

l0

l1l2

begin sig outε/
x = 0 [0 ≤ x ∧ x ≤ MWD] /

sig out(val)d /
push back(q, val, size)
t = 0

[get size(q) == 1]/
τλ/pop front(q)

[0 ≤ x ∧ x ≤ MWD] /
sig out(val)d /
push back(q, val, size)

begin sig outε/
x = 0

[get size(q) > 1]/
τλ/pop front(q)[0 ≤ t ∧ t ≤ MCD ∧ get size(q) > 0]/τd

[get size(q) > 1]/
sig in(pop front(q))ε/

t = 0

[0 ≤ x ∧ x ≤ MWD] /
sig out(val)d /

push back(q, val, size)

begin sig outε/
x = 0

[get size(q) == 1]/
sig in(pop front(q))ε/

x = 0

Fig. 21: Behaviour of Channel.

26


	Quantitative Risk Assessment in the Design of Resilient Systems
	1 Introduction
	2 Related Work
	3 A Rigorous Framework for Modeling and Analyzing Stochastic Timed Systems
	3.1 Stochastic Real-time BIP
	3.2 The SMC-BIP Engine

	4 A Model-based Approach Integrating Quantitative Risk Assessment
	5 Planetary Robotics Case Study
	5.1 System and Requirements Overview
	5.2 Nominal Software Design
	Model
	Validation Requirements
	Validation Results
	Conclusion


	6 Risk Assessment of the Planetary Robotics System
	6.1 On Robustness to Faults
	Model with Faults
	Risk Assessment Requirements
	Risk Assessment Results
	Model with FDIR Behavior
	Validation Requirements
	Validation Results
	Conclusion

	6.2 On System Performance
	Model for Performance Measurement.
	Risk Assessment Requirements.
	Risk Assessment Results.
	Model with reset Mechanism for the Joystick
	Validation Requirements
	Validation Results
	Conclusion

	6.3 On Deployment Impact
	Deployed Model
	Risk Assessment Requirements
	Risk Assessment Results
	Transmission delays.
	Writing delays.
	Command Losses.

	Conclusion


	7 Discussion
	Approach.
	Case study.
	Tools.
	Future work.



	A Full SBIP Model of the Case Study
	A.1 Architecture
	A.2 Behaviour



