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1 Introduction

When defining and solving optimisation problems care should be taken to provide a rigorous procedure to test
the correctness of solutions. The testing procedure has impact on the problem complexity class.

For mixed critical scheduling in general it has been believed proven in [1] that the testing can be done
by a “canonical” algorithm in time polynomial on the number of jobs. In [1] this has served a proof that the
computational complexity of this problem is at most of class NP (for a fixed number of criticality levels). By
reduction from an NP-Hard problem to a mixed criticality problem, it was shown that the problem is also at
least NP-Hard.

However, in this paper we present a counterexample that refutes the proof in [1] of polynomial complexity
of the “canonical” algorithm. Consequently, the upper bound cannot be anymore considered proven, and the
problem may, in fact have a complexity beyond the class NP. The question of complexity upper bound is thus
re-opened.

We also have considered a restricted problem formulation where the polynomial complexity of the canon-
ical algorithm is true by construction. In this case, the above mentioned refutation poses no problem to NP
complexity claim. The considered restriction is well-known fixed-priority per mode (FPM) scheduling policy.
For this problem the NP-Hard complexity lower bound from [1] still holds, and it would be useful to establish
the class NP as an upper bound.

It turns out that there is another obstacle in doing it, unrelated to the refuted polynomial complexity proof.
One can reapply the proof NP complexity given in [1] to a concrete scheduling policy only if that policy is
sustainable, in a generalized mixed-critical sense. In the previous work, e.g., [2], it was taken for granted
that FPM is sustainable, but a closer study has revealed that it can only be the case for single processor but
not multiple processors. Even for single processor case, currently we prove the result only for dual-critical
instances. Therefore, so far only dual-critical single-processor FPM policy can be demonstrated to be in class
NP, the other cases is an open problem.

2 Problem Formulation

Since our topic is problem complexity results, in this paper we will focus on simplest – dual-criticality –
problem, as in this particular case it is the easiest to understand and revisit these results. The dual-criticality
systems are systems that have only two levels of criticality, the high level, being denoted as ‘HI’, and the low
(normal) level, denoted as ‘LO’. Every job gets a pair of WCET values: the LO WCET and the HI WCET.
The former one is for normal safety assurance, used to assess the sharing of processor with the LO jobs, and
the other one, a higher value, is used to ensure certification.

A job Jj is characterized by a 5-tuple Jj = (j, Aj , Dj , χj , Cj), where:

• j ∈ N+ is a unique index

• Aj ∈ N is the arrival time, Aj ≥ 0

• Dj ∈ N is the deadline, Dj ≥ Aj

• χj ∈ {LO,HI} is the job’s criticality level

• Cj ∈ N2
+ is a vector (Cj(LO), Cj(HI)) where Cj(χ) is the WCET at criticality level χ.

The index j is technically necessary to distinguish between jobs with the same parameters. The timing
parameters Aj , Dj , Cj are integers that correspond to time resolution units (e.g., clock cycles). We assume
that [1]: Cj(LO) ≤ Cj(HI) The latter makes sense, since Cj(HI) is a more pessimistic estimation of the
WCET than Cj(LO). We also assume that the LO jobs are forced to terminate after Cj(LO) time units
of execution, so: (χj = LO)⇒ Cj(LO) = Cj(HI).

An instance of the scheduling problem is a set of jobs J. A scenario of an instance J is a vector of execution
times of all jobs: c = (c1, c2, . . . , cK), where K is the number of jobs. We only consider scenarios where no
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cj exceeds Cj(HI). The criticality of scenario c = (c1, c2, . . . , cK) is LO if cj ≤ Cj(LO), ∀j ∈ [1,K], is HI
otherwise. A scenario c is basic if:

∀j = 1, . . . ,K cj = Cj(LO) ∨ cj = Cj(HI)

A schedule S of a given scenario c is a mapping: S : T 7→ Ĵm, where T is the physical time and Ĵm

is the family of subsets of J that contains all subsets J′ of J such that |J′| ≤ m, where m is the number of
processors. Every job Jj should start at time Aj or later and run for no more than cj time units. We assume
that the schedule is preemptive and that job migration is possible, i.e., that any job run can be interrupted and
resumed later on the same or different processor. Note that in this definition we do not include the mapping
of jobs to processors, but a valid mapping, if needed, can be easily obtained from a simulation which assumes
that a job can be scheduled at any available processor at any time.

A job J is said to be ready at time t if at that time or earlier it has already arrived and has not yet terminated.
The online state of a run-time scheduler at every time instance consists of the set of terminated jobs, the set of
ready jobs, the remaining workload of ready jobs, i.e., for how much they should still execute in future, and the
current criticality mode, χmode, initialized as χmode = LO and ‘switched’ to ‘HI’ as soon as a HI job exceeds
Cj(LO). It should be noted that in a given schedule it is the first job that exceeds its C(LO) that switches the
mode and then the mode remains HI until the end of the schedule. A scheduling policy is correct for the given
problem instance if the following conditions are respected in any possible scenario:

Condition 1. If all jobs run at most for their LO WCET, then both critical (HI) and non-critical (LO) jobs
must terminate before their deadline.

Condition 2. If at least one job runs for more than its LO WCET, then all critical (HI) jobs must terminate
before their deadline, whereas non-critical (LO) jobs may be even dropped.

Based on the online state, a scheduling policy deterministically decides which ready jobs are scheduled at
every time instant on m processors. A policy is said to be work-conserving if it never idles the processor if
there is pending workload.

An instance J is MC-schedulable if there exists a correct scheduling policy for it.

2.1 Generalized and Restricted Formulations
One can restrict the general MC-schedulability problem to the problem of finding solutions for certain classes
of scheduling policies or to the instances that have special properties. One can also generalize it to certain
scheduling behaviors.

Definition 1 (Artifact behavior). Suppose a HI job has C(LO)=C(HI). By default the MC scheduling does
not permit such jobs to switch the χmode from LO to HI because they cannot execute for strictly more than
C(LO). If we generalize the problem formulation so that when such jobs execute for C(LO) then this may
be interpreted as if they slightly exceeded C(LO) thus entailing a mode switch. This generalized problem
formulation is called artifact behavior.

The mixed criticality theory usually assumes that the mode switch occurs immediately after the moment
when the job that causes the switch has executed for C(LO) time. No finite threshold for exceeding C(LO)
is defined in the theory. Unlike LO jobs, the HI jobs are not forced to stop if they try to exceed their worst-
case execution time. Therefore, considering artifact behavior can make sense for robustness reasons, and
apriori forbidding it is not an obvious choice. We assume artifact behavior is allowed, but the goal is to
demonstrate that the jobs with C(LO) = C(HI) can have negative impact on sustainability of scheduling. In
this paper we also show that even if artifact behavior is not allowed the HI jobs with C(LO) = C(HI) create
a certain complication for checking the correctness of MC-scheduling solutions, which can be easily avoided
by incrementing their C(HI) by a small δC. Therefore the following optional restriction is worth considering.
Restriction (i) χ(Ji) = HI =⇒ Ci(LO) < Ci(HI).

The dual-criticality MC-scheduling problem is NP-hard and is also claimed to be in class NP [1], but in this
paper we refute their proof for the latter claim. One can restrict the MC-scheduling problem to finding optimal
solutions for fixed priority (FP) and fixed-priority-per-mode (FPM) scheduling policies, which we define in a
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moment. The former restricted problem is in class P (polynomially solvable), the latter is NP-hard, just as the
general problem [1], while we show in this paper that certain cases of this problem are in class NP.

FP is a scheduling policy that can be defined by a priority table PT , which is a K-sized vector specifying
all jobs in a certain order. The position of a job in PT is its priority, the earlier a job is to occur in PT the
higher the priority it has. Among all ready jobs, the fixed-priority scheduling policy always schedules the
m highest-priority jobs in PT . Fixed priority is a work-conserving policy. A priority table PT defines a
total ordering relationship between the jobs. If job J1 has higher priority than job J2 in table PT , we write
J1 �PT J2 or simply J1 � J2, if it is clear from the context to which priority table we are referring to.

Fixed priority per mode (FPM), a natural extension of fixed-priority for mixed critical systems. FPM is
mode-switched policy with two tables: PTLO and PTHI. The former includes all jobs. The latter needs to
include only the HI jobs. As long as the current criticality mode χmode is LO, this policy performs the fixed
priority scheduling according to PTLO. After a switch to the HI mode, this policy drops all pending LO jobs
and applies priority table PTHI. Suppose that after removing the LO jobs from PTLO while keeping the same
relative order of the HI jobs we obtain the PTHI table. In this case one can just keep using the same priority
table, PTLO, after a switch to the HI mode with exactly the same result. Therefore in this particular case we
say that we have FPM-equivalent tables: ‘PTLO ∼ PTHI’. The below optional restriction of FPM scheduling
problem allows to ensure certain useful properties:
Restriction (ii) Generate only solutions where: PTLO ∼ PTHI

3 Correctness Test and Complexity

3.1 The Mixed Criticality Notion of Sustainability
To test the correctness of a scheduling policy one usually evaluates it for the scenario with maximal execution
times for all jobs, which in our case corresponds to HI WCET’s. However, to justify this test a scheduling
policy must be sustainable, which means that increasing the execution time of any job A – while keeping
all other execution times the same – may not make any other job B terminate earlier [3]. In other words,
sustainability means that the termination times must be monotonically non-decreasing functions of execution
times.

For mixed-critical scheduling the usual sustainability definition is too restrictive, as it does not take into
account that an increase of an execution time of a HI job to a level that exceeds its LO WCET may lead
to a mode switch and hence to dropping the LO jobs, which, in turn may lead to an earlier termination of
another HI job, and hence non-monotonic dependency of termination times. Therefore, a weaker definition of
sustainability is adopted for mixed criticality problems.

The new definition poses almost the same requirement of non-decreased termination time of any job B
when we increase the execution time of a job A – while keeping all other execution times the same. However,
now this property required to hold only when the increase of execution time of A leads neither to a change of
the criticality mode in which B terminates nor to a switch of criticality mode by A. If at least one of these two
conditions is violated then B may terminate earlier. The second condition can only be violated if before the
increase A executed for at most LO WCET and after the increase it exceeds the LO WCET1. Note that in this
situation the second condition is violated only if after the increase of execution time of A it is A that causes
the schedule to switch the mode.

The adaptation of the notion of sustainability to mixed criticality raises the problem of how to adapt the
policy correctness test to this new definition, as we cannot anymore rely on the traditional method of just
testing the scheduling policy using just one maximal scenario: the “plain WCET”.

3.2 Correctness Test and Computational Complexity
A general correctness test for a solution of a mixed-critical scheduling problem with a fixed set of jobs was
systematically treated in [1], with the goal to study the computational complexity of the problem. The point
is that the algorithmic complexity of the correctness test determines the complexity class of the problem. If

1If artifact behavior is allowed, and job A has C(LO)=C(HI) and after the increase the execution time of A reaches C(LO) then the
second condition can also be violated.
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the correctness test is demonstrated to be simple enough so that it has at most polynomial complexity then the
problem can be demonstrated to be in class NP , thus giving useful indication of the limits of the complexity of
the problem. To make the test algorithmically as simple as possible the test may “require” that a general-case
solution be “preprocessed” into another solution such that the new solution is simpler to test. This permits to
reduce the complexity of the subsequent test to the minimum, thus maximizing the chances that the test can be
demonstrated polynomial and the problem NP. Note also that the preprocessing should be applicable to any
correct solution in the set of solutions of the given problem and it should produce at the output a solution that
is correct if the input solution is correct.

In [1] a correctness test is proposed that generalizes the ordinary plain-WCET scenario testing to testing a
polynomial number of basic scenarios. For the test to be applicable to a given scheduling policy the minimal
requirement is that it must be sustainable (in the sense we defined earlier). We come back to this test in a
moment.

To build the argument that the problem is in NP, Lemmas 1 and 2 in [1], in fact, define two preprocessing
steps:
Step (1) – we call it “preprocessing for sustainability” – ensures several useful properties of the output solution
at the same time. Firstly, it ensures that (a) the output policy is sustainable (even if the input policy is not),
(b) that the testing requires to construct only a polynomial number of schedules, and (c) that every event in a
schedule (job arrival, preemption and termination) contributes only a polynomial time to the total cost of the
test.
Step (2)– we call it “preprocessing for polynomially-sized schedules” is supposed to ensure that the schedules
have polynomial (in fact, linear) size, i.e., perform only polynomial number of preemptions.

In Section 4 we will refute Step (2) proposed in [1], i.e., their Lemma 2, which breaks their argument
for mixed critical scheduling be in class NP (but not the argument that it is NP-hard). In the later sections we
show that fortunately FPM policies do not need the application of Step (2), as they already possess the property
ensured by that step. This makes it possible to “rehabilitate” the line of reasoning of [1] for showing that the
problem is in class NP for the case of FPM policies. We also show in Section 5 that Step (1) as well can pose
complications for the claim of NP complexity, for the case of FPM scheduling.

3.3 Canonical Algorithm for Correctness Testing
In this subsection we describe the correctness testing algorithm and Step (1).

Definition 2. [Basically Correct Policy] An online scheduling policy is basically correct for instance J if for
any basic scenario of J the policy generates a feasible schedule.

Lemma 1. [Correctness Test by Checking all Basic Scenarios] If a scheduling policy is sustainable and
Restriction (i) applies to the problem instance then the policy correctness follows immediately from its basic
correctness. In other words, if the policy gives a feasible schedule in all basic scenarios then this is also the
case for the non-basic scenarios as well.

Proof. For a given scheduling policy, let us call basic scenario dse the ceiling scenario of scenario s if in
dse each Ji executes for time Ci (χTERM(s, i)), where χTERM(s, i) is the mode in which job Ji terminates
in scenario s. It is obvious that in dse all the jobs have at least the same or higher execution time and they
terminate in the same or higher-criticality mode. For dual-criticality instances this implies that the jobs with
χTERM(s, i)=HI terminate in the HI mode also in dse. By the definition of sustainability, these jobs cannot
terminate in scenario dse earlier than in s. It remains to consider the jobs that terminate in LO mode in s.
Obviously in the LO basic scenario these jobs cannot terminate earlier. Therefore the jobs of scenario s are
‘covered’ by one of the two basic scenarios: dse and LO, in the sense that meeting the deadlines in those
scenarios implies meeting deadlines in scenario s.

Later on we show an single-processor example that violates Restriction (i) and that is only basically but
not correctly schedulable by FPM with certain priority tables.

Lemma 2. [Basically Correct Policy is Sufficient to Schedule an Instance] An instance J is MC-schedulable
if it admits a basically correct scheduling policy.
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Figure 1: The job-specific scenario schedules for Example 1 obtained with priority table PT = (2, 4, 3, 5, 1)

The above lemma is Lemma 1 from [1]. At the first glance it seems to be contradicting to a claim we have
just made to show an FPM counterexample, but it should be noted that the lemma only claims that a correct
policy exists, not that this policy is necessarily the same by which basically correct solution is constructed. In
the proof given in [1] they show a simple procedure to transform any basically correct policy into a similar
policy that is, in addition, also sustainable, thus, by Lemma 1, yielding correct schedules in non-basic scenarios
as well. This procedure corresponds to Step (1) of preprocessing for computational complexity, we come back
to it in detail at the end of this subsection.

In fact, the above lemma implies that a complete correctness test can be reduced to testing all basic sce-
narios. However, this could not yield a polynomial testing algorithm, as there are exponential number of basic
scenarios.

Fortunately, testing in all basic scenarios is redundant. Suppose that we have a sustainable scheduling
policy. It turns out that to test the policy correctness for a dual-critical instance it suffices to simulate H + 1
basic scenarios, where H is the total count of HI jobs in the problem instance.

Consider a LO basic scenario schedule SLO and select an arbitrary HI job Jh. Let us modify this schedule
by assuming that at time th when job Jh reaches its LO WCET (Ch(LO)) it has not yet signalled its termina-
tion, thus provoking a mode switch. Then, by Condition 2, we should ensure that Jh and all the other HI jobs
that did not terminate strictly before time th will meet their deadlines even when continuing to execute until
their maximal execution time – the HI WCET. Note that in multiprocessor scheduling multiple jobs may also
terminate exactly at time th in SLO, and they are conservatively assumed to also continue their execution after
time th in the modified schedule. The behavior described above is formalized to a basic scenario where all HI
jobs that execute after time th have HI WCET.

Definition 3. [Job-specific Basic Scenario] For a given problem instance, LO basic-scenario schedule SLO

and HI job Jh, the basic scenario defined above is called ‘specific’ for job Jh and is denoted HI-Jh, whereas
its schedule is denoted SHI-Jh .

Note that SHI-Jh coincides with SLO up to the time when job Jh switches, and after the switching time
it starts using HI execution times for the jobs that did not terminate before the switch. Note also that if
artifact behavior is not allowed then we should exclude from the job-specific scenarios the HI jobs for which
C(LO)=C(HI), as it is not possible that such a job would switch.

Example 1. Fig. 1 shows Gantt charts for the job-specific scenarios of the following single-processor problem
instance:

Job A D χ C(LO) C(HI)

1 0 30 HI 10 12

2 2 10 HI 2 8

3 1 8 LO 2 2

4 8 17 HI 2 7

5 7 11 LO 2 2

We see, for example that in the LO scenario job J2 terminates at time 4, but in the HI-J2 scenario job J2
switches at time 4 and continues to execute, because, apparently, it has a HI WCET larger than the LO WCET.
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In fact, these schedules are obtained from FPM policy and demonstrate that this policy is correct for the given
problem instance, as explained later in Example 3.

Theorem 1. [(Canonical) Correctness Test by Checking Job-specific Scenarios] Under Restriction (i), to
ensure correctness of a scheduling policy that is sustainable (in the mixed criticality sense) it is enough to test
it for the LO scenario and the scenarios HI-Jh of all HI jobs Jh.

Proof. Consider any basic scenario s and simulate the policy until the first job, if any, switches. Let Jh
be the job that is the first to switch. After the switch, increasing the job execution times can lead only to
non-decreasing termination times, therefore we can conservatively replace s by HI-Jh. Hence, the policy is
basically correct, and, by Lemma 1, also (completely) correct.

The above theorem, in fact, defines – for dual-criticality case – what we call canonical correctness test
algorithm. It can be directly derived from the correctness test procedure described in [1], which is, however,
more complex and more general, as it applies a number criticality levels more than two. Though that procedure,
for efficiency reasons, would organize the schedules of basic scenarios in a tree structure and use backtracking,
our less efficient formulation has only polynomially higher complexity, which does not impact on the reasoning
on NP complexity.

Step (1) formulation. To prove NP complexity along the lines of reasoning given in [1] one has to demon-
strate that any correct scheduling policy can be transformed into another one that is sustainable and basically
correct and then apply Lemmas 1,2. For this, [1] specifies a procedure for this transformation, which can be
reformulated as follows. As the output policy we use a mode-switched time-triggered policy which we call
Static Time-Triggered per Basic Scenario (STTBS). This policy specifies a static time-triggered table for the
LO scenario and all job-specific scenarios. The Gantt charts in Figure 1, in fact, specify such tables for the
given example. The total length of all slots attributed to a given job in a given table should be at least equal to
the job’s execution time in the given basic scenario. The tables are obtained by simulation of the input policy
in the given scenario. The execution of STTBS policy starts in the LO static table. If a job finishes earlier
than the allocated time, the processors are idled in the remaining slots of that job. A job is allowed to continue
execution for longer than its LO WCET, in that case the STTBS policy switches to the static table specific for
that job. One can show that one can bypass Restriction (i) requirement of Lemma 1 and Theorem 1 when they
are applied to STTBS solutions.

It should be noted that STTBS policy is radically different from what is usually referred to as “time-
triggered scheduling” in mixed critical systems, which is static time triggered table per mode (STTM) [4],
where there are only two time-triggered tables: one per mode. We will see an example of that policy in the
next section. It has been proved that for dual-critical systems one can “transform” any correct policy to STTM
policy in the case of single processor [5, 6], which allows to simplify the correctness testing even further.
However, there is evidence that this would not work for multiprocessors [7, 5, 6]. Also, for multiple levels of
criticality there are no general results yet. Therefore, in general case one has to resort to STTBS.

Clearly, if we present as input to the canonical correctness testing algorithm the STTBS policy with H + 1
static time-triggered tables then the properties (a),(b) and (c) that should be guaranteed by Step (1) are, in
fact guaranteed. In particular, the simulation of one preemption takes a polynomial time, because the job that
preempts another job is pre-specified in the STTBS table.

In fact, what remains to be shown for proving the NP upper bound on computational complexity is that the
tested solution can, in addition, be presented in the form where only a polynomial number of preemptions occur
in each job-specific scenario, this is what we call Step (2). Unfortunately, we have to observe that Step (2)
proposed in [1] does not work in general case and hence is incorrect. We demonstrate it by a counterexample
in the next section.

4 Refuting the Proof of Polynomial Schedule Size
In this section we refute a lemma given [1]. This lemma was used as a cornerstone to prove that the canon-
ical correctness test algorithm, when applied in general case, can have polynomial complexity, because the
schedules can be restricted to have only a polynomial number of preemptions.
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The lemma is copied below for convenience.
In the lemma Cj(i) is the WCET estimate for job j at criticality level i and L is the number of criticality

levels in the system. In our usual notations, level 1 is LO, level 2 is HI, Cj(1) is Cj(LO), Cj(2) is Cj(HI).

Lemma 3 (Refuted Lemma). If an instance is MC-schedulable, then there exists an optimal online scheduling
policy that preempts each job j only at time points t such that at time t either some other job is released, or j
has executed for exactly Cj(i) units of time for some 1 ≤ i ≤ L.

LO

HI

 0  2  4  6  8  10  12  14

C
rit

ic
al

ity
 L

ev
el

Time

J1 J2 J3 J2 J1

J1 J3 J3 J1 J1
Figure 2: A Valid Scheduling Policy for the Instance in Example 2

Example 2. Consider the following problem instance:

Job A D χ C(1) C(2)

1 0 14 HI 6 7

2 0 11 LO 5 5

3 5 10 HI 2 3

Let us check if it is MC-schedulable according to Lemma 3. At t = 0 we can execute either job J1 or job
J2, whichever job we choose it should not be preempted before t = 5.

1. If job J1 is to be executed in the time interval [0, 5), then in the interval [5, 11), which is 6 time units,
we will have to execute jobs J2 and J3 which combined need 7=(5 + 2) units of execution in the LO
scenario. Thus we cannot execute J1 in [0, 5).

2. Suppose that we execute job J2 in [0, 5). What is then left to execute is the two high criticality jobs. We
take the scenario that they both execute for their C(HI). Then we need a total of 10=(7 + 3) units in the
execution window [5, 14), which has space for only 9 units.

Thus, according to Lemma 3 this instance is not MC-schedulable.
Figure 2 shows a Gantt chart representing an STTM scheduling policy [4] that correctly schedules that

instance, contradicting Lemma 3. This policy starts execution in static table ‘LO’ and keeps using this table as
long as there is no switch to the HI criticality mode χ = HI , in which case it switches to static table ‘HI’. This
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example shows that an instance can be MC-schedulable but no optimal online scheduling policy exists that
preempts a job j only at time points where another job is released or j has executed for exactly Cj(i) units.

Lemma 3 was used in the proof of the following theorems:

• Theorem The problem of deciding MC-schedulability for L criticality levels is in NP when L is a
constant.

• Theorem The problem of deciding MC-schedulability is in PSPACE.

Now whether these theorems are true becomes an open problem.

5 Rehabilitation for Fixed Priority per Mode
In this section, for dual-criticality case, we “rehabilitate” the NP complexity argument established in [1] for
the case of FPM – fixed priority per mode – policy. This is important, because this policy is popular in the
literature, see e.g., EDF-VD [8]. The “NP-Hard” classification as a “lower bound” on complexity, established
in [1], remains valid when we restrict ourselves to FPM, therefore it is important to establish “NP” classifica-
tion as an “upper bound”. The refutation of Lemma 3 is not a problem for FPM, because this policy satisfies
the statement of that lemma by construction.

However when we go from general-case MC-scheduling problem to a particular case of FPM scheduling
problem and want to prove that it is in class NP, now Step (1) described in Section 3 encounters an obstacle.
The solutions presented to the correctness test algorithm should belong to the set of solutions of the problem
for which we prove that it belongs to NP. In the general problem formulation, the set of solutions includes all
possible policies, and therefore presenting STTBS policies at the input of the correctness test was legal. Unlike
the general MC-scheduling case, discussed in Section 3, the set of solutions of the FPM scheduling problem
consists exclusively of applications of FPM policy with different priority tables. Therefore, to prove that FPM
is in NP we have to present FPM policies at the input of the correctness test algorithm, so Step (1) cannot be
applied. If we applied Step (1) transformation to an FPM policy solution then we would obtain a solution
for an STTBS policy. Therefore we would find ourselves proving the complexity class NP for the problem
of finding optimal static tables for STTBS policy under the condition that these tables should by simulation
of FPM policy. This still would have practical interest, because there exist quite efficient FPM heuristics for
single and multiprocessor case [9, 6] and hence they can provide efficient time triggered tables. Still, like this
we would prove NP complexity under an “unfair” problem formulation. Instead, we prefer to show that FPM
problem itself belongs to class NP “fairly”, i.e., in the usual sense.

Therefore, we investigate whether Step (1) can be skipped and whether the canonical test algorithm can
be applied directly to FPM policy. For this, the FPM policy should guarantee all the properties (a), (b), (c)
ensured by Step (1). In fact, only property (a) – “sustainability” (in mixed-criticality sense) is not trivial and
needs investigation and proof. Therefore, we focus on the conditions under which FPM is sustainable. Under
these conditions it is also in class NP. We will only focus on dual-criticality case, leaving generalisation to
more levels of criticality to future work.

The following theorem from [10] states a very useful property, for which we formulate a corollary:

Theorem 2. Fixed-priority policy is sustainable (in the default strict sense), for single- and multi-processor
scheduling.

Corollary 3. For dual-criticality instances, under Restriction (i) the FPM policy is sustainable (in the mixed
criticality sense) for single-processor problem instances.

However, when Restriction (ii) is applied then Restriction (i) is not necessary. In this case, for dual-critical
instances the FPM policy is sustainable (in the mixed-critical sense) both on single- and multiprocessor case.

We present the proof in the final part of this section, after some discussion and showing some examples.
It can be also shown that if artifact behavior is not allowed then Restriction (i) can be removed from the
Corollary (though, not from Theorem 1) and that, under Restriction (ii), not only FPM is sustainable, but also
the correctness test algorithm is applicable to it even bypassing the Restriction (i) posed in Theorem 1. The
corollary implies that under the specified conditions the FPM scheduling is in the class NP.
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Figure 3: Gantt charts of scenario s = (c1 = 1, c2 = 8, c3 = 4, c4 = 4) in Example 4. Mode switch time of
scenario s is τ = 6. Also the LO and job-specific basic scenarios are shown. Job J4 misses deadline, but this
is not captured in any basic scenario. This is possible because Restriction (i) requirement of Theorem 1 is not
respected.

Note that Restriction (i) is quite general, as it can be ensured by an arbitrarily small increase of CHI if
CHI = CLO. Unfortunately, the sustainability of FPM cannot be asserted for multiprocessor case such general
conditions, in this case we can only propose a quite restrictive Restriction (ii).

Example 3. Consider single-processor independent-job problem instance J defined in Example 1. For a
certain priority table PTLO = PTHI, the Gantt chart in Figure 1 shows the execution of FPM policy on single
processor in all scenarios required by the canonical correctness test. In those scenarios all jobs meet their
deadlines. Since for this instance Restriction (ii) holds, FPM is sustainable and the canonical test is indeed
applicable. Therefore the FPM policy with given priority table is correct for the given problem instance.

Example 4. To illustrate that Restriction (i) may be necessary let us consider the following single-processor
problem instance J:

Job A D χ C(LO) C(HI)

1 0 20 LO 4 4

2 0 20 HI 4 8

3 0 20 HI 1 4

4 7 11 HI 4 4

This problem instance violates Restriction (i) and hence it is not guaranteed that the canonical correctness
test is applicable to FPM solutions directly. Figure 3 shows the Gantt chart of FPM policy for a specified
non-basic scenario s and specified priority tables. In scenario s job J4 has a deadline miss, but this is not
visible to the canonical test, which checks in the LO and HI-job specific scenarios, whose Gantt charts are
also shown. Since we allow artifact behavior, job J4 can switch the criticality mode despite the fact that
C(LO) = C(HI). That is why we include HI-J4 into the set of scenarios checked by the canonical correctness
test algorithm.
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Figure 4: Demonstrating FPM non-sustainability in the case Restriction (i) is violated and artifact behaviour
is allowed. We assume the problem instance of Example 4 and show the Gantt charts of two scenarios: s and
s′. Mode switch times are τ and τ ′, resp. Scenario s is the same as in Figure 3 and scenario s′ differs from s
by c′1 = c1 + ∆c1 = 2 + 2 = 4. Job J4 switches at time τ ′ and immediately terminates at that time, in HI
mode (i.e., artifact behavior). Since in these scenarios J4 terminate in the same mode, sustainability requires
that it cannot terminate in s′ earlier, which is violated. If we eliminate the artefact behavior by adding δJ4
to C4(HI) job J4 would get a ‘corrected’ termination time, respecting sustainability. If we instead restrict the
problem and forbid artifact behavior then J4 will terminate in a different mode in s′ – in the LO mode, thus
again respecting sustainability.

Example 5 (Non-sustainability of artifact behavior). Consider the same problem instance and the same pri-
ority tables as in the previous example. Figure 4 shows the FPM schedules in two scenarios: s and s′. The
mode switch times in s and s′ are denoted τ and τ ′, resp. Job J4 violates Restriction (i), in scenario s′ it
switches into HI mode and immediately terminates, thus showing artifact behavior. In scenario s′ job J1 has
an increased execution time w.r.t. scenario s, while all the other jobs have the same execution time. In both
scenarios job J4 terminates in the same mode – HI. Therefore we can apply definition of mixed criticality
sustainability such that A = J1 and B = J4. We see that B terminates in scenario s′ earlier, thus violating
the sustainability.

Nevertheless, if, to satisfy Restriction (i), we add a small increase of execution time δJ4 then job J4 will
terminate in line with sustainability property (‘gets corrected’ in Fig. 4) and the deadline miss will get exposed
to the canonical test, in scenario s′. Note that jobs J2 and J3 also terminate in scenario s′ later, as required
by sustainability.

For illustrating the proof of the corollary later on, let us note that the increase of execution time of J1
in scenario s′ has for the consequence that the schedule of scenario s′ at time τ has two time units of more
workload to execute, and this extra workload belongs to job J2, which is illustrated in the figure by two single-
unit intervals with notation ∆J2. Let us also note that other differences of scenario s′ from s is that in s′

it is job J4 that switches, not J2, and the switch happens later. During the window [τ, τ ′] between the two
switches two different priority tables act in s and s′, PTHI and PTLO, respectively. This can lead to undesirable
non-sustainability effect, but the corollary assures that this will not happen if Restriction (i) or (ii) is satisfied.

An important observation about FPM policy is that, just like FP policy, it is work-conserving. For analyzing
the properties of such a policy it is useful to introduce the notion of interference. The interference that job
B experiences from A is the total time during which A has been running while B has been ready but not
running because all the processors are busy. In a work-conserving policy, the more the total interference a job
experiences from the other jobs the later it terminates. On a single processor, if all jobs that interfere with a
job B terminate earlier than B then the total interference they exercise on that job reaches the maximum. This
observation leads to the following lemma, stated without proof.
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Lemma 4 (Interference and Later Termination on a Single Processor). Consider two work-conserving single-
processor schedules for the same scenario: S and S ′. In S ′ a job B terminates at the same time or later than
in S if has the following properties: (1) in S all jobs that do not terminate before it have zero interference with
it, while (2) in schedule S ′ the set of jobs that terminate before B is at least the same but may be larger than
in S. Formally:

J = JBF (B,S) ∪ JZR(B,S) = JBF (B,S ′) ∪ JZR(B,S ′) ∪ JOT (B,S ′)

and:
JBF (B,S) ⊆ JBF (B,S ′)

where J is the set of all jobs, JBF is a subset of jobs that terminate before given job B in given schedule, JZR

is a subset of jobs that exercise zero interference on B (i.e., do not interfere with it) and JOT is a subset of
‘other’ jobs, of which we do not specify which interference they exercise or when they terminate.

We use the above lemma in the proof of the corollary.

Proof. (of Corollary 3). Consider an FPM policy with given priority tables PTLO and PTHI. Consider any
scenario s. Let scenario s′ differ from s only by an increase in execution time of job A, ∆cA, such that A
executes entirely in the LO mode in both scenarios, which means that ∆cA is not large enough to lead to a
switch of A. Let job B be an arbitrary job that terminates in both scenarios in the HI mode. We have to prove
that B can only terminate at the same time or later in s′ than in s, but never earlier. This is the only non-trivial
case to prove; in all the other cases the job A either terminates either after B, thus not having any effect, or in
the same mode as B, thus being under control of the fixed priority policy, which is sustainable.

Let τ , τ ′ be the switch times of s and s′, we have τ < τ ′. In the rest of the proof we only consider the job
execution after time τ . Thus, for convenience, let us remove in both scenarios the jobs that terminate or get
dropped by time τ and subtract the progress made before τ from the execution times of the remaining jobs.

In the modified model all jobs that execute in s are HI jobs, they execute under fixed-priority policy, with
table PTHI. All these jobs execute in scenario s′ as well. Let us partition these jobs into two subsets: JI and
JII. Jobs JI terminate in s′ at or before the switch time τ ′. Unlike s, in s′ they are under control of PTLO. Jobs
JII terminate in s′ after τ ′, their termination is under control of PTHI in both scenarios. For example, in Fig. 4
we have JI = {J4} (assuming δJ4 = 0) and JII = {J2, J3}.

Let us first admit the hypothesis that no jobs arrive later than τ ′ and prove the lemma for this case.
Afterwards we will show that adding new jobs, arriving after time τ ′, will preserve the result for the present
jobs and will satisfy the lemma for the new ones.

For convenience, let JIII be the subset of jobs in JII that terminate after τ ′ not only in s′ but also in s.
Because, by current hypothesis, they arrive at τ ′ or earlier and terminate after τ ′, it should be the case that they
terminate in the same order in s as in s′, the higher PTHI priority jobs terminating earlier than the lower-priority
ones. In our example, JIII = {J2}.

In addition to all the subsets introduced so far, scenario s′ executes certain jobs that are not executed in s.
This is, firstly, the new workload that is pushed into the interval [τ,∞) due to job A execution time increase
∆cA and, secondly, the LO jobs arriving after τ and not being dropped in s′ until the mode switch at τ ′. The
latter jobs are denoted as subset JIV. In our example, JIV, somewhat liberally, consists of job ∆J2, i.e., the
part of job J2 that “does not exist” in s2.

Let Restriction (i) of the corollary hold. In that case the job that switches into HI mode in s′, at time τ ′,
does not terminate at that time. Therefore, by construction, job B can only belong to subset JII and cannot
be in the other subset, as by construction it should terminate in the HI mode, whereas with Restriction (i) this
implies that it should terminate after τ ′. In our example, Restriction (i) is satisfied if δJ4 > 0, which lets job
J4 move from subset JI to JII. In this case we have: JI = {}, JII = {J2, J3, J4} and JIII = {J2, J4}.

Now let us observe that if B /∈ JIII then it is trivial to show that in s′ it terminates later. Indeed, in this
case in s′ it terminates after τ ′, as being in JII, and in s it terminates at the latest at τ ′, as not being in JIII.
Therefore, it remains to study the case where B ∈ JIII. In this case let us show that B satisfies Lemma 4 for
the schedules of scenarios s and s′. For this let us classify all jobs between subsets JBF , JZR, and JOT .

2in fact, removed from s when we modified the instance
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1. Consider job J that is another job in JIII. Since the jobs in JIII terminate in s and s′ in the same order,
determined by PTHI, we have: if J � B then J ∈ JBF and if J ≺ B then J ∈ JZR, and this does not
depend on which scenario we consider.

2. Consider the case where J ∈ JII \ JIII and J � B in PTHI. In scenario s, since job J /∈ JIII it must
terminate at or before τ ′, hence J ∈ JBF . In scenario s′, since J ∈ JII, its termination order w.r.t. B
is determined by PTHI, and because it has a higher priority it terminates earlier. Therefore, we have
J ∈ JBF in both scenarios.

3. Consider the case where J ∈ JII \ JIII and J ≺ B in PTHI. Since PTHI applies for whole scenario s,
the above priority relation implies J ∈ JZR(B, s), whereas in s′ we can always classify J as: J ∈
JOT (B, s′).

4. For J in the subset JI, let us show that in s it can be classified either as J ∈ JBF (B, s) or as J ∈
JZR(B, s). Suppose that in s it terminates at or before τ ′. Then, obviously, we can classify it as JBF ,
because B terminates after τ ′. If, on the contrary, J terminates after τ ′ then both job J and job B are
ready at time τ ′ and therefore the same argument as in Case 1 applies to show that J can go either to
JBF or JZR. As for scenario s′, since J ∈ JI, we see that it terminates at or before τ ′, and hence J can
be obviously classified as J ∈ JBF (B, s′).

5. Finally, as for the jobs in JIV, they do not exist in s, so they can be classified as JZR in s and as JOT in
s′.

From the above reasoning we see that in s all jobs J 6= B are classified as either JBF and JZR, whereas
when going from s to s′ no jobs have to move from subset JBF to another subset, which shows that Lemma 4
indeed applies for B ∈ JIII. Now it remains to show that if we add jobs from the set JV of jobs that arrive after
τ ′ then this result is preserved and that we can also prove the later termination for the members of this subset.

A simplifying circumstance for the remainder of the proof is that after time τ ′ both scenarios are con-
trolled by a priority table, PTHI, therefore any job J in set JV automatically satisfies a significant part of the
requirements of Lemma 4 – it always can be classified as either JBF or JZR.

To prove that the already established result is preserved with JV added to the picture, we have to, firstly,
show that the presence of these jobs – after time τ ′ – does not impact the arguments in the five cases considered
above. The only argument that concerns the events after time τ ′ is that the jobs that are ready time τ ′ in
relative order determined by PTHI table. Obviously, addition of new jobs after time τ ′ does not change this
fact. Secondly, to the five cases given above we have to add the sixth one – namely, when jobs J are in JV. The
only interesting sub-case in this case is when J � B in PTHI, because otherwise J can be obviously classified
in JBF in both scenarios. The five cases analyzed so far show that when considering the total remaining
workload of a job J and all higher priority jobs at time instance τ ′ we see that this workload can be only equal
or higher in s′, otherwise J would terminate earlier in s′ even without adding the jobs JV. Now, when we
add to s and to s′ the same subset of jobs from JV that have higher priority than J then we conclude that the
total workload of J and all its higher-priority jobs will increase by the same amount in both scenarios at any
time instance after τ ′, and it is only this workload that determines the termination time of B. Therefore, we
preserve the property that jobs B from JIII cannot terminate earlier in s′.

Now it remains to prove the same for the jobs in subset JV. For a job B ∈ JV we are only interested in
jobs J � B in PTHI, because the other jobs do not interfere with B in either of the scenarios. For the jobs J in
sets other than set JV holds that they arrive earlier than any B in JV. Adding to it our current assumption that
J � B we conclude that the jobs J should terminate earlier than B, thus being in JBF in both scenarios.

Finally, for a B in JV it remains to consider J ∈ JV, and, again, we are only interested by J � B. In the
previous case we have just proved that if we removed after time τ ′ all jobs JV and all other jobs except those
that have higher priority than B then JV would terminate no earlier in s′ than in s. Therefore, when adding
higher-priority jobs from JV this property will be preserved. This can be proved by the same argument about
the total workload of job B and its higher priority jobs as we gave for in the case when J ∈ JV and B ∈ JIII.

The above reasoning leads to a conclusion that B cannot terminate earlier in s′ when Restriction (i) is
applied. The remaining case is the Restriction (ii). However, it is almost trivial. In this case the same priority
table is applied in both scenarios and the only difference between them is that in s′ also the jobs from JIV are
executed, which can lead only to delaying the jobs in s′.
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6 Complication for the Multiprocessor Case

In this section we give a counterexample for sustainability of FPM on multiple processors and discuss the
consequences.

Example 6. Consider the following problem 3-processor problem instance J be defined by:

Job A D χ C(LO) C(HI)

1 0 6 LO 6 6

2 0 14 HI 4 5

3 6 15 HI 7 8

4 6 8 HI 1 2

5 6 9 HI 1 2

6 6 11 HI 3 4

7 6 13 HI 3 4

8 0 6 LO 6 6

9 0 7 LO 6 6

The Gantt chart in Figure 5 shows execution in two scenarios: s and s′ for the priority tables specified in
the figure, whereby Restriction (ii) PTLO ∼ PTHI is not satisfied and hence sustainability is not guaranteed.
Scenario s′ differs from scenario s only by a larger execution time of J1.

The priority tables of the two modes in this example differ only by the relative priority of J5 and J6 and
the window between τ and τ ′ is just one time unit. Nevertheless we see that job J7 (as well as J5) terminates
in scenario s′ earlier than in scenario s. This behavior contradicts the requirements of sustainability.

Note that in scenario s jobs J5 and J7 miss their deadlines, whereas in s′ they do not. If correction test
algorithm were used for this case, it would not check for scenario s, because it is not basic. It would check
in s′, which is HI-J4, in the other job-specific scenarios and in the LO scenario. Since in these scenarios the
FPM policy would not miss the deadlines, it would come to conclusion that the proposed priority tables are
correct, whereas, as we see this is not true. The test algorithm would come to a wrong conclusion because the
condition on sustainability of the policy is not satisfied.

Unlike Example 4, this example illustrates not just an exceptional case but well-known common properties
of multiprocessor scheduling, differentiating them from single-processor case. Changing the order of job
execution leads to a change of load distribution of different jobs between processors, which leads to different
interference w.r.t. lower priority jobs. In our case, in window [τ, τ ′] swapping the priority order between J5
and J6 has perturbed the load balance between the processors, such that a smaller priority job J7 terminates
earlier. Note that in both priority tables the set of jobs that have higher priority than J7 is the same and all of
them arrive no later than J7. Under the same conditions on single processor these jobs would inevitably have
the same total interference on J7 in the two scenarios, but not on multiple processors.

From the above it follows that FPM cannot be shown to be in NP or PSPACE for multiprocessors by
following the same line of reasoning as proposed in [1].

7 Conclusions

In this paper we have reconsidered the results concerning the computational complexity of mixed critical
scheduling of a fixed set of jobs. We have refuted the proof that mixed critical schedules can be restricted to
have size polynomial on the number of jobs without loosing optimality. This can mean that the problem may
have a complexity beyond NP and PSPACE.

Independently from whether or not the general problem is in class NP, its restrictions may be themselves
in this class or outside. In our optimisation problem the correctness testing requires the tested solutions to be
either sustainable or to be transformed into a particular type of solution which is sustainable. If one insists on
“fair” (i.e., not transformed) solutions then the problem may become harder than the general problem, where
any type of solutions are acceptable.

Verimag Research Report no TR-2017-7 13/15



Rany Kahil, Peter Poplavko, Dario Socci, Saddek Bensalem Revisiting Complexity of MC Scheduling

1

0 5 10 15

2 3

5

4

1

0 5 10 15



c1

s

s

PTLO = ( 9, 8, 3, 4, 5, 6, 7, 1, 2 ) 

PTHI = ( 9, 8, 3, 4, 6, 5, 7, 1, 2 ) 

s
s

s

s

5

6

6

4 5

7

7

3

2

7 terminates earlier

2

Proc. M1

Proc. M2

Proc. M3

Proc. M1

Proc. M2

Proc. M3

8

9

8

9

Figure 5: FPM non-sustainability demonstration on multiprocessor case, using Example 6. Gantt charts
of two scenarios: s and s′. Mode switch times are τ and τ ′, resp. Scenario s is defined by
(c1 = 2, c2 = 5, c3 = 8, c4 = 2, c5 = 2, c6 = 4, c7 = 4, c8 = c9 = 6). Scenario s′ differs from s by c′1 =
c1 + ∆c1 = 2 + 4. Job J7 violates sustainability by terminating in s′ earlier than in s, while terminating
in the same mode (HI) in both scenarios.
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In that context, we have studied the computational complexity of of the special case of fixed-priority
per mode scheduling. We have discovered that this problem can be shown in class NP only in the single-
processor case, since this policy turned out to be non-sustainable in multiprocessor case. Luckily, this does
not remove practical application of the respective optimisation algorithms, such as MCPI [6]. These policies
have been shown, [5], to successfully generate efficient time triggered tables. An alternative for multiprocessor
scheduling is to avoid switching the priority table but just to drop the less critical jobs. We give the
sustainability proof for single-processor case.
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