erimac

K

"
Monitoring Distributed
Component-Based Systems

Hosein Nazarpour, Ylies Falcone, Saddek Bensalem, Marius

Bozga

Verimag Research Report n° TR-2017-3

May 12, 2017

-

Reports are downloadable at the following address
http://www-verimag.imag. fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UJF

Centre Equation
2, avenue de VIGNATE

F-38610 GIERES
. tel : +33 456 52 03 40
ﬂ fax : +33 456 52 03 50
http://www-verimag.imag.fr

* \¥

Université Grenoble INP‘

Joseph I

Fourier /
GRENOBLE

http://www-verimag.imag.fr

Monitoring Distributed Component-Based Systems

AUTEURS = Hosein Nazarpour, Ylies Falcone, Saddek Bensalem, Marius Bozga

Univ. Grenoble Alpes, CNRS, VERIMAG, Grenoble, France,
Univ. Grenoble Alpes, Inria, LIG, Grenoble, France
Firstname.Lastname@imag.fr

May 12, 2017

Abstract

This paper addresses the online monitoring of distributed component-based systems with
multi-party interactions against user-provided properties expressed in linear-temporal logic
and referring to global states. We consider intrinsically independent components whose
interactions are partitioned on distributed controllers. In this context, the problem that
arises is that a global state of the system is not available to the monitor. Instead, we attach
local controllers to schedulers to retrieve the concurrent local traces. Local traces are sent
to a global observer which reconstructs the set of global traces that are compatible with the
local ones, in a concurrency-preserving fashion. The reconstruction of the global traces
is done “on-the-fly" using a lattice of partial states encoding the global traces compatible
with the locally-observed traces. We define an implementation of our framework in the
BIP (Behavior, Interaction, Priority) framework, an expressive framework for the formal
construction of heterogeneous distributed component-based systems. We define rigorous
transformations of BIP components that preserve the semantics and the concurrency and,
at the same time, allow to monitor global-state properties.

Keywords: component-based design, multiparty interaction, distributed systems, monitoring, runtime verification

Reviewers:

How to cite this report:

@techreport {TR-2017-3,
title = {Monitoring Distributed Component-Based Systems},
author = {Hosein Nazarpour, Ylies Falcone, Saddek Bensalem, Marius Bozga},
institution = {{ Verimag} Research Report},
number = {TR-2017-3},
year = {2017}

1 Introduction

Distributed component-based systems with multi-party interactions. Component-based design consists in
constructing complex systems using a set of predefined components. Each component is defined as an atomic en-
tity with some actions and interfaces. Components communicate and interact with each other through their inter-
faces. The behavior of a component-based system (CBS) is defined according to the behavior of each component
as well as the interactions between the components. Each interaction is a set of simultaneously-executed actions
of the existing components [5]. In the distributed setting, for efficiency reasons, the execution of the interactions
is distributed among several independent schedulers (also known as processors). Schedulers and components are
interconnected (e.g., networked physical locations) and work together as a whole unit to meet some requirements.
The execution of a multi-party interaction is then achieved by sending/receiving messages between the scheduler
in charge of the execution of the interaction and the components involved in the interaction [1].

Problem statement. Verification techniques can be applied to ensure the correctness of a distributed CBS. Run-
time Verification (RV) [19, 3, 9] consists in verifying the executions of the system against the desired specifi-
cations. In this work, our aim is to runtime verify a distributed CBS against properties referring to the global
states of the system. This implies in particular that properties can not be “projected" and checked on individual
components. In the following we point out the problems that one encounters when monitoring distributed CBSs
at runtime. We use neither a global clock nor a shared memory. On the one hand, this makes the execution of the
system more dynamic and parallel because we do not reconstruct global states at runtime. Thus, we avoid syn-
chronization to take global snapshots, which would go against the distribution of the verified system. On the other
hand, it complicates the monitoring problem because no component of the system can be aware of the global trace.
Since the execution of interactions is based on sending/receiving messages, communications are asynchronous and
delays in the reception of messages are inevitable. Moreover, the absence of ordering between the execution of
the interactions in different schedulers causes the main problem in this case which is the actual global trace of the
system is not observable. Our goal is to allow for the verification of distributed CBSs by formally instrumenting
them to observe their global behavior while preserving their performance and initial behavior.

Approach overview. The main contribution of this paper is an approach for the runtime verification of dis-
tributed CBSs. Our concern is monitoring the behavior of a distributed system with respect to a given Linear Tem-
poral Logic [18] (LTL) property ¢ which refers to the global states of the system. Intuitively, our method works as
follows. First, we define a monitoring hypothesis based on the definition of an abstract model of distributed CBS
with multi-party interactions. Our monitoring hypothesis is that the behavior of the monitored system comply
to this model. This model is abstract enough to encompass a variety of distributed (component-based) systems.
This model serves the purpose of describing the knowledge needed on the verified system and later guides their
instrumentation.

In the distributed CBS, due to the parallel executions in different schedulers i) we have a set of events (i.e.,
actions which change the state of the system) which are not totally ordered, and ii) the actual global trace of a
distributed system can not be obtained. Although each scheduler is only aware of its local trace (i.e., a set of
ordered events), in order to evaluate the global behavior of the system, it is necessary to find a set of possible or-
dering among the events of all schedulers, that is, the set of compatible global traces. In our setting, schedulers do
not communicate together and only communicate with their own associated components. Indeed, what makes the
actions of different schedulers to be causally related is only the shared components which are involved in several
multi-party interactions managed by different schedulers. In other words, the executions of two actions managed
by two schedulers and involving a shared component are definitely causally related, because each execution re-
quires the termination of the other execution in order to release the shared component. To take into account these
existing causalities among the events, we i) employ vector clock to define the global order of events, ii) compose
each scheduler with a controller to compute the correct vector clock of each generated event, iii) compose each
shared component with a controller to resolve the causality, and iv) introduce a centralized entity as an observer
module to accumulates events (i.e., local traces). At runtime the central observer collects the set of received local
traces of schedulers and reconstructs a set of compatible global traces that could possibly happen in the system,
that is a form of general notion of computation lattice. To evaluate the computation lattice with respect to a given
LTL property, we define a novel on-the-fly progression method over the constructed computation lattice. To this
end, we define a new structure of computation lattice in which each node n of the lattice is augmented by a set of
formulas representing the evaluation of all the possible global traces from the initial node of the lattice (i.e., initial

state of the system) up to node n.

QOutline. The remainder of this paper is organized as follows. Section 2 introduces some preliminary concepts.
Section 3 defines an original abstract model of distributed CBSs, suitable for monitoring purposes, and allowing
to define a monitoring hypothesis for the runtime verification of distributed CBSs. In Sec. 4, we present the
instrumentation used to generate the events of each scheduler which are aimed to be used in the construction of the
global trace of a distributed CBS. In Sec. 5, we construct the computation lattice by collecting the events from the
different schedulers. Runtime verification of distributed CBSs is presented in Sec. 6. Section 7 describes RVDIST,
a C++ implementation of the monitoring framework used to carry an evaluation of our approach described in
Sec. 8. Section 9 presents related work. Section 10 concludes and presents future work. Proofs of the propositions
are in Appendix ??.

2 Preliminaries and Notations

Sequences. Considering a finite set of elements F, we define notations about sequences of elements of E. A
sequence s containing elements of E is formally defined by a total function s : I — E where I is either the integer
interval [0, n] for some n € N, or N itself (the set of natural numbers). Given a set of elements E, e1 - ez --- e,
is a sequence or a list of length n over E, where Vi € [1,n] : e; € E. The empty sequence is noted € or [|,
depending on the context. The set of (finite) sequences over E is noted E*. E7T is defined as E* \ {e}. The
length of a sequence s is noted length(s). We define s() as the i*" element of s and s(i - - - j) as the factor of s
from the i'" to the j*" element. s(i---j) = eif i > j. We also note pref(s), the set of non-empty prefixes of
s, i.e., pref(s) = {s(1---k) | 1 < k < length(s)}. Operator pref is naturally extended to sets of sequences.
We define function last : ET — F as last(e) = s(|e]). For an infinite sequence s = e; - e - e3 - - -, we define
s(i--+) = €; - €;41 - - - as the suffix of sequence s from index ¢ on.

Tuples. An n-tuple is an ordered list of n elements, where 7 is a strictly positive integer. By t[i] we denote i‘"
element of tuple ¢.

Labeled transition systems. Labeled Transition Systems (LTSs) are used to define the semantics of CBSs. An
LTS is defined over an alphabet ¥ and is a 3-tuple (State, Lab, Trans) where State is a non-empty set of states,
Lab is a set of labels, and Trans C State x Lab x State is the transition relation. A transition (¢, a,¢’) € Trans
means that the LTS can move from state ¢ to state ¢’ by consuming label a. We abbreviate (¢, a,q’) € Trans
by g A vans q orby q 2 ¢’ when clear from context. Moreover, relation Trans is extended to its reflexive and
transitive closure in the usual way and we allow for regular expressions over Lab to label moves between states:
if expr is a regular expression over Lab (i.e., ezpr denotes a subset of Lab®), ¢ R ¢’ means that there exists
one sequence of labels in Lab matching ezpr such that the system can move from ¢ to ¢’.

Observational equivalence and bi-simulation. The observational equivalence of two transition systems is
based on the usual definition of weak bisimilarity [15], where 6-transitions are considered to be unobservable.
Given two transition systems S; = (Sta;, Lab U {0}, —2) and Sy = (Stas, Lab U {0}, —2), system S} weakly
simulates system Ss, if there exists a relation R C Sta; x Stao that contains the 2-tuple made of the initial states
of 57 et S and such that the two following conditions hold:

1. Y(q1,¢2) € R,Va € Lab : ¢1 —%+1 ¢, = 3¢} € Stay : ((qi,qé) ERANq %2 q’z), and

9 0"
2. Y(q1,92) € R: (Elqi € Stay : q1 —n1 q'1> = Jq} € Stag : ((q'l,qé) ERNqg — qé)

Equation 1. states that if a state ¢; simulates a state go and if it is possible to perform a from ¢; to end in
a state ¢, then there exists a state ¢} simulated by ¢ such that it is possible to go from ¢ to ¢4 by performing
some unobservable actions, the action a, and then some unobservable actions. Equation 2. states that if a state
¢1 simulates a state go and it is possible to perform an unobservable action from ¢; to reach a state ¢}, then it
is possible to reach a state ¢} by a sequence of unobservable actions such that ¢; simulates ¢5. In that case,
we say that relation R is a weak simulation over S; and Sy or equivalently that the states of S; are (weakly)
similar to the states of S5. Similarly, a weak bi-simulation over S; and S is a relation R such that R and

R~ = {(q2,q1) € Stag x Sta; | (¢1,92) € R} are both weak simulations. In this latter case, we say that S; and
Sy are observationally equivalent and we write S1 ~ Ss to express this formally.

Vector Clock. Lamport introduced logical clocks as a device to substitute for a global real time clock [12].
Logical clocks are used to order events based on their relative logical dependencies rather than on a “time” in
the common sense. Vector clocks are a more powerful extension (i.e., strongly consistent with the ordering of
events) of Lamport’s scalar logical clocks [6]. In a distributed system with a set of schedulers {S1,...,Sn},
VC ={(c1,-.-,¢cm) | j € [1,m] A ¢; € N} is the set of vector clocks, such that vector clock ve € V' is a tuple
of m scalar (initially zero) values c1, ..., ¢, locally stored in each scheduler S; € {S1,...,S,,} where Vk €
[1,m] : ve[k] = ¢ holds the latest (scalar) clock value scheduler S; knows about scheduler S, € {S1,...,Sm}
Each event in the system is associated to a unique vector clock. For two vector clocks vcy and vee, max(vey, ves)
is a vector clock vcg such that VE € [1,m] : veslk] = max(veq[k], vea[k]). min(veq, vea) is defined in similar
way. Moreover two vector clocks can be compared together such that ve; < vey <= VEk € [1,m] : ver[k] <
veo[k] Az € [1,m] : veq[z] < wea[z).

Happened-before relation [12]. The relation ~— on the set of events of a system is the smallest relation satis-
fying the following three conditions: (1) If a and b are events in the same scheduler, and @ comes before b, then
a — b. (2) If a is the sending of a message by one scheduler and b is the reception of the same message by another
scheduler, then a — b. (3) If a — b and b »— ¢ then a — c¢. Two distinct events a and b are said to be concurrent
if a4 band b a.

Vector clocks are strongly consistent with happened-before relation. That is, for two events a and b with
associated vector clocks vc, and vc;, respectively, vc, < vep <= a — b.

Computation lattice [14]. The computation lattice of a distributed system is represented in the form of a directed
graph with m (i.e., number of schedulers that are executed in distributed manner) orthogonal axes. Each axis is
dedicated to the state evolution of a specific scheduler. A computation lattice expresses all the possible traces
in a distributed system. Each path in the lattice represents a global trace of the system that could possibly have
happened. A computation lattice £ is a pair (N, —), where N is the set of nodes (i.e., global states) and — is the
set of happened-before relations among the nodes.

Linear Temporal Logic (LTL) [18]. Linear temporal logic (LTL) is a formalism for specifying properties of
systems. An LTL formula is built over a set of atomic propositions AP. LTL formulas are written with the
following grammar:

pi= p | —o | @wVer | Xeo | oiUps
where p € AP is an atomic proposition. Note that we use only the X and U modalities for defining the valid
formulas in LTL. The other modalities such as F (eventually), G (globally), R (release), etc. in LTL can be
defined using the X and U modalities.

Let 0 = qo - q1 - g2 - - - be an infinite sequence of states and |= denotes the satisfaction relation. The semantics
of LTL is defined inductively as follows:

eolkp < qo =p(ie,p € q), foranyp € AP

e oy ol

cEWIVyy < ocEp1VolEp
e 0 =Xp —o(l--) e
e ok pilpy <= 3Jj20:0(-)Ep2No(i-)Fp,0<i<j

An atomic proposition p is satisfied by o when it is member of the first state of o. o satisfies formula —¢ when it
does not satisfy . Disjunction of ¢ and - is satisfied when either (; or 5 is satisfied by o. o satisfies formula
X when the sequence of states starting from the next state of o, that is, g; satisfies . ¢1Ugps is satisfied when
(o is satisfied at some point and ¢ is satisfied until that point.

Pattern-matching. We shall use the mechanism of pattern-matching to concisely define some functions. We
recall an intuitive definition for the sake of completeness. Evaluating the expression:

match expression with
| pattern_1 — expression_1
| pattern_2 — expression_2

| pattern_n — expression_n

consists in comparing successively expression with the patterns pattern_1, ..., pattern_n in order.
When a pattern pattern_1 fits expression, then the associated expression_1 is returned.

3 Distributed CBSs with Multi-Party Interactions

In the following, we describe our assumptions on the considered distributed component-based systems with multi-
party interactions. To this end, we assume a general semantics to define the behavior of the distributed system
under scrutiny in order to make our monitoring approach as general as possible. However, neither the exact model
nor the behavior of the system are known. How the behaviors of the components and the schedulers are obtained
is irrelevant. Inspiring from conformance-testing theory [26], we refer to this hypothesis as the monitoring
hypothesis.

Consequently, our monitoring approach can be applied to (component-based) systems whose behavior can
be modeled as described in the sequel. The semantics of the following model is similar to and compatible with
other models for describing distributed computations (see Sec. 9 for a comparison with other models and possible
translations between models). The remainder of this section is organized as follows. Subsection 3.1 defines an
abstract distributed component-based model. Subsection 3.2 defines the execution traces of the abstract model,
later used for runtime verification.

3.1 Semantics of a Distributed CBS with Multi-Party Interactions

Architecture of the system. The system under scrutiny is composed of components in a non-empty set B =
{Bl, R B|B‘} and schedulers in a non-empty set S = {Sl, S8 } Each component B; is endowed with a
set of actions Act;. Joint actions of component, aka multi-party interactions, involve the execution of actions on
several components. An interaction is a non-empty subset of ULE'I Act; and we denote by Int the set of interactions
in the system. At most one action of each component is involved in an interaction: Va € Int : |a N Act;|< 1. In
addition, each component B; has internal actions which we model as a unique action 3;. Schedulers coordinate
the execution of interactions and ensure that each multi-party interaction is jointly executed (cf. Definition 2).
Let us assume some auxiliary functions obtained from the architecture of the system.

— Function involved : Int — 2B\ {(} indicates the components involved in an interaction. Moreover, we
extend function involved to internal actions by setting involved(S;) = 4, for any §; € { B1,---, BB }
Interaction a € Int is a joint action if and only if |involved(a)|> 2.

— Function managed : Int — S indicates the scheduler managing an interaction: for an interaction a € Int
managed(a) = S if a is managed by scheduler S;.

— Function scope : S — 2B\ {0} indicates the set of components in the scope of a scheduler such that
scope(S;) = U involved(a').

a’€{a€Int | managed(a)=S;}

In the remainder, we describe the behavior of components, schedulers, and their composition.

Components. The behavior of an individual component is defined as follows.

Definition 1 (Behavior of a component) The behavior of a component B is defined as an LTS (Qp, Actp U
{BB},—B) such that:

e Qp=QRU Q% is the set of states, where Q'g (resp. Q%) is the so-called set of ready (resp. busy) states,

Drain It Fill

Q@@

Figure 1: Component Tank

e Actp is the set of actions, and Bp is the internal action,
o —pC (Q x Actp x Q%) U (QY x {Bs} x Q%) is the set of transitions.
Moreover, Qg has a partition {QYB, %}

Intuitively, the set of ready (resp. busy) states (Qz (resp. Q%) is the set of states such that the component is
ready (resp. not ready) to perform an action. Component B (i) has actions in set Act g which are possibly shared
with some of the other components, (ii) has an internal action Sp such that Sg & Actp which models internal
computations of component B, and (iii) alternates moving from a ready state to a busy state and from a busy
state to a ready state, that is component B does not have busy to busy or ready to ready move (as defined in the
transition relation above).

Example 1 (Component) Figure 1 depicts a component Tank whose behavior is defined by the LTS (Q* U
QP, Act U{BY},—) such that:

— Q" = {d, f} is the set of ready states and Q" = {d*, f+} is the set of busy states,
— Act = {Drain, Fill} is the set of actions and 3 is the internal action,
- == {(d, Fill,d*), (d+, B, f), (f, Drain, f*), (f*, 3, d)} is the set of transitions.

On the border, each e represents an action and provides an interface for the component to synchronize with actions
of other components in case of joint actions.

In the following, we assume that each component B; € B is defined by the LTS (Qp,, Actp, U{BB,},—5,)
where @, has a partition { Q% , Q% } of ready and busy states; as per Definition 1.

Schedulers. The behavior of a scheduler is defined as follows.

Definition 2 (Behavior of a scheduler) The behavior of a scheduler S is defined as an LTS (Qg, Acts, —s)
such that:

e (g is the set of states,

o Actg = Act U Act’g is the set of actions, where Actl, = {a € Int | managed(a) = S} and Act’g =
{Bi | B; € scope(S)},

e —sC Qg X Acts X Qg is the set of transitions.

Actl, C Int is the set of interactions managed by S, and Act’g is the set of internal actions of the components
involved in an action managed by S.
In the following, we assume that each scheduler S; € S is defined by the LTS (Qs;, Acts;, —s;) Where

Actg]. = Actg U Act? ; as per Definition 2. The coordination of interactions of the system i.e., the interactions
in Int, is distributed among schedulers. Actions of schedulers consist of interactions of the system. Nevertheless,
each interaction of the system is associated to exactly one scheduler (Va € Int,3!.S € S : a € Actgs). Conse-
quently, schedulers manage disjoint sets of interactions (i.e., VS;, S; € 8 : S; # S; = Acty N Actgj =).
Intuitively, when a scheduler executes an interaction, it triggers the execution of the associated actions on the
involved components. Moreover, when a component executes an internal action, it triggers the execution of the
corresponding action on the associated schedulers and also sends the updated state of the component to the asso-
ciated schedulers, that is, the component sends a message including its current state to the schedulers. Note, we
assume that, by construction, schedulers are always ready to receive such a state update.

Scheduler Sy Scheduler Ss

———

: B B2 : b Bs 1
‘ i 1

Drainy

I
I
I
I
|
O O g O C
3 Fill
|

Ba

Dminl ﬁl Fill 12 52 DTaingg ﬁg Flllg

- ! =

Drainy (1 Filly| |Fill, B2 Drains | | Drains B3 Fills
Tank 1 Tank 2 Tank 3

Figure 2: Abstract representation of a distributed CBS

Remark 1 Since components send their update states to the associated schedulers, we assume that the current
state of a scheduler contains the last state of each component in its scope.

Example 2 (Scheduler of distributed CBS) Figure 2 depicts a distributed component-based system consisting of
three components each of which is an instance of the component in Figure 1. The set of interactions is Int =
{{Drain, }, Fillya, Draings, { Fill3}} where Fillyy = {Filly, Fillo} and Drainsg = {Drainsg, Draing} are
Jjoint actions. Two schedulers Sy and Sy, coordinate the execution of interactions such that managed ({ Drain, }) =
managed(Fill;2) = S; and managed({ Fill3}) = managed(Draingg) = Ss. For j € [1,2], scheduler S;j is
defined as (Qs,, Acts,;, —s,) with:

L4 QSJ' = {ZOall7l2713}x

Act} = {{Draim }, Filly5}, Actly = {B1, B},

Acty, = {Draings, { Fill3}}, Actgz = {52, 83},

—s,= {(lo, B2,10), (I1, B2, 1), (I, P1, lo), (l2, B2, 1), (I3, B2, lo), (I2, B, 13), (I3, { Drain, } , l2),
(lo, {D’I‘aiTh} s ll), (lo, Filllg, l2)},

8, = {(loaﬂ27lo)’ (l17B23 ll)? (llyﬁSa lO)7 (l27 527 11)7 (l3a1627lo)a (l27ﬁ3a 13)’ (137 {F’Lll?)}) l?)a
(lo,{Fi”g},ll), (lo,DT'aZ'ngg,lg)}.

Definition 3 (Shared component) The set of shared components is defined as
B, ={BeB||{SeS|Be¢cscope(S)}|>2}.

A shared component B € By is a component in the scope of more than one scheduler, and thus, the execution of
the actions of B are managed by more than one scheduler.

Example 3 (Shared component) In Figure 2, component Tanks is a shared component because interaction Fillys,
which is a joint action of Filly and Fills, is coordinated by scheduler Sy and interaction Drainss, which is a joint
action of Draing and Drains, is coordinated by scheduler Ss.

The global execution of the system can be described as the parallel execution of interactions managed by the
schedulers.

Definition 4 (Global behavior) The global behavior of the system is the LTS (Q, GAct,—) where:

e QC ®|ZE‘1 Q; x ®|jS:|1 Qs; s the set of states consisting of the states of schedulers and components,

Bl 3.
o GAct C 24¢t VUi A8 \ [} is the set of possible global actions of the system consisting of either sev-
eral interactions and/or several internal actions (several interactions can be executed concurrently by the

system),

o —C @ x GAct x Q is the transition relation defined as the smallest set abiding to the following rule.

A transition is a move from state (q1, . . ., q|B|> Qs, - - - » Is;s,) 10 State (i, - - -, q"BI, Qoys oo q;,ls') on global
actions in set o U 3, where o C Int and C ULE‘l {B:}, noted (ql,...,q|B‘,qsl,...,qs‘S‘) LN
(i ql’B|7 Qs - ,q;‘s‘), whenever the following conditions hold:

Ci: Vie[1,|B]]: [(anAct;) U({B:}NB)|< 1,

Cy: Va € a: (3S; € S : managed(a) = 5;) = (qu s, qs, \VB; € involved(a) : ¢; M)Bi qg),

Cs: VB €B:qi Lop, g AVS; €S 1 B; € scope(S,) : ds; isj 05y
Cy: VB; € B\ involved(a U B) : ¢; = ¢,
Cs: ¥S; € S\ managed(0) : s, = d,.

where functions involved and managed are extended to sets of interactions and internal actions in the usual
way.

The above rule allows the components of the system to execute independently according to the decisions of the
schedulers. It can intuitively be understood as follows:

e Condition C} states that a component can perform at most one execution step at a time. The executed global
actions (« U () contains at most one interaction involving each component of the system.

e Condition C, states that whenever an interaction & managed by scheduler S; is executed, S; and all com-
ponents involved in this multi-party interaction must be ready to execute it.

e Condition Cj states that internal actions are executed whenever the corresponding components are ready to
execute them. Moreover, schedulers are aware of internal actions of components in their scope. Note that,
the awareness of internal actions of a component results in transferring the updated state of the component
to the schedulers.

e Conditions Cy and Cj state that the components and the schedulers not involved in an interaction remain in
the same state.

An example illustrating the global behavior of the system depicted in Figure 2 is provided later and described in
terms of execution traces (cf. Example 4).

Remark 2 The operational description of a distributed CBS has is usually more detailed. For instance, the
execution of conflicting interactions in schedulers needs first to be authorized by a conflict-resolution module
which guarantees that two conflicting interactions are not executed at the same time. Moreover, schedulers follow
the (possible) priority rules among the interactions, that is, in the case of two or more enabled interactions
(interactions which are ready to be executed by schedulers), those with higher priority are allowed to be executed.
Since we only deal with the execution traces of a distributed system, we assume that the obtained traces are correct
with respect to the conflicts and priorities. Therefore, defining the other modules is out of the scope of this work.

Definition 5 (Monitoring hypothesis) The behavior of the distributed CBS under scrutiny can be modeled as an
LTS as per Definition 4.

3.2 Traces of a Distributed CBS with Multi-Party Interactions

At runtime, the execution of a component-based system with multi-party interactions produces a global trace of
events. Intuitively, a global trace is the sequence of traversed states of the system, from some initial state and
following the transition relation of the LTS of the system. For the sake of simplicity and for our monitoring
purposes, the states of schedulers are irrelevant in the trace and thus we restrict the global states to states of the
components.

We consider a distributed component-based system consisting of a set B of components (as per Definition 1)
and a set S of schedulers (as per Definition 2) with the global behavior as per Definition 4.

Definition 6 (Global trace of a distributed CBS) A global trace of a distributed CBS is a continuously-growing

sequence (¢, ..., q‘OBl) (@ U B (gt,..., q|1B|) gk qlkB‘) -+, such that ¢¥, ... >q|0B\ are the initial
states of components By, ..., Bjg| and Vi € [0,k —1] : (¢, .. 7q\iB|) oy, (¢it? oLy

o4 where — is the
transition relation of the global behavior of the system and the states of schedulers are dzscarJed

Although the global trace of the system exists, it is not observable because it would require a perfect observer
having simultaneous access to the states of the components. Introducing such an observer (able to observe global
states) in the system would require all components to synchronize, and would defeat the purpose of building a
distributed system. Instead of introducing such an observer, we shall instrument the system (see Sec. 4) to observe
the sequence of states through schedulers.

In the following we consider a global trace t = (¢, . . ., q‘OBl) (2®uB%) (g, ..., q‘lBl) -« -, as per Definition 6.
Each scheduler S; € S, observes a local trace s;(t) which consists in the sequence of state-evolutions of the
components it manages.

Definition 7 (The observable local trace of a scheduler obtained from a global trace) The local trace s;(t) ob-
served by scheduler S is inductively defined on the global trace t as follows:

® Sy ((q?a) Q‘OB|)> = (q(l)v cee 7Q|OB‘): and
(e @UB) - () = {) # manased(e) 1 vobved(9) 1 seope(5) =

where
- 7= (a N {a € Int | managed(a) = S;}) U (BN{B; | B; € scope(S;)})
- q/ = (qi7 e 7q|/B‘) with

last(s;(¢))[z] if B; € involved(ry) N scope(S;),
=1 q if B; € involved(v) N scope(S;),
? otherwise (B; & scope(S;)).

We assume that the initial state of the system is observable by all schedulers. An interaction a € Int is observable
by scheduler S; if S; manages the interaction (i.e., S; € managed(a)). Moreover, an internal action §;, i €
(1, |B]], is observable by scheduler S; if B; is in the scope of S; (i.e., B; € scope(S;)). The state observed after
an observable interaction or internal action consists of the states of components in the scope of S, that is a state
(q1,-.,qB|) Where g; is the new state of component B; if B; € scope(S;) and 7 otherwise.

Example 4 (Global trace and local trace) Two possible global traces of the system in Example 2 (depicted in Fig-
ure 2) are:!

[] tl = (dl, dQ, dg){Flelg}(J_7 J_, dg)'{ﬁl}'(fl, J_, dg)-{{Dminl} 5 {F’Lllg}}(l, J_, J.){ﬁg}(l., fg, J_),

o iy = (d17d27d3) : {Filh?v {Fill3}} : (J_, LvJ—) : {ﬁ&} : (J-»J—a f&) : {52}) (J-7f27f3)) {{Drain%} 751} :
(f17iaj~>'

Traces t1 and ty are obtained following the global behavior of the system (Definition 4).

e [n trace t1, the execution of interaction Fill 5 represents the simultaneous execution of (i) action Fill15 in
scheduler S, (ii) action Filly in component Tank, and (iii) action Filly in component Tanks. After inter-
action Filli2, component Tank, and Tanko move to their busy state whereas the state of component Tanks
remains unchanged. Moreover, the execution of internal action B2 in trace tq represents the simultaneous
execution of (i) internal action By in component Tanks, (i) action B in scheduler S1 and (iii) action B in
scheduler Ss. After the internal action PBs, component Tanky goes to ready state fo.

e In trace lo, the execution of global action {Fillio,{Fills}} represents the simultaneous execution two
interactions Fillyy and { Fill3} that is the simultaneous executions of (i) action Fillys in scheduler Sy, (ii)
action Fills in scheduler S, (iii) action Filly in component Tank, (iv) action Filly in component Tanks,
and (v) action Fills in component Tanks. Trace to ends up with the simultaneous execution of interaction
Drainog and the internal action of component Tank .

ITo facilitate the description of the trace, we represent each busy state as L.

Local traces — Global traces Observer

PN

Cyl Sy Cs5| Sy - |Co | S Schedulers

[0}

7

Figure 3: Passive observer

The associated local traces are:

o si(t1) = (di,da, ds) - {Fillio} - (L, L,7) - {B1} - (f1, L.7) - {{Drainy }} - (L, L, 7) - {B} - (L, f2,7),
o s3(t1) = (di,dp, ds) - {{Fills}} - (7,da, L) - {Ba} - (7, fo, L),

o si(ta) = (di,dp,d3) - {Fillyo} - (L, L,7) - {B2} - (L, f2,7) - {Bu} - (fu, f2, 7).

o s3(t2) = (di,dz, ds) - {{Fills}} - (7, da, L) - {B3} - (7, da, f3) - {Ba} - (7, fa, f3) - { Draings} - (7, L, 1).

For instance, the local trace s1(t2) shows that scheduler Sy is aware of execution of interaction Fillyo but it
is not aware of the occurrence of internal action B3 because component Tanks is not in the scope of scheduler
S1 and consequently the state of component Tanks in the local trace of scheduler Sy is denoted ? (except for the
initial state). Moreover, scheduler Sy is aware of the occurrences of internal actions B2 and (1 but it is not aware
of action Draingg because scheduler S1 does not manage action Drainsgs.

4 From Local Traces to Global Traces

We define a new component as a passive observer which runs in parallel with the system and collects local traces
of schedulers and reconstruct the set of possible global traces compatible with the local traces (Figure 3). The
observer is always ready to receive information from schedulers. We use the term passive for the observer since
it does not force schedulers to send data and thus does not modify the execution of the monitored system. We
shall prove that such observer does not violate the semantics nor the behavior of the distributed system, that is, the
observed system is observationally equivalent (see Sec. 2) to the initial system (cf. Property 1).

For monitoring purposes, the observer should be able to order the execution of interactions from the re-
ceived local traces appropriately. In our abstract model, since schedulers do not interact directly together by
sending/receiving messages, the execution of an interaction by one scheduler seems to be concurrent with the ex-
ecution of all interactions by other schedulers. Nevertheless, if scheduler S; manages interaction a and scheduler
Sk manages interaction b such that a shared component B; € B is involved in a and b, i.e., B; € involved(a) N
involved(b), as a matter of fact, the execution of interactions a and b are causally related. In other words, there
exists only one possible ordering of a and b and they could not have been executed concurrently. Ignoring the
actual ordering of a and b would result in retrieving inconsistent global states (i.e., states that does not belong to
the original system).

We instrument the system by adding controllers to the schedulers and to the shared components. The con-
trollers of schedulers and the controllers of shared components interact whenever the scheduler and the shared
components interact to transmit vector clocks and state update. Each time a scheduler executes an interaction, the
associated controller attaches a vector clock to this execution and notifies the observer. Hence, the local trace of
each scheduler is augmented by vector clocks and is then sent to the observer.

In the following, we define an instrumentation of abstract distributed systems to let schedulers send their local
traces to an observer.

4.1 Composing Schedulers and Shared Components with Controllers

We consider a distributed system consisting of a set of components B = {Bl, cee B‘B|} (as per Definition 1)
and a set of schedulers S = {Sl, oS |s‘} where scheduler S; = (Qs,, Acts,, — ;) manages the interactions in

Actg and is notified by internal actions in Act? e for S; (as per Definition 2). We attach to S; a local controller
Cjin charge of computing the vector clock and sendlng the local trace of \S; to the observer. Moreover for each

shared component B; € S, we attach a local controller Czb to communicate with the controllers of the schedulers
that have B; in their scope.

In the following, we define the controllers (instrumentation code) and the composition ® as instrumentation
process.

4.1.1 Controllers of Schedulers

Controller (7 is in charge of computing the correct vector clock of scheduler S; (Definition 8). It does so through
the data exchange with the controllers of shared components, i.e., the controllers in the set

{cP | S; € SAB; € scope(S;)},
which are later defined in Definition 10.

Definition 8 (Controller of scheduler) Controller C; is an LTS (QC?’ RC? , —>C§) such that:

° QC; = 2MLIBI 5 VC is the set of states where 2127 is the set of subsets of component indexes and VC'is
the set of vector clocks;

® Res = {(ﬁ“) ‘ B; € scope(S)} UA (=, {rev;|ve]}) | B; € scope(S;) NBg Ave € VC}
U{(@, snd) ’ a€ Actgj Nwve € VO Asnd C {snd;|ve] | B; € scope(S;) NBg A ve € VC}}

is the set of actions;

o —c:C ch_ X Res X QC; is the transition relation defined as:

11/_1;\0’], snd;|vc’] | i€involved(a)AB; €Bs
T, ve) (el { | }

g (ZUinvolved(a), vc')

a€ Actgj Awvc' = inc(vc,j)}

U {(I ve) (Bl—’)ms (T\ {i}, ve) ‘ Bi e Actg]}

(7,{7"01)1' Lve’ | })

U {(I, ve) s (Z,max(ve, ve') ‘ Bi € Act@j A B; € BS}

where inc(vc, 7) increments the j*" element of vector clock vc.

When the controller C} is in state (Z, ve), it means that (i) Z is the set of busy components in the scope of scheduler
S;, (ii) the execution of their latest action has been managed by scheduler S}, and (iii) vc is the current value of
the vector clock of scheduler S;.

Anaction in Res is a pair (x y) where z is associated to the actions which send information from the controller
to the observer and’ y is associated to the actions in which the controller sends/receives information to/from the
controllers of shared components, such that

T € {@’ eAct'Y A wve € VC}U{ﬁZ‘ZESCOpe()}U{ }, and
y C {snd;|vc|, rcvlchJ | B; € scope(S;) NBg A ve € VC'} can be intuitively understood as follows,

e action a|wvc| consists in notifying the observer about the execution of interaction a with vector clock vc
attached.

e action B\Z consists in notifying the observer about the internal action of component B;. The last state of
component B; is also transmitted to the observer.

e action — is used in the case when the controller does not interact with the observer,

10

o , (al_/'uc\’j,{sndi Lve’] | iEinvolved(a)/\BiEBs}> ,
ac€lnt qs—s; 45 Qe cs 4.
CONT-ScHI ——— j
(a,(al_vc’],{sndi Lve’ | |ieinv01ved(a)/\BieBs}>) .
(QS7 QC) SCj (qs7 qc)
. Bi (B\i’@)
(ASA qs =5, Qs e —C 4.
CONT-SCH2 —
(5i’(5i’®)) o
(Qm qc) —>scj- (q57 qc)
. Bi (B:.9)
i€l qs s, qe ge —>c= 4.
CONT-SCH3 — .
(8:,(B:.0)) ;
(QSa QC) —>st (qsa qr)

Figure 4: Semantics rules defining the composition controller / scheduler

e action snd;| ve| consists in sending the value of the vector clock vc of the scheduler to the shared component
B;,

e action rcv; | vc| consists in receiving the value of the vector clock ve stored in the shared component B;.
The set of transitions is obtained as the union of three sets which can be intuitively understood as follows:

e For each interaction a € Actgj managed by scheduler .S;, we include a transition with action
(a[vc’j, {snd;|vc’| | B; € involved(a) N BS}) ,

where a/[z-)c\’J is a notification to the observer about the execution of interaction a along with the value of
vector clock vc’, and actions in set {snd;|vc’| | B; € involved(a) N By} send the value of the vector clock
ve’ to the shared components involved in interaction a. Moreover, the set of indexes of the components
involved in interaction a (i.e., in involved(a)) is added to the set of busy components; and the current value
of the vector clock is incremented.

e For each action associated to the notification of the internal action of component B; (that is, 3;), we include
a transition labeled with action (/3;, 0) in the controller to send the updated state to the observer. Moreover,
this transition removes index ¢ from the set of busy components.

e For each action associated to the notification of internal action of a shared components B; € Bg, we include
a transition labeled with action (—, {rcv;| v’ | }) in the controller to receive the value of the vector clock vc’
stored in the shared component to update the vector clock of the scheduler by comparing the vector clock
stored in the scheduler and the received vector clock from the shared component.

Note that, to each shared component B; € Bg, we also attach a local controller in order to exchange the vector
clock among schedulers in the set {S; € S | B; € scope(SS;)}; see Definition 10.

Below, we define how a scheduler is composed with its controller. Intuitively, the controller of a scheduler
ensures sending/receiving information among the scheduler, associated shared components and the observer.

Definition 9 (Semantics of S; ®s C;) The composition of scheduler S; and controller C3, denoted by S; ®sC3, is
the LTS (Qs; X Qcs, Acts; X Res, —+sc,;) where the transition relation — ., C (Qs; X Qci) x (Actg, x Rc;) X
(Qs; x Qci) is defined by the semantics rules in Figure 4.

The semantics rules in Figure 4 can be intuitively be understood as follows:

e Rule CONT-SCHI1. When the scheduler executes an interaction a € Int, the controller (i) updates the vector
clock by increasing its local clock, (ii) updates the set of busy components, (iii) notifies the observer of
the execution of a along with the associated vector clock vc’, and (iv) sends vector clock vc’ to the shared
components involved in a.

11

Scheduler S Controller C{

: PR B (Filla, {snds})

! B

E B Q Fill 8 _ (B2,0)

v (Be I o \\l{)/ 12 /12\ L l3 (B1,0)

I (= {rev2})
: - Drainy

: b (Drain, 0)

L e e e e e e e e e e e e e e E e e e e e e e e e e e e e e e e e = =

Figure 5: Controller attached to the scheduler

e Rule CONT-SCH2. When the scheduler is notified of an internal action of component B; where ¢ € 7 (that
is, the scheduler has managed the latest action of component B;) through action §3;, the controller transfers
the updated state of component B; to the observer through action ;.

e Rule CONT-SCH3. When the scheduler is notified of an internal action of the shared component B; where
1 & T (that is, the scheduler has not managed the latest action of component B;), the controller receives the
vector clock stored in component B; and updates the vector clock.

Example 5 (Controller of scheduler) Figure 5 depicts the controller of scheduler Sy (depicted in Fig/uz 2). Ac-
tions (E, 0) and (E’;, () consist in sending the updated state to the observer. Actions (D/mi\nl, 0) and (Filly2,{snd2})
consist in notifying the observer about the occurrence of interactions managed by the scheduler. Moreover, snds
sends the vector clock to the shared component Tanks. The controller receives the vector clock stored in the
shared component Tanksy through action (—,{rcva}) and updates its vector clock. For the sake of simplicity,
variables attached to the transition labels are not shown.

4.1.2 Controllers of Shared Components

Below, we define the controllers attached to shared components. Intuitively, the controller of a shared component
ensures data exchange among the shared component and the corresponding schedulers. A scheduler sets it’s
current clock in a shared component’s controller which can be used later by another scheduler.

Definition 10 (Controller of shared component) Local controller C}) for a shared component B; € Bg with the
behavior (Q;, Act; U{B:},—:) is the LTS (Qub, R b, —> v), where

o Q.o = VC is the set of states,
e R C {snd;|vc],rcvj|uc]| | S; € S A B; € scope(S;) A ve € VC} is the set of actions,

o =ovC Qe X Ry X Qb is the transition relation defined as

{UC {’I‘C’Uj lve j}

cv max(ve,vc’) | a € Int Aan Act; #) A managed(a) = S]}

U {vc MC’}? ve | S; € SAB; € scope(Sj)} .

The state of the controller CP is represented by its vector clock. Controller CP has two types of actions:
e action rcvj| vc’] consists in receiving the vector clock vc’ of scheduler S,
e action snd, | vc| consists in sending the vector clock vc stored in the controller C to scheduler S;.
The two types of transitions can be understood as follow:

e For each action of component B;, which is managed by scheduler S;, we include a transition executing
action rcv;|vc’| to receive the vector clock we’ of scheduler S; and to update the vector clock stored in
controller CP.

12

Contsua LEIME andeti={a’} mameged(@)=S; @ rid g Lenledl}, g
(a’,{rcvj ch’j}) ,
(@b, @c) ————be; (a5, L)
o : {snd;ve] | j€T}
CoNT-SHaz 2 =i q J={j€[l,m]|B; €scope(S;)} ge — L g
(Bi,{snd; Lve] | 5€73) T
(qb’ qc) Ci (Qb7 qc)

Figure 6: Semantics rules defining the composition controller / shared component

5, {sndy, sndy}
Draing
{revi} {rcvy}
@ Filly ! 2
By

Figure 7: Controller of shared component Tank,

e We include a transition with a set of actions for all the schedulers that have component B; in their scope,
thatis {S; € S| B; € scope(S;)}, to send the stored vector clock of controller C} to the controllers of the
corresponding schedulers, that is {C5 | S; € S A B; € scope(S;)}.

Definition 11 (Semantics of B; ®y, CP) The composition of shared component B; and controller C?, denoted by
B; @1, CP, is the LTS (Q; X Quv, (Act; U{B;}) X Rob, —>pe,) Where the transition relation —p.,C (Q; X Qb) X

((Acti U{Bi}) x ch) x (Q; X Q.v) is defined by the semantics rules in Figure 6.

The semantics rules in Figure 6 can be intuitively understood as follows:

e Rule CONT-SHA1. applies when the scheduler notifies the shared component to execute an action part of
an interaction. Controller CP receives the value of the vector clock of scheduler S; from the associated
controller C5 in order to update the value of the vector clock stored in controller CP.

e Rule CONT-SHA2. applies when the shared component B; finishes its computation by executing [3;, and
controller CP notifies the controllers of the schedulers that have component B; in their scope, through actions
snd;, for j € J, which sends the vector clock stored in controller C;D to controllers st_ with 57 € J, where J
is the set of indexes of schedulers which have the shared component B; in their scope.

Example 6 (Controller of shared component) Figure 7 depicts the controller of the shared component Tanks
(depicted in Figure 2). Action rcvy (resp. rcvs) consists in the reception and storage of the vector clock from
scheduler Sy (resp. Sa) upon the execution of interaction Filly5 (resp. Drainags). Action {sndy, snds} sends the
stored vector clock to the schedulers S, and So when the component Tanko performs its internal action (3.

Definition 12 (Instrumented system) Given a distributed system with global behavior (Q, GAct,—) as per
Definition 4, the global behavior of the augmented distributed system with a set of controllers (as per Defini-
tions 8 and 10) consisting (S1 ®s Cf, ..., S|s| ®s CfSI,B{, . 7B|/B\) where B! = B; ®y, C? if B; € B, and
B! = B, otherwise, is the LTS (Q., GAct., —.) where:

e Q. C ®E‘1 Q) x ®|].S:|1(QSJ. X Qcs) where Q= Q; X Qu if B; € By and Q) = Q; otherwise, is the set
of states consisting of the states of schedulers and components with their controllers,

o GAct. = GAct x {Res, Rev | Sj € S A B; € By} s the set of actions,

o —.C Q. x GAct, x Q. is the transition relation.

13

4.2 Correctness of Instrumentation

The next proposition states that the LTS of the instrumented distributed system (see Definition 12) is weakly bi-
similar with the LTS of initial distributed system, thus the composition of a set of controllers with schedulers and
shared components defined in Sec. 4.1 does not affect the semantics of the initial distributed system.

Proposition 1 (Q, GAct,—) ~ (Q., GAct.,—).

Proof: The proof of this proposition is in Appendix ?? (p. 2?).

4.3 Event Extraction from the Local Traces of the Instrumented System

According to Definitions 8 and 10, the first action in the semantics rules of a controlled scheduler or shared com-
ponent corresponds to an interaction of the initial system. Thus, the notion of trace is extended in the natural way
by considering the additional semantics rules. Elements of a trace are updated by including the new configurations
and actions of controlled schedulers and shared components.

Example 7 (Local traces of instrumented system) Consider Example 4, the local traces of the instrumented sys-
tem for two global traces t, and ty are:

o s1(t1) = (dl,dz,dg)-(mulg, (lel12L(1 0)], sndgL(l,O)D)~(J_,J_,?)'<{B1}, ({/[31\},0)))(]“1,1_,?)-
({Draina} , {Draini} [(2,0)))) - (L, L,7) - ({82} (B21.9)) - (L. fo.)

o 52(t1) = (dh.da.dy) - ({Filla}, {Fills} [0.1)]) - (7, doy 1) - ({B2} s (= revn [(1LO)))) - (7. fas L),

o su(te) = (du, da, ds)- (Fillaz, ((Fillio[(1,0), snda[(1,0)])) (1, 1, 2)- ({82} (T821,0)) (L, f,7)-
({51}> ({/ﬁl\}a@» (f1s f2,7),

o sata) = (dr.dads) - ({Fills}, {Fills} [(0,1)]) - (7o 1) - ({8a} . (Bs}.0)) - (7 o, fo)
({B2) (=, revr [(1,0)])) - (7, for f) - (Dmmgg, (Dmirml,())J,sndgL(1,2)J)) (7,1, 1),

In both traces, scheduler Ss is notified of the state update of component Tanks (that is Bs), but scheduler Sy does
not sent it to the observer. Indeed, following the semantics rules of composition of a scheduler and its controller
(Definition 9), a scheduler only sends the received state from a component only if the execution of the latest action
on this component has been managed by this scheduler.

Definition 13 (Sequence of events) Ler t be the global trace of the distributed system and s;(t) = qo - 71 -
1 Yh—1 " Qk—1 Yk - Qi for j € [1,m], be the local trace of scheduler S; (as per Definition 7). The sequence
of events of s;(t) is inductively defined as follows:

e event(qo) = ¢,
event(s;(t)) - (a,vc) if vy is of the form (x, (@, %)),

e event (s;(t)-v-q) = event(s;(t)) - B if v is of the form (x, (8, %)) ,
event(s;(t)) otherwise.

Intuitively, any communication between the controller of scheduler S; and the observer is defined as an event
of scheduler S;. According to the semantic rules of composition S; ® CJS (see Definition 9), controller CS sends
information to the observer (actions denoted by * over them) when scheduler S; (i) executes an 1nteract10n a €
Act, or (ii) is notified by the internal action of a component which the execution of its latest action has been
managed by scheduler S;.

Example 8 (Sequence of events) The sequences of events of local traces in Example 7 are:
e event(sy(t1)) : (Filli2,(1,0)) - B1 - (Draing, (2,0)) - B,
e event(sa(ty)) : (Fills, (0,1)),

14

e event(sy(t2)) : (Fillia, (1,0)) - B2 - f1,
(] event(SQ(tQ)) : (Fillg, (0, 1)) . /63 . (DTaingg, (1, 2))

To interpret the state updates received by the observer, we use the notion of computation lattice, adapted to
distributed CBSs with multi-party interactions in the next section.

S Computation Lattice of a Distributed CBS with Multi-party Interac-
tions

In the previous section, we define how to instrument the system to have controllers generating events (i.e., local
traces) sent to a central observer. In this section, we define how the central observer constructs on-the-fly a
computation lattice representing the possible global traces compatible with the local traces received from the
controllers of schedulers.

5.1 Extended Computation Lattice

The constructed lattice is represented implicitly using vector clocks. The construction of the lattice mainly per-
forms the two following operations: (i) creations of new nodes and (ii) updates of existing nodes in the lattice.
The observer receives two sorts of events: events related to the execution of an interaction in Int, referred to as
action events, and events related to internal actions in U;eq1 || ({8:} x Q). referred to as update events. (Recall
that internal actions carry the state of the component which has performed the action — the state is transmitted to
the observer by the controller that is notified of this action. See Sec. 3). Hence, the set of action events is defined
as E, = Int x VC and the set of update events is defined as Eg = U;cpr, 1) ({6i} X Q:). Action events lead
to the creation of new nodes in the direction of the scheduler emitting the event while update events complete
the information in the nodes of the lattice related to the state of the component related to the event. The set of
all events is denoted by & = Eg U E,. Since the received events are not totally ordered (because of potential
communication delay), we construct the computation lattice based on the vector clocks attached to the received
events. Note, we assume that the events received from a scheduler are totally ordered.
We first extend the notion of computation lattice.

Definition 14 (Extended Computation lattice) A computation lattice L is a tuple (N, Int,—»), where
o N C Q' x VC is the set of nodes, with Q' = ®|ZE‘1 <Q§ U {J_f | S; € SAB; € scope(Sj)}) and VC' is

the set of vector clocks,

e Int is the set of multi-party interactions as defined in Sec. 3.1,
o —»= {(777(1,77’) € N x Int x N |a€ Int Ay 0 An.state % n’.state},

where —» is the extended presentation of happened-before relation which is labeled by the set of multi-party
interactions and 1.state referring to the state of node n.

Intuitively, a computation lattice consists of a set of partially connected nodes, where each node is a pair, consisting
of a state of the system and a vector clock. A system state consists in the states of all components. The state of
a component is either a ready state or a busy state (as per Definition 1). In this context we represent a busy
state of component B; € B, by L] which shows that component B; is busy to finish its latest action which
has been managed by scheduler S; € S. A computation lattice £ initially consists of an initial node init; =
(init, (0,...,0)), where init is the initial state of the system and (0, ..., 0) is a vector clock where all the clocks
associated to the schedulers are zero. The set of nodes of computation lattice £ is denoted by L£.nodes, and for a
node = (g, vc) € L.nodes, 1.state denotes g and 7. clock denotes ve. If (i) the event of node 7 happened before
the events of node 7/, that is 1’.clock > n.clock and — 7/, and (ii) the states of i and 1’ follow the global
behavior of the system (as per Definition 4) in the sense that the execution of an interaction a € Int from the state
of 7 brings the system to the state of 77/, that is 7).state — 1/’.state, then in the computation lattice it is denoted by
n =% 1’ or by — 1’ when clear from context.

Two nodes 7 and 7’ of the computation lattice £ are said to be concurrent if neither 7.clock > n’.clock nor
7’.clock > n.clock. For two concurrent nodes 7 and 7’ if there exists a node 1’ such that n”” > n and "/ = 7/,
then node 1" is said to be the meet of ny and " denoted by meet(n,n’, L) = n".

15

The rest of this section is structured as follows. In Sec. 5.2 some intermediate notions are defined in order to
introduce our algorithm to construct the computation lattice in Sec. 5.3. In Sec. 5.4 we discuss the correctness of
the algorithm.

5.2 Intermediate Operations for the Construction of the Computation Lattice

In the reminder, we consider a computation lattice £ as per Definition 14. The reception of a new event either
modifies £ or is kept in a queue to be used later. Action events extend £ using operator extend (Definition 15),
and update events update the existing nodes of £ by adding the missing state information into them using operator
update (Definition 18). By extending the lattice with new nodes, one needs to further complete the lattice by
computing joints of created nodes (Definition 17) with existing ones so as to complete the set of possible global
states and global traces.

Extension of the lattice. We define a function to extend a node of the lattice with an action event which takes
as input a node of the lattice and an action event and outputs a new node.

Definition 15 (Node extension) Function extend : (Q! x VC) x E, — Q' x VC is defined as follows. For a

noden = ((q1,...,qm|), vc) € Q' x VC and an action event e = (a, vc') € E,,
(g1, qjgy), vc’) if3j € [1,18]]:
extend(n, e) = (ve'[5] = velj] + LAV € [LIS[\ {5}« ve'[j] = velj'])
undefined otherwise ;

withVi € [1,|B|] : ¢} =
L,B]} - q L¥ otherwise.

{qi if B; € involved(a),

where k = managed(a).indez.

Node 7 said to be extendable by event e if extend(n, e) is defined. Intuitively, node n = (g, vc) represents a global
state of the system and extensibility of 1 by action event e = (a, v¢’) means that from the global state ¢, scheduler
S; = managed(a), could execute interaction a. State ¥ indicates that component B; is busy and being involved
in a global action which has been executed (managed) by scheduler Sy, for k € [1, |S]].

We say that computation lattice £ is extendable by action event e if there exists a node 7 € L.nodes such that
extend(n, e) is defined.

Property 1 Ye € E, : |[{n € L.nodes | I’ € Q' x VO : 1’ = extend(n,e)}|< 1.

Property 1 states that for any update event e, there exists at most one node in the lattice for which function extend
is defined (meaning that £ can be extended by event e from that node).

Example 9 (Node extension) Considering the local traces described in Example 8, initially, the computation lat-
tice consists of the initial node which has the initial state init, with an associated vector clock (0,0), i.e., init, =
((d1,da,ds3),(0,0)). Consider the sequence of events in trace t1 from Example 8, node ((dy,ds,d3),(0,0)) is
extendable by event (Fill12, (1,0)) because, according to Definition 15, we have:

eXtend(((dh d2, d3)a (Oa 0))7 (Filll2a (17 O))) = ((LL J—%a d3)7 (1’ O))

Furthermore, to illustrate Property 1, let us consider the extended lattice after event (F'ill12, (1, 0)) which con-
sists of two nodes, init; and (11, 11 d3),(1,0)). When action event (Fills, (0,1)) is received, extend (init,
(Fills, (0,1)) = ((d1, d2, 13),(0,1)) whereas extend(((L}, L1,d3), (1,0)), (Fills, (0,1))) is not defined which
shows that Property 1 holds on the lattice.

We define a relation between two vector clocks to distinguish the concurrent execution of two interactions such
that both could happen from a specific global state of the system.

Definition 16 (Relation 7;) Relation J; C VC x VC is defined between two vector clocks as follows: Jy =
{(ve,vc’) € VCx VC | Ak € [1,|8]] : ve[k] = vc'[k] + LA € [1,|S]] : vd[l] = well] +1AV) €
[L, [\ {&, 1} = velj] = ve'[4]}-

16

For two vector clocks ve and vc’ to be in relation J, ve and vc’ should agree on all but two clocks values related
to two schedulers of indexes k and [. On one of these indexes, the value of one vector clock is equal to the value
of the other vector clock plus 1, and the converse on the other index. Intuitively, (n.clock,n’.clock) € J, means
that nodes 1 and 7y’ are associated to two concurrent events (caused by the execution of two interactions managed
by two different schedulers) that both could happen from a unique global state of the system which is the meet of
n and 1 (see Property 2). Example 10 illustrates relation 7.

Property 2 ¥, 7' € L.nodes : (n.clock,n’.clock) € J, = meet(n,n’, L) € L.nodes.

Property 2 states that for two nodes n and 7’ in lattice £ such that (n.clock,n’.clock) € Jr, there exists a node in
lattice £ as the meet of 7 and 7/, that is meet(n, ', L) € L.nodes.
The joint node of 7 and 7’ is defined as follows.

Definition 17 (Joint node) For two nodes 1,7’ € L.nodes such that (n.clock,n’.clock) € Ty, the joint node of
n and 1, denoted by joint(n,n', L) = 1", is defined as follows:

n.state[i] if n.state[i] # nm.stateli],

o Vi [1,|B| : 7. stateli] =
[1, B[] : 7] {n’.state[ﬂ otherwise;

e 1" .clock = max(n.clock,n .clock);
where 1, = meet(n,n’, L).

According to Property 2, for two nodes 7 and 7’ in relation 7, their meet node exists in the lattice. The state
of the joint node of 1 and 7’ is defined by comparing their states and the state of their meet. Since two nodes in
relation J, are concurrent, the state of component B; for i € [1, |B|] in nodes 7 and 7’ is either equal to the state
of component B; in their meet, or only one of the nodes 17 and 7 has a different state than their meet (components
can not be both involved in two concurrent executions). The joint node of two nodes 7 and)’ takes into account the
latest changes of the state of the nodes 7 and 1’ compared to their meet. Note that joint(n, ", £) = joint(n’, n, £),
because joint is defined for nodes whose clocks are in relation J.

Example 10 (Relation J and joint node) To continue Examples 9 and 11, the reception of action event (Fills, (0,1))
extends the lattice in the direction of scheduler Sy because function extend is defined, that is:

extend(((dy, do, d3), (0,0)), (Fills, (0,1))) = ((dy, dz, L2), (0,1)).

After this extension, the nodes of the lattice are ((dy, da, d3), (0,0)), (L1, 13, d3),(1,0)) and ((d1,dz, 12),(0,1)).
According to Definition 16, the vector clocks of the nodes (11, 13, d3),(1,0)) and ((dy,dz, 12),(0,1)) are in
relation J¢ (i.e., ((1,0),(0,1)) € Jr). Hence, following Definition 17, the joint node of the two above nodes is
(L}, L3, 12),(1,1)), and their meet is ((dy, dz, d3), (0,0)).

Update of the lattice. We define a function to update a node of the lattice which takes as input a node of the
lattice and an update event and outputs the updated version of the input node.

Definition 18 (Node update) Function update : (Q' x VC) x Eg — Q' x VC is defined as follows. For a node
n = ((q1,--.,qmBJ), vc) and an update event e = (p;,q;) € Eg withi € [1,|B|] which is sent by scheduler Sy,
with k € [1,]S]]:

update(n, e) = ((q1, - - ~,Qi—1a(I§',qi+17 . 7Q|B\)7 ve),

/ . k

ifg = Lk

with ¢/ = % Va o
q; otherwise.

An update event (3, ¢;) contains an updated state of some component B;. By updating a node 7 in the lattice with
an update event which is sent from scheduler Si, we update the incomplete global state associated to 77 by adding
the state information of that component, if the state of component B; associated to node 7 is | ¥. Intuitively means
that a busy state which is caused by an execution of an action managed by scheduler Sj, can only be replace by a
ready state sent by the same scheduler Sj. Updating node 7 does not modify the associated vector clock vc.

Example 11 (Node update) To continue Example 9, let us consider node ((L1, 11, d3), (1,0)) whose associated
global state is incomplete (because of the lack of the state information of Tank, and Tanks), and update event
(81, f1) sent by scheduler Sy. To obtain the updated node, we apply function update over the node and the update
event. We have: update(((L1, 11, d3),(1,0)), (51, f1)) = ((f1, L3,d3), (1,0)). Concerning the initial node of
the lattice and update event (31, f1), update(((dy,ds2,ds), (0,0)), (b1, f1)) = ((d1,d2,ds3), (0,0)).

17

Algorithm 1 MAKE

Global variables: £ initialized to nit .,
% initialized to e,
V initialized to (0,...,0).
1: procedure MAKE(e, from-the-queue)
2 if e € E, then > if e is an action event.
3 ACTIONEVENT(e, from-the-queue)
4: elseif e € F'g then > if e is an update event.
5 UPDATEEVENT (e, from-the-queue)
6 end if
7: end procedure

Buffering events. The reception of an action event or an update event might not always lead to extending
or updating the current computation lattice. Due to communication delay, an event which has happened before
another event might be received later by the observer. It is necessary for the construction of the computation lattice
to use events in a specific order. Such events must be kept in a waiting queue to be used later. For example, such
a situation occurs when receiving action event e such that function extend is not defined over e and none of the
existing nodes of the lattice. In this case event e must be kept in the queue until obtaining another configuration
of the lattice in which function extend is defined. Moreover, an update event ¢’ referring to an internal action
of component B; is kept in the queue if there exists an action event ¢’ in the queue such that component B; is
involved in e, because we can not update the nodes of the lattice with an update event associated to an execution
which is not yet taken into account in the lattice.

Definition 19 (Queue k) A queue of events is a finite sequence of events in E. Moreover, for a non-empty queue
K=ey eg---e,remove(k,e) =k(l---z2—1)-k(z+1---r)withe =¢, € {e1,€2,...,€,}.

Queue « is initialized to an empty sequence. Function remove takes as input queue x and an event in the queue
and outputs the version of x in which the given event is removed from the queue.

Example 12 (Event storage in the queue) Consider trace to in Example 8 such that all the events of scheduler
So are received by the observer earlier than the events of scheduler Sy. After the reception of action event
(Fills, (0,1)), since extend(((dy,ds2,ds), (0,0)), (Fills, (0,1))) is defined, the lattice is extended in the direc-
tion of scheduler Sy and the new node ((d1,ds, 13)(0,1)) is created. The reception of update event (B3, f3)
updates the newly created node ((dy,ds, 12)(0,1)) to ((d1,dz, f3)(0,1)). After the reception of action event
(Drainas, (1,2)), since there is no node in the lattice where function extend is defined over, event (Drainas, (1,2))
must be stored in the queue, therefore k = (Drainas, (1,2)).

5.3 Algorithm Constructing the Computation Lattice

In the following, we define an algorithm based on the above definitions to construct the computation lattice based
on the events received by the global observer.

The algorithm consists of a main procedure (see Algorithm 1) and several sub-procedures using global vari-
ables lattice £ (Definition 14) and queue « (Definition 19).

For an action event e € E, with e = (a, v¢), e.action denotes interaction a and e.clock denotes vector clock
ve. For an update event e € Eg with e = (8;, ¢;), e.index denotes index 4.

Initially, after the reception of event e from a controller of a scheduler, the observer calls the main procedure
MAKE (e, false). In the following, we describe each procedure in detail.

MAKE (Algorithm 1): Procedure MAKE takes two parameters as input: an event e and a boolean variable
from-the-queue. Parameters e and from-the-queue vary based on the type of event e. Boolean variable from-the-queue
is true when the input event e is picked up from the queue and false otherwise (i.e., event e is received from a
controller of a scheduler). Procedure MAKE uses two sub-procedures, ACTIONEVENT and UPDATEEVENT. If

the input event is an action event, sub-procedure ACTIONEVENT is called, and if the input event is an update
event, sub-procedure UPDATEEVENT is called. Procedure MAKE updates the global variables.

18

Algorithm 2 ACTIONEVENT

1: procedure ACTIONEVENT(e, from-the-queue)

2 lattice-extend < false

3 for all n € L.nodes do

4 if 3y’ € Q' x VO : 1’ = extend(n, e) then

5: L.nodes + L.nodes U {n'} > extend the lattice with the new node.

6 MODIFYQUEUE(e, from-the-queue, true) > event e is removed from the queue if it was picked
up from the queue.

7: lattice-extend < true
8: break > stop iteration when the lattice is extended (Property 1).
9: end if
10: end for
11: if — lattice-extend then
12: MODIFYQUEUE(e, from-the-queue, false) > event e is added to the queue if it was not picked up
from the queue.
13: return
14: end if
15: JOINTS() > extend the lattice with joint nodes.
16: REMOVEEXTRANODES() > lattice size reduction.
17: if — from-the-queue then
18: CHECKQUEUE() > recall the events stored in the queue.
19: end if

20: end procedure

ACTIONEVENT (Algorithm 2): Procedure ACTIONEVENT is associated to the reception of action events and
takes as input an action event e and a boolean parameter from-the-queue, which is false when event e is received
from a controller of a scheduler and true when event e is picked up from the queue. Procedure ACTIONEVENT
modifies global variables £ and «.

Procedure ACTIONEVENT has a local boolean variable lattice-extend which is true when an input action
event could extend the lattice (i.e., the current computation lattice is extendable by the input action event) and
false otherwise.

By iterating over the existing nodes of lattice £, ACTIONEVENT checks if there exists a node 7 in £.nodes such
that function extend is defined over event e and node n (Definition 15). If such a node 7 is found, ACTIONEVENT
creates the new node extend (7, €), adds it to the set of the nodes of the lattice, invokes procedure MODIFY QUEUE,
and stops iteration. Otherwise, ACTIONEVENT invokes procedure MODIFYQUEUE and terminates.

In the case of extending the lattice by a new node, it is necessary to create the (possible) joint nodes. To
this end, in Line 15 procedure JOINTS is called to evaluate the current lattice and create the joint nodes. For
optimization purposes, after making the joint nodes procedure REMOVEEXTRANODES is called to eliminate
unnecessary nodes to optimize the lattice size.

After making the joint nodes and (possibly) reducing the size of the lattice, if the input action event is not
picked from the queue, ACTIONEVENT invokes procedure CHECKQUEUE in Line 18, otherwise it terminates.

UPDATEEVENT (Algorithm 3): Procedure UPDATEEVENT is associated to the reception of update events. Re-
call that an update event e contains the state update of some component B; with i € [1, n] (e.index = 7). Procedure
UPDATEEVENT takes as input an update event e and a boolean value associated to parameter from-the-queue.
Procedure UPDATEEVENT modifies global variables £ and k.

First, UPDATEEVENT checks the events in the queue. If there exists an action event ¢’ in the queue such that
component B; is involved in e’.action, UPDATEEVENT adds update event e to the queue using MODIFYQUEUE
and terminates. Indeed, one can not update the nodes of the lattice with an update event associated to an execution
which is not yet taken into account in the lattice.

If no action event in the queue concerned component 3;, UPDATEEVENT updates all the nodes of the lattice
(Lines 8-10) according to Definition 18.

Finally, the input update event is removed from the queue if it is picked from the queue, using MODIFYQUEUE.

19

Algorithm 3 UPDATEEVENT

1: procedure UPDATEEVENT(e, from-the-queue)

2: foralle’ € k do
3: ife’ € E, A e.index € involved(e’.action) then > check if there exists an action event in the queue
concerning component B jndes-
4: MODIFYQUEUE(e, from-the-queue,false) > event e is added to the queue if it was not picked
up from the queue.
5 return
6 end if
7: end for
8 for all n € L.nodes do
9 n < update(n,) > update nodes according to Definition 18.
10: end for
11: MODIFYQUEUE(e, from-the-queue, true)

12: end procedure

Algorithm 4 MODIFYQUEUE

1: procedure MODIFYQUEUE(e, from-the-queue, event-is-used)

2 if from-the-queue A event-is-used then

3: K < remove(k, e) > event e is removed from the queue if it is picked from queue and used.
4 else if — from-the-queue N— event-is-used then

5 K4 K-e > event e is added to the queue if it is not picked from queue and could not be used.
6 end if
7: end procedure

MODIFYQUEUE (Algorithm 4): Procedure MODIFYQUEUE takes as input an event e and boolean variables
from-the-queue and event-is-used. Procedure MODIFYQUEUE adds (resp. removes) event e to (resp. from)
queue k according to the following conditions. If event e is picked up from the queue (i.e., from-the-queue =
true) and e is used in the algorithm to extend or update the lattice (i.e., event-is-used = true), event e is
removed from the queue (Line 3). Moreover, if event e is not picked up from the queue and it is not used in the
algorithm, event e is stored in the queue (Line 5).

JOINTS (Algorithm 5): Procedure JOINTS extends lattice £ in such a way that all the possible joints have been
created. First, procedure JCOMPUTE is invoked to compute relation J, (Definition 16) among the existing nodes
of the lattice and then creates the joint nodes and adds them to the set of the nodes of the lattice. Then, after the
creation of the joint node of two nodes 7 and 7', (1).clock, n’.clock) is removed from relation J.. It is necessary
to compute relation 7 again after the creation of joint nodes, because new nodes can be in relation J,. This
process terminates when 7 is empty.

JCOMPUTE (Algorithm 6): Procedure JCOMPUTE computes relation 7 by pairwise iteration over all the nodes
of the lattice and checks if the vector clocks of any two nodes satisfy the conditions in Definition 16. The pair of
vector clocks satisfying the above conditions are added to relation J.

CHECKQUEUE (Algorithm 7): Procedure CHECKQUEUE recalls the events stored in the queue e € x and
executes MAKE(e, true), to check whether the conditions for taking them into account to update the lattice hold.

Procedure CHECKQUEUE checks the events in the queue until none of the events in the queue can be used
either to extend or to update the lattice. To this end, before checking queue «, in Line 3 a copy of queue « is stored
in &/, and after iterating all the events in queue &, the algorithm checks the equality of current queue and the copy
of the queue before checking. If the current queue and copied queue «’ have the same events, it means that none
of the events in queue x has been used (thus removed), therefore the algorithm stops checking the queue again by
breaking the loop in Line 8.

Note, when the algorithm is iterating over the events in the queue, i.e., when the value of variable from-the-queue
is true, it is not necessary to iterate over the queue again (Algorithm 2, Line 17). Moreover, events in the queue

20

Algorithm 5 JOINTS

1: procedure JOINTS

2 Jr < JCOMPUTE > compute the pairs of the vector clocks of the nodes which are in 7.
3 while 7, # 0 do

4 for all n, 7’ € L.nodes such that (n.clock,n’.clock) € Jr do

5: L.nodes + L.nodes U {joint(n,n’, L)} > extend the lattice with the new joint node.
6 T Tz \ {(n.clock,n’.clock)}

7 end for

8 Jr < JCOMPUTE

9: end while

10: end procedure

Algorithm 6 JCOMPUTE

1: procedure JCOMPUTE

2 for all n,n', 7" € L.nodes do

3 ifn’ — n Ay’ — n then > if and 7’ are associated to two concurrent events.
4: I = Tz U{(n.clock,n’ .clock)} > n.clock and 1/’ . clock are added to relation J.
5: end if

6 end for

7 return J,

8: end procedure

are picked up in the same order as they have been stored in the queue (FIFO queue).

REMOVEEXTRANODES (Algorithm 8): For optimization reasons, after extending the lattice by an action
event, procedure REMOVEEXTRANODES is called to eliminate some (possibly existing) nodes of the lattice.
A node in the lattice can be removed if the lattice no longer can be extended from that node. Having two nodes
of the lattice i and 7" such that every clock in the vector clock of 7’ is strictly greater than the respective clock of
7, one can remove node 7). This is due to the fact that the algorithm never receives an action event which could
have extended the lattice from 7 where the lattice has already took into account an occurrence of event which has
greater clocks stamp than 7. clock.

Example 13 (Lattice construction) Figure 8a depicts the computation lattice according to the received sequence
of events concerning trace ty of Example 8. Node ((d1,ds, f3),(0,1)) is associated to event (Filly2,(1,0)) and
node ((f1, f2,ds), (1,0)) is associated to event (Fills, (0,1)). Since these two events are concurrent, joint node
((f1, f2, f3) . (1,1)) is made. Node ((f1,13,13),(1,2)) is associated to event (Drainss, (1,2)). Due to vector
clock update technique, the node with vector clock of (0, 2) is not created.

5.4 Insensibility of Algorithm MAKE to the Communication Delay

Algorithm MAKE can be defined over a sequence of events received by the observer (= e; -ex-e3---e, € E*
in the sense that one can apply MAKE sequentially from e; to e, initialized by taking event e;, the initial lattice
init and an empty queue.

Proposition 2 (Insensitivity to the reception order) Forany two sequences of events (,(’ € E*, we have (VS ;€8 :Cls;= ¢ Is
MAKE(() = MAKE(("), where |, is the projection of ¢ on scheduler Sj which results the sequence of events
generated by S;.

Property 2 states that different ordering of the events does not affect the output result of Algorithm MAKE.
Note, Proposition 2 assumes that all events in ¢ and ¢’ can be distinguished. For a sequence of events { € E*,
MAKE(().lattice denotes the constructed computation lattice £ by algorithm MAKE.

5.5 Correctness of Lattice Construction

Computation lattice £ has an initial node init, which is the node with the smallest vector clock, and a frontier
node which is the node with the greatest vector clock. A path of the constructed computation lattice £ is a sequence

21

Algorithm 7 CHECKQUEUE

1: procedure CHECKQUEUE

2 while true do

3 K K

4: for all z € [1,length(k)] do

5: MAKE(k(z), true) > recall the events of the queue.
6 end for

7 if K = £’ then

8 break > break if none of the events in the queue is used.
9 end if

10: end while

11: end procedure

Algorithm 8 REMOVEEXTRANODES

1: procedure REMOVEEXTRANODES
2: for all n € L.nodes do

ifVj € [1,m],3n € L.nodes : n'.clock[j] > n.clock[j] then 1> if there exists a node with a strictly
greater clocks in the vector clock.
4: remove(L.nodes,n) > the node with the smaller vector clock is removed.
5: end if
6
7

(95}

end for
: end procedure

of causally-related nodes of the lattice, starting from the initial node and ending up in the frontier node.

Definition 20 (Set of the paths of a lattice) The set of the paths of a constructed computation lattice L is I1(L) =
{770 cQp M Qe My Ny | Mo = dndte AVT € [1,2] (77,,_1 % n,. V (AN C L.nodes : n,_1 =

meet(N, L) A n,. = joint(N, L) AVn € N : n,._q NN Ao, = UnEN an)) } where the notions of meet and

joint are naturally extended over a set of nodes.

A path crosses over a series of nodes of the lattice either (i) the prior node is in = relation with the next node
or (ii) the prior and the next node are the meet and the joint of a set of existing nodes respectively. A path from a
meet node to the associated joint node represents an execution of a set of concurrent joint actions.

Example 14 (Set of the paths of a lattice) In the computation lattice L depicted in Figure 8a, there are three dis-
tinct paths that begin from the initial node ((dy, d2, d3) , (0,0)) and end up to the frontier node ((fl, 12, J_?))) , (1, 2))
The set of paths is II(L) = {my, w2, w3}, where:

o 1 = ((d1,d2,d3),(0,0)) - { Fill12} - ((f1, f2,d3), (1,0)) - {{Fill3}} - ((f1, fa, f3), (1, 1)) - { Drainas} -
(fl,J—%J-%)a(l»Q)),

o my = ((d1,d2,d3),(0,0)) - {{Fill3}} - ((dv,dz, f3),(0,1)) - {Filly2} - ((f1, f2, f3), (1, 1)) - { Drainaz} -
((f1,13,13),(1,2)),

& T3 = ((d15d27d3)7 (O’O)) ’ {Filll% {FZZZS}} : ((f17f27 f3)7 (la 1)) ! {Drain23} ' ((.flvj—%’ L?&)? (1’2))

Let us consider a distributed CBS consisting of a set of components B (as per Definition 1) and a set of schedulers
S (as per Definition 2) with the global behavior as per Definition 4. At runtime, the execution of such a system
produces a global trace t = ¢° - (al UBY) - ¢t - (a2 UB?) - - - (a® U BF) - ¢* which consists of (incomplete) global
states and global actions (as per Definition 6). Due to the occurrence of simultaneous interactions and internal
actions, each global trace ¢ can be represented as a set of compatible global traces, which could have happened in
the system at runtime.

Definition 21 (Compatible traces of a global trace) The set of all compatible global traces of global trace t is
P(t)={t' € Q- (GAct-Q)* |Vj e [1,[8|,t ls,=t ls,= s;(t)}.

22

((51.13.13).01.2)
\ ((F.13.13).(1.2))
(oo fo). (1.1) \
(oo). (11)
s FO.0) (oododo) (10) \\ \
(o ord), (1,0)
((d1, da, d3). (0,0)) (b) Optimized computation lattice

(a) Computation lattice

Figure 8: Computation lattice associated to trace to in Example 4

Trace t' is compatible with trace ¢ if the projection of both ¢ and ¢’ on scheduler S}, for j € [1, |S]], results the local
trace of scheduler .S;. In a global trace, for each global action which consists of several concurrent interactions
and internal actions of different schedulers, one can define different ordering of those concurrent interactions, each
of which represents a possible execution of that global action. Consequently, several compatible global traces can
be encoded from a global trace.

Note that two compatible traces with only difference in the ordering of their internal actions are considered
as a unique compatible trace. What matters in the compatible traces of a global trace is the different ordering of
interactions.

Example 15 (The set of compatible global traces) Let us consider the incomplete global trace t, described in
Example 8, thatis t1 = (dl, do, ds) . {Fllllg} . (J_, 1, d3) . {ﬁl} . (f1> 1, d3) . {{Dmml} s {Flllg}} . (J_, 1, J_) .
{B2} - (L, fa, L). The projection of t1 on each scheduler is represented as follow:

o t1 g, = (di,dy,ds) - {Fillio} - (L, L,7) - {B1} - (f1,L,7) - {{Drainy}} - (L, L,7) - {B2} - (L, f2,7)
o t1 lg,= (dv,da,ds) - {Fills} - (?,ds, L).

The set of compatible global traces is P(t1) {t 12,4314, t‘;’} where:
o i} = (di,ds,dy)-{Fillio}-(L, L,d3)-{B1}-(f1, L, dy)-{{Fills} ,{ Drain1}}-(L, L, L)-{Ba}-(L, fo, L),

[] tl = dl,dg,dg) {Fill12}~(L7L,d3)-{ﬁ1}-(fl,L7d3)'{{D’f’aiﬂl}}'(L,L7d3) {{Flllg}} (L L L
{B2} - (L, fa,

>

1)
i {Fillyo}- (L, L, ds) - {B1}- (fr, Lo ds) - {{Fills}}- (fr, L, L) -{{Drain }}- (L, L, 1)

o 13 = (dy,dy,d3)-

{Ba} - (L, f2, L),
o t1 = (di,da,d3) {Fillya, { Fills}}- (L, L, L)-{B1}(fr, L, L) {{Drainy }}- (L, L, L) {82} (L, fo, L),
° tl = (dl,dg,dg) {{Flllg}}(dl,dQ,J_){Fllllg}(J_,J_,J_){ﬂl}(fl,J_,J_){{DT’alTLl}}(J_,J_,J_)

{Ba} - (L, f2, L).

For monitoring purposes it is necessary to represent the run of the system by a sequence of complete global
states (recall that the monitored property is defined over the complete global states). To this end, by inspiring the
technique introduced in [17], we define a function which takes as input a global trace of the distributed system (i.e.,
a sequence of incomplete global states) and outputs an equivalent global trace in which all the internal actions (3)
are removed from the trace and instead the updated state after each internal action is used to complete the states
of the global trace.

Definition 22 (Function refine Rg) Function Rz : Q - (GAct - Q)* — Q - (Int - Q)* is defined as:
o Rga(init) = init,
Rﬁ(a)'a'q lfﬁ:@v

® Rg(o-(aUp)-q) = (map [z +— upd(q,z)] (Rs(c)) ifa=0,
map [z — upd(q,z)] (Rg(c) - - q) otherwise;

withupd : Q x (Q U 2M) — Q U 2™ defined as:

- upd((q1,-.-,qB|) @) =,

— upd ((ql,...,q|B|),(qi,...,q|’B|)) = (q’l’,_,.,qﬁ3|),

; b / b

A S

where 'k € [1,|Bl], ¢} = {qic if (@ ¢ Q) A (di € Qi)
q, otherwise.

Function R g uses the (information in the) state after internal actions in order to update the incomplete states using
function upd.

By applying function Rz over the set of compatible global traces P(t), we obtain a new set of global traces
which is (i) equivalent to P(¢) (according to [17], Definition 5), (ii) internal actions are discarded in the presenta-
tion of each global trace and (iii) contains maximal complete states that can be built with the information contained
in the incomplete states observed so far.

Example 16 (Applying function R) By applying function Rg over the set of compatible global traces in Exam-
ple 15 we have the refined traces:

o Rp(t}) = (di,dp,d3) - {Fillio} - (f1, f2,d3) - {{Drains} , {Fills}} - (L, fa, L),

o Rp(t3) = (du,da, d3) - {Fill2} - (f1, fo,ds) - {{Drain1}} - (L, fa, d3) - {{Fill3}} - (L, f2, L),
o Rp(t]) = (dv,da, d3) - {Fill2} - (f1, fo,ds) - {{Fills}} - (f1, fo, L) - {{Drain1}} - (L, fo, L),
° 'Rg(t4) = (dy,da,d3) - {Fillya, {Fills}} - (f1, fo, L) - {{Drainy }} - (L, fo, L),

o Rs(t3) = (di,da,d3) - {{Fill3}} - (d1,d2, L) - {Fillia} - (f1, fa, L) - {{Draini}} - (L, fa, L).

In Sec. 3.2 (Definition 7) we define {s1(t),..., sm ()}, the set of observable local traces of the schedulers ob-
tained from global trace ¢. According to Definition 13, from each local trace we can obtain the sequences
of events generated by the controller of each scheduler, such that the set of all the sequences of the events is
{event(s1(t)),...,event(sy,(t))} with event(s;(t)) € E* for j € [1,|S]].

In the following, we define the set of all possible sequences of events that could be received by the observer.

Definition 23 (Possible events ordering) Considering global trace t, the set of all possible sequences of events
that could be received by the observer is ©(t) = {¢ € E* | Vj € [1,[S]] : (ls,= event(s;())}.

Events are received by the observer in any order just under a condition in which the ordering among the local
events of a scheduler is preserved.

Proposition 3 (Soundness) V(€ O(t),Vr € II(MAKE (() .lattice),Vj € [1,[S]] : m Ls,= Rp(s;(t)).

Property 3 states that the projection of all paths in the lattice on a scheduler S; for j € [1, |S|] results in the refined
local trace of scheduler S;. The following proposition states the correctness of the construction in the sense that
applying Algorithm MAKE over a sequence of observed events (i.e., (€ ©) at runtime, results a computation
lattice which encodes a set of the sequences of global states, such that each sequence represents a global trace of
the system.

Proposition 4 (Completeness) Given a global trace t as per Definition 6, we have
V¢ e Ot), vt e P(t),3m e H(MAKE ©) .lattz’ce) cm=Rg(t).

7 said to be the associated path of the compatible trace t'.

Applying algorithm MAKE over any of the sequence of events constructs a computation lattice whose set of paths
consists on all the compatible global traces.

Example 17 (Existence of the set of compatible global traces in the constructed lattice) Let us consider global
trace t1 presented in Example 4 and the set of all associated event of global trace t; that is presented in Example 8.
Events are received by the observer in order to make the lattice. Figure 10, illustrates the associated constructed
computation lattice using algorithm MAKE consists of 5 paths 71 to 7s. The set of refined compatible global traces
(presented in Example 16) can be extracted from the reconstructed lattice, where 7y, = Rz (t¥) for k € [1,5).
Paths 7 to s are associated paths of the compatible traces t1 to t; respectively.

24

P AN Observable Local Traces

s ans . I
/ Distributed CBS Transformation nstrumented

‘ { Distributed CBS L
| Global semantics] Global semantics Sequence of nline Algortthm

Se- ' Unobservable Global Trace ¢ /" Local Trace S () - || Local Events l

(Completeness) (Soundness) \//

_ Set of Complete
i P(t) : — Global Tlr_?ces of L

e — - — 4’1/
)
\\
N\
X
7 2omeT uonendwo))

UoI8$I301,
uorssaI3o1|

i PROG(P(t)) 3 — progression(Il) | —=| pf.®

Online Progression on £

Figure 9: Approach overview

6 LTL Runtime Verification by Progression on the Reconstructed Com-
putation Lattice

In this section, we address the problem of monitoring an LTL formula specifying the desired global behavior of
the system.

In the usual case, evaluating whether an LTL formula holds requires the monitoring procedure to have access
to the complete information about the system state, that is ready states of CBSs. Since components have busy
states as well as ready states, the global trace of the system is a sequence of incomplete global states (cf. Defini-
tion 6). An incomplete global state is a sort of global state in which the state of some components are possibly
unknown. Although by stabilizing the system to have all the components’ ready-states we could obtain a complete
computation lattice using algorithm MAKE (cf. Sec. 5.3), that is the state of each node is a complete global state,
instead, we propose an on-the-fly verification of an LTL property during the construction of computation lattice.

There are many approaches to monitor LTL formulas based on various finite-trace semantics (cf. [3]). One
way of looking at the monitoring problem for some LTL formula ¢ is described in [4] based on formula rewriting,
which is also known as formula progression, or just progression. Progression splits a formula into (i) a formula
expressing what needs to be satisfied by the observed events so far and (ii) a new formula (referred to a future
goal), which has to be satisfied by the trace in the future. We apply progression over a set of finite traces, where
each trace consists in a sequence of (possibly) incomplete global states, encoded from the constructed computation
lattice. An important advantage of this technique is that it often detects when a formula is violated or validated
before the end of the execution trace, that is, when the constructed lattice is not complete, so it is suitable for
online monitoring.

To monitor the execution of a distributed CBS with multi-party interaction with respect to an LTL property ¢,
we introduce a more informative computation lattice by attaching to the each node of lattice £ a set of formula.
Given a computation lattice £ = (N,) (as per Definition 14), we define an augmented computation lattice £¥
as follow.

Definition 24 (Computation lattice augmentation) L? is a pair (N¥,), where N¥ C Q' x VO x2TL s the
set of nodes augmented by 2V, that is the set of LTL formulas. The initial node is init% = (init, (0,...,0),{¢})
with ¢ € LTL the global desired property.

In the newly defined computation lattice, a set of LTL formulas is attached to each node. The set of formulas
attached to a node represents the different evaluation of the property ¢ with respect to different possible paths
form the initial node to the node. The state and the vector clock associated to each node and the happened-before
relation are defined similar to the initial definition of computation lattice (cf. Definition 14).

The construction of the augmented computation lattice requires some modifications to algorithm MAKE:

25

(L 2. 1), (2,1)) (L, f2, 1), (2,1)) (L, f2.1).(2,1))

as A1 as

((fis for L (L, f2,d3), (2,0)) ((fr, f2, L (L, fo,d3), (2,0)) ((f1 f2s L (L, f2, d5), (2,0))
((d,d2,1),(0,1)) ((f1, f2,d3), (1,0)) ((d1,ds, 1), (0,1)) ((f1, f2,ds) ((d1,d2, 1), (0,1)) ((f1, f2.d
((dy,ds, ds),(0,0)) ((dy,da, d3), ((dy,da, d3), (0,0))
(a) Computation lattice (b) Path m; (c) Path 7o
(L f2, 1), (2,1) (L f2. 1), (2,1) (L f2, 1), (2,1))

) (L,1)) (L f2,d5),(2,0)) ((f1, f2, 1), (1,1)) (L. f2,ds), (2,0)) ((f1, f2. 1), (4 f2,d5),(2,0))
((d1,dz, 1),(0,1)) ((f1, f2,d5), (1,0)) ((d1,ds, 1), (0,1)) ((f1, f2,ds), (1,0)) ((d1,da, 1), (0,1))

((d1, ds,d3), (0,0)) ((da ((d1, ds, d3), (0,0))

(d) Path 73 (e) Path 74 (f) Path 75

Figure 10: Computation lattice, all the associated paths and compatible traces associated to trace ¢; in Example 4

e Lattice £ initially has node init% = (init, (0,...,0),{¢}).

e The creation of a new node 7 in the lattice with n.state = q and 7). clock = wvc, calculates the set of formulas
3 associated to 7 using the progression function (see Definition 25). The augmented node is = (g, vc, X),
where Y = {prog(LTL ,q) | LTL' € /.2 A (f »» nV 3N C L%.nodes : ' = meet(N,L) \n =
joint(N, £))}. We denote the set of formulas of node € L?.nodes by n.X.

e Updating node n = (g, vc, ¥) by update event e = (8;,¢;) € Eg,i € [1,n] which is sent by scheduler
S;, 7 € [1,m] updates all associated formulas ¥ to 3’ using the update function (see Definition 26), where
Y= {upd¢(LTL, qi,j) | LTL € Z}.

Definition 25 (Progression function) prog : LTL xQ' — LTL is defined using a pattern-matching with p €
APicpnyand q = (qu, - .., qn) € Q"

prog(¢,q) = match(p)with
T fg € Qi ApE G
| pe€APcnn—F fa€Qinpda
Xgp otherwise (¢; = L¥ k € [1,m])
| X’gp — Xgp
| 1V 92 — prog(e1,q) V prog(vz, q)
| 1Up2 — prog(pa, q) V prog(e1,q) A p1Ups
| Gy — prog(p,q) NGy
| Fo — prog(p,q) V Fe
| Xp—e
I

- — —prog(¢, q)
T—T

We define a new modality Xg such that Xgp for p € AP;cpy) and k € [1,m] means that atomic proposition
p has to hold at next ready state of component B; which is sent by scheduler Sy. For a sequence of global
states obtained at runtime ¢ = qo - q1 - g2 - - - such that 0; = q;j, we have o; = Xgp & o, = p where

z = min ({7“ > 7 ‘ (0r-14s.) &sk (o \Lsk)}>.

26

The truth value of the progression of an atomic proposition p € AP; for ¢ € [1,n] with a global state ¢ =
(g1, -..,¢qn) is evaluated by true (resp. false) if the state of component B; (that is ¢;) is a ready state and satisfies
(resp. does not satisfy) the atomic proposition p. If the state of component B; is not a ready state, the evaluation
of the atomic proposition p is postponed to the next ready state of component B;.

Definition 26 (Formula update function) upd,, : LTL x {Q5}_, x [1,m] — LTL is defined using a pattern-
matching with q; € Q% for i € [1,n).

upd,,(¥,qi,j) = match(p) with

T ifpe APiNng Ak=j

| Xip o F ifpe AP, NG Ak =]

Xgp otherwise (p & AP,V k # j)
| @1 V2 = upd, (1, 4:) Vupd, (92, q:)
| o1 A2 = upd, (o1, ¢:) Aupd,, (2, ¢:)
| p1Up2 — upd,, (1, :)Uupd, (2, 4)
| Gy — Gupd, (v, q)
| Fo — Fupd
|
|
|

Lp(@aQ7,)
X — Xupd,, (v, q:)
¢ — —upd,, (v, ¢:)
T—T

pE€ APicin) = P

Update function updates a progressed LTL formula with respect to a ready state of a component. Intuitively, a
formula consists in an atomic proposition whose truth or falsity depends on the next ready state of component B;
sent by scheduler Sk, that is XZ p where p € AP;, can be evaluated using update function by taking the first ready

state of component B; received from scheduler Sy, after the formula rewrote to Xgp.

Example 18 (Formula progression and formula update over an augmented computation lattice) Let consider the
system in Example 4 with global trace to and the received sequence of events presented in Example 8§ and
desired property ¢ = G(d3 V f1). L? initially has node init% = ((di,ds,ds),(0,0),{e}). By observing
the action event (Filly2,(1,0)), algorithm MAKE creates new node n1 = ((L,L,ds),(1,0),{¢}), because
prog(G(ds V f1), (L, L,d3)) = prog((ds V f1), (L, L,d3)) ANG(d3 V f1) = T ANG(d3 V f1) = G(ds V f1) = .

By observing the action event (Fills, (0,1)), new node n2 = ((d1,d2,L1),(0,1),{Xgds A ¢}) is created,
because prog(G(ds V f1),(d1,d2, L)) = prog((ds V f1),(d1,d2, L)) AG(ds V f1) = Xgd3s ANG(d3 V f1) =
XpgdsN\p. Formula X gds means that the evaluation of incomplete state (dy, da, L) with respect to formula (dsV f1)
is on hold until the next ready state of component Tanks.

Consequently joint node ns = ((L, L, 1), (1,1), {(Xgds) A (Xpds VXgf1) Ay, (Xpds VXsf1) A, (Xpds V
Xsf1) A ¢}) is made. The update event (B3, f3) updates both state and the set of formulas associated to each
node as follows. Although init?. and 1, remain intact, but node 1 is updated to ((dy, ds, f3), (0,1),{ F'}) because
upd,, (XgdsAy, f3) = F. Moreover, node 03 is updated tonz = ((L, L, f3), (1,1),{F, (Xpf1) A, (Xpf1) A ¢}).

The update event (P2, f2) updates nodes ny and ns such that m1 = ((L, f2,ds), (1,0),{p}) and n3 =
(L, fa, f3), (1,1), {F7 (Xﬁfl) N, (Xﬁfl) A 90})

By observing the action event (Drainsgs, (1,2)), the new node ny = ((L, L, L), (1,2),{F, (Xgds V Xgf1) A
(Xsf1) N, (Xpds vV Xsf1) N (Xpf1) A @}) is created.

The update event (S1, f1) updates nodes 11, ns and ng such that 1 = ((f1, f2,ds),(1,0),{¢}), 13 =
((flv f2a fS)? (17 1)7 {Fa L) 90}) and N = ((f17 1, J*)v (17 2)? {F7 1) (P})

6.1 Correctness of Formula Progression on the Lattice

In Sec. 5, we introduced how from an unobservable global trace ¢ of a distributed CBS with multi-party interactions
one can construct a set of paths compatible with ¢ in form of a lattice. Furthermore, in Sec. 6 we adapted formula
progression over the constructed lattice with respect to a given LTL formula . What we obtained is a directed
lattice £¥ starting from the initial node and ending up with frontier node 7. The set of formulas attached to the
frontier node, that is 177 .3, represents the progression of the initial formula over the set of path of the lattice.

Definition 27 (Progression on a global trace) Function PROG : LTL xQ - (GAct - Q)* — LTL is defined as:

27

Table 1: On-the-fly construction and verification of computation lattice

step | event lattice
0 €
((d1. d2,d3), (0,0),{¢})
- receiving event Fill15(1,0)
1 - extending by making a new node
. . ((4s L, d3), (1,0). {¢})
- the formula projection of new node
(@1, oy d5), 0,0), {})
- receiving event Fill3(0, 1)
- extending by making a new node
) - extending by making the joint node
- the formula projection of new nodes (L L), (1 1), {(Xda) A (Xpda VX f2) Ao, (s V X 1) Ao, (s V X5 1) A o))
- three formulas attached to the frontier g)
represent the evaluation of three paths
(1,2, 1), 0,1), {Xpds A }) (L, L, d5). (1,0 {)
((d1. d2,d3), (0,0),{¢})
- receiving event (33, f3)
3 - updating states of the existing nodes
. Lo, (L), (L 1), AF (Xa 1) A (Xaf2) A D)
- updating the formulas of existing nodes RN
((drsds, £2), (0,1), {FY) (L, Lods), (1,0), (o))
((d,da, d3). (0,0), {«7})
- receiving event (Ss, f2)
4 - updating states of the existing nodes
. Lo, (0 for Jo), (1), (X f2) Ao, (X3) A)
- updating the formulas of existing nodes e
((rrds, f5), 0,1), (7)) (L fords), (1,0), {})
((d1. d2, d3),(0,0), {¢})
- receiving event Drainag(1,2)
5 - extending by making a new node
. . (L, L, L), (1,2) {F, (Xpds VX f1) A (Xafi) Ae. (Xpds VX f1) A (Xafr) Ae})
- the formula projection of new node
((Ls f2, £3), (1L, 1), {F, (X5 1) A o, (Xpf1) A o))
(o fo), (0,10, {F}) (L fords), (1,0). £})
((ds, oy d5), 0,0), {2}
- receiving event (51, f1)
6 - updating states of the existing nodes

- updating the formulas of existing nodes

((f1. L, 1), (1,2),{F. 0. 0})

((fn-fz-,.ﬁi)«(l- l).fp« @}

(A1, ds, 1), (0.1), {F}) (1. fords). (1,0), {})

((di,da, d3), (0,0), {¢})

28

e PROG (p,init) = ¢,
e PROG(p,0) = ¢’
e PROG (¢,0 - (aeU B) - q) = prog (UPD (PROG (p,0), Q) , q) where

- Q= {qli] | Bi € B} is the set of updated states,
— function UPD : LTL xQ® — LTL is defined as:

* UPD (p,{€}) = ¢,
* UPD (p,Q" U{q;}) = upd, (UPD (¢, Q") , ¢).
with Q C {q € QY | i € [1,n]} the set of subsets of ready states of the components.

Function PROG uses functions prog, upd,, (Definitions 25 and 26) and function UPD. Since after each global
action we only have one global state (likely incomplete), function upd,, does not need to check among multiple
global states to find whose formula must be updated. That is why PROG uses the simplified version of function
upd,, by eliminating the scheduler index input. Moreover functions prog modified in such way to take as input a
global state in (Q instead of a global state in Q' because as we above mentioned, the index of schedulers does not
play a role in the progression of an LTL formula on a global trace.

Given a global state ¢ as per Definition 6 and an LTL property ¢, by n/.% we denote the set of LTL formulas of
the frontier node of the constructed computation lattice £, we have the two following proposition and theorems:

Proposition 5 Given an LTL formula ¢ and a global trace t, we have:

progression(p, Ra(t)) if last(¢)[i] € Q; foralli € [1,n],

PROG (p,t) =
() {pmgression(go,RB(t)) otherwise.

where 38 C U, (1,0 {B:} :t' =t-B-q,q[i] € Q%,i € [1,n] and progression is the standard progression function
described in [41].

Proposition 5 states that progression of an LTL formula on a global trace of a distributed system, defined in
Definition 6, using PROG is similar to the standard progression of the LTL formula on the corresponding refined
global trace using progression. Intuitively, progression of stabilized global trace ¢, results similar to the standard
progression of refined ¢.

Theorem 1 (Soundness) For a global trace t and LTL formula p, we have
Vo' e nf 2,3t € P(t) : PROG(p,t') = ¢'.

Theorem 1 states that each formula of the frontier node is derived from the progression of formula ¢ on a com-
patible trace of trace ¢.

Theorem 2 (Completeness) For a global trace t and an LTL formula @, we have:
n’.% = {PROG(p,t') |t € P(t)}.

Theorem 2 states that the set of formulas in the frontier node is equal to the set of progression of ¢ on all the
compatible traces of £.

7 Implementation

We present an implementation of our monitoring approach in a tool called RVDIST. RVDIST is a prototype tool
implementing algorithm MAKE presented in Sec. 6, written in the C++ programming language. RVDIST takes as
input a configuration file describing the architecture of the distributed system and a list of events. The configuration
file has the parameters of system such as the number of schedulers, the number of components, the initial state
of the system, the LTL formula to be monitored, the mapping of each atomic propositions to the components.
The formula is monitored against the sequence of events by progression over the constructed computation lattice.
RVDIST outputs the evaluation of the constructed lattice by reporting the number of observed events, the number
of existing nodes of the constructed lattice, the number of nodes which have been removed from the lattice due to
optimizing the size of the lattice, the vector clock of the frontier node, the number of paths from the initial node
to the frontier node which have been monitored (the set of all compatible traces), the set of formulas associated to
the frontier node. Figure 11 depicts the work-flow of RVDIST.

29

[|——— Sequence of events —>| RVDIST H Verdicts

—

Controllers of schedulers

Figure 11: Overview of RVDIST work-flow

8 Evaluation

We present the evaluation of our monitoring approach on two case studies carried out with RVDIST.

8.1 Case Studies

We present a realistic example of a robot navigation and a model of two phase commit protocol (TPC).

8.1.1 Deadlock Freedom of Robotic Application ROBLOCO

The functional level of this navigating robot consists of a set of modules. ROBLOCO is in charge of the robot low-
level controller. It has a track task associated to the activities 7SStart/TSStop (TrackSpeedStart, TrackSpeedStop).
TSStart reads data from the dedicated speed port and sends it to the motor controller. In parallel, the manager
module, which is associated to the odo task activities (OdoStart and OdoStop) reads the signals from the encoders
on the wheels and produces a current position on the pos port. ROBLASER is in charge of the laser. It has a
scan task associated to the StartScan/StopScan activities. They produce the free space in the laser’s range tagged
with the position where the scan has been made. ROBMAP aggregates the successive scan data in the map port.
ROBMOTION has one task plan which, given a goal position, computes the appropriate speed to reach it and
writes it on speed, using the current position, and avoiding obstacles. We deal with the most complex module,
i.e., ROBLOCO, involving three schedulers in charge of the execution of the dedicated actions. ROBLOCO has
34 components and 117 multi-party interactions synchronizing the actions of components. Since tasks are based
on the specific sequence of the execution of interactions and tasks are not totally independent, there exist some
share components which are involved in more than one task. To prevent deadlocks in the system, it is required that
whenever the controller is in free state, at some point in future, the signal module must reach the start state before
the manager starts managing a new odo task. The deadlock freedom requirement can be defined as LTL formula

©1-

p1: G(ControlFree — (X—ManagerStartodo USignalStart))

8.1.2 Protocol Correctness of Two Phase Commit (TPC):

We consider the distributed transaction commit [! 1] problem where a set of nodes called resource managers
{rmy,rmy, ...,rm,} have to reach agreement on whether to commit or abort a transaction. Resource managers
are able to locally commit or abort a transaction based on a local decision. In a fault-free system, it is required the
global system to commit as a whole if each resource manager has locally committed, and that it aborts as a whole
if any of the resource managers has locally aborted. In case of global abort, locally-committed resource managers
may perform roll-back steps to undo the effect of the last transaction [25].

Two phase commit protocol is a solution proposed by [10] to solve the transaction commit problem. It uses
a transaction manager that coordinates between resource managers to ensure they all reach one global decision
regarding a particular transaction. The global decision is made by the transaction manager based on the feedback
it gets from resource managers after making their local decision (LocalCommit/LocalAbort).

The protocol, running on a transaction, uses a client, a transaction manager and a non-empty set of resource
managers which are the active participants of the transaction. The protocol starts when client sends remote pro-
cedure to all the participating resource managers. Then each participating resource manager rm; makes its local
decision based on its local criteria and reports its local decision to transaction manager. LocalCommit; is true
if resource manager 7m; can locally-commit the transaction, and LocalAbort; is true if resource manager rm;

30

-107

175 + 1z ‘
, Y 1
S °
: <
s g
H L 1 g
z & E 05 .
: 5
Z 567 7 S
341 -
18| | E
| | ! ! ! Z 0 -

| | | | |
0 1 2 3 4 0 1) 3 1

Number of shared components
p Number of shared components

(a) Number of lattice nodes (b) Number of lattice paths

Figure 12: Lattice construction vs. number of shared components

cannot locally-commit the transaction. Each participant resource managers stays in wait location until it hears
back from transaction manager whether to perform a global commit or abort for the current transaction. Af-
ter all local decisions have been made and reported to transaction manager, the latter makes a global decision
(GlobalCommit/GlobalAbort) that all the system will agree upon. When GlobalCommit is true, the
system will globally-commit as a whole, and it will abort as a whole when GlobalAbort is true. We consider
two specifications related to TPC protocol correctness:

o G(/\?:l(LocalAborti =—> X(—LocalAbort; A “LocalCommit;) UGlobalAbort)),

3! G(A, LocalCommit; — X(/\?:1(ﬂLocalAborti/\—'LocalCommiti)) UGlobalCommit).
Property (o states that, sending locally abort in any resource managers for a current transaction implies the global
abort (GlobalAbort) on that transaction before the resource manager locally aborts or commits the next trans-
action, that is, none of the resource managers commit. Property (3 states that, if all the resource managers send
locally commit for a current transaction, then all the resource managers commit the transaction (GlobalCommit)
before the resource managers locally aborts or commits the next transaction.

For each system we applied the model transformation defined in Section 4.1 and run them in a distributed
setting. Each instrumented system produces a sequence of event which is generated and sent from the controllers
of its schedulers. The events are sent to the RVDIST where the associated configuration file is already given. Upon
the reception of each event, RVDIST applies the online monitoring algorithm introduced in Section 6 and outputs
the result consists of the information stored in the constructed computation lattice and evaluation of the desired
LTL property so far.

In the following we investigate how the number of shared components effects on the size of the computation
lattice over a very simple example of a distributed CBS with multiparty interaction.

Example 19 (Shared component, lattice size) Let us consider a component-based system consists of four in-
dependent components Comp, . ..,Comp,. Each component has two actions Actiony,Actiony which are de-
signed to only be executed with the following order: Actiony.Actions.Action; and then the component termi-
nates. We distribute the execution of actions using four schedulers Schedy, . ..,Sched,. For the sake of sim-
plicity, we consider each action of the components as a singleton interaction of the system such that Act =
{Comp,.Actiony, Comp,.Actiony | i € [1,4]}. Each scheduler manages a subset of Act. We define various
partitioning of the interactions to obtain the following settings:

1. Each scheduler is dedicated to manage the actions of only one component, such that actions Comp,.Action;
and Comp,.Actions are managed by Scheduler Sched; for i € [1,4). In this setting, no component has
shared its actions to more that one scheduler.

2. Considering the previous setting with the only difference that action Comp,.Actiony by scheduler Scheds.
In this setting, component Comp is a shared component.

31

Table 2: Results of lattice construction w.r.t different settings of Example 19

shared lattice | removed
component | nodes nodes paths
0 175 81 10,681,263
1 88 72 1,616,719
2 56 60 572,847
3 34 52 316,035
4 18 47 251.177

3. Considering the previous setting with the only difference that action Compy.Actions by scheduler Scheds.
In this setting, components Comp, and Comp., are shared component.

4. Considering the previous setting with the only difference that action Comp.Actiony by scheduler Sched,.
In this setting, components Comp,, Comp, and Comp, are shared component.

5. Considering the previous setting with the only difference that action Comp ,.Actiony by scheduler Sched, .
In this setting, all the components are shared component.

Since the components are designed to be involved only in three actions, the number of generated action/update
events is equal in different settings (24 events in total), no matter which scheduler manages which action, and the
only differences of events obtained through those setting are the vector clock of the action events and the sender
of action/update events. Table 2 and Figure 12 represent the results with respect to the above-mentioned settings.
Columns in Table 2 have the following meaning:

o Column shared component indicates the number of shared components in each setting.
o Column lattice nodes shows the number of the nodes of the constructed lattice in each setting.

o Column removed nodes indicates the number of removed nodes in the lattice using the optimization algo-
rithm.

o Column path indicates the number of paths of the constructed computation lattice.

Considering the first setting where there is no shared component in the system, results a set of independent action
events where none of the two action events from two different schedulers are causally related, so that we construct a
complete (maximal) computation lattice in order to cover all the compatible global traces. The size of constructed
lattice as well as the number of paths of the lattice is decreased by considering more shared components (see
Figure 12a and Figure 12b).

8.2 Results and Conclusion

Table 3 and Figure 13 present the results checking specifications deadlock freedom on ROBLOCO and protocol
correctness on TPC. The columns of the table have the following meanings:

e Column || shows the size of the monitored LTL formula. Note, the size of formulas are measured in terms
of the operators entailment inside it, e.g., G(a A b) V Xc is of size 2.

e Column observed event indicates the number of action/update events sent by the controllers of the sched-
ulers.

e Column lattice size reports the size of constructed lattice using optimization algorithm is used vs. the size
of constructed lattice when non-optimized algorithm is used.

e Column frontier node VC indicated the vector clock associated to the frontier node of the constructed lattice.
Figures 13a, 13b show how the size of constructed lattice varies in two systems as they evolve. Having shared

components in system is not the only reason to have a small lattice size, what is more important is how often

32

150 |- s
8
S
= 100 .
G
5]
2
g
=
Z 50
0 Il | | Il | | Il | Il Il | Il Il | Il
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500
Number of action events
(2) ROBLOCO
I
50 [f 8
» 40 f
Q
s
S]
g
= 30 s
)
E
g 20 .
Z
10 |
0 I | | | | | | | |
0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
Number of action events
(b) TPC

Figure 13: Optimization algorithm effect on the size of the constructed lattice

the shared components are used as a part of executed interactions. The more execution with shared components
results the more dependencies in the generated events and thus the smaller lattice size.

In ROBLOCO system, after receiving 3463 events, the size of the obtained computation lattice is 17, whereas
the size of non-optimized lattice is 10602 which is a quite large in terms of storage space and iteration process.
It shows how efficient our optimization algorithm minimize and optimize the monitoring process. Figures 13a
shows how the size of constructed lattice varies by the time the ROBLOCO systems evolves. Although what we
need in the constructed computation lattice as the verdicts of the monitor output is only stored in the frontier node,
but the rest of the nodes are necessary to be kept at runtime in order to extend the lattice in case of reception of
new events.

In TPC system we also obtained a very small size of the lattice after the reception of 4709 events. As it is
shown in Table 3 the size and complexity of the LTL property does not change the structure of the constructed
lattice, it only effects on the progression process. The frontier-node vector clock shows that how many interactions
have been executed by each scheduler at the end of the system run.

Our monitoring algorithm implemented in RVDIST provide a lightweight tool to runtime monitor the behavior
of a distributed CBS. RVDIST keeps the size of the lattice as small as possible even for a long run.

33

Table 3: Results of monitoring ROBLOCO and TPC with RVDIST

lattice size .
System property | || | # observed events optimized | not-optmized frontier node VC
ROBLOCO ©1 3 3463 17 10602 (730,352,485)
TPC 222 ég 4709 11 2731 (402,402,402,601)
3

9 Related Work

A close work to the approach presented in this paper has been exposed in [4]. In this setting, multiple components
in a system each observe a subset of some global event trace. Given an LTL property ¢, their goal is to cre-
ate sound formula derived from ¢ that can be monitored on each local trace, while minimizing inter-component
communication. Similar to our approach, the monitor synthesis is based on the internal structure of the moni-
tored system and the projection of the global trace upon each component is well-defined and known in advance.
Moreover, all components consume events from the trace synchronously. Compare to our setting, we target a
distributed component system with asynchronous executions. Hence, instead of having a global trace at runtime,
we are dealing with a set of possible global traces which possibly could happen during the run of the system.

In [7], Cooper and Marzullo present three algorithms for detecting global predicates based on the construction
of the lattice associated with a distributed execution. The first algorithm determined that the predicate was possibly
true at some point in the past; the second algorithm determines that the predicate was definitely true in the past;
while the third algorithm establishes that the predicate is currently true, but to do so it may delay the execution of
certain processes.

In [8], Diehl, Jard and Rampon present basic algorithm for trace checking of distributed programs by building
the lattice of all reachable states of the distributed system under test, based on the on-the-fly observation of the
partial order of message causality. Compare to our approach, in our distributed setting schedulers don’t commu-
nicate directly by sending-receiving messages. Moreover, no monitor has been proposed in [8] for the purpose of
verification whereas in our algorithm we synthesize a runtime monitor which evaluate on-the-fly the behavior of
the system based on the reconstructed computation lattice of partial-states.

In [24], Sen and Vardhan design a method for monitoring safety properties in distributed systems using the
past-time linear temporal logic (PLTL). The distributed monitors gain knowledge about the state of the system
by piggybacking on the existing communication among processes. That is, if processes rarely communicate, then
monitors exchange very little information and, hence, some violations of properties may remain undetected. In
that paper, a tool called DIANA (distributed analysis) introduce in order to implement the proposed monitoring
method. The main noteworthy difference between [24] and our work is that we evaluate the behavior of the
distributed system based on all of the possible global traces of the distributed system.

In [13], Massart and Meuter define an online monitoring method which collect the trace and checks on the fly
that is satisfies a requirement, given by any LTL property on finite sequence. Their method explores the possible
configurations symbolically, as it handles sets of configurations. Our approach mainly differs from [13] in that
we target distributed CBSs with multi-party interactions where the execution traces are defined over the set of the
partial states of the system.

In [20], Scheffel and Schmitz studied runtime verification of distributed asynchronous systems against Dis-
ributed Temporal Logic (DTL) properties. DTL combines the three-valued Linear Temporal Logic (LTL3) with
past-time Distributed Temporal Logic (ptDTL). In that paper, a distributed system is modeled as n agents and
each agent has a local monitor. These monitors work together to check a property, but they only communicate by
adding some data to the messages already sent by the agents. They can not force their agent to send a message or
even communicate on their own.

In [16], a decentralized algorithm for runtime verification of distributed programs is proposed. Proposed
algorithm conducts runtime verification for the 3-valued semantics of the linear temporal logic (LTL3). In that
paper, they adapt the distributed computation slicing algorithm for distributed online detection of conjunctive
predicates, and also the lattice-theoretic technique is adapted for detecting global-state predicates at run time.

In [23], Sen and Garg use a temporal logic, CTL, for specifying properties of distributed computation and
interpret it on a finite lattice of global states and check that a predicate is satisfied for an observed single execution
trace of the program. Compare to our approach, we deal with a set of events at runtime generated by the schedulers
which results in a infinite lattice of partial-states. Although the computation lattice in our method is made based

34

of the observed partial states, we could check the satisfaction of temporal predicates defined over the global states
of the system, which mean that we could monitor the system even if the global state of the is not defined.

In [21], Sen and Garg used computation slicing for offline predicate detection in the subset of CTL with the
following three properties; i) temporal operators, ii) atomic propositions are regular predicates and iii) negation
operator has been pushed onto atomic propositions. They called this logic Regular CTL plus (RCTL+), where
plus denotes that the disjunction and negation operators are included in the logic. In that paper, authors gave the
formal definition of RCTL+ which uses regular predicates as atomic propositions and implemented their predicate
detection algorithms, which use computation slicing, in a prototype tool called Partial Order Trace Analyzer
(POTA).

In [22], Sen and Gerg present temporal slicing centralized online algorithm with respect to properties in tem-
poral logic RCTL+.

10 Conclusions and Future Work

We draw conclusions and outline avenues for future work.

10.1 Conclusions

In this paper, we have presented a technique to enable runtime verification on a distributed component-based sys-
tem with multi-party interactions. In our setting, global joint actions are partitioned among a set of distributed
scheduler. Each scheduler is in charge of execution of the dedicated subset of global joint actions. execution of
each global actions, triggers the set of actions of corresponding component involved in the joint action. Our pro-
posed technique consists in (i) transformation of the given distributed system to generate locally observed events
by each distributed scheduler, (ii) synthesizing a centralized observer which collects the local events of all sched-
ulers (iii) introducing an algorithm to reconstruct on-the-fly the set of possible ordering among the received events
which forms a computation lattice, (iv) augmentation of the reconstructed computation lattice with a verification
method in the sense that the observer plays the role of a runtime monitor while it is building the lattice. We showed
that the set of paths of the constructed lattice represents the set of compatible traces, such that each of them could
have occurred as the actual run of the system. The experimental results show that even for a long run of a sys-
tem, that is having many generated events, using the optimization algorithm keeps the size of the lattice minimal.
Moreover, the set of formulas attached to the frontier node of the constructed lattice represents the evaluation of
all the compatible traces with respect to the given LTL formula.

10.2 Future Work

Several research perspectives can be considered.

A first direction is to distribute the runtime monitor, such that the satisfaction or violation of specifications
can be detected by local monitors alone. By distributing the monitors we indeed decrease the load of monitoring
process on a single entity.

Another possible direction is to extend the proposed framework for timed components and timed specifications
as presented in [2, 27].

References

[1] Basu, A., Bidinger, P., Bozga, M., Sifakis, J.: Distributed semantics and implementation for systems with
interaction and priority. In: Formal Techniques for Networked and Distributed Systems - FORTE, 2008, 28th
IFIP WG 6.1 International Conference, Tokyo, Japan, June 10-13, 2008, Proceedings. pp. 116133 (2008) 1

[2] Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In: Fourth IEEE
International Conference on Software Engineering and Formal Methods (SEFM 2006), 11-15 September
2006, Pune, India. pp. 3-12 (2006) 10.2

[3] Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification. Journal of Logic
and Computation 20(3), 651-674 (2010) 1, 6

35

[4] Bauer, A.K., Falcone, Y.: Decentralised LTL monitoring. In: FM 2012: Formal Methods - 18th International
Symposium, Paris, France, August 27-31, 2012. Proceedings. pp. 85-100 (2012) 6, 5, 9

[5] Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based systems. In: International
Conference on Concurrency Theory. pp. 508-522. Springer (2008) 1

[6] Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of distributed systems. ACM
Transactions on Computer Systems (TOCS) 3(1), 63-75 (1985) 2

[7] Cooper, R., Marzullo, K.: Consistent detection of global predicates. ACM (1991) 9
[8] Diehl, C., Jard, C., Rampon, J.X.: Reachability analysis on distributed executions. Springer (1993) 9

[9] Falcone, Y., Fernandez, J.C., Mounier, L.: Runtime verification of safety-progress proper6ties. In: Proceed-
ings of the 9th International Workshop on Runtime Verification (RV 2009), Selected Papers. pp. 40-59.
Springer (2009) 1

[10] Gray, J.N.: Notes on data base operating systems. In: Operating Systems, pp. 393-481. Springer (1978)
8.1.2

[11] Gray, J., Lamport, L.: Consensus on transaction commit. ACM Transactions on Database Systems (TODS)
31(1), 133—-160 (2006) 8.1.2

[12] Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communications of the ACM
21(7), 558-565 (1978) 2,2

[13] Massart, T., Meuter, C.: Efficient online monitoring of LTL properties for asynchronous distributed systems.
Université Libre de Bruxelles, Tech. Rep (2006) 9

[14] Mattern, F.: Virtual time and global states of distributed systems. Parallel and Distributed Algorithms 1(23),
215-226 (1989) 2

[15] Milner, R.: Communication and concurrency. Prentice Hall International (UK) Ltd. (1995) 2

[16] Mostafa, M., Bonakdarpour, B.: Decentralized runtime verification of LTL specifications in distributed sys-
tems. In: 2015 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2015, Hyderabad,
India, May 25-29, 2015. pp. 494-503 (2015) 9

[17] Nazarpour, H., Falcone, Y., Bensalem, S., Bozga, M., Combaz, J.: Monitoring multi-threaded component-
based systems. In: International Conference on Integrated Formal Methods. pp. 141-159. Springer (2016)
5.5,55

[18] Pnueli, A.: The temporal logic of programs. In: SFCS’77: Proceedings of the 18th Annual Symposium on
Foundations of Computer Science. pp. 46—57. IEEE Computer Society (1977) 1, 2

[19] Runtime Verification: http://www.runtime-verification.org (2001-2016) 1

[20] Scheffel, T., Schmitz, M.: Three-valued asynchronous distributed runtime verification. In: Formal Methods
and Models for Codesign (MEMOCODE), 2014 Twelfth ACM/IEEE International Conference on. pp. 52—
61. IEEE (2014) 9

[21] Sen, A., Garg, V.K.: Detecting temporal logic predicates in distributed programs using computation slicing.
In: Principles of Distributed Systems, pp. 171-183. Springer (2004) 9

[22] Sen, A., Garg, V.K.: Formal verification of simulation traces using computation slicing. IEEE Trans. Com-
puters 56(4), 511-527 (2007) 9

[23] Sen, A., Garg, V.K.: Detecting temporal logic predicates on the happened-before model. In: Parallel and

Distributed Processing Symposium., Proceedings International, IPDPS 2002, Abstracts and CD-ROM. pp.
8—pp. IEEE (2001) 9

36

[24] Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of safety in distributed systems.
In: Proceedings of the 26th International Conference on Software Engineering. pp. 418—427. IEEE Computer
Society (2004) 9

[25] Tanenbaum, A.S., van Steen, M.: Fault tolerance. Distributed Systems: Principles and Paradigms, Upper
Saddle River, New Jersey, Prentice-Hall, Inc pp. 361-412 (2002) 8.1.2

[26] Tretmans, J.: A formal approach to conformance testing. In: Protocol Test Systems, VI, Proceedings of the
IFIP TC6/WG6.1 Sixth International Workshop on Protocol Test systems. pp. 257-276 (1993) 3

[27] Triki, A., Combaz, J., Bensalem, S.: Optimized distributed implementation of timed component-based sys-
tems. In: Formal Methods and Models for Codesign (MEMOCODE), 2015 ACM/IEEE International Con-
ference on. pp. 30-35. IEEE (2015) 10.2

37

	Introduction
	Preliminaries and Notations
	Distributed CBSs with Multi-Party Interactions
	Semantics of a Distributed CBS with Multi-Party Interactions
	Traces of a Distributed CBS with Multi-Party Interactions

	From Local Traces to Global Traces
	Composing Schedulers and Shared Components with Controllers
	Controllers of Schedulers
	Controllers of Shared Components

	Correctness of Instrumentation
	Event Extraction from the Local Traces of the Instrumented System

	Computation Lattice of a Distributed CBS with Multi-party Interactions
	Extended Computation Lattice
	Intermediate Operations for the Construction of the Computation Lattice
	Algorithm Constructing the Computation Lattice
	Insensibility of Algorithm `39 `42 `"613A `45 `47 `"603A Make to the Communication Delay
	Correctness of Lattice Construction

	LTL Runtime Verification by Progression on the Reconstructed Computation Lattice
	Correctness of Formula Progression on the Lattice

	Implementation
	Evaluation
	Case Studies
	Deadlock Freedom of Robotic Application ROBLOCO
	Protocol Correctness of Two Phase Commit (TPC):

	Results and Conclusion

	Related Work
	Conclusions and Future Work
	Conclusions
	Future Work

