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Abstract

Dynamic scheduling of distributed real-time systems with multiparty interactions is ac-
knowledged to be a very hard task. For such systems, multiple schedulers are used to co-
ordinate the parallel activities of remotely running components. In order to ensure global
consistency and timing constraints, these schedulers must cope with significant communi-
cation delays while moreover, use only point-to-point message passing as communication
primitive on the platform. In this paper, we investigate a formal model for such systems as
compositions of timed automata subject to multiparty interactions and we propose a dis-
tributed implementation method aiming to overcome the communication delays problem
through planning ahead interactions. Moreover, we develop static conditions allowing to
make the planning decisions local to different schedulers and thus to decrease the over-
all coordination overhead. The method has been implemented and we report preliminary
results on benchmarks.
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1 Introduction

Over the past few decades, real-time systems have undergone a shift from the use of single processor based
hardware platforms, to large sets of interconnected and distributed computing nodes. Such evolution stems
from an increase in complexity of real-time software embedded on such platforms (e.g. electronic control
in avionics and automotive domains [14]), and the need to integrate formerly isolated systems [2 1] so that
they can cooperate as well as share resources, improving functionality and reducing costs.

The design and the implementation of distributed systems is acknowledged to be a very difficult task.
A central question is how to efficiently coordinate parallel activities in a distributed system by means of
primary communication primitives offered by the platform, such as point-to-point messages or broadcast.
Considering real-time constraints brings additional complexity since any scheduling or control decision
may not only impact system performance, but may also affect the satisfaction of timing constraints. To
deal with such complexity, the community of safety critical systems often restricts its scope to predictable
systems, which are represented with domain specific models (e.g. periodic tasks, synchronous systems,
time-deterministic systems) for which the range of possible executions is small enough to be easily an-
alyzed, allowing the precomputation of optimal control strategies. For non-critical systems, the standard
practice is not to rely on models for precomputing scenarios but rather to design systems dynamically
adapting at runtime to the actual context of execution. Such approaches do not offer any formal guarantee
of timeliness. The lack of a priori knowledge on system behavior leave also little room for static optimiza-
tion.

In our framework systems consist of components represented as timed automata that may synchronize
on particular actions to coordinate their activities. Timed automata are strictly more expressive [1] than
time-deterministic systems considered in time-triggered approaches [20], [11], [16], [17]. Our framework
also differs from the one proposed in [7] and [32] by considering not only binary, but also multiparty (n-
ary) synchronizations, a.k.a. interactions, expressing the fact that a subset of components may jointly (and
atomically) switch their state if given preconditions are fulfilled. Such high level coordination means are
rarely part of the built-in primitives offered by distributed platforms, and thus need to be implemented
using simpler ones, e.g. exchange of messages. This has been extensively studied in the untimed con-
text [5], [4], [13], [12], [26], [25], [27], but to the best of our knowledge, it has been solved for timed
systems only under the assumption of non-decreasing deadlines in [10], [30].

We contribute to this research field by proposing methods for scheduling interactions with a bounded
horizon, which aims to reduce the impact of communication delays on systems execution. In particular, (i)
we define a semantics for planning interactions with a bounded horizon and prove its correctness w.r.t the
regular semantics, (ii) we present sufficient static conditions that ensure a safe planning of interactions, and
(iii) we leverage system knowledge to reinforce those conditions.

The rest of the paper is organized as follows. In Section 2 we provide a formal definition of composi-
tions of timed automata with respect to multiparty interactions. We also present a semantics for planning
interactions with a bounded horizon. In Section 3, we study sufficient conditions for a safe planning of
interactions. Thereafter, we use global knowledge of the system to refine the latest conditions for more pre-
cise results and in order to avoid unnecessary verification (Section 4). Finally, the application of previous
results on various examples is presented in Section 5.

2 Timed Systems and Properties

2.1 Global State Semantics

In the framework of the present paper, components are timed automata and systems are compositions of
timed automata with respect to multiparty interactions. The timed automata we use are essentially the ones
from [2], however, slightly adapted to embrace a uniform notation throughout the paper.

Definition 1 (Component). A component is a tuple (L, ly, A, T, X, tpc) where L is a finite set of loca-
tions, {o € L is an initial location, A a finite set of actions, X is a finite set of clocks, T' C L x (A X
C x 2%) x L is a set of transitions labeled with an action, a guard, and a set of clocks to be reset, and
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tpc : L — C assigns a time progress condition, tpc,, to each location, where C is the set of clock constraints
defined by the following grammar:

C:=true|x~ct|z—y~ct|CAC,

withz,y € X, ~ € {<,<,=,>,>}and ct € Rxq. Time progress conditions are restricted to conjunctions
of constraints of the form x < ct.

Throughout the paper, we consider that components are deterministic timed automata, that is, at a given
location /¢ and for a given action a, there is at most one outgoing transition from ¢ labeled by a. Given a
timed automaton (£, £o, A, T, X', tpc), we write £ % (' if there exists a transition 7 = (¢, (a, g,7), ') €
T'. We also write:

guard(aj): 9s i ar . (& (a,g,r),ﬁ) €
false, otherwise

Let V be the set of all clock valuation functions v : X — Rx¢. For a clock constraint C', C'(v) is a boolean
value corresponding to the evaluation of C' on v. For a valuation v € V, v + § is the valuation satisfying
(v+9)(x) = v(x) + 0, while for a subset of clocks r, v[r] is the valuation obtained from v by resetting
clocks of r, i.e. v[r](z) = 0 for x € r, v[r](z) = v(zx) otherwise. We also denote by C' + ¢ the clock
constraint C' shifted by 4, i.e. such that C'(v + §) iff C'(v).

Definition 2 (Semantics). A component B = (L, 4y, A, T, X, tpc) defines the labeled transition system
(LTS) (Q, AUR~(,—) where Q C L x V(X) denotes the states of B and -C Q x (AUR<p) x @
denotes the set of transitions between states according to the rules:

a,g,r

- (4,0) S (0 o[r]) if ¢ =25 0, and g(v) is true (action step).
- (4,v) LN (L,v 4 0) if tpe,(v + 6) (time progress).

m
We define the predicate urg(tpc,) characterizing the urgency of a time progress condition tpc, = A z; <
i=1

ct; at a state (¢,v) as follows:

m
urg(tpc,) = \/(xz = cl;),
i=1
An execution sequence of B from a state (£,v) is a path in the LTS starting at (¢, v) and that alternates
action steps and time (progress) steps, that is:

(br,v1) 25 0 TS (bnyvn),n € Zsg,0 € AURSg

In this paper, we always assume components with well formed guards meaning that transitions ¢ RNy 4
satisfy g(v) = tpc,(v) A tpey (v[r]) for any v € V. We say that a state (¢, v) is reachable if there is
an execution sequence from the initial configuration ({y, vy) leading to (¢, v), where v, assigns 0 to all
clocks. Notice that the set of reachable states is in general infinite, but it can be partitioned into a finite
number of symbolic states [31,8,18]. A symbolic state is defined by a pair (¢, () where, ¢ is a location of
B, and ( is a zone, i.e. a set of clock valuations defined by a clock constraint (as defined in Definition 1).
Efficient algorithms for computing symbolic states and operations on zones are fully described in [8].
Given symbolic states {(¢;, ;) };jes of B, the predicate Reach(B) characterizing the reachable states can
be formulated as:
Reach(B) = \/ at(4;) A ¢,
jeJ

where at(¢;) is true on states whose location is ¢;, and clock constraint ¢; is straightforwardly applied to
clock valuation functions of states.

We also define the predicate Enabled(a) characterizing states (¢, v) at which an action a is enabled,
i.e. such that (¢,v) % (¢,v'). It can be written:

Enabled(a) = \/ at(¢) A guard(a, ?)
(¢,a,9,r,0")ET
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Definition 3 (Deadlock). We say that a state (£,v) of a component B deadlocks, if neither action steps nor
time steps (time progress) can be done from this state. The following equation characterizes those states:

Va € A. =Enabled(a) A urg(tpe,)

In our framework, components communicate by means of multiparty interactions. A multiparty inter-
action is rendez-vous synchronization between actions of a fixed subset of components. It takes place only
if all the participants agree to execute the corresponding actions. Given n components B;, ¢ = 1,...,n,
with disjoint sets of actions A;, an interaction is a subset of actions o« C Uy <<, A; containing at most one
action per component, i.e. & N A; is either empty or a singleton {a;}. That is, an interaction « can be put
in the form {a;};ey with I C {1,...,n} and a; € A; forall i € I.

Definition 4 (Composition). For n components B; = (L;, 04, A;, Ty, X;, tpc;), with L;NL; =0 A4n
A; =0, and X; N X; = 0 for any i # j, the composition v(B, ..., B,) w.r.t. a set of interactions v is
defined by a timed automaton S = (L, 4y, v, Ty, X, tpc) where by = (£},...,03), X = X1 U...UX,,
L =Ly X ...xX Ly, tpe = tpcy A ... A tpe, for £ = (bq,...,Ly,), and T, is such that ¢ LI for
a={aitier, 0= (l1,...,0n), and 0! = (U},...,0)), iffori & I we have U, = {;, and for i € I we have

@i Gi,Ti /
by === U}, and go = N\;c; gi and v = J;c; 7i-

In practice we do not explicitly build compositions of components as presented in Definition 4. We
rather interpret their semantics at runtime by evaluating enabled interactions based on current states of
components. In a composition of n components Bjc(.... 5.}, denoted by (B, ..., By), an action a; can
execute only as part of an interaction « such that a; € «, that is, along with the execution of all other
actions a; € «, which corresponds to the usual notion of multiparty interaction.

Property 1 (Semantics of a Composition). Given a set of components { By, - - - , B, } and an interaction set
~. The semantics of the composite component S = (L, y,v, T, X, tpc) w.r.t the set of interaction -, is
the labeled transition system (Q,, vy URsq, —~) where:

- Qg = L x V(X) is the set of global states, where £ = £ X - -+ x L, and X = |J_; X;. We write a
state ¢ = (¢,v) where £ = ({1,--- ,£,) € L is a global location and v = (vy,--- ,v,) € V(X) isa
global clocks valuations.

— 7 is the set of interactions

— —, is the set of labeled transitions defined by the rules:

e Action steps:

a={aiticr €7, Vi€ L(l;,v) =5 (0,0]), Vig L(6,v) = (l;,0])

(L,v) iby (v

e Time (progress) steps:

deRsy Vie{l,---,n} tpc;(v;+9)

(t,0) D, (0,0 +6)

In what follows, we consider only deadlock-free systems w.r.t the presented semantics. By abuse of
notation predicates at(¢;) of components B; are interpreted on states of .S, being true for (¢, v) iff B; is at
location ¢; in ¢, i.e. iff £ € L1 X ... X L;—1 x {€;} X Liy1 X ... X L. Similarly, clock constraints of
components B; are applied to clock valuation functions v of .S by restricting v to clocks X; of B;. Given
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Fig. 1: Task Manager

an interaction « € -, these notations allow us to write Enabled () as:

Enabled(a) = /\ \/

ai€a (€;,ai,9:,m:i,0;)ET;

\/ (at(f) A /\ guard(a;, ;)),

(at(t:) A gi),

LEL a;€x
= /\ Enabled(a;),
a;Ex

where £, = {¢ € L]t =25 ¢},

Example 1 (Running Example). Let us consider as a running example the composition of four components
C, Ty, Ty, and R of Figure 1. Component C' represents a controller that initializes, releases, and ends
tasks 77 and T5. Tasks use the shared resource R during their execution. To implement such behavior,
we consider the following interactions between C, R, and T}: «; = {inity, init }, ag = {run, start; },
as = {take,processi}, ar = {endy, free,end;}, and similar interactions o, g, ag, ag for task Th,
as shown by connections on Figure 1. The controller is responsible for firing the execution of each task.
First, it non-deterministically initializes one of the two tasks, i.e. executes «; or ae, and then releases it
through interaction a3 or ay. Tasks perform their processing independently of the controller, after being
granted an access to the shared resource (a5 and ag). When ended by the controller, a task releases the
resource (interactions oy or aig) and go back to its initial location. An example of execution sequence of
the system of Figure 1 is given below, in which valuations v of clocks z, y, and z are represented as a tuples

(v(@),v(y),v(2)):

(€5, 63,63, €), (0,0,0)) 2 (£, €5, 45, 63), (5,5,5)) <1, (41,63, 63, 40), (5,5, 5))
ﬂ)’Y ((&1)7[%768363)’ (05 570)) A"/ ((Eévégagga‘eg)v (27 73 2)) E)W ((g(l)aZ§7‘€gvgil)v (23 77 2))
Ty (00,65, 46, 1), (5,10, 5)) "%, (61,45, €1, £41), (5,10,5))
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2.2 Weak Planning Semantics

The presented semantics is based on a global state operational semantics, that is, the operational semantics
rules and the computation of possible interactions between timed components is achieved through global
states. Considering a distributed context, components are intrinsically concurrent and their states may be
unknown until a certain time. This means that even if states of components participating in an interaction
« are known, « cannot be executed in the global state semantics until the state of all components is known,
which breaks the principle of distribution. Usually, components are mapped at different areas on the dis-
tributed platform in a way that better suits their interactions. In other terms, components that synchronize
their actions are more likely to be next to each others. However, there are cases where several components
participate in the same interaction but are mapped far from each other, which adds on communication
delays to the interaction corresponding to the exchange of messages.

In order to reach an efficient scheduling, able of taking decisions ahead and using only partial (local)
information, we define a different semantics based on a local planning of interactions. It aims to localize
the most scheduling of interactions and alleviate the problem of communication delays through an early
decision making mechanism. This is achieved by planning each interaction ahead, which means to choose
an execution time within a certain horizon for each interaction, based only on the states of components
involved in that interaction. Consequently, components are notified ahead through communication primi-
tives, and will wait until the chosen execution time to perform their corresponding actions. Our approach
is to define for each interaction its earliest planning date, which correspond to the maximum horizon value
that ensure a safe planning of the considered interaction.

Preliminaries S
We define the predicate Enabled”” («) characterizing all states from which « is enabled if time progresses
by 4 units of time, that is:

Enabled”’ () = \/ (at(0) A /\ (guard(a;, £;) +6)), (H

LEL a;€Ea

Property 2. Let (¢,v) be a state of the composition S. For any interaction 8 € ~ such that, part(a) N

part(8) = 0 and (¢, v) E»Y (¢',v"), where part(«) (resp. part(f3)) represents components participating in

interaction « (resp. ), if Enabled”™” (c) holds at state (¢, v) then it still holds at state (¢, v').

This property derives from the fact that executing interactions with disjoint set of components than o does
not change the states of components participating in «, that is, for a; € « we have ¢; = ¢; and v; = v.

Property 3. Let (¢,v) and (¢, v+ d"), with §' € R be two states of the composition S. If Enabled”” ()
is true at state (£, v) then Enabled”" " (av) is true at state (£, v + ') for §' < 6.

This property can be found directly by writing Equation 1 on state (¢, v + ¢').
Let dmax be a partial function dpmax @ v — R>¢ that defines for each interaction a maximum horizon

to be planned with. We define the predicate Enabled” 10 bmax()] (
can be planned with a d,,,x()-horizon as follows:

Enabled”""™"" (a) = \/ (@t(O)A =) (\ guard(a;, £:))),

leLy a; €EQ

) characterizing all states from which «

with /¥max(®) represents an adaptation of the backward operators [3 1] that satisfies:
(@) g(2) 36 < Gmax(a).g(z + 0),

Property 4. 1f the predicate Enabled””’ () is true at a state (£, v), then the predicate Enabled”""™> " (a)

is also true for § < dpax ().
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Definition 5 (Plan). We say that two interactions o and 3, o # 3, conflicts if part(a) Npart(B) # 0, and
we write a# 3. A plan 7 is a partial function 7 : v — R>q defining relative times for executing a subset of
non conflicting interactions, i.e.:

a#d m(a) #L 7)) #L = —(a#d).

We also denote by conf () the set of interactions conflicting with the plan 7, i.e. conf (w) = {a | If#a . 7(B) #
L}, and part(r) the set of components involved in interactions planned by w, i.e. part(m) = {B; | 3. w(«)
L A B; € part(a)}

We denote by min 7 the closest relative execution time of interactions in the plan 7, i.e. min 7 = min {7(a) | @ €
yAT(a) # L}U{+o00}. Notice that since 7 stores relative times, whenever time progresses by ¢ the value

m(«) assigned by 7 to an interaction « should be decreased by 4, until it reaches 0 which means that « have

to execute. We write m — § describing the progress of time over the plan, that is, (7 — ¢)(a) = 7(a) — ¢

for interactions « such that 7(«) # L. We also write ™ — « to denote the removal of interaction o from

the plan 7, i.e. (m — a)(8) = w(p) for any interaction 8 # «, (7 — a)(«) = L. Similarly, 7 U {a — &}
assigns relative time 0 to o, a ¢ conf(), into existing plan 7, i.e. (m U {a +— 6})(B) = 6 for 5 = a,
(mU{a+ §})(B8) = m(«) otherwise. Finally, the plan 7 such that w(a)) = L for all interactions « € 7 is
denoted by {).

We define below the semantics for planning each interaction o € 7y with ;a5 (a)-horizon.

Definition 6 (Weak Planning Semantics). Given a set of components
{By," -, Bn} and an interaction set y. We define the weak planning semantics of the composite component
S = (L, Ly,7, Ty, X, tpc), the label transition system S, = (Qr,y URso U {plan}, ~~>) where:

- Qr = LXV(X) x II, where L is the set of global location, V(X) is the set of global clocks valuations,
and 11 is the set of plans.

— plan defines the action of planning interactions
— ~~> is the set of labeled transitions defined by the rules:

e Plan:
§ < Smax(q), a0 € 7, part(a) Npart(r) =0  Enabled”” (a)
(€0, 7) "o (0, 0,7 U fa s 6)).
e Exec:

o Time Progress: § € Ry

6 <min T A tpe;(vi +0)icf1, . n}

(4, v,m) o Lo+ 6,m—9)

Example 2. Let us consider the following execution sequence for the example of Figure 1 under the weak
planning semantics rules and for a value d,,,x = 5 for all interactions except a; and g that will be assigned
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a 0max = 3¢
(€5, 22,63, 08, (0, 0,0, ) "onel (62, 62, 62,2, (0,0, 0), {1 =5 5}) s
(163, 65,65,80).(5.5.5). o1 > 0D 2 (8, 6. 65.3), (5,5,5),0)
(€}, 62,03, 68), (5,5,5), {as = 2}) ~oos (€1, 03,63,08), (7,7,7), {as > OF) s
(€5, €2, 63, 68), (0, 7,0, 0) P22 (0, 62,43, £8), (0,7, 0), {as s 2})~rm
(64 3. 6, 4),(2,9,2), {as = 0}) 2 (63, 63, 63, 64), (2,9, 2), 0) 2
(05,62, 03,01),(2,9,2), {aa = 3}) ~ous (€5, 02, 63,0%), (5,12, 5), {az > O}) s
(€1, €2, 62, 0%), (5,12, 5), 0) "onS22 (22, 62, 63, 61, (5,12, 5) {cva = 0}) s
(€5, €2, 63, 09), (5,0,0), 0) "emoT 2 (6, 22,63, £1), (5,0, 0), {ar s 4})~lm
((£5, 03,03, 41), (8,3,3), {ar = 1})

This execution sequence represents a path that alternates plan actions, time steps and execution of some
interactions. We can see that for interaction «; which is planned 4 units of time ahead, the system cannot
reach the state from which it can be executed since there is a time progress expiration in component 75 after
3 time units from planning this interaction. This means that local planning of interactions doesn’t always
allow the progress of time and may thus introduce deadlocks even if the system under the global semantics
rules is deadlock-free.

2.3 Relation between Global and Weak Planning Semantics

We use weak simulation to compare the model under the global semantics rules and the one under the
weak planning semantics rules by considering plan-transitions unobservable. As explained in Example 2,
the weak planning semantics does not preserve the deadlock property of our system. Nevertheless, the
following proves weak simulation relations between the two semantics.

Theorem 1. For all the reachable states ({,v, ) of the weak planning semantics, and Yo € 7, the predi-
cate Enabled”™” () is true.

Let S; = (Qg, YURsq, =) (resp. S, = (Qp, v URso U {plan}, ~~>)) the labeled transition system
characterizing the global (resp. weak planning) semantics.
Proposition 1.
Relation 1 V0 € Ro.(£, v, 1)~ (/0 7') = (£, ) L ()
Relation 2 Va € 7.(4,v, )~ (0,0, 7)) = (L,0) S5, (0,0))

It is straightforward that Relation 1 is a consequence of the definition of time progress in the weak planning
semantics. On the other hand, we can deduce using the definition of the weak planning semantics that:

(0, 7) ~rs (0", 7') = (@) =0,
By Theorem 1, this implies that Enabled”"’ () is true at state (£, v, ), meaning that Enabled(c) is also
true, which allows to infer Relation 2.

Corollary 1. If a state ({,v,7) € Reach(Sy), then ({,v) € Reach(Sy).

Definition 7 (Weak Simulation). A weak simulation over A = (Qa,y_ U{B8}, —4)and B = (Qp,>_ U{B},—5B
) is a relation R C Qa x Qp such that we have: ¥(q,7) € Rya € Y. .q 24 ¢ = I’ :(¢,r) €

RAT u>B7“ and ¥(q, )GR:qu ¢ = I : (¢, GR/\TLT’.BsimulatesA, denoted

by A CRr B, means that B can do everything A does.

Corollary 2. S, Cg, S, with Ry = {(¢,7);q) € Qp x Qq}.
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Corollary 2 corresponds to a notion of correctness of the weak planning semantics: any execution in
weak planning semantics corresponds to an execution in the global state semantics.

Theorem 2. S, Cr, S, with Ry = {(q; (¢, 7)) € Qg x Qp|m = 0}.

Theorem 2 states that the weak planning semantics preserves all execution sequences of the global state
semantics. They are obtained using immediate planning, i.e. plans 7 such that 7(«) = 0 or 7(«) = L.
The weak planning semantics aims to localize the scheduling of interactions which reduces the impact of
communication delays in the system, and thus is more suitable for distributed real-time systems than the
global state semantics. It does not restrict the behavior of the global state semantics (see Theorem 2), and
it executes ony sequences allowed by the global state semantics (see Corollary 2). However, it may intro-
duce deadlocks as shown by the scenario presented in Example 2. In the following, we present sufficient
conditions for deadlock-free planning of interactions.

3 Deadlock-free Planning

As explained in Example 2, local planning of interactions can introduce deadlocks in the system since it
does not consider time progress conditions of components not participating in the planned interactions.
Effectively, the weak planning semantics ensures that time can progress until the chosen execution date
only w.r.t timing constraints of participating components, but such progress may be disallowed by the
rest of the system leading to deadlock states. In this section, we provide sufficient conditions for having
deadlock-free planning.

Planning an interaction « implies not only blocking components participating in « until o executes,
but also preventing the system from planning interactions involving these components, that is, interactions
of conf(«). Consequently, the subset of interactions " C ~ that can be planned at a given state (¢, v, )
depends on the content of the plan 7. It satisfies 7/ = {y \ 7 U conf(7)}.

By Corollary 1, a (reachable) deadlock state (¢, v, 7) of the weak planning semantics .S, is such that
(¢,v) is a reachable state of the global state semantics S,. Since we assume that S, is deadlock-free, (¢, v)
is not a deadlock in Sy. A deadlock state (¢, v, ) of S, is caused by the plan 7 which is restricting the
execution in .S, w.r.t. Sy: interactions o of 7 cannot execute before m(«v) time units, and interactions o €
conf () are blocked for (at least) max {7 (/3) | S#«a}. Notice that due to well-formed guards, in a deadlock
state (£, v, ) we have necessarily at(¢;) A urg(tpc,,) for a location £; of a component B; ¢ part(r).

Theorem 3. If a state ({,v, ) € Reach(S,) deadlocks, the following equation is satisfied.:

/\ Enabled/ﬂ(a)(oz) A \/ \/ at(¢;) A urg(tpcy,)

aem B;eS\part(mw) €L,
! ’ @
A /\ m(a) #0A ( \/ (Enabled(a) V \/ Enabled(c))
aEm aem a€conf ()
C

Term A of Equation 2 represents an invariant of the system. On the other hand, terms B and C characterize
the deadlock: Term B expresses the urgency of time progress condition in components not involved in the
planned interactions, whereas, term C specifies the origin of the deadlock: it characterizes states (¢, v, )
of S, for which  restricts the execution of an interaction v whereas it can be executed at (£, v) in S,. As
explained above, such an interaction satisfies 7(«) > 0 or « € conf ().

It is clear that Equation 2 depends on the reachable states of the planning semantics since it explicitly
depends on plans 7. The following gives weaker conditions for deadlocks which are independent of the
plan.

Theorem 4. Let $(«) be the following predicate:

T A0 5max (@),
Enabled”"""™ " (a) A \/ \/ at(l;) A urg(tpey,) A \/ Enabled(8)  (3)

B;eS\part(a) £;€L; BeaUconf ()
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where Enabled”" ™" () is the result of transforming all the timing constraints of the form x < ct by
x < ctin  Omax(e) (Ao, ca guard(ai, £;)) of Enabled”"""™*"" ().
If a reachable state of the system ({,v, ) deadlocks then the following is satisfied:

Ja € v, P(a) A Smax(a) #0 €))
Let schedule(cr, dmax () be the following predicate:
schedule(a, dmax (@) = =P(a) V (dmax(a) = 0)

Using Theorem 4 and Corollary 1, we can conclude that if for all interactions o« € + and for all
reachable states of the global state semantics S, the predicate schedule(c, dmax(cv)) is satisfied, then
the weak planning semantics is deadlock-free. Notice that given an interaction o € - the satisfaction
of schedule(c, dmax () on Reach(S,) depends only on dmax(cr). Moreover, it is monotonic, that is, if it
holds for dax () then it holds for any dpax ()’ < dmax (). This provides means for building implemen-
tations that plan interactions as soon as possible by taking for dyax () the maximal value of ¢ such that
schedule(a, §) holds on Reach(Sy).

4 Using Knowledge to Enhance Deadlock-free Planning

In Section 3, we presented sufficient conditions that ensure a deadlock-free planning of interactions. Effec-
tively, we use an SMT solver to check the satisfiability of those conditions on the reachable states of the
planning semantics. As explained in Section 3 to prove deadlock-freedom of weak planning semantics it is
sufficient to prove that for all interactions o € +y the following formula:

Reach(S,) N —schedule(or, Omax ()

is unsatisfiable. In practice, we do not calculate Reach(S,) to avoid the combinatorial explosion prob-
lem inherent to composition of timed automata. Instead, we use over-approximations of the latter which
enable us to build weaker conditions of deadlock freedom. As explained in more detail below, these over-
approximations take the form of invariants I (i.e. such that Reach(S;) = I) that are used to establish
deadlock freedom by checking the unsatisfiability of:

I N —schedule(ar, Omax ()

Timed Invariants

Our approach consists in pre-computing global knowledge of the system in the form of invariants that will
be used to approximate Reach(Sy). Locations reachable in a composition S = (B4, ..., B,,) are neces-
sary combinations of reachable locations of individual components B;, i.e, Reach(S,) = )\, Reach(B;).
However, in general not all combinations are reachable since components are not fully independent as they
synchronize through interaction set v. Moreover, individual reachable states of components do not express
the fact that time progresses the same way in all components.

For example, a global location may be not reachable because component locations having disjoint
time progress conditions, or an interaction may be not enabled from a state because of an empty timing
constraint. Such properties require additional relationships relating clocks of different components that are
not available in Reach(B;) as it is is restricted to clocks of a single component.

We follow the approach of [3], [28], [29] for reinforcing individual reachable states of components with
global invariants on clocks. They are induced by simultaneity of transitions execution when executing an
interaction and the synchrony of time progress. To compute such invariants, additional history clocks are
first introduced in components. History clocks are associated to actions of components and to interactions,
and reset upon their execution. They do not modify the behavior since they are not involved in timing
constraints. They only reveal local timing of components, relevant to the interaction layer, which allows
to infer further properties referred as history clocks inequalities in [3], expressing the fact that the history
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clock of an interaction is necessary equal to history clocks of its actions after its execution and until the
execution of another interaction involving these actions. By combining history clocks inequalities £(S)
and symbolic states of components, we have:

Reach(S,) = /\ Reach(B;) N E(Sy) 3)

i=1

Notice that for such system with multiparty interactions, other types of invariants could be used, like
those of [9] that corresponds to the notion of S-invariants in the Petri net community [24]. Even if they are
time abstracted, it is determined that they are appropriate for proving non coverage of subsets of individual
locations.

Example 3. We illustrate the application of (5) for a safe planning of interactions by considering again
example of Figure 1. It can be shown that for planning interaction a5 (resp. aig), we can exclude locations
configurations including location £3 (resp. £2). In the following, we prove how such configurations can be
excluded using history clocks inequalities.

Since action run of C'is synchronized with either start; of T} or starty of Th, and since history clocks
h, of an action a is reset whenever a is executed, by [3] the history clock inequalities for run are:

(hrun = hstartl < hstartg - 4) \ (hrun = hstart2 < hstartl - 4) (6)

Equation (6) states that h,.,, is equal to the history clock corresponding to the last synchronization, i.e.
either hgtqre, OF Rstart,, and is lower than history clocks of previous synchronizations. Value 4 in (6)
is obtained considering separation constraints computed from symbolic states of components [3]: two
occurrences of run are separated by at least 4 time units because of timing constraints of C', and so do
occurrences of start; or start, which can only execute jointly with run. To relate history clocks with
components clocks, we simply include history clocks when computing symbolic states of components (i.e.
Reach(B;) for components), which is used to establish here that x = hgtart, and y = hsiart,. That is,
with (6) weobtainz <y —4ory <z — 4.

By definition of Enabled we have Enabled(ag) = at(¢3) A (1 < z < 3). Similarly, Enabled(ag) =
at(¢3) A (1 < y < 3). This proves that components 77 and T can never be at locations /3 and (3
at the same time. Thus, while checking for interaction a; (resp. ag) that A\, Reach(B;) N E(Sy) A
—schedule (o, dmax () is unsatisfiable, this case will be excluded using history clock inequalities.

5 Implementation and Experiments

The presented method has been implemented as a middleend filter of the BIP compiler. BIP [6] is a highly
expressive, component-based framework with rigorous semantics that allows the construction of complex,
hierachically structured models from single components characterized by their behavior. The method input
consists of real-time BIP model and a file containing an approximation of the reachable states of com-
ponents combined with history clock inequalities as explained in Section 4. The latter is generated using
the RTD-Finder tool, a verification tool for real-time component based systems modeled in the RT-BIP
language. Our filter generates for each interaction of the input model a Yices [ 5] file containing system in-
variants together with the condition for planning the considered interaction, that is, =schedule(a, dmax (@)).
Thereafter, Yices checks the satisfiability of A, Reach(B;) A E(Sy) A —schedule(a, dmax(c)).
We also define 0., (<) as free variable. If this condition is unsatisfiable, then planning interactions « is
safe and unbounded that is, d;,,x = +00. Otherwise, Yices generates a counter-example. This counter-
example can be used to find the maximal value of d,,,.x(¢) satisfying the above condition using a binary
search algorithm.

We ran our experiments on three other models besides of the model presented in Figure 1: Pace-
maker [19], Fischer [22], and Gear controller [23]. We developed an implementation of these models in
RT-BIP. The following tables show the result of our experiments. Table 1 gives a detailed result of the
experiments ran on the Task Manager model 1. It summarizes, for each interaction, its Conflicting Interac-
tions and the potential time progress conditions that may expire while planning it (column ¢pc). The last
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column, 6y,ax (), details the maximum horizon for planning interaction .. Notice that the symmetry of the
model allows to perform the verification on interactions a1, a3, s, and a7 and deduce the results for the
other interactions. Table 2 depicts the results of our experiments on different models. For each model, it
summarizes the number of interactions that can be safely planned with an unbounded horizon (§;pax = 00).
It also gives the number of interactions that need to be planned immediately (dy,ax = 0).

Table 1: Detailed Results of the Task Manager Experiments

Interaction||Conflicting Interactions|¢pc|dmax ()
o1 Q2, Oy, O 53 o0
as 2,04, s o 00
as a6, 8 ] 00
[e%4 a2, 04 Eg 0

Table 2: Results of Experiments

Number of Interactions
Model Omax = 0|0max = oo|total
Task Manager 2 6 8
Pacemaker 0 6 6
Gear 0 17 17
Fischer 0 10 10

6 Conclusion and Future Work

We presented a method for enhancing the scheduling of real-time systems in a distributed context on models
described using multiparty interactions. The proposed approach defines sufficient conditions ensuring a
deadlock-free local planning of interactions with a certain horizon. Moreover, it is determined that those
conditions are interaction dependent, in other terms, this means that changing the planning horizon of an
interaction does not affect the planning of other interactions. A key innovative idea is the use of global
knowledge in addition to local components informations to enhance the local scheduling of interactions.
The computed knowledge captures not only the way components synchronize through interactions, but it
also consider the separation constraints between those interactions and express explicitly the synchrony of
time progress.

There are many open problems to be investigated such as: (i) considering more conditions when plan-
ning an interaction based on the state of components involved in this interaction, and (ii) defining a lower
bound for planning interaction. The latter represents an important point meaning that, if planning inter-
actions can be ensured for a lower bound, that effectively represents the communication delays of the
target platform, than all the problems induced by those delays, such as global consistency and performance
dropping will be solved.
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Proof (Theorem 1). We will use proof by induction to prove theorem 1.

1. At the initial state of the system (¢, vg, 7g), we have: o = (). We deduce then that the theorem holds
at the initial state of the system.
2. Assuming that we are at state (£, v, ) where the theorem holds, let us prove that it still holds at state
(¢',v', 7") such that:
Vo € yURso U {plan}, (£, v, 7) ~os (£, 0, 7')

(@) oc€n:
We have (¢,v,7) ~os> (£/,v',7') = n/ = 7 — o, and we know from Definition 5 that all the
interactions in a plan have disjoint set of components, that is, part(c) N part(s’) = (. This

property allows us to infer that Vo € 7'

m(a) =4,
=35=0,
m(a) =0,

Then, using property 2, we can deduce that Voo € 7, Enabled” e (o) still holds at state (¢', v, 7).
It is straightforward that for 7’ = () the property holds.

(b) o € Rog:
We have (£,v,7) ~os (0,0, 7') = 7' =7 — 0 Ao < min, that is:

Vaen',m'(a) =§ =n(a) —o Ao < 7(a),

Notice that: ,
Vo € 7', Enabled”™ ™ () = Enabled”™ "™ (a),

Then, we deduce using property 3, that Vo € 7/, Enabled”™ () still holds at state (¢, v, 7).
It is straightforward that for 7' = ) the property holds.

(c) o € {plan}:
lan(s3,6” s/1
We have (£, v, ) i M(~> ) (¢',v',7"). By definition of planning action Enabled”’ (B) is true at
state (¢, v, 7’). Notice also that planning actions does not change the states (locations and clocks
valuations) of components, that is, Yor € 7/ — 8, 7(cr) = 7/ (t), which proves that Enabled” («)
is true at state (¢',v', 7").
O

Proof (Theorem 2). To prove that .S}, simulates Sy, thatis, S; Eg, S, we need to prove that:

¥(q; (¢,0)) € Ry, Vo € yURsq such thatq %, ¢ :

plan* oplan*

3(q",0) such that (q"; (¢', 0)) € Rzand (q,0) > (¢',0)

(i) oen:
Suppose that (¢; (¢,0)) € Re and ¢ =, ¢'. We have: ¢ =, ¢/ = Enabled(a) & Enabled”’ (c).

1 7,0)0
We deduce then that, (g, 0) pla )> (¢’, D) We conclude by remarking that (¢’; (¢, ?)) € Ra.
(i) o € Rap:

Suppose that (g; (¢,0)) € Ry and ¢ =, ¢'. We have:
q = ¢ = tpc;(vi + 0)ieq1,... - Thus, by definition we have (g, ) ~> (¢, 0). We conclude by
remarking that (¢’; (¢/,0)) € Rs.

a

Proof (Theorem 3). Let (£,v,7) be a reachable state of the planning semantics. It is straightforward that
applying Theorem 1 to all the planned interaction, gives term A of Equation 2.

Assuming (¢, v, ) is a deadlock state. This means that (i) time cannot progress in the system, and that
no interactions can be (ii) executed or (iii) planned. By definition of the weak planning semantics we have:
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R1 (i) = Vi, Vi ep, at(li) Aurg(tpe,,), with n representing the number of components in the
system

R2 (ii) = Vaem m(a)#0

R3 (iii) = Va € v\ m,~Enabled(a) V a € conf ()

Notice that by putting 8’ = ¢ in Property 3, we can infer that Enabled(«) is satisfied at state (¢, v+ ¢”) and
since we are assuming components with well form guards, we have the following lemma:

Lemma 1. IfEnabled/é (@) holds at state (£,v), then we have N\ )\ at({;) A —urg(tpey,).
a;€al;eL;

Using this lemma, R1 can be relaxed on components participating in planned interactions, that is:

Rl = \/ \/ at(¢;) Aurg(tpey,),
B;eS\part(m) £;€L;

which represent term B of Equation 2.

Using corollary 1, we know that state (¢, v) is reachable in the global state semantics. Moreover, we
are assuming deadlock-free systems w.r.t the global state semantics, meaning that (¢, v) is not a deadlock
state, that is, Ja €  such that (¢,v) <, (¢',v'). By combining this with R2 and R3 we deduce that the
following is satisfied:

/\ ma)#0 A | \/ Enabled(a) V \/ Enabled(w)),

a€Em aem a€conf ()

which gives term C and proves the theorem.
O

Proof (Theorem4). Let (¢, v, 7) be arachable state of the weak planning semantics. This state is a deadlock
state if Equation 2 is satisfied, meaning that 3o € 7 for which the following is satisfied:

Enabledﬂﬂ(a)(a) AN m(a)#0 A (Enabled(a) Y \/ Enabled(ﬁ)) (7
Beconf ()

‘We have:
Rl 7T(Oé) # 0 = 6max(a) # 07

and using Property 4 we can infer that:

e T 17 A0.0max(e)]
R2 (o) # 0 A Enabled” ( )(Oé) = Enabled”"""™ ()

Thus, Equation 7 becomes:

/ﬁ‘(a)

(Omax(ct) #0) A Enabled” "™ A/ Enabled(a) 8)

BeaUconf ()

Notice that:

\/ \/ at(¢;) Aurg(tpey,) = \/ \/ at(¢;) A urg(tpey,) )

B;eS\part(m) £;€L; B;eS\part(a) i €L;

Finally by combining Equations 8 and 9 we obtain Equation 4, which proves the Theorem.
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