erimac

-

B =
A framework for simulate

synchronous reactive programs and

measure execution times to aid WCET
analysis

Wei-Tsun Sun

Verimag Research Report n’
TR-2016-3

2016-07-20

Reports are downloadable at the following address
http://www-verimag.imag. fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UGA

Batiment IMAG

Université Grenoble Alpes
700, avenue centrale
38401 Saint Martin d’Héres
France

tel : +33 4 57 42 22 42

fax : +33 4 57 42 22 22
http://www-verimag.imag.fr/

\l
s

UNIVERSITE
' Grenoble
2 Alpes

http://www-verimag.imag.fr

A framework for simulate synchronous reactive programs and
measure execution times to aid WCET analysis

Wei-Tsun Sun

2016-07-20

Abstract

Obtaining Worst Case Execution Time (WCET) is essential for systems with timing
requirement. This is because the violation of such requirement may lead to catas-
trophic results in safety critical systems. WCET can be acquired through static
or dynamic analyses. With static analysis, it is less obvious to observe the timing
behaviors of the analyzed system during its actual execution. While dynamic anal-
ysis, such as measuring execution times, lacks of theoretical foundation to ensure
the specified properties. It is essential to perform the static and dynamic analy-
ses for the same hardware configuration to have consistent results and meaningful
feedback. It is equally essential to have both analysis perform on the same analysis
framework for the same reason. In this paper, we are presenting an approach of
dynamic analysis through the use of a framework, named OSIM, which integrates
the processor simulator and input-stimuli generator. OSIM is based on OTAWA, a
static timing analysis framework, and is able to give feedback to OTAWA for the
refinements of the static analysis.

Keywords: WCET, measurement WCET analysis, static timing analysis

Reviewers: Claire Maiza, Pascal Raymond, Erwan Jahier

How to cite this report:

@techreport {TR-2016-3,

title = { A framework for simulate synchronous reactive programs and measure execution
times to aid WCET analysis},

author = {Wei-Tsun Sun},

institution = {{ Verimag} Research Report},

number = {TR-2016-3},

year = {2016}

Wei-Tsun Sun

1 Introduction

In real-time systems, in particular the hard real-time systems, the programs have to react to the environment
in a given time (as a constraint) to prevent possible failure of the system. To ensure the execution time of
the program never excesses such constraints, a worst case execution time (WCET) analysis is performed.
WCET analysis can be categorized into two major groups [21]: the static analysis and the dynamic anal-
ysis (also called measurement approach). The static analysis estimate a guaranteed upper-bound on the
execution time of a given program. Over-estimation of the bound can occur, for instance when the analysis
does not exclude the infeasible paths, i.e. the execution states which are impossible to reach. The stati-
cally WCET analysis does not provide any information about the execution time depending on different
execution scenarios. The estimated bound is provided for any input value (worst-case). Execution times of
a program are measured in the dynamic analysis. The measurements are taken from numerous execution
scenarios with different inputs fed to the programs. To achieve higher confidence in the dynamic analysis,
the number of the execution scenarios should be sufficient to provide well-representative samples, while
the inputs to the program also need to be well selected to cover as many execution scenarios as possible.
Dynamic analysis provides the possible distribution of the execution times, but the upper-bound found in
the measurements may be exceeded in the case where the measurement does not cover all scenarios. Static
and dynamic analysis can be applied to aid each other (each one giving feedback to the other one).

In this report, we focus on synchronous programs, in particular the programs that are written in a
synchronous language [1] called Lustre [8]. Synchronous languages like Lustre describe reactive systems
which continuously react to the environment. The features of Lustre achieve the determinism in both
functional and temporal manner, which is suitable for targeting the real-time systems. A Lustre program
is compiled to the binary of the target platform. This binary is then used by our analysis. For the dynamic
analysis, in order to obtain confident measurements, the program is executed/simulated intensively so that
the results can reflect the actual behavior of the system in the real environment. Sensible inputs also needs
to be provided to the simulated program to have meaningful program behaviors and outcomes. This can
be achieved with the help from Lurette [1 3], which provides the infrastructure to integrate both the stimuli
generator and the simulated programs (we can them system under test, or SUT) running in OSIM. In
Lurette, Lutin [12, 11, 16] is used to implement the stimuli generator which feeds randomized inputs to the
simulated programs by specifying the possible input values.

In this report, we present a simulator OSIM to be used to give feedback to static analysis. This simulator
is connected to an environment generator through Lutin/Lurette that enables a good dynamic analysis of
Lustre programs.

There exists several tools for performing static analysis. We use OTAWA [4], which enables us to
perform static analysis for the ARM7 platform. In OTAWA, the target hardware is configured prior to the
analysis. To have a clear picture of the execution times of the programs, we decide to apply dynamic analy-
sis as the counterpart to the results obtained by OTAWA. The factors that affect the execution time depends
on the hardware such as the characteristic of the processor, the memory hierarchy, the infrastructure of
the bus, and the peripherals (i.e. inputs and outputs). Hence we use the same hardware configuration and
mechanism provided by OTAWA to avoid the influences from having the different hardware platform. We
construct a simulator, named OSIM, which executes the program binaries on the simulated hardware plat-
form to measure the execution times.The results collected from the dynamic analysis are then compared
with the ones from static analysis as the feedback to investigate the accuracy of the static analysis and the
possible improvements. With the stimuli generator (Lurette/Lutin) we show that a good environment model
helps a lot in getting correct and more precise dynamic WCET. The report is organised as follows: TODO

2 Related works

This work is clearly related to the abundant literature on test input generation, for instance: random test
generation [20], genetic algorithm [17], model-checking [20], path clustering [5] or profiling [9]. The
main difference in our approach is that we focus more on the feasibility and relevance of inputs, where
other approaches generally focus on code coverage.

Performing dynamic WCET measurement with the help of a model of the environment does not seem

Verimag Research Report n° TR-2016-3 1/23

Wei-Tsun Sun

Lurette
Input stimuli | Reactive
Lutin programs
N Outputs (Lustre)

Figure 1: Testing Lustre reactive programs with Lutin in Lurette

common. To our knowledge, the most similar approach is presented in [6]. The main difference with our
work is that the environment is described (and simulated) with Matlab-Simulink. Simulink is well suited
for modeling continuous time, deterministic, physical environment. Lutin which is specifically designed for
testing purpose, is more suitable and versatile for describing and simulating sequential, non deterministic
scenarios: with a compact description and a intensive automatic testing, the Lutin framework can discover
rare/borderline executions.

A main goal of this work is to quantify the precision of static WCET estimation. The chosen method is
the comparison with dynamic WCET measurement performed - in the same abstract machine, for the same
set of realistic environment. A similar approach exists in the tool Chronos [5], but but the constraints on
inputs are much simpler than the one we can describe with Lutin. Other methods aim at quantifying the
precision of estimation using specific analysis [3].

3 Background and our contributions

3.1 Timing analysis of programs

The execution times of programs depend on the inputs of the program. This is because different inputs
scenarios will form different conditions which results different execution paths. The behaviors of the
programs can also depend on the current state of the program, i.e. mealy machine like. It is then very
difficult to explorer manually all the combinations of the inputs and the program states to find the worst-
case execution-time (WCET) of the program. Static WCET analysis does not take different input sets into
account and estimate the WCET by finding the corresponding execution path. Static WCET analysis does
not provide the distributions of the execution times (neither the best nor the nominal cases) hence it is
difficult to relate the WCET with the behaviors of the programs.

3.2 Testing reactive programs

Synchronous reactive languages such as Lustre are used to design real-time systems. For critical systems,
both functional and timing correctness are equally important. Lurette [13] is framework which enables
designer to automatically test Lustre programs for functional correctness. The infrastructure of Lurette is
depicted by Figure 1. Designers can design input generators in Lutin, to provide input stimuli to the system
under test (SUT), i.e. the reactive programs. With Lutin, the designers does not need to come up with
individual input scenarios, instead, the inputs will be generated automatically by specifying the constraints
of the inputs. For example, a program may take two Boolean values as inputs but it is impossible to have
both values equal to true. It is then possible to apply this restriction when designing the input stimuli with
Lutin to generates all possible input cases (true/false, false/true, and false/false). With proper techniques,
the designers can described the rules to generate the inputs with Lutin, and let Lutin provides the actual
inputs to the SUT. The SUT will generate outputs based on the given inputs, where the outputs can be
fed back to Lutin for verifying the functional correctness. However, checking the timing properties of a
synchronous program is not available in Lurette.

2/23 Verimag Research Report n® TR-2016-3

Wei-Tsun Sun

Lurette
, . PSIM
Input stimuli .
* Reactive
Lutin programs
- (Binary)
Outputs

Figure 2: Simulating the executable reactive programs with OSIM in Lurette

3.3 Contributions

In this report, we propose a framework to perform measurement approach to obtain WCET of the Lus-
tre programs. For start, we are interested particularly in the ARM7 LPC2138 architecture, however the
proposed method is not architecture dependent. We use Lutin to generate vast input sets automatically to
obtain a wide range of measurements. Instead of running the compiled Lustre programs on the real hard-
ware platform, the programs are executed on a simulator named OSIM (short for OTAWA SIMulator) as
illustrated in Figure 2. OSIM is developed based on a framework called OTAWA which provides many fea-
tures mainly designed for static analysis. In this case, the same facilities, such as control flow graph (CFG),
can be shared for both static and measurement (OSIM) approaches. The results obtained from OSIM can
be also used to understand the relationship between the distribution of the program’s execution times and
WCET throughout the execution paths.

By combining the power of both OTAWA and Lurette, the designers are now able to check both func-
tional and timing properties of Lustre programs (can also apply to other synchronous programs). Our
contributions include the follows:

1. Using automatic input generator (Lutin) to explorer more execution paths then conventional mea-
surement approach.

2. Sharing the same facilities as the static analysis (OTAWA), the proposed approach make use of the
CFG of the simulated programs, so that the occurrences (how many times a part has been executed)
and execution times can be associated with the basic blocks (BB) and the edges between BBs. These
information can be used as the feedback to the static analysis. Conventional measurement approach
does not take execution paths into account.

This report is organized as follows: the organization of our framework is detailed in section 4. Section
5 presents the flow of the simulations. The measurements of the reactive programs and the requirements
are described in Section 6. In section 7, how to use our approach to detect over-approximation is discussed.
The results of the conducted experiments are explained in section 8, followed by section 9, the conclusion.

4 The organization of our framework

Figure 3 illustrates the overview of the framework, as well as the interconnections between the components
in the framework. On the top level, the framework is based on Lurette, the inputs and outputs are established
between (1) a stimuli generator modelled in Lutin, and (2) OSIM, a simulator to execute Lustre reactive
programs on the simulated target processor.

OSIM is developed on top of OTAWA framework. OTAWA provides the infrastructures such as binary
executable loading and decoding, so OSIM is able to access the reactive binary directly. OSIM consists of
two parts, the instruction set simulator (ISS) and the structural simulator (SS). The ISS is used to determine
the state of the simulated target processor and the SS is in charge of obtaining the cycle counts of the
program execution.

The instruction set simulator (ISS) is automatically generated by a tool named GLISS2 [18], given
the information of the instruction set architecture (ISA) is provided. The ISS maintains the state of the

Verimag Research Report n° TR-2016-3 3/23

Wei-Tsun Sun

Lurette OSIM (based on OTAWA)
Instruction set simulator
Register
File Memory

Lutin

(Input e

stimuli
generator) Structural simulator (SystemC)

> Fetch Decode Execute
/l\:’—LLE Stage Stage Stage

Figure 3: The structural of our proposed framework

processor in a register file (set of all registers in the processor) and the content of the memory accessed by
the processor. The content of the memory is instantiated when needed to prevent over-uses of memory on
the simulation host, i.e. even though 4GB of memory is available to the simulated target, it is wasteful to
allocate the same size of memory spaces for the simulation. Instead, when an address is accessed by the
processor, a segment of memory containing the accessed address is instantiated.

The ISS is implemented at the functional level instead of the cycle-accurate level. The operations of
the processor are abstracted for better simulating performance. To demonstrate this, we use the instruction
“add r1, r2, 12” as an example, which adds the contents of the register r1 and r2 and writes the results back
to rl. In the RTL, the contents transferred from the register to the bus, as well as the computation occurs
in the ALU, are described in a cycle accurate manner. In exchange of the performance in simulation, the
functional ISS is used, where the results is computed by translate the instruction to a simple statement in
C: R1 =R1 + R2, where R1 and R2 are part of the data structure representing the register file.

The SS is chosen to be modeled in SystemC [10], this is because (1) the notion of the clock cycles so
that the behaviors of instruction moving from one processor stage to another at each cycle can be easily
captured, (2) OSIM is based on OTAWA which is implemented with C++ and so is SystemC, this eases the
integration of ISS and SS in OS1M, and (3) SystemC is suitable to model other hardware component so that
OSIM can be extended by considering other possible hardware components such as memories with delay.

The SS is configured via XML files which describe the characteristics of the processor, such as the
pipeline stages and the organization of the memories (i.e. the memory types with its corresponding ad-
dresses). Since we are interested in ARM?7, the resulted SS has three pipeline stages: fetch, decode, and
execute. The pipeline stages are only used to hold instructions to deduct how many cycles required for an
instruction to complete. Hence the actual instruction decoding and execution are not performed in these
stages, instead instructions are decoded and executed in the ISS. The execution stage is the most important
stage in the SS. In contrast to fetch and decode stages which only hold the instruction for one cycle, the
execute stage detects the type of the instruction and holds the instructions accordingly for a number of
cycles until the instruction completes. In Figure 3 the arrows presents how different components exchange
information:

(a) Interface to access the register file of the ISS, in particular, this enables the SS to obtain the correct
instruction to fetch.

(b) The SS is able to read and write the content of memory to simulate the inputs and outputs from the
memory mapped I/Os. The memory mapped I/Os are used as the means of communication between
Lutin and the simulated programs.

(¢) The ISS has access to the program binary and hence can provide the SS the instruction to fetch as
described in (a).

(d) The instructions are transferred from one stage to its next stage when there is no blocking in the
pipeline.

4/23 Verimag Research Report n® TR-2016-3

Wei-Tsun Sun

(e)

5

Lurette OSIM (based on OTAWA)
Instruction set simulator
Register () | Reactve
- Memory program
File (binary)
Lutin = il
(Input / (2
simul @ o ®
generator) Structural simulator (SystemC)|
Fetch | (d) | Decode | (8) |Execute
Stage | Stage | Stage
® '
t o

Figure 4: The simulation flow of the proposed framework

The inputs from Lutin to the SS (in resp. to the outputs from the SS to Lutin) are implemented with
TCP communications.

The flow of the simulation

Figure 4 illustrates how simulation is carried out internally. The simulation flow is described as the follows:

ey
2

3
C))

€

(6)

)

The structural simulator (SS) send the request to obtain the instruction to fetch from the instruction
set simulator (ISS) as (a).

As (b) indicates, for obtaining the first instruction of the program, the ISS will provide it directly
from the execution binary. For the later instructions, the ISS will execute the current instruction and
determine the next instruction to provide.

The SS now positions the received instruction to the Fetch stage as shown in (c).

In the next cycle, the instruction in the fetch stage will be transferred to the decode stage, illustrated
in (d). Meanwhile since the fetch stage is empty, it will request a new instruction as mentioned from
(1) to (3).

Similar to (4), the instruction in the decode stage will be put into the execution stage as (e). In the
execution stage, the number of the cycles required to finish the instruction will be determined accord-
ing to the opcode and the oprands of the instructions. For instance, a simple arithmetic instruction,
e.g. ADD, will take only one cycle, while a branch instruction will take either one or three cycles
according to the branching condition. When an instruction requires more than one cycle to complete,
it stays in the execute stage. This will in turn stop the SS to request new instruction from the ISS.
Once the instruction completes its cycles, the execute stage will be emptied, and the instruction will
be transferred from the decode stage to execute stage, as well as from the fetch stage to the decode
stage. In this case, new instruction will be requested from ISS as described in (1).

When the simulated program requires the input from Lutin, the SS will read the input stimuli (currently
implemented as a read operation with TCP socket) as shown in (f). Through the interface of ISS, the
SS is able to transfer the input data to the specified memory address as shown in (g).

Similarly when the output is generated from the simulated program, the SS will access the data from
the memory (h) and pass it to Lutin (i).

Verimag Research Report n® TR-2016-3 523

Wei-Tsun Sun

int main() {

while(1) { Measure time Measure time
READ_ TNPUT(); i a for 1% tick for 2 tick
. ¥
REACTIVE_STEP_FUNCTION(); // B =
WRITE_OUTPUT(}; /e [Ai] By [Cy[A] By [Ca[As] - -
¥ time (cycles)

}

Figure 5: Execution of a reactive program

6 Measuring execution time of reactive programs and its I/0s

6.1 The execution model of reactive programs

A Reactive program described in Lustre is compiled to a reactive step function (or step function in short) in
C (and other possible languages depending on the back-end of the code generation). The step function takes
inputs from the environment, acts accordingly, and generates outputs back to the environment. Concurrency
in the reactive programming languages are compiled away to a single thread code hence the problems of
using thread [4] does not exist anymore. To support programming for real-time systems, a hypothesis is
made that the worst-case execution time (WCET) of the step function must be known hence the needs of
the timing analysis. The step function is included in an infinite loop so that it continuously reacts to the
environment, as illustrated in Figure 5. We call each iteration of executing the step function a tick as Lustre
has a notion of logical ticks. Each tick has different length, in the number of the processor cycles due to the
inputs and the current state of the step function. Therefore in static analysis the WCET of the step function
is taken into account.

To measure the length of the step function precisely, it is crucial to know when to start and stop the
measurement. As step function is called in the main loop, and thanks to OTAWA ’s facility to provide
the CFG of the simulated program, it is possible to know the starting address and the end address of the
function. We illustrate this with a Lustre program “dependeur” in Listing 1, and the corresponding CFG
in Figure 6. OSIM only needs to know the name of the step function, i.e. dependeur_dependeur_step
(provided with the argument -e), to conclude that the step function starts at address 0x8134 and ends at
0x8264.

Listing 1: The main loop of “dependeur” which calls the step function

00008270 <main>:
...... ; initializations

827c: mov r3, #-536870912 ; beginning of the while loop
...... ; reading inputs

82ac: bl 8134 <dependeur_dependeur_step> ; step function

82b0: mov r3, #-536870912 ; start writing outputs

...... ; writing outputs continued

82f0: b 827c <main+0xc> ; back to the top of the while loop

6.2 The communications between Lutin, and OSIM

Figure 7 illustrates the communication between Lutin and OSIM within the framework. Such communica-
tion is achieved using the TCP on a specific port decided a priori. The inputs generated by Lutin will be
passed to Lurette which forwards the inputs OSIM. The phases of communications are as follows:

(1) OSIM sends out the format of the I/O, which consists of the name and the type of each I/O, indicating
OSIM is ready to receive inputs generated from Lutin, as shown in (a). Based on the I/O information,
OS1M can determine the number of inputs and outputs and the corresponding addresses in the memory.
Lutin received the I/O information (b) to confirm that OSIM is ready to communicate and ready to
send out the generated inputs. The order of (a) and (b) at this handshaking phase is not important as
TCP blocking read/write are used.

6/23 Verimag Research Report n® TR-2016-3

Wei-Tsun Sun

ENTRY

|
call

BB 1 (00008270)

\

00008270 stmdb sp!, {fp, Ir}
00008274 add fp. sp, #4
00008278 sub sp, sp, #24

BB 2 (0000827c)

0000827c mov r3, #-336870912

000082ac bl 8134 # dependeur_dependeur_step

(BB 4 (00008134) // the step ﬁm-:ticm\

dependeur_dependeur_step:
00008134 str fp, [sp, #-4]!

00008264 bx Ir

Figure 6: the CFG of the Lustre program dependeur

A

taken

BB 3 (0000%2b0)

\

D0D0E20 b 827c # D00D0827¢

000082b0 mov r3, #-536870912

Verimag Research Report n® TR-2016-3

7/23

Wei-Tsun Sun

OSIM @) @) (o) (o) (B () (exs) (e20) (B)
Lurette by (o) @@ e .
el o= = — e bttt - ime (ovcles
! Hand- ' ' Tick1 ! T s 0 fime(cydes)
shaking measurement measurement

Figure 7: The communication between Lutin/Lurette and OSIM

tickAddr tick address
tickAddr+0x08 first input
tickAddr+0x10 second input
tickAddr-n*0x08 ny, input

tickAddr+n*0x08+0x08 | first output
tickAddr+n*0x08+0x10 | sencond output

tickAddr-n*0x08+m*0x08 | my output

Figure 8: The memory mapping for the IOs of a simulated Lustre program

(2) Then Lutin sends out the first input (c;) after the I/O information has been received.

(3) Asshown in (d;) ISS executes the instruction which loads the pre-specified tick address (TA) indicat-
ing the step function is ready to execute. TA is provided as an argument (-ta) to OSIM. SS then reads
the inputs from (c;) and stores them at the corresponding address of the memory content governed by
the ISS. The organization of the addresses used by the simulated programs are illustrated in Figure 8.

(4) Once the simulation reaches (e;a) which is the beginning of the reactive step function, the measure-
ment starts. The measurement will stop to determine the number of cycles elapsed to execute the step
function at (e b) where the last instruction of the step function completes.

(5) Once the step function completes, the SS reads the addresses mapped to outputs and send the obtained
data to Lutin (f7). After the outputs from the simulated program are received (g;), Lutin sends out the
inputs for the second tick (c3). The simulation goes on in the same fashion in the later ticks (the loop
of ¢, to gp,).

(6) The simulation terminates once Lurette sends a termination message to OSIM at the end of the speci-
fied tick.

6.3 Memory mapping of inputs and outputs to the simulated programs

In order to have inputs from and outputs to Lutin to be successfully read/written by the simulated program,
the main loop of the program must be conformed to the specified memory organization, i.e. the allocations
of the tick address and the memory mapped I/Os. Listing 2 shows the source codes which implements the
main loop for the program dependeur. The dedicated addresses for tick, inputs, and outputs are defined in
lines 1-7. The corresponding memory mapping is illustrated in Figure 9. 8 bytes of memory is associated
with each input and output for the simplicity and being able to handle 64-bit data types. The first address
is always the tick address, followed by the inputs, and then the outputs. The first (tick) address can start at
any reasonable memory location and the I/O addresses have to be in sequence as shown in the listing. The
tick address has to be written at the beginning of the loop (line 11), the access of this address will trigger

8/23 Verimag Research Report n® TR-2016-3

[N e Y R S I

DO = = = = e e s e e
SO 0NN KW~ OO

Wei-Tsun Sun

0xed000000 | tick address

0xeD000008 | time in ms// first input argument
0xel000010 | _hour// first output

0xel000018 | _minute// second output
0xe0000020 | _second // third output

0xe0000028 | _ms // fourth output

Figure 9: The memory organization of dependeur

OSIM to start measuring the execution cycles. The values assigned to the tick address does not affect the
results. The inputs can be read from addresses as any ordinary readings from the memory mapped inputs
(line 12) followed by calling the step function (line 13). The results of the step functions are assigned to

the output addresses (lines 14-17) to conclude the execution loop.

Listing 2: The main loop of the Lustre reactive program dependeur

#include "dependeur_dependeur.h"

#define tickBegin 0xe0000000 // tick address
#define _time_in_ms 0xe0000008 // first input
#define _hour 0xe0000010 // first output
#define _minute 0xe0000018 // second output
#define _second 0xe0000020 // third output
#define _ms 0xe0000028 // fourth output

int main (){
_integer time_in_ms,
while (1){
((unsigned intx)tickBegin) = 0;
time_in_ms = x((_integer *)_time_in_ms);
dependeur_dependeur_step (time_in_ms,&hour ,&minute ,&second ,&ms);

hour, minute, second, ms;

*((_integer *)_hour) = hour;
*((_integer *)_minute) = minute;
((_integer x)_second) = second;
*((_integer *)_ms) = ms;

}

return 1;

7 Detecting over-approximation of timing analysis

/1
/1
/1l
/1l
/1

main loop

tick begins
reading inputs
step function
writing outputs

Since OSIM keeps track of the control flow graph (CFG) of the simulated program. Information such as
how many times (occurrences) a basic block has been executed, the number of execution cycles, and the
total execution cycles of a basic block are provided alongside the simulation. Similarly, information of the
edges are also provided in the same fashion. This is useful to observe the possible over-approximation of
the analysis. For obtaining the statistics, please refer to section 10.1. For example, an edge E_1_2 between
basic blocks BB_1 and BB_2 are passed 5 times during the simulation. The maximum number of cycle
among the 5 times is 6 cycles, and the total amount of cycles on E_1_2 is 24 cycles. The WCET for the
measurement approach for this edge will be 6*5 = 30 cycles, hence the over-approximation of 4 cycles.

Verimag Research Report n® TR-2016-3

9/23

Wei-Tsun Sun

Table 1: bsort100 — the comparisons between static and measurement analysis

A B C D E F G H I

Over Estimation
Occurrences | max_cycle |Occurrences | max_cycle WCET WCET WCET (static/dynamic)

1 #id (ILP) [OTAWA) (0SIM) (OSIM) (OTAWA) [{OSIM_MEASURE) | (OSIM_CALC) times
2 |e0_1_main 1 10 1 11 10 11 11 0.91
3 el_4_main 1 8 1 6 8 6 6 1.33
4 |e2_7_main 1 13 1 13 13 13 13 1.00
5 [e3_16_main 1 0 0 0 0 0 0 -
6 ed4_5_main 1 5 1 7 5 7 7 0.71
7 |e5_5_main 100 7 99 7 700 691 693 1.01
& |e5_6_main 1 1 1 3 1 3 3 0.33
9 |e6_2_main 1 4 1 4 4 4 4 1.00
10 |e7_8_main 1 6 1 6 6 6 6 1.00
11 |e8_9_main 100 17 99 17 1700 1683 1683 1.01
12 |e9_10_main 0 2 1 2 0 2 2 0.00
13 |€9_11_main 9901 4 4949 4 39604 10094 19796 3.92
14 |e10_12_main 100 2 99 4 200 394 396 0.51
15 |e10_13_main 0 11 0 0 0 0 0 -
16 |e11_10_main 100 4 98 2 400 196 196 2.04
7 |el1_9_main 9801 15 4851 17 147015 82465 82467 1.78
18 |e12_14 _main 1 1 1 3 1 3 3 0.33
19 |e12_15_main 99 4 98 4 396 392 392 1.01
20 |e13_3_main 1 7 1 7 7 7 7 1.00
21 |el4_13_main 1 11 1 11 11 11 11 1.00
22 |el5_8_main 99 6 98 6 594 588 588 1.01
23 |sum 190675 96576 106284 1.97

The static analysis from OTAWA will use the maximum cycle counts of the edge e, for the sake of
simplicity we use 6 cycles. The occurrences of the edge is computed by solving the ILP (integer linear
programming). The solution provided by the ILP may provide some value such as 7 for example. The
WCET for the edge e is then 6*7 = 42 cycles, and therefore the over-approximation of 18 cycles.

From this example we can see that the over-approximation comes from two places: (1) the worst case
cycle count is used, and (2) the computed occurrences of the edge. Such information can also be used to
see if the generated ILP formula are correct, also can be used to understand the behaviors of the simulated
program which might be relevant to the analysis method hence the over-approximations.

To demonstrate, we use the bsort100 (bubble sort of 100 numbers) example from the Milardalen bench-
marks [7]. The statistics are shown in Table 1. To ease the explanation, the partial control flow graph (CFG)
of bsort100 is provided as Figure 10. The column A in Table 1 indicates the name of the edge, for example,
e0_1_main represents the edge between the block ENTRY and BB 1. The static analysis of OTAWA makes
use of integer linear programming (ILP) to compute the occurrences of the edge, as illustrate in column B.
Column C indicates the worst-case cycle-count associated with each edge. The WCET of each edge is its
occurrences multiply by its worst-case cycle-count as resulted in column F, in this case the WCET obtained
from the static analysis is 190,675 cycles. Similarly, column D and column E record the occurrence and
worst-case cycle-counts obtained by using OSIM. OSIM also provides the accumulated worst-case cycle-
counts for each edge, as shown in column G, and result 96,576 cycles as the WCET from the measurement
approach. We provide the WCET estimation based on the results from OSIM on column H. The values are
computed in the similar fashion: the product of the occurrence times the worst-case cycle counts obtained
by using OSIM. To observe the difference between the static and measurement approach, we provide the
ratio of them on column I.

By observing Table 1, the occurrence and worst-case cycle-counts are differed due to the following
reasons:

(1) The differences in worst-case cycle counts: this is due to the strategy of counting the number of
cycles per basic block (BB). The cycles can be counted from the first instruction is fetched, till the

10/23 Verimag Research Report n® TR-2016-3

Wei-Tsun Sun

2

ENTRY

|
call

(BB 1 (002000e0) \

main:
bsort100.c:39
00200020 stmdb sp!, {rd, Ir}
bsort100.c:47
0020004 ldrrd, [pc, #20]
002000e8 mov), 4
002000ec bl 200040 # Initialize
|
|
call

¥
(BB 4 (00200040) \

Initialize:

bsort100.c:83

00200040 mvn 13, #0
00200044 Idr 2, [pe, #20]
00200048 strr3, 12, #0]

l

(BB 5 (0020004c) \I

bsort100.¢:90

0020004¢ strr3, [rD, #4]!

00200050 sub r3, 13, #1 aken
bsort100.c:89

00200054 cmn 13, #101

00200058 bne 20004c¢ # 0020004¢

BB 6 (0020005¢)

bsort100.c:91
0020005¢ bx Ir

|
return

v

Figure 10: The partial CFG of bsort100

last instruction completes its execution. Another approach can be counting the number of cycles from
the completion of the last instruction of the previous BB, till the last instruction of current BB finishes
its execution. Even though the strategies are different, the effects can be either minimal to none as
it is just a matter of interpretation. For example, from Figure 10 we can see that the execution path
is ENTRY-BB1-BB4-BBS5 which only occurs once for both static and measurement analysis. The
WCET on this path for the static approach is 10 (from C:2) + 8 (C:3) + 5 (C:6) = 23, while for
measurement approach is 11 (E:2) + 6 (E:3) + 7 (E:6) = 23 which equals to the former case.

The minor differences in the occurrences: for rows 7, 11, 14, 16, 19, and 22, we can see the difference
of one or two occurrences in column B (static) and column D (measurement). This is due to the static
analysis relied on FFX files [2] to determine the loop bounds, but the CFGs of the executables may not
be a full correspondence to the FFX files. Listing 3 is the partial FFX for the first loop of bsort100, and
the corresponding sources are presented in Listing 4. The loop is bounded to 100 iterations (the value
defined by NUMELEMS), hence the maxcount="100" (line 7) of Listing 3. By referring to Figure 11,
the loop body is associated with BB 5, which results that the occurrence of edge e4_5_main to be

Verimag Research Report n® TR-2016-3 11/23

1
2
3

SRR IR e NIV I N

—_

1
2
3

Wei-Tsun Sun

1 and e5_5_main to be 99. This can be due to that the binary is optimized so that the loop body is
presented in a do-while statement fashion (the condition of the first iteration is not checked as in for-
loop). Such difference could lead to larger over-approximation if the body of the loop is considerably
huge.

Listing 3: The flow fact for the first loop in bsort100

<?xml version="1.0" encoding="UTF-8" standalone="yes"?7?>
<flowfacts>
<function name="main" executed="true" extern="false">
<call name="Initialize" numcall="3" line="47" source="bsort100.c"'
executed="true" extern="false">
<function name="Initialize ">

"

<loop loopld="1" line="89" source="bsortl00.c" exact="true"
maxcount="100" totalcount="100">
</loop>

Listing 4: The source for the first loop in bsort100
for (Index = 1; Index <= NUMELEMS /x 100 =x/; Index ++)
Array[Index] = Indexxfact * KNOWN_VALUE;
}

(3) The major differences in the occurrences: for rows 13 and 17, the differences of occurrences between
the static (9901 and 9801 times) and measurements (4949 and 4851 times) approach are significant.
Such difference is amplified because of the worst-case cycle-counts of the edges. The edges are associ-
ated to the main body of the bubble sort. The number of iterations of the bubble sort heavily depending
on how the original set is formed. It appears that the given set does not require the maximum possible
iterations to be sorted, hence the over-estimation from the static analysis. Such over-estimation is
necessary to safely predict the WCET of the program, however the measurement approach provides
the insights the possible sources of differences of estimation times.

8 Experiments

8.1 Case study: mode3x2

The modes3x2 [19] is an example of multi-mode programs which processes data in different behaviors
according to the current operation mode as illustration in Figure 12. The program is controlled by two
Boolean inputs onoff and toggle, to process the data (integer input) and to generate an output named out. It
is important to note that the two Boolean inputs are exclusive with each other, i.e. only one of them can be
true. This has to be taken into account when designing the input stimuli with Lutin otherwise the program
will have unexpected behaviors. To demonstrate this, the WCET of both our approach and static analysis
from OTAWA are illustrated in Figure 13. To show the impact of correct designed input stimuli, we use a
counter-example such that both onoff and roggle can be true at the same time, and the results are shown in
Figure 14. It is noticed that, some of the measurements exceeded the static analysis (circled in green). This
indicates having the correct set of inputs is crucial and yet it is error prone to provides inputs manually by
designers. This again shows the usefulness of having inputs to be generated automatically by tools such as
Lutin in our proposed method.

We simulated nodes3x2 on a 2.8 GHz Core i7 machine, the simulation only used one processor. It took
47 seconds to simulate the step function of modes3x2 for 1000 ticks for a total amount of 2,437,769 cycles
(2,565,891 cycles for the whole program including the starting of the run-time, main function, etc.). The
WCET that we obtain is of 2689 cycles at the 318th tick (this may vary according to the generated inputs).

12/23 Verimag Research Report n® TR-2016-3

Wei-Tsun Sun

I
icall

v
(BB 4 (00200040) \

Initialize:

bsort100.c:83

00200040 mvn r3, #0
00200044 Idr r2, [pc, #20]
00200048 strr3, [r2, #0]

“

BB 5 (0020004c) \

bsort100.¢:90

0020004c strr3, [r0, #4]!

00200050 sub 3, r3, #1 aken
bsort100.c:89

00200054 cmn r3, #101

00200058 bne 20004c # 0020004c

1
return

v

Figure 11: The partial CFG corresponding to the first loop in bsort100

data
— =

onoff
—

out
togglel
pa

onoff

toggle

Figure 12: The modes3x2 example

Verimag Research Report n® TR-2016-3

13/23

Wei-Tsun Sun

modes3x2

1000

WCET (OTAWA) 5704
>
(X9l
[sp]

WCET [Raymond et al., 2015]
@
s}
®

o
o
[&]

o O ©O O ©O O O
O O O O O O O
O M~ © W <+ O N

100

(sewi}) s80UBLINDQD

Figure 13: The WCET of our approach (blue), static analyses (red and purple)

modes3x2

900
800
700
0]
g 600

WCET [Raymond et al., 2015]

|||||||||||||||| 2G8¢

WCET (OTAWA) 5704

S
6525
206
6881
b0l
615
ceeh

\ 8Ly
\e96e &
8//¢ 3

-/e65e B
Love 2
zzze =
LE0S -

xecution

=
=

500
$ 400

>
8]

8 300

200

—— /992 i

100

8ve
96¢¢
Lhie
ST4]
Wil
9661
0.€l
= 68l
0001

Figure 14: The unexpected behaviors due to wrongly designed input stimuli

Verimag Research Report n® TR-2016-3

14/23

Wei-Tsun Sun

Table 2: The comparisons of WCET from different approaches

Method Cycles
OSIM 2689
OWCET (OTAWA) 5704
OWCET (Raymond et al., 2015) 2774

The comparisons of the results as shown in Table 2. Table 3 shows the details of the occurrences of the
edges for the corresponding WCET. Our approaches and the approach in [19] share the same execution
traces (all the values in the column “diff paths OSIM vs 2015 are 0, which means no differences) of the
simulated program. The general static analysis did not consider the infeasible paths, and took different
paths (as colored in blue) to have higher WCET. The rows colored yellow and orange are the major con-
tribution of the different WCETSs between our approach and [19]. These two rows are corresponding to
the function calls A2 and B1 which use MUL instructions that have a variable execution time according
to the operated data. The worst-case time of the MUL instructions did not happen in the simulation but is
considered in the static analysis (in the WCET columns).

Verimag Research Report n° TR-2016-3 15/23

Wei-Tsun Sun

Table 3: The comparisons of paths and WCET for different approaches

occurrence | Diff paths | Diff paths Diff cycles
#id mgxsfg’;le OCCSFST;C“ ‘gﬁ?gf DCS“WHSECT“ (OWCET | (OSIMvs | (OSIMvs | (OSIM vs
() {)|)| ¢) 2015) OWCET) 2015) 2015) %
e0 1 _modes3x2_step 16 1 15 1 1 0) 0 1.2
el 2 modes3x2 step 0 0 4 0 0 0) 0 0.0
el 3 modes3x2 step 8 1 10 1 1 0 0 -2.4
el0_12 modes3x2_step 0 0 10 0 0 0 0) 0.0
ell 12 modes3x2 step 10 1 8 1 1 0 0) 24
€12 13 modes3x2 step 0 0 4 0 0 0 0 0.0
¢12 14 modes3x2 step 8 1 10 1 1 0) 0 -2.4
el3 15 modes3x2 step 0 0 45 0 0 0) 0 0.0
el4 15 modes3x2 step 45 1 43 1 1 0 0 2.4
el5 16 modes3x2 step 0 0 4 0 0 0 0 0.0
el5 17 modes3x2 step 8 1 10 1 1 0 0 -2.4
el6 18 modes3x2 step 0 0 28 0 0 0) 0 0.0
el7 18 modes3x2 step 26 1 26 1 1 0 0 0.0
el8 19 modes3x2 step 8 1 6 1 1 0 0 2.4
el8 20 modes3x2_step 0 0 7 0 0 0 0) 0.0
€19 21 modes3x2 step 7 1 7 1 1 0) 0 0.0
e2 4 modes3x2_step 0 0 18 0 0 0 0 0.0
€20 21 modes3x2 step 0 0 5 0 0 0) 0 0.0
e2l 22 modes3x2 step 0 0 10 1 0 0 0.0
€21 23 modes3x2 step 7 1 7 0 1 0 0.0
€22 84 modes3x2 step 0 0 910 1 0 0 0.0
€23 24 modes3x2 step 0 0 6 0 0 0 0 0.0
€23 25 modes3x2_step 8 1 10 1 1 0 0 -2.4
€24 26 modes3x2 step 0 0 28 0 0 0) 0 0.0
€25 26 modes3x2 step 28 1 26 1 1 0 0 2.4
€26 27 modes3x2_step 0 0 6 1 0 0) 0.0
€26 28 modes3x2 step 5 1 7 0 1 0 -2.4
€27 29 modes3x2 step 0 0 7 1 0 0 0.0
¢28 29 modes3x2_step 5 1 5 0 1 1 0 0.0
€29 30 modes3x2 step 12 1 10 1 1 0] 0 2.4
€29 31 modes3x2 step 0 0 7 0 0 0 0 0.0
e3 4 modes3x2 step 18 1 16 1 1 0 0 2.4
€30 _85 modes3x2 step 1487 1 1562 1 1 0] 0 -88.2
€31 32 modes3x2 step 8 1 6 0 1 1 0 2.4
e31 33 modes3x2 step 0 0 10 1 0 0 0.0
€32 34 modes3x2 step 10 1 10 0 1 0 0.0
€33 34 modes3x2_step 0 0 8 1 0 0 0.0
€34 35 modes3x2 step 0 0 4 0 0 0) 0 0.0
€34 36_modes3x2_step 8 1 10 1 1 0] 0 -2.4
€35 37 modes3x2_step 0 0 7 0 0 0) 0 0.0
e36 37 modes3x2 step 5 1 5 1 1 0] 0 0.0
€37 38 modes3x2 step 8 1 6 1 1 0 0 2.4
€37 39 modes3x2 step 0 0 7 0 0 0 0 0.0
€38 40 modes3x2 step 7 1 7 1 1 0 0 0.0
€39 40 modes3x2_step 0 0 5 0 0 0) 0 0.0
e4 5 modes3x2 step 0 0] 6 0 0 0 0 0.0
¢4 6 modes3x2_step 8 1 10 1 1 0 0 -2.4
€40 41 _modes3x2_step 0 0 6 1 0 0) 0.0
40 42 modes3x2_step 5 1 7 0 1 0 -2.4
c4l 43 modes3x2_step 0 0 7 1 0 0 0.0
42 43 modes3x2_step 7 1 5 0 1 0 2.4
e43 44 modes3x2 step 0 0 6 1 0 0 0.0
e43 45 modes3x2 step 5 1 7 0 1 0 -2.4
e44 46 modes3x2 step 0 0 10 1 0 0 0.0
e45 46 modes3x2 step 10 1 8 0 1 1 0 2.4
e46_47 modes3x2_step 0 0 4 0 0 0) 0 0.0
46 48 modes3x2 step 8 1 10 1 1 0 0 -2.4
e47 49 modes3x2_step 0 0 21 0 0 0 0 0.0
€48 49 modes3x2_step 21 1 19 1 1 0 0] 2.4
16/23 Verimag Research Report n® TR-2016-3

Wei-Tsun Sun

\ , occurrence | Diff paths | Diff paths Diff cycles
#id “;E)"ngf)e OC(CSISF;’;[‘TS (’gi’;z’;f’) O(Cguw”(fg?; (OWCET | (OSIMvs | (OSIMys | (OSIM vs
’ 2015) OWCET) 2015) 2015) %
e49 51_modes3x2_step 7 1 7 0 1 1 0 0.0
e5_7_modes3x2_step 0 0 7 0 0 0 0| 0.0
e50_86_modes3x2_step 0 0 1438 1 ol 0 0.0
e51_52_modes3x2_step 0 0 6 0 0 0 0| 0.0
e51 53 modes3x2_step 8 1 10 1 1 0 0 -2.4
e52_54_modes3x2_step 0 0 10 0 0 0 0 0.0
e53_54_modes3x2_step 10 1 8 1 1 0 0 2.4
e54_55_modes3x2_step 0 0 4 0 0 0 0 0.0
e54_56_modes3x2_step 8 1 10 1 1 0 0 -2.4
e55_57_modes3x2_step 0 0 21 0 0 0 0 0.0
e56_57 _modes3x2_step 19 1 19 1 1 0 0 0.0
e57_58_modes3x2_step 8 1 6 1 1 0 0 2.4
e57_59_modes3x2_step 0 0 7 0 0 0 0 0.0
e58 87 modes3x2_step 466 1 476 1 1 0 0 -11.8
e59 60 modes3x2_step 8 1 6 0 1 1 0 2.4
e59_61_modes3x2_step 0 0 10 1 ol 0 0.0
e6_7 modes3x2_step 7 1 5 1 1 0 0 2.4
e60_62_modes3x2_step 10 1 10 0 1 1 0 0.0
e61_62_modes3x2_step 0 0 8 1 ol 0 0.0
eb62_63_modes3x2_step 0 0 4 0 0 0 0 0.0
e62_64_modes3x2_step 8 1 10 1 1 0 0 -2.4
e63_65_modes3x2_step 0 0 7 0 0 0 0 0.0
eb4_65_modes3x2_step 5 1 5 1 1 0 0 0.0
e65_66_modes3x2_step 8 1 6 1 1 0 0 2.4
e65_67_modes3x2_step 0 0 7 0 0 0 0 0.0
e66_68_modes3x2_step 7 1 7 1 1 0 0 0.0
e67_68_modes3x2_step 0 0 5 0 0 0 0 0.0
e68_69_modes3x2_step 0 0 6 1 0 0 0.0
e68_70_modes3x2_step 5 1 7 0 1 0 -2.4
e69 71 modes3x2 step 0 0 15 1 0 0 0.0
e7 8 modes3x2_step 0 0 10 1 0 0 0.0
e7_9_modes3x2_step 7 1 7 0 1 1 0| 0.0
e70_71_modes3x2_step 15 1 13 0 1 1 0 2.4
e71_88_modes3x2_step 20 1 20 1 1 0 0| 0.0
e72_73_modes3x2_step 14 1 14 1 1 0 0 0.0
e72_74_modes3x2_step 0 0 7 0 0 0 0 0.0
e73_74_modes3x2_step 7 1 5 1 1 0 0 2.4
e74_75_modes3x2_step 0 0 14 1 0 0 0.0
e74_76_modes3x2_step 47 1 49 0 1 0 -2.4
e75_76_modes3x2_step 0 0 47 1 0 0 0.0
e76_77_modes3x2_step 14 1 14 1 1 0 0 0.0
e76_78_modes3x2_step 0 0 7 0 0 0 0 0.0
e77_78_modes3x2_step 7 1 5 1 1 0 0 2.4
€78 79 _modes3x2_step 0 0 14 1 0 0 0.0
78 80_modes3x2_step 35 1 35 0 1 0 0.0
e79 80_modes3x2_step 0 0 33 1 0 0 0.0
e8 83_modes3x2_step 0 0 512 1 0 0 0.0
e80_81_modes3x2_step 0 0 14 1 0 0 0.0
e80_82_modes3x2_step 26 1 27 0 1 0 -1.2
e81 82 modes3x2_step 0 0 25 1 0 0 0.0
e82_89_modes3x2_step 0 1 1 1 0 0 0.0
e83_9_modes3x2_step 0 0 7 1 0 -1 0 0.0
e84 _23_modes3x2_step 0 0 7 1 0 0 0.0
e85_31_modes3x2_step 5 1 7 1 1 0 -2.4
©86_51_modes3x2_step 0 0 7 1 0 0 0.0
e87 59 modes3x2_step 5 1 7 1 1 0 0 -2.4
e88_72_modes3x2_step 79 1 81 1 1 0 0 -2.4
e9 10 modes3x2_step 0 0 6 0 0 0 0 0.0
e9 11 modes3x2_step 8 1 10 1 1 0 0 -2.4
WCET 2689 5704 2774
Verimag Research Report n® TR-2016-3 17/23

Wei-Tsun Sun

Table 4: The difference between static and measurement approach for Lustre v6 benchmarks

Example OWCET|OSIM | Diff Example OWCET| OSIM|Diff Example OWCET [OSIM| Diff
aa 149| 149| O] compteur 171| 169 2| mousel 995 985 10|
call02 59] 59| O] contractForElementSelectioninArn 130] 128 2] test _diese 192| 182| 10
consensus 845| 845 0] minmaxl 64 62| 2| toolate 995| 985| 10
consensus2 845| 845 0] minmax2 9 97] 2| ck2 289 278 11
count 35 35| Ofmm 64 62| 2| cminus 655| 644] 11
cst 56| 56| O] mml 62 60 2] test 607] 596| 11
dependeur 154/ 154 O] mm22 73| 71| 2| flo 433| 421 12
dependeur_struct 150] 150| O mm3 92| 90| 2| mouse 1346 1334| 12
fresh_name 83 83| O] pre_x 431] 429| 2] mouse2 1346| 1334| 12
impl_priority 62 62| O]rs 469 467 2] PCOND1 481| 467| 14
ncl 88 88| 0] sample_time_change 368| 366| 2| callo7 243| 229| 14
ncl0 619| 619| 0] simpleRed 173 171] 2 lucky 1448(1434 14|
nc2 114| 114| O] test_arrow 300| 298 2| redoptest 583 569 14
ne3 190| 190 O] test_condact 428| 426| 2] stopwatch 1156 1141 15
ncéd 190[190 O] trivial2 369 367 2| mappredef 408| 392| 16
ncs 173 173] Of xx 116 114| 2| deSimone 2984(2964 20
ncé 191] 191] O} yyy 116 114 2] mapinf 558 538 20|
nc? 225| 225| O] COUNTER 191] 188 3] minmax6 791 771 20
nc8 884 884| O] STABLE 263| 260| 3] alias 690 669 21
nc9 604| 604 O] clock_ite 154 151 3] pipeline 2295| 2274| 21
noAlarm 26 26| O] dep 436] 433| 3juu 1450(1429 21
node_callerl 182| 182 0] double_delay 420 417 3]iter 1533(1511 22
nodeparam 112| 112| O] initial 450| 447| 3] test_boolred 254 232 22
noeudsindependants 31 31| O] test_ merge 161) 158 3| X6 1100 1071 29
notTwo 37 37| 0] callod 249| 245 4] rediter 1321] 1291 30
param_node 72 72| 0] ck4 127| 123 4] access 1752| 1721] 31
param_node2 73 73 0] ck5 394| 390 4] PCOND 1092) 1059| 33
param_node3 89| 89| Ofck7 148| 144 4fplus 669 633 36
param_node4 114| 114 0] clockl_2ms 473 469| 4] predef02 1112 1070[42
param_struct 89 89| 0] X2 150 145 5| mapiter 1576(1528(48|
struct0 27 27| 0] argos 847| 842| 5| SOURIS 5945(5896 49|
t1 865| 865| O] cpt 187| 182| 5] SOURIS_v6 5945(5896(49|
12 586/ 586/ 0] enum0 125/ 120 5] calculs_max 5611 5561| 50
testCA 154| 154| O redIf 278| 273| 5| iterate 3938(3888 50|
test_const 27 27| O] CURRENT 136] 130[6] modes3x2_v4 1063 1006 57
test_node_expand 108| 108| O SWITCH 272| 266 6| predef03 542 484 58|
titi 49 49| 0] SWITCH1 181 175| 6] modes3x2 v3 1191 1127 64
ts01 24 24| O] TIME_STABLE1 404| 398 6] carv2 4143| 4070 73
ts04 24 24| 0] ck3 212| 206| 6] struct_with 231f 151 80|
tuple 43 43| 0] minmax3 254| 248 6] over3 2074 1990 84
type_decl 33| 33| O] TIME_STABLE 440| 433 7| plyol 2074) 1990 84
222 55 55| 0] bob 549 542 7] predef01 2074 1990 84|
2222 55| 55] 0] mouse3 571 564 7] exclusion 1386| 1297 89
EDGE 162| 161| 1] poussoir 660 652 8] modes3x2_v2 2372| 2255| 117
FALLING_EDGE 201| 200| 1jtest enum 236| 228| 8 test struct 422| 267| 155
after 159| 158| 1) activation_ec 657| 648 9] bad_call03 945 768[177
ex 226| 225| 1]test _node_expand2 271] 262 9] map 1099| 847 252
followed_by 155 154 1YX 596| 586| 10| overload 941| 689 252
long_et_stupide_nom_de_noeud 155 154| 1) bred 146| 136| 10] test_map 1099 847| 252
trivial 193] 192| 1] bred_Iv4 146 136 10| sample_time_change_MainNode 3439(3063| 376
vl 40| 39| 1] minmax4 410| 400| 10| FillFollowedByRed 5330| 3648|1682
bascule 474| 472] 2| minmax4_bis 410| 400| 10]

8.2 Evaluations of Lustre v6 benchmarks

We conducted a series of static and measurement analysis on the benchmark of Lustre v6. The benchmark
consists of 173 programs which uses different features and combinations of the features. Even though
the measurement approach can obtain the WCET for all 173 programs, the static approach was made
successfully on 155 of them. They results are detailed in Table 4, which shows the WCET from the
static and measurement approach, as well as the difference between them. Table 5 shows the statistics
of the comparisons. More than one-fourth (27.7%) of examples have the same WCET on both static and
measurement analysis, and 94.2% are within the less than 10% range. This shows the static analysis is
generally accurate, especially over control-dominated programs. This is because the benchmark does not
includes examples which have huge computational differences between different paths within the program.

18/23 Verimag Research Report n® TR-2016-3

Wei-Tsun Sun

Table 5: Statistics of simulated programs in Lustre v6 benchmark

Examples| % | Accumulative %

Same a3l 277 27.7
(0%, 1%] 2| 174 452
(1%, 2%] 9] 187 63.9
(2%, 3%] 17] 110 74.8
(3%, 4%] 15| 97 84.5
(4%, 5%] 6 3.9 88.4
(5%, 6%] 5| 32 916
(6%, 7%] 3019 93.5
(8%, 9%] | o6 942
(10%, 20%] 3019 96.1
(20%, 30%] 319 98.1
(30%, 40%] 3019 100.0
Total 155 100.0

9 Conclusions

In this report we present a framework of integrating high-level testing environment for reactive programs
(Lurette) with measurement-based WCET tools (OSIM). The integration of Lurette and OSIM provides the
execution times of reactive programs with different input scenarios. With this framework, the designers are
able to verify both functional and timing aspects of the reactive programs.

OSIM enables the users to observe the distributions of the execution times of not only reactive programs
but also other programs designed for real-time systems. Facilitated by OTAWA, OSIM is able to detect the
over-approximations made from static analysis by referring the occurrences and worst-case time associated
with basic blocks and edges between them.

10 Appendix

10.1 Statistics of measurement and detecting of over-approximation for non-reactive
programs

Obtaining the statistics of the occurrences, the worst-case cycles, and the total amount of cycles of basic
blocks (BBs) and edges between BBs. The statistics will be stored in the provide argument to otawa: :osim-
Ipc2138::TRACE_INFO.

osim-1pc2138 -p proc.xml -m memory.xml prog.elf —add-prop otawa::osim-1pc2138::TRACE_INFO=trace.txt

The content of the statics will be in the following format:

id , occurrence , max_cycle, total_cycles
x0_main , 0, 0, 0

e0_1_main, 1, 18, 18

x1_main , 1, 18, 18
el_3_main, 1, 154, 154

x2_main , 1, 9, 9

e2 4 _main, O, 0, 0

x3_main , 1, 154, 154
e3_2_main, 1, 9, 9

x4_main , 0, 0, 0

The naming convention of the ids is the same as in the ILP formula generated by owcet. For example,
x0_main indicates the first (with index = 0) basic block of the simulated program. e0_1_main indicates the
edge between the first basic block and the second basic block.

Verimag Research Report n° TR-2016-3 19723

AW N =

Wei-Tsun Sun

The occurrences and WCET on edges in the static analysis can be obtained from the facility of ILP
generation and solution, it is require to use the processor in the script of owcet (Ipc2138.0sx):

<script>
<step processor="otawa::ilp::Output"/>
</script>

The ILP equations can be output to a file by the following command:
owcet.arm prog.elf —add-prop otawa::ilp::OUTPUT _PATH=prog.ilp
To solve the ilp:
Ip_solve < prog.ilp > prog.sol
The first line of the ILP equations contains the worst-case cycle-counts of the edges as the coefficients,
e.g. max: 4 el2_15_main + el2_14_main + 11 e10_13_main + 11 el4_13_main + 2 el0_12_main + 4
€9_11_main + 2 €9_10_main + 4 el1_10_main + 17 €8_9_main + 15 el1_9_main + 6 €7_8_main + 6
el5 8 main+ 13e2 7 main+e5 6 main+5e4_ 5 main+7e5 5 main+8el 4 main+ 7 el3_3 main
+4e6_2 main + 10 e0_1_main;

Note that if the edge is without coefficient means that the coefficient is 1, e.g. for edge e12_14_main.

The occurrences of the edges to maximize the WCET are stored in the sol file:

el2_15_main 99
el2_14_main 1
el0_13_main 0
el4_13_main 1
el0_12_main 100
e9_11_main 9901
e9_10_main 0
ell1_10_main 100
e8_9_main 100
ell_9_main 9801
e7_8_main 1
el5_8_main 99
e2_7_main 1
e5_6_main 1
e4_5_main 1
e5_5_main 100
el_4_main 1
el3_3_main 1
e6_2_main 1
e0_1_main 1

owcet.arm modes3x2_infini.elf modes3x2_step —add-prop otawa::ilp::OUTPUT_PATH=modes3x2.ilp

10.2 Command lines and options for running OSIM with Lurette to simulate re-
active programs

OSIM and Lurette are running as two different processes communicating with each other through TCP. To
provide the input stimuli, the input generator described in Lutin must be available. For example, to simulate
modes3x2 as described in the experimental section, OSIM can be launched as illustrated in Listing 5. The
configuration of the simulated processor and its memory hierarchy are provided as lines 2-3. Line 4 (-ul,

20/23 Verimag Research Report n® TR-2016-3

S O 001NN R WN—

—

AN AW =

Wei-Tsun Sun

stands for using lurette) indicates the simulation will be an interaction with Lurette. The I/O format file
is provide through the -iol (stands for I/O list) argument, which is used at the phase (a) in Figure 7. An
example of the 1O format file is shown as Listing 6 for modes3x2. OSIM can generate the statistics for each
describing the occurrences, WCET of each BB and edges, and the summation of the cycles as described
in section 10.1. This is realized through adding the TICK_TRACE_INFO (respective to TRACE_INFO
shown in the previous section, available from the version 2016-April-10) as shown in line 6. The string
“logs/tick” specifies the format of the generated file names, i.e. logs/tick_1 for the first tick. The -cl option
writes the cycle measurements of ticks in the specified file (line 7). The reactive step function is pointed
by the -e argument as shown in line 8. Line 9 indicates the binary executable to measure, while line 10 is
used to set the TCP port to communicate with Lurette.

Listing 5: The command line to launch OSIM to simulate modes3x2

osim—Ipc2138 \

—p ${OSIM_PATH}/proc.xml \

—m ${OSIM_PATH }/memory . xml \

—ul 1\

—iol modes3x2.io \

—add—prop otawa::osim—Ipc2138::TICK_TRACE_INFO=logs/tick \

—cl modes3x2.cycles \

—e modes3x2_step \

obj/modes3x2.elf \

—1p 2002

Listing 6: The IO format file loaded by OSIM and sent to Lurette

#inputs x:int on_off:bool toggle:bool
#outputs res:int

Similarly, Lurette requires a set of argument in order to correctly couple with OSIM, as shown in
Listing 7. Because OSIM (acts as SUT, system under test) communicates with Lurette through TCP (of
the local machine, can be remote too), the address and the port are specified as line 2. The uses of Lutin
is detailed in line 3, where the name of the Lutin file (modes3x2_input.lut) and the main entry of the input
generator (modes3x2_input) are specified in line 3. Line 4 indicates the number of the logical ticks (in the
Lustre fashion) to simulate. -go option in line directs Lurette to start the simulation right away (line 5).
-no-sim2chro in line 6 says Lurette will not launch the graphical interface to show the simulation results
(optional, but useful for batch processing the benchmarks).

Listing 7: The command line to launch Lurette

lurettetop_exe \
—rp sut:socket:127.0.0.1:2002 \
—rp "env:lutin:modes3x2_input.lut:modes3x2_input" \
—1 1000 \
—go \
—no—sim2chro

At the end of the simulation, OSIM will print out something like:
WCET happens at tick 318 for 2689
The user can open the file logs/tick_317 to investigate the execution statistics of the tick. It uses the

same naming conventions as other tools, e.g. owcet.arm as well as w7. This enables us to find out the
differences in occurrences of paths to understand the over-approximation of the static analysis.

Verimag Research Report n° TR-2016-3 21/23

Wei-Tsun Sun

References

[1] Albert Benveniste, Paul Caspi, Stephen A Edwards, Nicolas Halbwachs, Paul Le Guernic, and Robert
De Simone. The synchronous languages 12 years later. Proceedings of the IEEE, 91(1):64-83, 2003.
1

[2] Armelle Bonenfant, Hugues Cassé, Marianne De Michiel, Jens Knoop, Laura Kovécs, and Jakob
Zwirchmayr. Ffx: A portable wcet annotation language. In Proceedings of the 20th International
Conference on Real-Time and Network Systems, pages 91-100. ACM, 2012. 7

[3] Hugues Cassé, Haluk Ozaktas, and Christine Rochange. A Framework to Quantify the Overesti-
mations of Static WCET Analysis. In 15th International Workshop on Worst-Case Execution Time
Analysis (WCET 2015), volume 47 of OpenAccess Series in Informatics (OASIcs), pages 1-10, 2015.
2

[4] Hugues Cassé and Pascal Sainrat. Otawa, a framework for experimenting wcet computations. In 3rd
European Congress on Embedded Real-Time Software, 2006. 1

[5] Jean-Frangois Deverge and Isabelle Puaut. Safe measurement-based WCET estimation. In 5th Intl.
Workshop on Worst-Case Execution Time (WCET) Analysis, July 5, 2005, Palma de Mallorca, Spain,
2005. 2

[6] Jorge Garrido, Daniel Brosnan, Juan Antonio de la Puente, Alejandro Alonso, and Juan Zamorano.
Analysis of WCET in an experimental satellite software development. In /2th International Workshop
on Worst-Case Execution Time Analysis, WCET 2012, July 10, 2012, Pisa, Italy, pages 81-90, 2012.
2

[7] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Bjorn Lisper. The mélardalen wcet benchmarks:
Past, present and future. In OASIcs-OpenAccess Series in Informatics, volume 15. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2010. 7

[8] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The synchronous data flow
programming language lustre. Proceedings of the IEEE, 79(9):1305-1320, 1991. 1

[9] Erik Yu-Shing Hu, Andy J. Wellings, and Guillem Bernat. Deriving java virtual machine timing
models for portable worst-case execution time analysis. In On The Move to Meaningful Internet Sys-
tems 2003: OTM 2003 Workshops, OTM Confederated International Workshops, HCI-SWWA, IPW,
JTRES, WORM, WMS, and WRSM 2003, Catania, Sicily, Italy, November 3-7, 2003, Proceedings,
pages 411424, 2003. 2

[10] Open SystemC Initiative. Functional specification for systemc 2.0. Outubro, 2001. 4

[11] Erwan Jahier, Simplice Djoko-Djoko, Chaouki Maiza, and Eric Lafont. Environment-model based
testing of control systems: Case studies. In TACAS 2014, Grenoble, France, April 2014. LNCS. 1

[12] Erwan Jahier, Nicolas Halbwachs, and Pascal Raymond. Engineering functional requirements of
reactive systems using synchronous languages. In Int. Symp. on Industrial Embedded Systems, Porto,
Portugal, 2013. 1

[13] Erwan Jahier, Pascal Raymond, and Philippe Baufreton. Case studies with lurette v2. International
Journal on Software Tools for Technology Transfer, 8(6):517-530, 2006. 1, 3.2

[14] Edward A Lee. The problem with threads. Computer, 39(5):33-42, 2006. 6.1

[15] Xianfeng Li, Liang Yun, Tulika Mitra, and Abhik Roychoudhury. Chronos: A timing analyzer for
embedded software. Sci. Comput. Program., 69(1-3):56-67, 2007. 2

[16] Raymond Pascal, Roux Yvan, and Jahier Erwan. Lutin: A language for specifying and executing
reactive scenarios. EURASIP-Journal on Embedded Systems, 2008(1):753821, 2008. 1

22/23 Verimag Research Report n® TR-2016-3

Wei-Tsun Sun

[17]

[18]

[19]

[20]

[21]

Peter P. Puschner and Roman Nossal. Testing the results of static worst-case execution-time analysis.
In Proceedings of the 19th IEEE Real-Time Systems Symposium, Madrid, Spain, December 2-4, 1998,
pages 134—-143, 1998. 2

Tahiry Ratsiambahotra, Hugues Cassé, and Pascal Sainrat. A versatile generator of instruction set
simulators and disassemblers. In Performance Evaluation of Computer & Telecommunication Sys-
tems, 2009. SPECTS 2009. International Symposium on, volume 41, pages 65-72. IEEE, 2009. 4

Pascal Raymond, Claire Maiza, Catherine Parent-Vigouroux, Fabienne Carrier, and Mihail Asavoae.
Timing analysis enhancement for synchronous program. Real-Time Systems, 51(2):192-220, 2015.
8.1,8.1

Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter Puschner. Measurement-based timing
analysis. In International Symposium on Leveraging Applications of Formal Methods, Verification
and Validation, pages 430—444. Springer, 2008. 2

Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David Whal-
ley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, et al. The worst-case
execution-time problem—overview of methods and survey of tools. ACM Transactions on Embedded
Computing Systems (TECS), 7(3):36, 2008. 1

Verimag Research Report n° TR-2016-3 23/23

	Introduction
	Related works
	Background and our contributions
	Timing analysis of programs
	Testing reactive programs
	Contributions

	The organization of our framework
	The flow of the simulation
	Measuring execution time of reactive programs and its I/Os
	The execution model of reactive programs
	The communications between Lutin, and OSim
	Memory mapping of inputs and outputs to the simulated programs

	Detecting over-approximation of timing analysis
	Experiments
	Case study: mode3x2
	Evaluations of Lustre v6 benchmarks

	Conclusions
	Appendix
	Statistics of measurement and detecting of over-approximation for non-reactive programs
	Command lines and options for running OSIM with Lurette to simulate reactive programs

