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Abstract

RVMT-BIP is a tool for the runtime verification of multi-threaded component-
based systems described in the Behavior, Interaction, Priority (BIP) framework
against linear-time and logic-independent properties. RVMT-BIP implements rig-
orous semantics-preserving transformations of BIP systems to instrument and inject
a sound and concurrency-preserving global-state reconstructor for on-the-fly mon-
itoring. Our experiments on several multi-threaded BIP systems show that RVMT-
BIP generally induces a cheap runtime overhead, especially when the system is
highly concurrent.
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RVMT-BIP: A Tool for the Runtime Verification of Multi-Threaded Component-Based Systems

1 Introduction

We address the problem of verifying multi-threaded component-based systems (CBSs) defined in the Be-
havior Interaction Priority (BIP) framework against linear-time properties expressing their desired behav-
ior. BIP is a powerful and expressive component framework for the formal construction of heterogeneous
systems. In BIP, a formal operational semantics defines the coordination of atomic components with inter-
actions (“glue" code). We consider properties referring to the global states of the system, which, in partic-
ular, implies that properties can not be “projected" and checked on individual components. Generally, it is
not possible to ensure or verify such properties using static verification techniques, either because of the
state-explosion problem or because they can only be decided with runtime information or user interaction.

We provide a tool-supported complementary verification technique for CBSs using runtime verifica-
tion. In this context, the challenge that arises is that, because of the multi-threaded execution of compo-
nents, a global-state of the system may never be available at runtime because of at least one executing
component. Hence, a viable monitoring solution has to be able to decide global-state properties from the
partial-state information, while preserving the concurrency of systems and the performance gained from
multi-threading. In [17], we formally present our solution to this problem which consists in synthesiz-
ing a sound and concurrency-preserving global-state reconstructor that can feed a runtime monitor with
global-state information. The theoretical results and the properties of this approach are presented in full
in [17] and are briefly recalled in Section 3. The subject of this paper is to report on RVMT-BIP, a full
implementation and evaluation of [17]. RVMT-BIP is available for download at [15].

Outline. This paper is organized as follows. Section 2 briefly presents the basic semantics of BIP. Sec-
tion 3 overviews the approach for the monitoring of multi-threaded CBSs. Section 4 presents the architec-
ture of RVMT-BIP. Section 5 presents (i) the CBSs and properties of our case studies, (ii) the experimental
results and a discussion on the performance of RVMT-BIP when monitoring properties over these CBSs
and (iii) the evaluation of the functional correctness of RVMT-BIP.

2 Overview of Behavior Interaction Priority (BIP)

We provide a succinct description of the BIP framework and refer to [2, 16] for the detailed and fully-
formalized operational semantics.

BIP (Behavior, Interaction, Priority) is a powerful and expressive framework for the formal construc-
tion of heterogeneous systems [3]. BIP supports a construction methodology of components as the super-
position of three layers: behavior, interaction, and priority. Layering favors a clear separation between
behavior and structure. The behavior layer describes the operational semantics of atomic components.
Atomic components are transition systems endowed with a set of local variables and a set of ports labeling
individual transitions. Ports are used for synchronization and communication with other components. Tran-
sitions can be guarded by some constraints over local variables. Local variables of an atomic component
can be sent or modified through the interacting ports. The interaction layer defines a set of connectors over
the ports of atomic components describing the synchronizations (so-called interactions) between atomic
components. An interaction is a synchronous action among (some of) the components which have one
of their ports involved in the interaction. The priority layer describes scheduling policies for interactions.
Composite components are built from connected atomic components along with a set of priority rules.

Example 1 (Atomic component and composition) Figure 1 depicts a task system, called Task, consists of
a task generator (Generator) along with 3 task executors (Workers) that can run in parallel. Each newly
generated task is handled whenever two cooperating workers are available. Figures la and 1b show the
atomic components of system Task. Generator delivers a new task to the workers through the port deliver
and is received by the workers through the port exec. Reception of a new task by each worker causes a
move from the location free to the location done and the local variable x (i.e., number of task fulfillment)
is incremented. Whenever a worker complete a assigned task, the worker is re-initialized by moving back
to the location free. If the value of x is less than 1000, re-initialization is done by the transition labeled by
the port finish , otherwise the transition labeled by the port reset re-initialized the worker by resetting the
value of x to zero. Figure Ic depicts a composite component of system Task.
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Figure 1: Definition of atomic components and their composition of System Task in BIP

3 Monitoring Multi-Threaded Component-Based Systems [17, 16]

Figure 2 overviews our approach. Recall that according to [2], a BIP system with global-state semantics .S,
(sequential model), is (weakly) bisimilar to the corresponding partial-state model .S}, (concurrent model).
Moreover, S;, generally runs faster than S, because of its parallelism. Thus, if a trace of 9, satisfies ¢,
then the corresponding trace of S), satisfies ¢ as well.

We overview our concurrency-preserving approach to monitoring .S;, using on-the-fly global-state re-
construction [17] (described in full in [16]). We define transformations to build another system S, out of
Sp such that i) S, and S, are bisimilar (hence S, and S, are bisimilar), ii) 5,4 is as concurrent as S,
and preserves the performance gained from multi-threaded execution and iii) Sp, produces a witness trace,
that is the trace that allows to check . The witness trace is built by a global-state reconstructor which
accumulates the local (partial) states of the components to produce a consistent global trace.

More concretely, our approach proceeds as follows: from a linear-time property ¢ and an input compos-
ite system 7y (By, . . ., B;,) where the B;’s (i € [1,n]) are atomic components and + is a set of interactions
defining the composition of components:

1. we synthesize a global-state reconstructor which reconstructs on-the-fly a global trace (component
RGT - Reconstructor of Global Trace),

2. we synthesize a component monitor as a component Monitor,

3. we instrument the components B;, i € [1,n], so that their local states can be observed and they can
be connected to RGT with a new set of interactions +/,

4. we build a new composite system 7' (B, ..., B}, RGT, Monitor) where B}, i € [1,n], are the
instrumented components, and ¢ is checked at runtime.

Our method does not introduce any delay in the detection of verdicts since it always reconstructs the
maximal (information-wise) prefix of the witness trace (see Theorem 1 in [17]). Moreover, our method is
correct in that the global-state reconstructor synthesized as a BIP component always produces the correct
witness trace (see Theorem 2 in [17]).
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Figure 2: Approach overview
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Figure 3: Overview of RVMT-BIP work-flow

4 Architecture of RVMT-BIP

RVMT-BIP (Runtime Verification of Multi-Threaded BIP) is a Java implementation of ca. 2,200 LOC
and is part of BIP distribution. RVMT-BIP takes as input a BIP CBS and a monitor description for a
property, and outputs a new BIP system whose behavior is monitored against the property while running
concurrently. RVMT-BIP uses the following modules (see Fig. 3):

Module Atomic Transformation takes as input the initial BIP system and a monitor description. From
the input abstract monitor description, it extracts the list of components, and the set of their variables
that influence the truth-value of the property and are used by the monitor. Then, this module instru-
ments the atomic components in the extracted list so as to observe the values of the relevant variables.
Finally, the transformed components and the original version of the components not influencing the
property are returned as output.

Module Building RGT takes as input the initial BIP system and a monitor description and produces
component RGT (Reconstructor of Global Trace) which reconstructs and accumulates global states
at runtime to produce the global trace.

Module Building Monitor takes as input the initial BIP system and a monitor description and then
outputs the atomic component implementing the monitor (following [11]). Component Monitor
receives and consumes the reconstructed global trace generated by component RGT at runtime and
emits verdicts.

Module Connections constructs the new composite and monitored component. The module takes
as input the output of the Atomic Transformation, Building RGT and Building Monitor modules
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Figure 4: Illustration of the transformation of RVMT-BIP

and then outputs a new composite component with new connections. The new connections are pur-
posed to synchronize instrumented components and component RGT in order to transfer updated
states of the components to RGT. Each instrumented component interacts with component RGT
independently.

Example 2 (RVMT-BIP transformation) Figure 4 depicts how RVMT-BIP transforms system Task de-
picted in Fig. 4a. Recall that system Task consists of four atomic components Generator, Workery,
Workery and Workers and a set of interactions to deliver generated tasks by the Generator to the
Workers. The transformation is performed for a property stating the homogeneous distribution of tasks
among the workers which is related to the state of Workers. The monitored system obtained after trans-
formation (Fig. 4Db) consists of component Generator (left intact), Workery, Workery, and Workery, (in-
strumented version of Worker,, Workery and Workers respectively), components RGT and Monitor,
additional interactions (for sending updated states of instrumented components to component RGT and for
sending reconstructed global states to component Monitor), and modified interactions to notify component
RGT about the execution of interactions.

5 Evaluation

We report on our evaluation of RVMT-BIP with some case studies on executable BIP systems. Executing
these systems with a multi-threaded controller results in a faster run since the systems benefit from the
parallel threads. These systems can also execute with a single-threaded controller which forces them to run
sequentially.

5.1 Case Studies

We present the case studies used in our evaluation.

5.1.1 Process Completion of Demosaicing

Description of Demosaicing. Demosaicing is an algorithm' for digital image processing used to recon-
struct a full color image from the incomplete color samples output from an image sensor. Demosaicing
works on 5 x 5 matrices. The resulting pixels are the resulting averages of centered points of each matrix,
which results to the loss of four lines and four columns of the initial image. Figure 5 shows a simplified
version of the processing network of Demosaicing. Demosaicing contains a Splitter and a Joiner process,
a pre-demosaicing (Demopre) and a post-demosaicing (Demopost) processes and three internal demosaic-
ing Demo processes that run in parallel. The real model used in our experiments contains ca. 1,000 lines
of code, consists of 26 atomic components interacting through 35 interactions.

' Demosaicing has been used in [21] for implementing multi-threaded timed CBSs.
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Figure 5: Processing network of system Demosaicing
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Figure 6: Automata of the properties of system Demosaicing

Specifying process completion. We consider two properties of Demosaicing related to process comple-
tion.

1. It is necessary that first Splitter receives the image then transmits it to the internal demosaic-
ing units. After the demosacing process is completed Joiner must receive the processes image.
Splitter transmits the output through port transmit and Joiner receives the input through port
get_img. We use variable port to record the last executed port. Each demosaicing unit has a
boolean variable done which is set to true whenever the demosaicing process completes. This
requirement is formalized as property ¢; defined by the automaton depicted in Fig. 6a where the
events are ey : Splitter.port == transmit, e3 : (Demo;.done A Demog.done A Demog.done)
and e3 : Joiner.port == get_img. From the initial state s1, the automaton moves to state ss when
Splitter finishes its image transmission. From state so, the automaton moves to state s3 when all
the internal demosaicing units finish their process. The reception of the processed images by Joiner
causes a move from state s3 to si.

2. Moreover, the internal demosaicing units (Demo;, Demog, Demog) should not start the demo-
saicing process until the pre-demosaicing unit finishes its process. The pre-demosaicing unit sends
its output to the internal demosaicing units through port transmit and each internal demosaicing
unit starts the demosaicing process by executing a transition labeled by port start. This require-
ment is formalized as property (o which is defined by the automaton depicted in Fig. 6b where
e1 : Demopre.port == transmit, es : Demoy.port == start, e : Demogs.port == start and
e4 : Demog.port == start. From the initial state s1, whenever the pre-demosaicing unit transmits
its processed output to the internal demosaicing units, the automaton moves to state so. The internal
demosaicing units can start in any order. Moreover, all demosaicing units must eventually start their
internal process and if so the automaton reaches state s;o. From state sio, the automaton moves
back to state so whenever the pre-demosaicing unit sends the next processed data to the internal
demosaicing units.

5.1.2 Reader-Writer 1

Description of Reader-Writer 1. The system Reader-Writer 1 consists of a set of independent composite
components. Each composite component (Fig. 7) involves four components: Reader, Writer, Clock, and
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Figure 7: Model of one of the instances of the composite component of system Reader-Writer 1

Poster. Reader and Writer communicate with each other through Poster. The data generated by each
writer is written to Poster and can then be accessed by Reader.

Specification of data freshness. It is necessary that the data is up-to-date: the data read by component
Reader must be fresh enough compared to the moment it has been written by Writer. If t; and ¢5 are
the moments of reading and writing actions respectively, then the difference between t5 and ¢; must be
less than a specific duration 6, i.e., (to — ¢1) < 4. In the model, the time counter is implemented by a
component Clock, and the tick transition occurs every second. This requirement is formalized as property
s which is defined by the automaton depicted in Fig. 8a, where § = 2, e; : Writer.port == write,
ey : Clock.port == tick and e3 : Reader.port == read. Whenever Writer writes into Poster, the
automaton moves from s; to ss. When Reader reads from Poster, the automaton moves from s to sq.
Reader is allowed to read from Poster after one tick transition. In this case, the automaton moves from
So to s3 after the tick, and then moves from s3 to s; after reading Poster. (3 also allows to read from
Poster after two tick transitions. In this case, the automaton moves from s, to s4 after the first ¢ick, then
moves from s, to s3 on the second tick, and finally moves from s3 to s; after reading Poster.

5.1.3 Reader-Writer 2

Description of Reader-Writer 2. System Reader-Writer 2 is a more complex version of Reader-Writer
1 and involves several writers. This system has six components: Reader, Writer;, Writers, Writers,
Clock and Poster. The Writers are synchronized together. Reader and Writers communicate with each
other through Poster. The data generated by each writer is written to Poster and can then be accessed by
Reader.

Specification of the execution order. The 3 writers should periodically write data to a poster in a specific
order. During each period, the writing order must be as follows: Writer; writes to the poster first, then
Writerg can write only when Writer; finishes writing, Writers can write only when Writery finishes
writing, and the same goes on for the next periods. Each writer is assigned a unique id that is passed to the
poster when it starts using the poster. This id is then used to determine the last writer that used the poster.
For example, when Writer, wants to access the poster, it has to check whether the id stored in the poster
corresponds to Writer; or not.
This requirement is formalized as property ¢4 defined by the automaton depicted in Fig. 8b where:

o e : (Writer; .port == write A Poster.port == write A Clock.port == getTime),
o eo : (Writers.port == write A Poster.port == write A Clock.port == getTime),

o e3: (Writers.port == write A Poster.port == write A\ Clock.port == getTime).
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When Writer; writes to Poster, the automaton moves from the initial state s; to state s5. From state s,
the automaton moves to state s3 when Writer, writes to Poster. From state s3, the automaton moves to
the initial state s; when Writers writes to Poster. This writing order must always be followed.

5.1.4 Task Management

We consider the system Task which is described in Example 1 with 100,000 generated tasks by Generator.

Specification of the task distribution. A desirable property of system Task is the homogeneous distri-
bution of the tasks among the workers which depends on the execution time of each worker. Different
tasks may have different execution times for different workers. Obviously, the faster a worker completes
each task, the higher is the number of its accomplished tasks. After executing a task, the value of the
variable x of a worker is increased by one. Moreover, the absolute difference between the values of vari-
able = of any two workers must always be less than a specific integer value (which is 300 for this case
study). This requirement is formalized as property ¢ which is defined by the automaton depicted in Fig. 9
where ey : |worker;.x — workerg.xz|< 300 , es : |workerg.x —workers.z|< 300 and e3 : |worker;.x
—workers.xz|< 300. The property holds as long as e, e5 and e3 hold.

5.2 Evaluating Functional Correctness

We evaluated the functional correctness of RVMT-BIP, that is whether the synthesized global-state recon-
structors and monitors produce sound and complete verdicts. Each of the systems of our case study is
correct by design, and we run monitored versions of these for several hours without any error reported. To
assess the error detection, we built mutated versions of the systems whose behaviors eventually lead to a
violation of the properties?. We built one mutant per pair of system and property. Our monitors were able
to detect and kill all the mutants. We also evaluated RVMT-BIP on several systems in the BIP distribution,
and in particular non-deterministic models such as the dining philosopher model against deadlock-freedom.

5.3 Evaluating Performance

We report on the performance of the global-state reconstructors and monitors synthesized with RVMT-BIP.
All the experiments are conducted on 64-bit Debian Linux 8 using an Intel processor E5-2630 v3 (20M
Cache, 2.40 GHz) Core i7 and 4GB main memory.

2We do not report on the performance on monitoring mutated versions of the systems as the occurrence time of the error was
non-deterministic.

Verimag Research Report n® TR-2016-2 713



RVMT-BIP: A Tool for the Runtime Verification of Multi-Threaded Component-Based Systems

Table 1: Results of monitoring with RVMT-BIP

system # executed ‘ execution time and overhead according to the number of threads # events # extra executed
i interactions | 1 2 3 4 5 6 7 8 9 10 i interactions
Demosaicing (26,35) 1,300 18.98 | 10.24 7.75 6.85 6.58 6.09 6.33 6.45 6.29 6.27 n/a n/a
Demosaicing (27,69) 3,051 19.02 11.53 8.17 743 6.68 6.50 6.27 6.05 6.03 6.18 1,300 1751
1 (11) - 0.1% | 12.6% | 5.4% 85% | 43% | 6.6% | <0.1% | <0.1% | <0.1% | <0.1% . ?
Demosaicing (27,46) [ 1.850 " 18.68 11.05 7.65 7.70 6.77 6.38 6.22 6.45 6.17 6.35 400 [ 550
@2 (4) ? <0.1% | 79% | <0.1% | 124% | 28% | 48% | <0.1% | <0.1% | <0.1% | <0.1%
ReaderWriter 1 (12,9) 120,000 61.48 29.67 20.03 20.00 | 20.05 | 20.21 20.60 21.54 21.92 22.13 n/a n/a
ReaderWriter 1 (13,12) 6253 | 3829 | 21.96 | 2228 | 22.62 | 2271 22.88 23.48 24.15 24.47
@3 (3) 200,000 1.6% 27.7% 9.6% 114% | 12.8% | 12.4% | 11.0% 9.0% 10.1% 10.5% 40,000 80,000
ReaderWriter 2 (6,7) 20,000 3206 | 21.45 1204 | 11.37 | 1133 | 1137 | 11.44 11.49 11.53 11.58 n/a n/a
ReaderWriter 2 (7,12) 33.92 22.72 13.90 13.77 14.09 14.36 14.83 15.18 15.41 15.57
@4 (5) i 5.8% 5.9% 154% | 21.1% | 24.3% | 26.2% | 29.6% | 32.1% | 33.5% | 34.4% - Y
Task (4,10) 399,999 117.28 | 70.18 | 6091 | 60.06 | 5898 | 60.01 | 60.93 61.77 63.13 65.45 n/a n/a
Task (5,16) 12398 | 71.73 62.28 63.26 | 62.79 | 62.78 63.35 64.57 65.61 66.27
@5 (3) 600,197 5.7% 2.2% 2.2% 53% | 64% | 44% 3.9% 4.5% 3.9% 1.2% 100,198 200,198

5.3.1 Evaluation Principles

Following the work-flow depicted presented in Section 4 (see Fig. 3), for each system, and all its properties,
we synthesize two monitored versions, one with RVMT-BIP with an asynchronous global-state reconstruc-
tor and a monitor, and one with RV-BIP [11] with only a monitor. We run each system by varying the
number of threads and observe the execution time. Executing these systems with a multi-threaded con-
troller results in a faster run because the systems benefit from the parallel threads. We note that additional
steps are introduced in the concurrent transitions of the system. These are asynchronous with the exist-
ing interactions and can be executed in parallel. These systems can also execute with a single-threaded
controller which force them to run sequentially. Varying the number of threads allows us to assess the
performance of the (monitored) system under different degrees of parallelism. In particular, we expected
the induced overhead to be insensitive to the degree of parallelism. For instance, an undesirable behavior
would have been to observe a performance degradation (and an overhead increase) which would mean
either that the monitor sequentializes the execution or that the monitoring infrastructure is not suitable for
multi-threaded systems. More precisely, the research questions addressed by our experiments are:

1. What is the performance of monitoring and is it insensitive to the degree of parallelism?

2. What kind of systems/properties the tool can handle efficiently?

5.3.2 Results

Figure 10 and Table 1 report the timings obtained when checking specifications complete process property
on Demosaicing, data freshness and execution ordering property on Reader-Writer systems and task dis-
tribution property on Task. Each measurement is an average value obtained over 100 executions of these
systems. In Table 1, the columns have the following meanings:

e Column system indicates the systems in our case study. System with ifalic format represents the
monitored version of the initial system. Moreover, (z,y) in front of the system name means that
x (resp. y) is the number of components (resp. interactions) of the system. Monitored property is
written below each monitored system name with a value (z) which indicates that z components have
variables influencing the truth-value of the property (and were thus instrumented by RVMT-BIP).

e Column # executed interactions indicates the number of interactions executed by the engine which
also represents the number of functional steps of system.

e Columns execution time and overhead according to the number of threads report (i) the execution
time of the systems when varying the number of threads and (ii) the overhead induced by monitoring
for monitored systems.

e Column events indicates the number of reconstructed global states (events sent to the associated
monitor).
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Figure 10: Execution time according to the number of threads

o Column extra executed interactions reports the number of additional interactions (i.e., execution of
interactions which are added into the initial system for monitoring purposes).

On the performance of RVMT-BIP (see the results in Table 1 visualised in Figure 10). For the larger
system Demosaicing (in terms of components), we can observe that the observed overhead is 12.6% in
the worst case with 2 threads and a reasonable overhead in other cases. This indicates a good general
performance of the generated monitors. Moreover, the overhead is insensitive to the number of threads
used to execute Demosaicing. The trend in the execution time of the monitored system follows the trend
observed for the initial system; and in particular the peak performance is obtained in both cases with 8
threads.

RV-BIP vs. RVMT-BIP. To illustrate the advantages of monitoring multi-threaded systems with RVMT-
BIP, we compared the performance of RVMT-BIP and RV-BIP ([!1]); see Table 2 for the results. Mon-
itoring with RV-BIP amounts to use a standard runtime verification technique, i.e., not tailored to multi-
threaded systems. At runtime, the RV-BIP monitor consumes the global trace (i.e., sequence of global
states) of the system (global snapshots are obtained by synchronization among the components) and yields
verdicts regarding property satisfaction which is aimed to efficiently handle CBSs with sequential execu-
tions.
In the following we highlight some of the main observations and draw conclusions:
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1. Fixing a system and a property, the number of events received by the monitors of RV-BIP and RVMT-
BIP are similar, because both techniques produce monitored system that are observationally equiv-
alent to the initial [1 1, 17]. Moreover, increasing the number of threads does not change the global
behavior of the system, therefore the number of events is not affected by the number of threads.

2. Fixing a system and a property, the number of extra interactions imposed by RVMT-BIP is greater
than the one imposed by RV-BIP. In the monitored system obtained with RVMT-BIP, after the execu-
tion of an interaction, the components that are involved in the interaction and concerned in property
independently send their updated state to component RGT (whenever their internal computation is
finished). In the monitored system obtained with RV-BIP, after the execution of an interaction in-
fluencing the truth value of the property, all the updated states will be sent at once (synchronously)
to the component monitor. Hence, the evaluation of an event in RV-BIP is done in one step and
the number of extra interactions imposed by RV-BIP is the same as the number of monitored events
(Table 2).

3. In spite of the higher number of extra interactions imposed by RVMT-BIP, during a multi-threaded
execution, the fewer synchronous interactions of monitored components imposed by RV-BIP induces
a significant overhead. This phenomenon is especially visible for the two most concurrent systems:
Demosaicing and Task (see Figs. 10a, 10b and 10e).

4. On the independence of components: Consider systems Demosaicing and Task, which consist of
independent components with low-level synchronization and high degree of parallelism, and for
which the monitored property requires the states of these independent components. On the one hand,
at runtime, RV-BIP imposes synchronization among the components concerned with property and
the component monitor. It results in a loss of the performance when executing with multiple threads.
On the other hand, RVMT-BIP collects updated states of the components independently right after
their state update. Consequently, with RVMT-BIP, the system performance in multi-threaded setting
is preserved (see Figs. 10a, 10b and 10e) as a negligible overhead is observed. This is a usual and
complex problem which depends on many factors such as platform, model, external codes, compiler,
etc. This renders the computation of the number of threads leading to peak performance complex.

5. Synchronization of independent components: In RV-BIP, the thread synchronizations and the syn-
chronization of components with the monitor induce a huge overhead especially when concurrent
component are concerned with the desired property (Fig. 10a).

6. Synchronized components: We observe that, for system ReaderWriter 2, the overhead obtained with
RVMT-BIP monitor is slightly higher than the one obtained with RV-BIP monitors (see Fig. 10d).
Indeed, system ReaderWriter 2 consists of 3 writers synchronized by a clock component. Moreover,
property 4 is defined over the states of all the writers. As a matter of fact, if one of the writer needs to
communicate with component RGT, then all the other writers need to wait until the communication
ends. That is, when the concurrency of the monitored system is limited by internal synchronizations,
RVMT-BIP becomes less interesting to use as a monitoring solution.

7. Synchronized components in independent composite components: If the initial system (i) consists of
set of independent composite components working independently and concurrently, (ii) the compo-
nents in each composite are highly synchronized (low degree of parallelism in each composition)
and (iii) the desired property is defined over the states of the components of a specific composite
component, then RVMT-BIP performs similarly to RV-BIP. Indeed, in the monitored system the in-
dependent entities (i.e., composite component) are able to run as concurrently as in the initial system
and the overhead is caused by the synchronized components. However, by increasing the number of
threads, RVMT-BIP monitors offers better performance (Fig. 10c).

8. On the number of threads: We note that increasing the number of threads may lead after some point
to a gradual performance reduction (both in the initial and monitored systems), see Figs. 10e and 10c.
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Table 2: Results of monitoring with RV-BIP

cystem # executed execution time and overhead w.r.t. different number of threads # events # extra executed
syste interactions I ] 2 3 4 ] 5 6 7 8 [ 9 10 events interactions
Demosaicing (26,35) 1,300 1898 1024 | 775 6.85 6.58 6.09 6.33 6.45 6.29 6.27 n/a n/a
Demosaicing (27,37) 2.450 19.66  27.34 | 32.28 | 32.61 33.03 | 3223 | 3117 | 31.24  31.22 | 318l 1.300 1300
1 (11) y 35%  167% | 316% | 376% 402% | 429% | 392% | 384%  369% | 407% : ’
Demosaicing (27,37) 1700 19.50 1479 | 13.87 | 13.11 13.13 | 1275 | 11.18 | 11.34 1119 | 11.16 400 400
w2 (11) ’ 2.7%  444% | 788% | 91.4% 99.7% | 109% | 76.5% | 75.7% 18.0% | 78.0%
ReaderWriter 1 (12,9) 120,000 61.48 29.67 | 20.03 | 20.00 | 20.05 | 20.21 | 20.60 | 21.54 21.92 22.13 n/a n/a
ReaderWriter 1 (13,11) 61.97 3777 | 21.94 | 2213 | 22.62 | 23.14 | 25.09 | 26.21 26.73 27.18
w3 (3) 1600,000 08% | 260% | 9.5% | 106% | 12.8% | 14.5% | 218% | 21.7% | 21.9% | 22.7% | *000 40,000
ReaderWriter 2 (6,7) 20,000 32.06 2145 | 12.04 | 11.37 1133 | 11.37 | 1144 | 1149 1153 | 11.58 n/a n/a
ReaderWriter 2 (7,9) 33.11  23.80 | 13.31 | 13.32 1337 | 13.82 | 1428 | 1435 1479 | 14.96
®a (5) 40’000 320%  109% | 10.5% | 17.1% 18.0% | 21.5% | 24.8% | 24.8%  28.2% | 2029 | 20000 2
Task (4,10) 399,999 117.28 | 70.18 | 60.91 | 60.06 | 58.98 | 60.01 | 60.93 | 61.77 | 63.13 | 6545 n/a n/a
Task (5,12) 121.61 | 70.12 | 72.25 | 75.11 | 75.66 | 80.54 | 81.62 | 84.58 89.65 90.21
s (3) 500,197 3.6% | <0.1% | 18.6% | 25.0% | 28.2% | 34.0% | 33.9% | 36.9% | 42.01% | 37.8% 100,198 100,198

6 Related Work

We discuss the research efforts related to our general objective of monitoring user-provided properties
over multi-threaded systems. We discuss first the various works done on the runtime verification of multi-
threaded (non CBS-based) programs and then the verification techniques specific to CBSs.

Monitoring multi-threaded programs. The approach in [12] presents a tool for runtime model checking
safety properties over multi-threaded C/C++ programs. The input program is instrumented so that its
behavior can be checked by monitoring its traces. Similarly, the approach in [20] presents a technique to
detect violations of safety properties in multi-threaded programs.

Our approach has several noteworthy differences. First, RVMT-BIP is tailored to CBSs and leverages
the architecture and composition of components for runtime verification purposes (when it reconstructs
global states). Second, RVMT-BIP is not restricted to the verification of safety properties but can handle
any linear-time property for which a monitor can be synthesized as a finite-state machine. Moreover, this
state-machine can be generated by several existing monitor-synthesis tools (e.g., Java-MOP [&]) since it
uses a generic format to express monitors.

‘We note also the existence of several monitoring tools for programs written in various general-purpose
programming languages (e.g., Java-MOP [&], RuleR [1], and MarQ [19] for Java programs; E-ACSL [9],
RiTHM [14] for C programs). However, none of these tools includes techniques to soundly monitor multi-
threaded programs while preserving their concurrency.

Verification techniques for CBSs. To the best of our knowledge, RVMT-BIP is the first tool dedicated
to the runtime verification of multi-threaded CBSs. RVMT-BIP is dedicated to the BIP framework but the
underlying principles can also be used in most CBS frameworks with formal operational semantics. We
review some of them in the following and discuss their available verification techniques.

Fractal [6] is a modular and extensible component model. A Fractal component is an encapsulated
runtime entity. A Fractal component is a black box that does not provide any introspection or intercession
capability. An interface of a Fractal component is an access point to the component (similar to a port in
BIP), that support a finite set of operations. The approach in [10] presents a prototype to runtime check
the satisfaction of RV-FTPL (Runtime Verification for FTPL) formulas on Fractal components expressing
the authorized evolutions of configurations. FTPL is a temporal logic with patterns to characterize the
correct reconfigurations of CBSs under some temporal and architectural constraints. The approach in [10]
considers CBSs which architecture evolves at runtime, the verified properties are related to the architec-
ture configurations of the systems, and do not refer to the internal states of components. Moreover, the
underlying monitoring algorithms are not tailored to handle multi-threaded CBSs.

The Grid Component Model (GCM) [4] is an extension of Fractal built to accommodate requirements in
distributed systems. VerCors [13] is a platform for the specification, analysis, verification, and validation of
the GCM-based applications. SOFA (SOFtware Appliances) system [7] is a development and verification
framework for large-scale distributed software systems based on hierarchical components. One of the
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objective of SOFA is to provide model-checking tools for distributed CBSs. Similarly, Carmen tool [18] is
a component model checker for the Fractal and SOFA component model.

7 Future work

Several perspectives are opened by the results obtained in this study.

Further reducing the runtime overhead. We consider three avenues to further reduce the runtime over-
head imposed by monitors. First, using static analysis techniques can help to compute unnecessary runtime
checks that can then be avoided at runtime. Second, the detection of the maximum degree of parallelism and
level of synchronization among the components concerned in monitored property can lead to an optimized
instrumentation technique that could offer better monitoring performance. Third, a dynamic instrumen-
tation technique, enabling the monitor to remove some interactions with components when they are not
needed anymore, would reduce the overhead even more.

Extension to completely distributed models. Another perspective is to extend the proposed framework
for monitoring fully decentralized and completely distributed models where a central controller does not
exist. We plan to customize our transformations for generating distributed monitors. Then, using the tech-
niques presented in [5], we plan to automatically generate correct and efficient distributed implementations
running on distributed platforms.

Application to timed components. Another perspective is to extend the proposed framework for the real-
time version of BIP [3] with timed components (whose interactions are guarded by clocks) and monitor
them against timed specifications.
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