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Abstract

In this paper we introduce a response time analysis technique for Synchronous Data
Flow programs mapped to multiple parallel dependent tasks running on a compute
cluster of the Kalray MPPA-256 many-core processor. The analysis we derive
computes a set of response times and release dates that respect the constraints in the
task dependency graph. We extend the Multicore Response Time Analysis (MRTA)
framework by deriving a mathematical model of the multi-level bus arbitration policy
used by the MPPA. Further, we refine the analysis to account for the release dates and
response times of co-runners, and the use of memory banks. Further improvements to
the precision of the analysis were achieved by splitting each task into two sequential
phases, with the majority of the memory accesses in the first phase, and a small
number of writes in the second phase. Our experimental evaluation focused on an
avionics case study. Using measurements from the Kalray MPPA-256 as a basis, we
show that the new analysis leads to response times that are a factor of 4.15 smaller
for this application, than the default approach of assuming worst-case interference
on each memory access.
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1 Introduction
The design, development, and verification of safety-critical real-time embedded systems are subject to
specific requirements that follow from guidelines and standards such as DO-178B/C for avionics and
ISO26262 for automotive systems. Both the functional and the timing behaviour of such systems is required
to be correct. In order to ensure that applications meet their deadlines, predictable upper bounds are required
on the execution times of software components. These enable the derivation of sound upper bounds on
the worst-case response times (WCRT), from input stimulus to output response, and thus verification of
compliance with timing constraints.

With the relatively simple hardware (single processor, no cache, no advanced hardware acceleration
features, etc.) used in legacy systems, it was possible to ensure predictability of execution times, to tightly
bound worst-case execution times (WCET) either via static analysis or via measurements of all relevant paths,
and to compose tight upper bounds on overall response times. Due to an increasing demand for compute
performance, combined with Size, Weight, and Power consumption (SWaP) requirements, the emphasis has
shifted from ever faster single-core processors, which had reached physical limitations due to issues with
heat dissipation, to more complex multi-core and many-core architectures. Ensuring predictable and tightly
bounded timing behaviour in such systems is very challenging. This is due to the contention for multiple
shared hardware resources between co-running applications on the different processors. Examples include
contention for cache, network or memory bus, and other interference effects such as DRAM refreshes. For
example, on the Freescale P4080, the latency of a read operation varies from 40 to 600 cycles depending
on the total number of cores running competing tasks [14]. Similarly, a 14 times slowdown has been
reported [19] due to interference on the L2-cache for tasks running on Intel Core 2 Quad processors. Recent
work [22] shows that even with cache partitioning, contention for registers accessed on both cache hits and
misses can cause a 21 times slow down due to contention caused by co-runners on the ARM cortex A-15
multi-core architecture.

A few modern architectures are however designed with the requirements of real-time embedded systems,
in particular predictability, in mind. In this paper, we study the Kalray MPPA-256 [9] many-core processor
(more precisely the second generation, called Bostan). This processor has 256 cores arranged in 16 clusters.
The clusters are linked by a 2-D torus dual Network-On-Chip (NoC). Independent applications may run on
different clusters. Although inter-cluster interference may be largely eliminated there is still the potential for
interference among the tasks running on the same cluster due to accesses to shared resources such as the
shared memory [15]. Hardware partitioning and replication (e.g. memory banks) are used to significantly
reduce this interference, but do not remove it completely. Details of the architecture are discussed in
Section 2.1.

Synchronous Data Flow (SDF) languages such as Lustre [11] and SCADE [4] have been industrialised
and are widely used for embedded systems. A certified SDF compiler can produce sequential code which
facilitates deterministic behaviour. The challenge is to parallelise this sequential code without loss of
determinism. An SDF application can be represented by a set of tasks with dependence relations between
them. The tasks produce and consume a statically defined number of tokens. This model is deterministic
in terms of communications, i.e., we know the topology and the amount of data sent and received. The
parallelism in this case is trivial: tasks can be mapped to available processing elements (cores), respecting
the dependence relations, and allowing independent tasks to run in parallel.

Existing work by Puffitsch et al. [18] and Walter and Nebel [23] tackles the challenge of porting and
mapping Synchronous Data Flow programs to multi-core architectures by proposing different scheduling
techniques. These approaches assume that an upper bound WCET is known for each task, and schedule the
tasks accordingly. The scheduling techniques used optimise parameters such as the global execution time,
CPU utilisation or energy efficiency. Using WCETs that are independent of co-runner interference can be
very pessimistic (as shown in [15]) which may affect the efficiency of the approach. However, we note that
accounting for the actual interference from co-runners also depends on the scheduling technique used.

Contributions: Our approach differs from previous work, in that we consider the influence of scheduling
on timing analysis. As a consequence, the scheduling step considers a WCET bound for each task that also
accounts for the interference from co-runners.

Our main contribution is an algorithm to compute a static, time-driven, periodic schedule (further
detailed in Section 2.3), as commonly used in hard real time systems for maximum predictability. We
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assume that the mapping of tasks to cores and the execution order is given (either manually or provided
by a separate tool), and compute a set of release dates (offsets) and response times for each task. This is
an iterative process, with release dates dependent on the response times of preceding tasks, and response
times dependent on the set of co-runners, which are in turn dependent on task release dates. The process
either converges on a valid, all dependence relations respected, and schedulable configuration or deems
the system unschedulable with that task mapping, in which case a different mapping could be tried. The
proof of convergence is included in the long version of this paper published as a technical report [20]. It is
non-trivial since the usual monotonicity argument does not apply; the sequence of release dates computed at
each iteration may not be monotonic.

We target applications running on the Kalray MPPA-256 many-core processor. We identify all the
sources of interference for an application running on a compute cluster, and provide a mathematical model
for them. The model builds upon the Multi-core Response Time Analysis (MRTA) framework [1]; a generic
approach to response time analysis for multi- and many-core systems. Unlike MRTA, we consider a static,
time-driven schedule, and hence cannot use the same fixed-point algorithm. Instead, we provide a novel
algorithm that uses not only the mapping but also the information about when each task is executed to model
interference precisely. Finally, we evaluate our approach with micro-benchmarks and apply it to a case study
obtained from a realistic avionics application.

Related Work: In 2014, Lampka et al. [12] proposed an approach based on timed automata and abstract
interpretation. The main idea is to analyse a phase-structured task model [17, 21] using Real-Time Calculus
to derive the arrival curves for access requests and the availability curves for the shared resources (in this case
the shared bus). The authors proposed timed automata models of several bus arbiters (FCFS, Round-Robin,
TDMA). Although modelling a more complex arbiter can be feasible in timed automata, it increases the
complexity of the model and may lead to an explosion of states during analysis. Architectures such as the
Kalray MPPA-256 have several shared resources. This adds to the complexity of the analysis and may
significantly affect its scalability.

In 2015, Dasari et al. [7] presented an approach for response time analysis taking into account interference
on the bus. The number of accesses were obtained from measurements during the task’s execution (Regions
of task execution were used for a more fine-grained analysis). The bus itself was modelled by considering
the earliest and latest available communication slots for the task under analysis. This representation depends
on the arbitration policy of the bus. The authors give mathematical models of the most widely used bus
arbiters; however, it is difficult to see how to represent with this approach a less conventional arbitration
policy such as that employed in the Kalray MPPA-256.

In 2015, Carle et al. [5] described the implementation of data flow applications on multi-core systems.
The authors focus on the optimisation of an off-line schedule taking into account non-functional properties
such as release dates and deadlines. This work aims to eliminate the interference on shared resources
by providing temporal isolation. Our proposed approach accounts for the interference and hence may be
complementary to this previous work.

In 2016, Giannopoulou et al. [10] proposed a response time analysis on the Kalray MPPA 256 considering
mixed-criticality scheduling. The main difference with our approach is that [10] considers a ”Flexible
time-triggered scheduling” model which divides time into frames, and forces a global synchronization
barrier between frames. This potentially creates core under-utilization while they wait for the barrier. Our
scheduling policy does not require any global barrier. Also, we model the multi-level round-robin arbiter
while [10] considers only one level.

Organization: The remainder of the paper is organised as follows. Section 2 describes the system and
application models used, and outlines the MRTA framework which we build upon. Section 3 provides
response time analysis for synchronous data flow programs running on a compute cluster of the Kalray
MPPA-256. This analysis is evaluated in section 4 via a set of micro-benchmarks and a case study application.
Section 5 concludes with a summary and discussion of future work.

2 System and Application Model
This section presents the system and application models considered, thus defining the context for our
work. We describe the hardware architecture and its relevant characteristics, give an outline of the MRTA
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Figure 1: Compute cluster architecture for the Kalray MPPA-256

framework which we build upon, and describe the application model that we later analyse.

2.1 Kalray MPPA-256 Architecture
The Kalray MPPA-256 is a many-core processor [9]. It is composed of 16 tiles (called compute clusters)
of 16 + 1 cores. The processor is connected to the external environment through 2 I/O quad-core clusters.
Inter-cluster communication is achieved via a 2D-torus dual Network-On-Chip (NoC) for data and control.
In this paper, we are interested in applications running on a compute cluster and the interference due to
intra-cluster communications.

Compute Cluster: Figure 1 illustrates the architecture of a single compute cluster. It has 16 cores plus 1
Resource Manager (RM). The compute cluster connects to the NoC via two DMA (Direct Memory Access)
interfaces; one for receiving (Rx) and one for transmitting (Tx). The cluster also has a Debug Support Unit
(DSU).

The cores have an in-order Very Long Instruction Word (VLIW) pipeline and separate 8 KByte 2-way
set-associative private caches with 64 Byte lines for instructions and data. The data cache has a write buffer
with 8 fully associative 64-bit entries. There is no cache coherency mechanism between the cores. Each
core has its own real-time clock. Clocks in the same cluster are synchronous.

Shared Memory: In order to provide spatial isolation, the memory is partitioned into 16 banks. Each
memory bank is accessed via a separate bus arbiter which significantly reduces the amount of interference
compared to the alternative of a single arbiter. There are two possible configurations for the memory banks:
interleaved mode where sequential memory addresses move from one bank to another, and blocked mode
where each block of 128 KB consecutive memory addresses are contained in a memory bank. In this paper,
we assume that blocked mode is selected, since it gives more control over the bus interference. This is
because with blocked mode, cores that access different memory banks go through different arbiters hence
they do not interfere with each other. We use a fixed association between cores and memory banks. More
precisely, in our application model, each task has a local memory buffer, and the buffers of all tasks running
on the same core are mapped to the same memory bank. As a result, read accesses are private but write
requests may access another core’s memory bank.

Bus Arbitration: Figure 2 illustrates the specific multi-level policy used to arbitrate accesses to the
shared memory. We distinguish three groups which are arbitrated over three levels:
• G1 = {i ∈ [0, 15] : Pi}: access requests from the 16 cores are initially subject to round-robin

arbitration.
• G2 = {Tx ,DSU ,RM }: access requests from the Resource Manager (RM), Debug Support Unit

(DSU) and Tx requests to the NoC are initially subject to round-robin arbitration.
• G3 = {Rx}: Rx requests from the NoC.

At level L1, requests issued by data and instruction caches local to a core are processed by a local round-
robin arbiter. At level L2, there is round-robin arbitration within each of the groups G1 and G2. This is
followed by round-robin arbitration between these two groups at level L3. Finally, G3 is included in the last
level of the arbitration (L4), which uses a non-preemptive fixed priority (FP) arbiter and gives the highest
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Figure 2: Request arbitration to a shared memory bank (RR: Round-Robin. FP: Fixed Priority)

priority to access requests coming from G3.
To summarise, an access request from a task running on a core crosses three levels of round-robin

arbitration and a level of fixed priority arbitration to reach the shared memory.

2.2 Multicore Response Time Analysis
In this subsection, we outline the generic framework for Multi-core Response Time Analysis (MRTA)
introduced by Altmeyer et al. [1], which we subsequently build upon.

Given a set of n sporadic tasks Γ = {τ1, . . . , τn}, where each task τi has a period or a minimum
inter-arrival time Ti and a deadline Di and is statically assigned to a core, the MRTA framework computes
the response time of each task taking into account the total interference at the different levels of the hardware
that could occur during the task’s response time. By convention, we use Px to mean the core that the task
under analysis is mapped to, and Py to indicate some other core. The subset of tasks mapped to a core Py is
denoted by Γy .

In the MRTA framework, tasks are represented by a set of traces, each of which consists of an ordered
list of instructions, where each instruction carries information about the memory locations accessed (if any).
A set of exhaustive traces (i.e. for different paths) can be used to give a sound over-approximation of the
memory demand and the processor demand of a task by taking the maximum memory (processor) demand
over all traces for the task. As a result, the framework decouples response time analysis from a reliance on
context independent WCET values (in isolation). Instead, the analysis formulates response times directly
from the demands on different hardware resources. Such a separation of concerns trades different sources of
pessimism. The simplifications used in [1] to make the analysis tractable are unable to take advantage of
overlaps between processing and memory demands; however, this compromise is set against substantial
gains acquired by considering the worst-case behaviour of hardware resources, such as the memory bus,
over long durations equating to task response times, rather than summing the worst case over short durations
such as a single accesses, as is the case with the traditional approach using context-independent WCETs.

With the MRTA framework, the response time Ri of task τi executing on core Px is computed using the
following recurrence relation:

Ri = PDi + IPROC(i, x,Ri) + IBUS(i, x,Ri) + IDRAM(i, x,Ri) (1)

Where PDi is the processor demand, which equates to the execution time of task τi in isolation assuming a
perfect bus and memory with zero latency. IPROC is the interference on the core due to higher priority tasks
preempting or delaying task τi. IBUS is the interference on the bus computed using a mathematical model of
the bus arbiter. Finally IDRAM is the interference due to DRAM refreshes. Equation (1) is solved as part of a
larger fixed-point iteration which operates over the set of tasks, see Algorithm 1 in [1] for details.

The MRTA framework represents a generic and compositional solution for response time analysis. It
allows the modelling of a wide range of different arbitration policies (and a combination of them), as well
as different memory models (no cache, data and instruction cache, scratchpads, etc. and a combination of
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Figure 3: Example of a data flow program

them). In this paper, we build upon the MRTA framework, instantiating it for different hardware components,
bus arbitration policies, and application models.

2.3 The Synchronous Data Flow Model
Our aim is to obtain accurate bounds on the worst-case response time for data flow programs. A simple
example of a data flow program is shown in Figure 3. In this work, we consider mono-rate programs,
i.e. all tasks have the same period. In the case of a multi-rate program, we assume unfolded execution to
the hyper-period (the least common multiple of the tasks’ periods), effectively reducing the problem to a
mono-rate one 1. Also, we consider that all tasks in a cycle must complete before the end of the cycle, which
is a common constraint when scheduling synchronous programs. As a consequence, scheduling can be done
on one period (or hyper-period); the same schedule is then repeated indefinitely.

In terms of scheduling, the tasks in the data flow program are seen as an acyclic dependency graph. A
task is released only when all its predecessors have finished their execution, i.e. when they produce tokens
for the next tasks. In the example given in Figure 3, the output data of task τ1 must be available to task τ4
before it can execute. Hence, the release date of task τ4 should be greater than the finish time of task τ1.
The data produced is written into a memory location where the consumer task can read it. In this case the
memory bus is a shared resource and concurrent accesses may suffer from arbitration delays. In the example,
tasks τ2, τ4, and τ6 write to the memory of task τ3 which creates potential interference within the response
time of each task.

Our algorithm takes as input a fixed mapping of tasks to cores, and a fixed order for tasks mapped to the
same core. We purposely delegate the mapping and ordering to a separate tool, dedicated to optimisation
of the schedule and mapping, and focus on the analysis part. Mapping and ordering of tasks can also be
done manually. We produce a completely static, time-driven schedule. There cannot be two tasks active on
the same core at the same time, hence we do not use preemption and a task starts immediately when it is
released. The schedule specifies the exact, fixed release date for each task. This is in a way pessimistic in the
sense that each task waits for the worst-case response time of each of the tasks it is dependent on (it cannot
start even if all of them have completed well before their deadline); however, our aim is to optimise the worst
case, not the average case. The scheduling scheme has good properties for a hard-real time system. First,
it enables the application to be executed without any operating system: we only require communication
primitives, and one primitive to wait for a specified instant; they can be provided as a simple library. Also,
it makes the whole execution highly predictable since the release date of a task does not depend on the
execution time of previous tasks: we avoid any potential domino effects in timing.

We introduce the following additional notation used in our analysis: Each task τi has a release date reli
(effectively an offset relative to the start of the data flow program) Θ = {rel1, ..., reln} is the set of release
dates and R = {R1, ..., Rn} is the set of upper bound response times of tasks in Γ. Note that there is no
order relation between reli and reli+1 (resp. Ri and Ri+1) in the set Θ (resp. R). Recall that each task is
statically mapped to a core.

The approach we propose takes into account the interference on the bus as part of the response time
analysis. Using the SDF model, we know which tasks could potentially execute at the same time and

1The unfolding preserves the required minimum separation between jobs, since our scheduling scheme includes fixed release dates
for each task. The unfolding process thus assigns proper release dates to multiple instances of the same task. We note the potentially
large size of the hyper-period which may introduce a complexity issue.
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therefore be co-runners. We make use of this information to derive tight bounds on the amount of interference.
Moreover, there is an implicit dependency between two successive periodic instances which allows us to
limit the analysis to only one instance of the task graph. Our analysis, based on an adaptation of the MRTA
framework, assumes static non-preemptive scheduling based on the task graph.

In summary, in addition to providing a model for the Kalray MPPA-256’s bus arbiter, the main difference
between the basic MRTA approach [1] and our approach is that MRTA considers sporadic tasks, but does
not exploit any knowledge of dependencies or sequentiality between them. In contrast, we take into account
the task dependencies (similarly to [6]) and the precise schedule including release dates and response times.
As a consequence, we have to solve another fixed-point problem since the schedule depends on the response
times of each task, and vice-versa.

3 Analysis for SDF applications on the MPPA-256
In this section we first quantify the different sources of interference that need to be considered in analysing
synchronous data flow applications running on a compute cluster of the Kalray MPPA-256. We then describe
how bus interference can be computed using the task dependency graph for a synchronous data flow program,
thus avoiding pessimism in the analysis caused by lack of information about co-runners. We then derive a
mathematical model of the multi-level arbiter of the Kalray MPPA-256. Finally we describe our response
time analysis algorithm.

3.1 Quantification of the Interference
We now highlight the main sources of interference that need to be considered as part of (1) when determining
the response time Ri of task τi, given the hardware and application models considered.

The interference on the core IPROC(i, x,Ri) typically comes from delays or preemptions due to the
execution of higher priority tasks on the same core. In our application model, we assume a static non-
preemptive scheduler. Task release dates are set such that only one task is active per core at any given time.
This effectively eliminates all interference from higher priority tasks executing on the same core. It also
simplifies the analysis by removing all cache-related preemption delays [2].

The interference due to the DRAM is mainly due to refresh cycles. The Kalray MPPA-256 supports
a DDR memory accessed through the I/O clusters. An access from a core in a compute cluster has to
cross the NoC and the I/O cluster and finally the DDR controller. All these layers add to the complexity
of the analysis and the access delay. For predictable operation, such accesses are generally avoided by
pre-loading all of the code and data into the shared memory of the compute cluster. The on-chip RAM of
the MPPA is 32 MB, 2 MB per cluster, which is sufficient for many applications. We therefore assume that
∀t > 0, IDRAM(i, x, t) = 0.

The interference on the bus depends on the specific arbitration policy used. Cache misses in the private
data and instruction caches issue requests to the shared memory that are granted according to the multi-level
arbiter. A detailed derivation of the IBUS(i, x,R,Θ) function that depends on the set of release dates of all
tasks is given in the following section.

Taking the above considerations into account, the response time formula given in (1) simplifies to:

Ri = PDi + IBUS(i, x,R,Θ) (2)

Note, hereR is the set of response times and Θ is the set of release dates for all tasks.

3.2 Bus Interference
In our application model, we consider a task dependency graph mapped to a set of cores. The hardware
architecture allows the mapping of contiguous addresses to the same memory bank. Thus, concurrent
accesses are independent as long as they are done in different memory banks, which reduces the bus
interference. We exploit this by allocating the memory of each task running on the same core to the same
bank. Tasks run on their locally reserved memory banks and access other locations only when writing data to
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the next successive task(s) in the task graph. We denote by MDbi the memory demand of task τi on memory
bank b.

The bus interference is given by:

IBUS(i, x,R,Θ) =
∑
b∈Bi

BUSb(i, x,R,Θ)× d (3)

where d is the latency of a bus access without interference, Bi is the set of memory banks accessed by
task τi, and BUSb(i, x,R,Θ) is a function that, accounting for the arbitration policy, gives an upper bound
on the number of accesses that can delay completion of task τi (running on core Px) during a given time
interval. Note that BUSb(i, x,R,Θ) includes both accesses of the task of interest and accesses performed
by other tasks, since both delay the execution by the bus latency.

In order to derive BUSb(i, x,R,Θ), we need to compute an upper bound on all bus accesses during the
response time of task τi. We define Sx,bi (R) as an upper bound on the number of accesses by the task of
interest τi running on core Px within its response time. Note that since the scheduler is non-preemptive the
bus accesses from core Px come only from the memory demand of task τi on the memory bank b (MDbi ).
Since we analyse one instance of task τi, we have:

Sx,bi (R) = MDbi (4)

We define ∆
i,k

(R,Θ) the overlap duration between tasks τi and τk. The computation of the overlap is

trivial since we already know the release dates and response times of tasks τi and τk. Note that ∆
i,k

(R,Θ) is

0 when the tasks do not overlap. We use W
i,k

b(R,Θ) to denote an upper bound on the number of accesses

by task τk that may interfere with task τi at the memory bank b during its response time. In the absence
of detailed information on the pattern of access requests within a task, we consider that any two tasks that
overlap in time can interfere on each of their accesses. W

i,k

b(R,Θ) is given by:

W
i,k

b(R,Θ) = min(MDbk,


∆
i,k

(R,Θ)

d

) (5)

We use Ay,bi (R,Θ) to denote an upper bound on the number of accesses by all tasks running on core
Py 6= Px during the response time of task τi. The number of accesses is bounded by the memory demand of
each task on memory bank b. Ay,bi (R,Θ) is therefore given by:

Ay,bi (R,Θ) =
∑
k∈Γy

W
i,k

b(R,Θ) (6)

The terms Sx,bi (R) and Ay,bi (R,Θ) are used to derive an upper bound on the number of accesses that
contribute to the interference during the response time of task τi, which also depends on the bus arbitration
policy. The multi-level arbiter of the Kalray MPPA-256 requires a combination of several policies (see
Figure 2). We initially make the pessimistic assumption that the bus arbiter is work-conserving2 and that the
accesses from the task of interest τi are dealt with last of all. (We note that compared to the analysis given
in [1] there is no +1 term accounting for an access from a lower priority preempted task. Since we assume
a static non-preemptive schedule, any previous task and its accesses must have completed before task τi
starts). Thus we have:

BUSb(i, x,R,Θ) = Sx,bi (R) +
∑

Ay,bi (R,Θ)
y∈G1∧y 6=x

+
∑
y∈G2

Ay,b(R,Θ) +AG3,b(R,Θ) (7)

(We recall that G1, G2 and G3 are the three groups in the arbitration hierarchy defined in Section 2.1).

2A work-conserving bus arbiter will not idle the bus as long as there are pending requests.
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3.3 Model of the Multi-level Bus Arbiter
In this section, we study the multi-level arbitration policy used in the Kalray MPPA-256 architecture. We
consider the bus arbiter to a memory bank b as shown in Figure 2. The policy operates over 4 levels which
we label L1 to L4 where L1 is the first (left-most) level, and L4 the final level which is based on fixed
priority arbitration. Our analysis is built up following the hierarchy from level L1 to level L4.

Level L1: As input to the first level, we assume that the maximum number of accesses that can be
generated by each source in the response time of a task can be determined. These values are as follows:
• First group (G1): this is a core and may be treated in the same way as the analysis given for a

round-robin arbiter in [1]. Note that we do not need to distinguish between accesses that come via
the Instruction Cache (IC) and those that come via the Data Cache (DC), since all must be processed
before the task of interest τi can complete. Hence we may represent the output from this group as
either Sx,bi (R) or Ay,bi (R,Θ) depending on whether we are computing the accesses from the core
that τi executes on, or from another core.

• Second group (G2): here we only need to compute the overall output from the group: AG2,b
i (R,Θ) =

ATx,bi (R,Θ) + ADSU,bi (R,Θ) + ARM,b
i (R,Θ), since we are only interested in the interference it

generates.
• Third group (G3): there is only one item, hence the output is the same as the input: AG3,b

i (R,Θ) =

ARx,bi (R,Θ).
Level L2: At level L2 the outputs (accesses) from all 16 processors are combined via a 16 to 1 Round-

Robin (RR) arbiter. Note that each core has only one slot in the RR cycle. The number of accesses to bank b
that can delay the execution of a task on core Px at the output of L2 is given by:

BUSL2
b (i, x,R,Θ) = Sx,bi (R) +

∑
y∈G1∧y 6=x

min
(
Ay,bi (R,Θ), Sx,bi (R)

)
(8)

where x is the index of the core Px that task τi executes on, and similarly y ranges over the other 15 cores.
The worst-case situation occurs when each access in Sx,bi is delayed by each core Py 6= Px for 1 slot.

Given the round-robin arbiter, interference by core Py is limited to the minimum of the number of accesses

from Py and from Px, i.e. min
(
Ay,bi (R,Θ), Sx,bi (R)

)
.

Level L3: At level L3, the output from the level L2 arbiter, i.e. (8), is combined with that from the
second group, i.e. AG2,b(R,Θ), again via a round-robin arbiter, hence we have:

BUSL3
b (i, x,R,Θ) = BUSL2

b (i, x,R,Θ) + min
(
AG2,b
i (R,Θ),BUSL2

b (i, x,R,Θ)
)

(9)

Again, the worst-case situation occurs when each access in BUSL2
b (i, x,R,Θ) is delayed by the output of

G2 for 1 slot. Interference by the output of G2 is limited to AG2,b
i (R,Θ).

Level L4: Finally, at level L4, the output from the level L3 arbiter, i.e. (9), is combined with the
output from G3, i.e. ARx,bi (R,Θ). As this is done via a fixed priority arbiter with higher priority given to
ARxi (R,Θ), we have:

BUSL4
b (i, x,R,Θ) = BUSL3

b (i, x,R,Θ) +AG3,b
i (R,Θ) (10)

Finally, given the bus latency d, the bus interference is given by:

IBUS(i, x,R,Θ) =
∑
b∈Bi

BUSL4
b (i, x,R,Θ)× d (11)

3.4 Response Time Analysis
Our response time analysis algorithm (Algorithm 1) is based on the MRTA approach [1]. First, we augment
the framework with the model of the multi-level arbiter of the Kalray MPPA-256, and modify the way
computation of the potential interference is performed: the original MRTA framework uses a model with
sporadic tasks with minimum inter-arrival times and without dependencies, while we analyze a single
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Algorithm 1 Response Time Analysis Given a Set of Release Dates
1: function MULTICORERTA(Θ)
2: l = 1
3: ∀i : Rl[i] = PDi + MDi· d
4: do
5: for all i do
6: Rl+1[i] = PDi + IBUS(i, x,Rl,Θ)

7: . IBUS is given by equation 11
8: end for
9: l = l + 1

10: whileRl 6= Rl−1

11: returnRl
12: end function

Algorithm 2 Update Release Times to Start After All Dependencies
1: function UPDATERELEASES(Θmin,Θ,R)
2: for all i do
3: Θ[i] = max(Θmin[i], {Θ[k] +R[k]|k ∈ deps(i)})
4: end for
5: return Θ
6: end function

period of a single-rate application, with a static schedule. Knowing the release dates and response times,
Algorithm 1 computes the number of accesses that can delay a given task in a given time interval. Since the
potential interference depends on the release dates and response times, and the response times depend on the
interference, this requires a fixed-point iteration (line 10).

After computing the response times, the schedule we get may not respect the dependencies and
sequentiality constraints. We modify the release dates so that each task is released immediately after each of
the tasks it depends on is guaranteed to have completed (Algorithm 2). Modifying the release dates may
change the interference, hence we have to re-compute it using Algorithm 1, and so on, until a fixed point is
reached (Algorithm 3).

Algorithm 1 solves the recursive equation (2) using a fixed-point iteration, and computes the response
timesR of all tasks given the release dates Θ. Algorithm 2 ensures the dependency constraints between tasks
are satisfied. It is parameterised by Θmin which gives the earliest release date for each task: Θmin[i] = t
means that task τi cannot start before t. A task τi is released only when all the tasks it depends on (denoted by
deps(i)) are guaranteed to have finished. We statically schedule every release date, hence we set the release
date of each task to the maximum of the worst-case finish time of each task it depends on. Algorithm 3 uses
MULTICORERTA (Algorithm 1) to compute the response times of tasks in Γ given a set of release dates
(line 5). Then, UPDATERELEASES (Algorithm 2) is used to verify and update the dependency constraints.
Algorithm 3 starts from initial release dates (bounded by the SDF period) (INITRELEASE, line 3) and
performs a fixed-point iteration.

Algorithm 3 terminates when UPDATERELEASES does not change the release dates. When this happens,
the response timesRl+1 computed before the call to UPDATERELEASES remain valid afterwards, and hence
are valid at the end of the loop. Termination of Algorithm 1 is guaranteed: we limit the computation to one
period of the task graph; the number of bus accesses is bounded which implies that the amount of interference
seen by a task is also bounded. The response time computation of task τi is a monotonically increasing and
bounded function, thus Algorithm 1 converges for any values in Θ. Termination of Algorithm 3 is non-trivial
to show: the intuition is that a task cannot interfere with its past. At each iteration, release dates of tasks
released before some instant of time t become fixed and remain the same for all subsequent iterations,
with t advancing by at least one release date at each iteration. Note this means the number of iterations of
Algorithm 3 is at most (number of tasks− 1). The complete proof is given in Appendix A.1.

Since Algorithm 3 is parameterised by a function INITRELEASE, one might think that the choice of
INITRELEASE could impact the precision of the result. However, we prove in Appendix A.2 that the fixed
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Algorithm 3 Adapt Release Dates to Meet Real-Time Constraints
1: function COMPUTERT(Θmin)
2: l = 0
3: Θl =INITRELEASE(),Rl = ⊥
4: do
5: Rl+1 =MULTICORERTA(Θl)
6: Θl+1 =UPDATERELEASES(Θmin ,Θl ,Rl+1)
7: l = l + 1
8: while Θl 6= Θl−1

9: if ∀i : (Θl[i] +R[i]l) ≤ Di then
10: return schedulable
11: else return not schedulable
12: end if
13: end function

point of the composition of MULTICORERTA and UPDATERELEASES is unique, hence the algorithm will
return the same schedule for any function INITRELEASE, and there is no point trying to optimise it. In our
implementation, we start with Θ0 = Θmin, i.e. all release dates set to zero.

4 Evaluation
In this section we evaluate our approach using different configurations. We show how the application model
as well as the architecture configuration may affect the estimation of the WCRT. We analyse a didactic
micro-benchmark, an FFT streaming application, and a case study of a flight management system controller
to validate our approach.

4.1 Experimental Setup
Static analysis tools such as, OTAWA [3] and AIT [24]3, do not yet support the Kalray MPPA-256 Bostan.
For this reason, we establish the task profiles from measurement-based techniques. Each task is executed
in isolation while profiling processor cycles and the number of cache misses. Several measurements are
performed for each task and the results show a variance approaching zero. This reflects the efforts made in
the design of the Kalray MPPA-256 targeting real time applications. In our experiments, we consider a bus
delay d = 10 cycles obtained from internal specifications (we ignore transaction pipelining and TLB cache
misses). We also consider that the context switch delay is included in the task execution. We assume that
the Resource Manager (RM), which loads the application onto the cores before operation starts, does not
interfere with running tasks (ARM,b

i = 0,∀i, b). Finally, the Debug Support Unit (DSU) is disabled during
operation (ADSU,bi = 0,∀i, b).

Bus Model: We assume the benchmark in Section 4.2 is run in isolation on a compute cluster, i.e.
accesses from the NoC do not occur during the execution of the application of interest. As a consequence,
by setting ARx,b = ATx,b = 0 in (11), the interference is simplified to one level of round-robin arbitration.
We do consider the accesses from the NoC in the benchmark in Section 4.4

Execution Model: We first consider a single-phase execution model where we make no assumptions
about the distribution of read and write accesses between the start and end of a task. In our code generation
scheme for the SDF model, tasks execute computations, then write the result to a shared memory location
where the next task can read it. Similar to [13], this execution model allows each task to be split into a
first execution phase limited to reading the input and doing computations, and then a write phase where the
output is sent to the next task. In the execution phase, the accesses are to the local memory bank of the task
whereas in the write phase, requests may access a remote memory bank. We exploit this execution model in
our analysis. We consider the two phases of a task as separate subtasks with a direct dependency relation.
Using our analysis technique we compare the single-phase model with the two-phase model.

3To the best of our knowledge, AIT supports the first generation Kalray MPPA-256 Andey only.
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task PD (cycles) MD (accesses) dependencies
τ1 5 42 ∅
τ2 8 30 {τ1}
τ3 20 18 {τ2, τ4, τ6}
τ4 5 52 {τ1}
τ5 8 30 ∅
τ6 20 58 {τ5}

Table 1: Task profiles of SDF example in Figure 3
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Figure 4: Static scheduling of the example in Figure 3 considering 3 memory banks

Experiments: We explore and compare a number of setups for the experimental evaluation so as to
determine the effectiveness of various techniques that form part of the schedulability analysis. In the first
experiment E1, we use our approach taking into account a two-phase execution model. Experiment E2 also
applies our approach, but using a single-phase execution model. In experiment E3, we use a simplified
approach that discards the release dates of tasks, meaning that all tasks potentially overlap, and considers
the tasks using the two-phase execution model. The same approach as E3 is used in E4, but using the
single-phase execution model. Finally, we consider in experiment E5 that co-runners continuously interfere
with the task of interest. This is a pessimistic analysis that assumes the worst-case interference on each
memory access. Note that, this may result in unbounded interference due to the fixed priority level of the
MPPA bus. In this case, we consider the upper bound on the number of accesses by all higher priority
components during the analysed execution instance. Then, we assume that each task access is delayed by all
the higher priority accesses. In the following, we compare the different analyses with different arbitration
policies for each benchmark.

4.2 Didactic Example
We analyse the example given in Figure 3. Table 1 summarises each task profile that consists of the
processor demand and the memory demand. Figure 4 gives a static schedule computed by our approach
which accounts for the bus interference and the dependencies between tasks. Figure 5 compares the overall
estimated response times obtained with different analyses. We note that taking into account the memory
banks always yields a better estimation of the overall response time. Further, taking into account the
two-phase execution model (E1), the estimation is 1.5 times smaller than the pessimistic approach (E5)
while the analysis with the single-phase execution model (E2) is 1.49 times smaller. The approaches that
discard the release dates (E3 and E4) are as pessimistic as E5 in the analysis that discards the memory
banks, and only 1.06 times smaller while taking into account the memory banks.

4.3 FFT Streaming Application
We validate our approach with a simple streaming application of Fast Fourier Transform (FFT). Figure 6
describes the dependency graph. Each task executes a FFT function with 16 floating points. The measured
processor demand is 14994 cycles and the memory demand is 77 accesses. Figure 7 shows the overall
estimated response time with different analysis (E1, E2, E3, E4, E5 defined above). The pessimistic
analysis, that discards information about co-runner tasks, gives the worst-case interference. Our approach
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Figure 5: Comparison between the overall response time obtained with different analyses of the SDF
example in Figure 3
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Figure 6: FFT streaming application (units in processor cycles)

that accounts for the release dates of each task performs better than the analysis that ignores the release
dates of co-runner tasks.

The two-phase execution model splits each task into two subtasks. A pessimistic evaluation on each
subtask, in the two-phase model, results in a higher estimation compared to the single-phase model, due to
pessimistically counting the interference between the two-phase of each task; however, taking into account
the release dates improves the estimation for the two-phase model. In this particular case, the improvement
is not significant due to the nature of the application: all tasks communicate at the same instant which results
in high interference on communications.

Our experiments show that the two-phase execution model always yields a better estimation than the
single-phase. This effect is mostly seen when release times are not taken into account in the analysis.
However there also exists cases where it is better to consider a single-phase execution model. Figure 8
illustrates this situation. In Figure 8(b) (single-phase model), the number of accesses from the task running
on Px and from co-runners that may delay its execution is 20 + min(20, 15) = 35. In Figure 8(b), where the
two phases are represented with two subtasks each of them seeing 10 + min(10, 15) = 20 (as a worst-case
interference), which results in a total of 40 accesses. Due to this effect, one would perform the analysis on
both execution models and would consider the one with the smallest estimation.
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Figure 8: Pessimism in single-phase and two-phase execution models
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Task PD (cycles) MD(accesses)
altitude 275 22
az filter 274 22
h filter 326 24
va control 303 24
va filter 301 23
vz control 320 25
vz filter 334 25

Table 2: Task profiles of the FMS controller
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Figure 10: Task-to-core mapping and unfolding of tasks in the FMS controller
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Figure 9: Flight Management System controller

4.4 ROSACE (Flight Management System)
Pagetti et al. [16] provide a case study of a Flight Management System (FMS)4. The case study consists of
a multi-rate controller and an environment simulator. In this kind of application, the input (sampled from
physical sensors) is transmitted to a controller which, after computation, sends commands to the actuators.
Figure 9 illustrates the set of tasks in the SDF application, their inputs, outputs, dependencies, and their rates.
We established task profiles by executing each task in isolation and measuring a trace of its execution. The
profiles are given in Table 2. The inputs from sensors and the commands to the actuators are sent through
the NoC via the Rx and Tx components. Since there are multiple rates, we unfold the SDF program over a
hyper-period in order to make the model compatible with our approach. In this case, tasks with a frequency
of 100 Hz execute twice within the hyper-period, while tasks with a frequency of 50 Hz execute only once.
Further, the Rx component writes the inputs (h, az, vz, q, va) to the shared memory four times (200 Hz)
within the hyper-period, while the Tx component reads and transmits the outputs (δec, δthe) once (50 Hz).

4Open source implementation available on the svn repository https://svn.onera.fr/schedmcore/branches/
schedmcore-RTAS2014/Case_Study_RTAS
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Figure 11: The smallest schedulable period obtained with different analyses

Our experiments consider a time window with the length of the hyper-period that starts with the Tx accesses
from the previous execution of the program.

There are several possible mappings for the multi-rate application. We choose the mapping described
in Figure 10 and evaluate its schedulability with the previously defined analyses. We also consider a
single-level round-robin bus (RR) as well as the multi-level arbiter (MPPA). This allows us to compare the
performance of the MPPA against the conventional RR arbitration policy using our approach. Figure 11
gives the smallest period, in processor cycles, for which the mapping in Figure 10 is schedulable. This is
equivalent to finding the slowest processor clock frequency that satisfies the scheduling requirements.

The results in Figure 11 show that accounting for the memory banks improves the estimation with
a factor of 1.77 to 2.52 in E1, E2, E3, E4 (5 banks vs. 1 bank). Our refined approach that takes into
account the number of memory banks and the release dates can verify schedulability with a hyper-period
of 2588 cycles (E1) and 2604 cycles (E2) assuming the MPPA bus. This represents an improvement by
a factor of 4.15 (E1) compared to the pessimistic approach in E5 with 10748 cycles. The gain achieved
by considering release dates is a factor of 1.68 in E1 (respectively 1.29 in E2) when compared against E3
(respectively E4) which ignores release dates. Our analysis with the RR bus gives an estimation of 2388
cycles in E1 (respectively 2400 cycles in E2) which corresponds to a gain of a factor 3.3 when compared to
the pessimistic approach in E5 that has 7900 cycles. Note that the two-phase model is more pessimistic than
the single-phase model when comparing E3 and E4. This is due to accumulated pessimistic considerations
on the write phase and the execution phase which may lead in some cases to a higher estimation than
when the execution is considered as a single phase. The analysis of the RR arbiter provides slightly better
performance than that for the multi-level arbiter. Any pessimistic assumption in the analysis have a higher
effect on the multi-level arbiter than the RR arbiter. This is due to the fixed priority level that pessimistically
counts all highest priority accesses at each bus access.

Finally, we comment on the run-time of our approach. The analysis of the FMS controller takes 0.15
seconds (Intel 2.4 GHz CPU). The analysed hyper-period has 18 tasks. The analysis in E2 (single-phase
execution model) takes 4 iterations in Algorithm 3 and at most 20 iterations at each execution of Algorithm 1.
In E1, the analysed hyper-period has 31 subtasks/tasks and takes 6 iterations in Algorithm 3 and at most 31
iterations at each execution of Algorithm 1.
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5 Conclusions and Future Work
We presented an analysis able to compute a valid static schedule of a synchronous data flow application on
the Kalray MPPA-256 multi-core architecture with shared memory and a multi-level arbiter. We start the
analysis with a given mapping, set of dependencies between tasks and precedence constraints: the choice of
the mapping and the order of tasks on a given core can either be defined manually or delegated to a separate
allocation algorithm.

The analysis we derived was based on the Multicore Response Time Analysis (MRTA) framework [1].
We extended this framework by deriving a mathematical model of the multi-level bus arbitration policy used
by the Kalray MPPA-256. Further, we refined the analysis to account for the release dates and response
times of co-runners, and the use of memory banks. Improvements to the precision of the analysis may be
achieved by splitting each task into two sequential phases, with the majority of the memory accesses in the
first phase, and a small number of writes in the second phase. Our experimental evaluation focussed on
the ROSACE avionics case study. Using measurements from the Kalray MPPA-256 as a basis, we showed
that the new analysis introduced in this paper leads to response times that are a factor of 4.25 smaller for
this application, compared to the default approach of assuming that each access is subject to the worst-case
interference.

While we accurately model the 3-level bus arbiter and the set of memory banks in the Kalray MPPA-256
architecture, some work is still needed to model the end-to-end delay for a complete application. We focused
on local interferences between cores when accessing the memory. We will later work on a model of the
NoC traffic, i.e. ARx,bi and ATx,bi . Any formula returning a number of accesses for a given time interval
can be plugged into their computation: we can use the hardware configuration of the packet shaper (at
the exit of each MPPA cluster), which limits the allowed bandwidth for each compute cluster on the NoC.
Computations based on Network Calculus can also provide the worst-case number of accesses for a time
window [8]. We can also use knowledge of the application’s architecture (e.g. compute the amount of data
that is written to and from the cluster during each clock cycle of the SDF application). The resource manager
will also require consideration, as in general it can access the shared memory and is itself a shared resource
to consider in response time computations.

We considered that each access to the memory takes 10 cycles, and may delay other accesses by 10 cycles.
This is actually a worst case as 10 cycles elapse between the start and the end of a memory transaction, but a
more precise model should take transaction pipelining into account: during each of the 10 cycles above, only
one stage of the pipeline is used by the transaction. In the best case, a core and memory couple can execute
one transaction per cycle. Taking this into account should lead to a dramatic improvement in the precision of
our analysis, but is non-trivial since interference at different levels of the arbiter happen at different stages of
the pipeline. Other details of the architecture will be modeled more finely in the future: for example, write
transactions are asynchronous, while read transactions block the core until completion (no speculation).
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A Appendix
A.1 Proof of convergence
In this section we prove the convergence of Algorithm 3. The algorithm uses classical Kleene iterations to find the
fixed point of the composition f of MULTICORERTA and UPDATERELEASES. In other words, function f is the
body of the do/while loop of Algorithm 3. It takes and returns both response times and release dates, denoted by
σ = {(reli, Ri) | τi ∈ Γ} (in practice, it only depends on release dates). The algorithm terminates when f does not
change Θ, but when this happens, R is not modified either, so the algorithm actually finds a fixed point of f . The
iteration is initialised with σ0 which has release dates given by Θ0, and computes the sequence σn = fn(σ0). In the
following we denote by ε the smallest unit of measurement. In cycle-based measurements, we assume that ε = 1 cycle.

The main idea of the proof is:

1. Once the prefix of a schedule does not change from one iteration to the next, it will not change later in the
iteration. In other words, when all the release dates earlier than some date t are the same in σn and σn+1, they
will remain the same in all σk, k > n.

2. When all the release dates earlier than some date t are the same in σn and σn+1, the first task(s) released after t
in σn+1 find their final release dates, i.e. they will not change in σn+2.

In other words, the earliest release dates will not change after the first iteration, and the set of release dates that find their
final value propagates from t = 0 onwards, until all release dates are final.

To formalise the proof, we first need to define the notion of a “prefix of a schedule does not change” (Definition 1).
Point 1 above is Lemma 1, and point 2 is Lemma 2 (both with σb = f(σa)). The actual proof then applies these two
lemmas to build the sequence tn such that the prefix of σn up to tn does not change after iteration n (Theorem 1).

Definition 1. Let σa, σb be two sets of pairs of release dates and response times representing the
same task set Γ = {τ0, ..., τn} and an instant t > 0 such that: σa = {(relσa0 , Rσa0 ), ..., (relσan , Rσan )},
σb = {(relσb0 , R

σb
0 ), ..., (relσbn , R

σb
n )}

σa coincides with σb before the instant t (denoted by σa '<t σb) iff:

∀i : relσai < t ∨ relσbi < t⇒ relσai = relσbi

Accordingly, σa 6'<t σb iff:
∃i : relσai < t ∨ relσbi < t and relσai 6= relσbi

Observation 1. Tasks that are executed in disjoint time intervals do not mutually interfere; The response time is
computed in Algorithm 1 using equation (2).

The term Ay,bi (R,Θ) (equation 6) used in equation (2) gives the bus interference of task τj on the task of interest
τi. ∀τj such that relj > reli +Ri we have Ay,bi (R,Θ) = 0.

Observation 2. Let σa, σb be two sets of pairs of release dates and response times representing the same task set
Γ = {τ0, ..., τn}. The function MULTICORERTA is deterministic and depends on:

1. Processor Demand of each task (PDi)

2. Memory Demand of each task (MDi)

3. Release Times of each task

Since PDi and MDi are constant parameters for each task in Γ, the only variables in σa and σb, when applying
MULTICORERTA on them, are the release dates.

Observation 3. Let σa, σb be two sets of pairs of release dates and response times associated with the same task set
Γ = {τ0, ..., τn}. Let t be an instant of time such that σa '<t σb.

Tasks that are released after t in σa and σb are executed in a disjoint time interval with the tasks that finish before t.
For all tasks τi that verify ∀τi : relσai +Rσai < t we have:

1. relσai = relσbi (Definition of σa '<t σb)
2. All tasks τj released after the instant t do not interfere with tasks τi (consequence of Observation 1)

According to Observation 2 on the determinism of the function MULTICORERTA (in which the response time computation
is an increasing function), we get Rσai = R

σb
i . Similarly, for tasks τi that verify relσbi + R

σb
i < t we also have

Rσai = R
σb
i .
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Lemma 1. Let σ0
a, σ0

b be two initial sets of release dates and response times representing the same task set Γ =
{τ0, ..., τn}.
Let n > 0 : σa = fn(σ0

a), σb = fn(σ0
b ) such that ∃t > 0 : σa '<t σb. We have:

σa '<t σb ⇒ f(σa) '<t f(σb)

Proof. We prove that ∀τi : relf(σa)
i < t ∧ relf(σb)

i < t: relf(σa)
i = relf(σb)

i

σa and σb(such that σa '<t σb) are obtained after the nth iteration of f which implies that we already have
∀τi ∈ Γ, ∀τk ∈ deps(τi) : relxi > relxk +Rxk | x ∈ {σa, σb}.
Let σIa be the intermediate set such that ∀τi ∈ Γ we have:

1. R
σIa
i = MULTICORERTA(Θσa) and rel

σIa
i = relσai

2. relf(σa)
i = UPDATERELEASES(ΘσIa ,RσIa ) and Rf(σa)

i = R
σIa
i

σIb is the intermediate set obtained during the application of f on σb and defined similarly to σIa .
We apply f on σa and σb:

• MULTICORERTA computes the response times from the set of release dates. Since the release dates are not
modified we have: (i) σIa '<t σIb (ii) for any task τk such that: rel

σIa
k +R

σIa
k < t or rel

σIb
k +R

σIb
k < t we

have R
σIa
k = R

σIb
k (Observation 3).

• UPDATERELEASES depends on release dates and response times obtained from MULTICORERTA. From (i) and
(ii) we obtain relf(σa)

i = relf(σb)
i for all tasks τi that are released before t.

Therefore, we have f(σa) '<t f(σb).

Lemma 2. Let σ0
a, σ0

b be two initial sets of release dates and response times representing the same task set Γ =
{τ0, ..., τn}.
Let n > 0 : σa = fn(σ0

a), σb = fn(σ0
b ) such that ∃t > 0 : σb '<t σa. Let t′ = min

relxk>t,x∈{f(σa),f(σb)}
(relxk) + ε.

We have f(σa) '<t′ f(σb)

Proof. We define σ′a = f(σa) and σ′2 = f(σb). We prove that for t′ = min
relxk>t,x∈{σ′

a,σ
′
b
}
(relxk) + ε we have

σ′a '<t′ σ′b.
According to Lemma 1, since σa '<t σb we have σ′a '<t σ′b. We denote by Γj the set of tasks whose release date
relj = min

relxj>t,x∈{σ′
a,σ

′
b
}
(relxj ). τj ∈ Γj denotes one of the first tasks released after t in σ′a or σ′b.

The following scenario occurs during the application of f to compute σ′a and σ′b:

• All predecessors τi of tasks in Γj are released before t in σ′a and σ′b, hence relσ
′
a
i = relσ

′
b
i . Moreover, since

tasks in Γj are the first tasks released after t, no task is released in the interval [t, relj [ in σ′a nor σ′b. Hence,

MULTICORERTA sets Rσ
′
a
i = R

σ′
b
i according to Observation 2.

• Therefore, we have ∀τi ∈ deps(τj) : relσ
′
a
i = relσ

′
b
i and Rσ

′
a
i = R

σ′
b
i , hence UPDATERELEASES sets relσ

′
a
j and

relσ
′
b
j to the same value (Algorithm 2, line 3).

For all tasks τi such that relσ
′
a < t and relσ

′
b < t we have relσ

′
a = relσ

′
b . Furthermore, all tasks τj that are released at

t′ = min
relxj>t,x∈{σ′

a,σ
′
b
}
(relxj ) + ε, have relσ

′
a
j = relσ

′
b
j . Therefore, we have σ′a '<t′ σ′b.

Theorem 1. (Convergence)
The response time computation in Algorithm 3 converges and the fixed-point is reached in at most | Γ | −1 loop

iterations:
∀σ0, ∃N ≤| Γ | −1, ∀n > N : fn+1(σ0) = fn(σ0)

Proof. Let σ0 be any initial set of pairs of response times and release dates. To prove the convergence we prove the
following: There exists a finite sequence of increasing instants {tn|∃N > 0,∀n < N, tn+1 > tn} such that:

∀n ≥ 1, fn+1(σ0) '<tn f
n(σ0)

and there is at least one task released at tn − ε in fn(σ0).
Base case: n=1
∀σ0 we have at least f(σ0) '<0 σ0 that holds. By applying Lemma 2 we obtain f2(σ0) '<t1 f1(σ0) for
t1 = min(relxi ) + ε

relxi >0,x∈{S1,S2}
meaning at least one task is released at t1 − ε.
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Induction step:
Let us assume fn+1(σ0) '<tn fn(σ0) and prove

∃tn+1 > tn : fn+2(σ0) '<tn+1 f
n+1(σ0)

and there is at least one task released at tn+1 − ε in fn+1(S0).
By applying Lemma 2, fn+2(σ0) '<tn+1 fn+1(σ0) for tn+1 = min(relxi ) + ε

relxi >tn,x∈{S1,S2}
with at least one task is

released at tn+1 − ε
Since the number of tasks | Γ | is bounded, the fixed-point loop is also bounded by | Γ | −1. Therefore, given a set

of tasks and a set Θmin, Algorithm 3 converges in at most | Γ | −1 iterations.

A.2 Unicity of the fixed-point
Theorem 2. (Unicity)
For any initial values of release dates (set at Algorithm 3, line 3) Algorithm 3 results in the same release dates and

response times for a given Θmin.

Fa = f(Fa) and Fb = f(Fb)⇒ Fa = Fb

Proof. Let Fa = fN (σ0
a) and Fb = fN (σ0

b ) be two fixed points, i.e., f(Fa) = Fa and f(Fb) = Fb. We prove that
Fa = Fb.
By contradiction:
Fa and Fb are fixed-points. We assume: ∃σ0

a,∃σ0
b : Fa 6= Fb. This implies either:

1. ∃i : RFai 6= R
Fb
i ∧ ∀k : relFak = relFbk

2. ∃i : relFai 6= relFbi

• Case 1 is impossible according to Observation 3.

• Case 2 implies that at the instant t of the earliest release that differs in Fa and Fb
(t = min {relxi | relFai 6= relFbi }

∀τi∈Γ,x∈{Fa,Fb}
) we have Fa '<t Fb and ∀t′ > t : Fa 6'<t′ Fb.

When applying f , UPDATERELEASES sets the first release date after t in Fa and Fb to the same value and
Fa '<t′′ Fb (t′′ > t) (according to Lemma 2) which contradicts our assumption.

Verimag Research Report no TR-2016-1 20/20


	Introduction
	System and Application Model
	Kalray MPPA-256 Architecture
	Multicore Response Time Analysis
	The Synchronous Data Flow Model

	Analysis for SDF applications on the MPPA-256
	Quantification of the Interference
	Bus Interference
	Model of the Multi-level Bus Arbiter
	Response Time Analysis

	Evaluation
	Experimental Setup
	Didactic Example
	FFT Streaming Application
	ROSACE (Flight Management System)

	Conclusions and Future Work
	Appendix
	Proof of convergence
	Unicity of the fixed-point


