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Abstract

Rapid prototyping of highly parallel applications on manycore platforms is extremely
challenging. This paper presents an automated analysis and code generation flow for
implementing high-level KPN models on STHORM, an embedded 64-core computing
fabric developed by STMicroelectronics. The flow is model-based with sound semanti-
cal basis and enables formal verification and performance analysis at different stages.
The target for code generation is the MCAPI programming standard which has been
ported on STHORM. Currently, the flow is fully operational. We report concrete re-
sults obtained on image-processing algorithms and illustrate the potential benefits of
the flow for exploring implementation trade-offs.
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1 Introduction

Exploiting the increasing computational capabilities of manycore platforms requires applications
to be designed in a very thought way. Finding the best parallelization strategy, identifying an
optimal mapping, reducing communication overhead, optimizing extra functional requirements
such as power consumption, while guaranteeing correct behavior are among important design
parameters that need to be considered. Exploring and evaluating implementation alternatives is
notoriously hard, and time consuming, even for experts.

This paper presents a model-based design flow encompassing system-level analysis and auto-
matic code generation for STHORM [15], an embedded low-power many-core platform developed
by STMicroelectronics. This flow is rigorous, automated and allows fine-grain analysis of final
hardware/software system dynamics. It is rigorous because it is based on formal models described
in BIP component framework [3], with precise semantics that can be analyzed by using formal
techniques. A system model in BIP is derived by progressively integrating constraints induced on
application software by the underlying hardware platform. The system construction method has
been previously introduced in [4]. The application software and the abstract model of the plat-
form are initially defined using Kahn Process Network (KPN) [12]. In contrast to ad-hoc modeling
approaches, the system model is obtained, in a compositional and incremental manner, from BIP
models of the application software and the hardware architecture. This is done by application
of automated transformations that are proven correct-by-construction in addition to calibration
steps. The system model describes the behavior of the mixed hardware/software system and can
be simulated and formally verified using the BIP toolset [1].

In this paper, we are focusing on the backend part of the design flow, namely the automatic
code generation from BIP system models to the STHORM platform and trade-off analysis at
system-level using simulation. Writing good applications for STHORM is extremely challenging.
The platform delivers an impressive computing power thanks to the 64 tightly interconnected
cores, a NUMA memory architecture (with the L1 level accessible in a single cycle), and many
data communication and control mechanisms. All these resources are available to the programmer
and offer many opportunities for implementation. Yet, their naive utilization may easily lead to
poor performance as interferences can occur and alter the expected behavior.

To overcome such issues which are frequent for low-level programming, as a first step, we
ported the MCAPI standard [2] on STHORM and provided a minimal MCAPI-aware runtime on
top of it. The runtime is meant to be deployed both on the manycore fabric and its associated host
processor and provide a low-level software stack for thread management, memory allocation, inter-
thread communication and synchronization. As a second step, we developed an analysis method
and an automatic code generation process from BIP system models into C code to run on top of
this runtime. We consider two distinct objectives namely (1) implement the functionality of the
application with good design parameter, and (2) ensure its correct and automatic deployment on
the manycore fabric and the host. The functional code is generated from the BIP software model.
It consists of a set of parallel tasks, each corresponding to a process from the KPN representation
of the application. Communication between tasks is performed using MCAPI primitives. The de-
ployment code is fully generated from the description of the static mapping. This code implements
the allocation of various application objects onto the platform, i.e., allocation of task threads to
specific MCAPI domains (host or fabric) and/or cores, allocation of FIFO buffers and/or other
shared objects to memories, and performs all the initialization/synchronizations needed to bring
the application to an initially valid and functional state i.e., opening and connecting queues, etc.

We experimented the design flow above on the parallel software model derived from a sequen-
tial version of the HMAX Models application [17]. We were able to quickly investigate several
configurations of the application software (pipelining parameters, FIFOs sizes, etc.) and different
mappings on the physical platform. As the flow enables automatic code generation, any change
within the application and/or its mapping is rapidly propagated down to the concrete implemen-
tation which considerably reduces the development time and avoid intricate deployment bugs with
respect to a manual or semi-automated approach. Moreover, the system-level analysis allows to
investigate several design alternatives and to find good trade-offs.
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The rest of the paper is organized as follow. Section 2 shows an overview of the design flow.
Section 3 introduces the STHORM platform and its corresponding MCAPI implementation. The
code generation and analyis steps are illustrated in section 4. In section 5, we present the HMAX
Models case study and the exploration results obtained by applying our approach. In section 6, we
present some related works, and finally, the end tail portion concludes the paper and gives future
directions.

2 Design Flow for Manycore

As shown in Figure 1, the entry point in the proposed design flow are parallel applications described
as KPN and statically mapped on the target platform. Applications are concretely represented us-
ing the Distributed Operation Layer (DOL) [20] syntax. In a first step, applications are translated
into BIP software models using the dol2bip tool. These models capture solely the functionality of
the application software and are totally independent of the platform. At this level, it is possible
to use the D-finder tool [7] to perform functional verification (deadlock freedom, etc.) of the
application software. In a second step, the models are progressively refined trough specific trans-
formations (see [4]) using BIP/weaver into BIP system models. They represent the behavior of the
application mapped to the platform. This model does not yet contain hardware extra-functional
information. In a third step, software models are used to generate a concrete implementation, that
is, platform-dependent code. In our flow, the generated code is targeting the Multicore Commu-
nication API (MCAPI) implementation and its associated runtime for STHORM platform. The
next step consists to profile the generated code, execute it on the platform, and use the execu-
tion information (latency, communication time, power consumption, etc.) to calibrate the system
model, that is, to include all relevant non-functional constraints induced by the platform into the
application. Finally, the obtained model is used to explore possible design parameters, to find good
trade-offs, and to decide which ones to use. This is performed using simulation and debugging
back-end BIP tools [1].

KPN  Application 
(C + XML) 

Static  Mapping 
(XML) 

Software  Model 
(BIP) 

System Model 
(BIP) 

Application Code (CPU) 
(C with MCAPI calls) 

dol2bip 

BIP/backend 
code generator 

HW-dep. Software 
MCAPI on STHORM 

Simulation 

STHORM compiler 
stxp70cc 

STHORM 
Platform 

DOL 

1.b- functional 
verification 

5- exploration 

2- model 
transformation 

1.a- translation 

3- code 
generation 

D-Finder 

4- calibration 

 
Application 

Executable(s) 
 

BIP/weaver 

Figure 1: Overview of the Design Flow.

KPN/DOL: A High-Level Programming Model DOL is a framework devoted to the spec-
ification and analysis of mixed hardware and software systems. It provides languages for the rep-
resentation of particular classes of applications software, multi-processor architectures and their
mappings. In DOL, application software is defined using a variant of KPN model. It consists of
a set of deterministic, sequential processes (in C) communicating asynchronously through FIFO
channels. The hardware architecture is described as interconnections of computational and com-
munication resources such as processors, buses and memories. The mapping associates application
software components to resources of the hardware architecture, that is, processes to processors and
FIFO channels to memories.
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BIP: An Intermediate Model for Analysis, Validation and Code Generation BIP
(Behavior-Interaction-Priority) [3] is a formal framework for building complex systems by coordi-
nating the behavior of a set of atomic components. Behavior is defined as automata or Petri nets
extended with data and functions described in C/C++. The description of coordination between
components is layered. The first layer describes the interactions between components. The second
layer describes dynamic priorities between interactions and is used to express scheduling policies.
BIP has clean operational semantics that describes the behavior of a composite component as the
composition of the behaviors of its atomic ones. This allows a direct relation between the underly-
ing semantic model (transition systems) and its implementation. In BIP, atomic components are
finite-state automata extended with variables and ports. Variables are used to store local data.
Ports are action names, and may be associated with variables. They are used for interaction with
other components. States denote control locations at which the components await for interaction.
A transition is a step, labeled by a port, from a control location to another. It has associated
a guard and an action, that are respectively a Boolean condition and a computation defined on
local variables. The BIP toolset [1] offers a rich set of tools for modeling, simulation, analysis
(both static and on-the-fly) and transformations of BIP models. It provides a dedicated modeling
language for describing BIP models. The front-end tools allow editing and parsing of BIP descrip-
tions, followed by a backend code generation step (in C/C++). The generated code can be used
either for execution or for performance analysis using backend simulation tools.

MCAPI: A Low Level Programming Model MCAPI is a standard proposed by the Multi-
core Association to define an API and a semantic for communication and synchronization between
processing cores in embedded systems. The MCAPI specification is based on few basic concepts
such as Node, Endpoint, and Domain. A Node is an independent thread of control that can com-
municate with other nodes. The exact nature of a node is defined by the MCAPI implementation,
but it can basically be a process, a core, a thread, or a HW IP. An Endpoint is a communication
termination point and is therefore connected to a Node. One node can have multiple endpoints,
but one endpoint belongs to a single node. Finally, a Domain is a set of MCAPI nodes that
are grouped together for identification or routing purpose. The semantics attached to a domain
is given by the implementation, but it can basically be a cluster, a chip, a terminal, a mobile,
etc. Each node can only belong to a single domain. Compared to the Massage Passing Interface
(MPI)1, MCAPI offers inter-core communication with potential low-latency and minimal footprint.
MCAPI communication nodes are all statically predefined by the implementation. MCAPI offers
three fundamental communication mechanisms. First, Messages which are streams sent from one
endpoint to another. No connection is established between the two endpoints to send a message.
This is the easiest way of communicating between two nodes. Second, Packet Channel which is
a FIFO unidirectional stream of data packets of variable size, sent from one endpoint to another.
And finally, Scalar Channel that is similar to a packet channel, except that only fixed-length word
of data can be sent through the channel. A word may be 8, 16, 32 or 64 bit of data. Figure 2
presents the main concepts of MCAPI.

Figure 2: MCAPI main concepts.

1http://www.mcs.anl.gov/research/projects/mpi/
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3 MCAPI for STHORM

This section first introduces the STHORM platform general characteristics and presents the test-
board used in the case study. It then presents our MCAPI implementation.

3.1 STHORM Platform

STHORM [15] is a power efficient many-core system consisting of a host processor and a many-
core fabric. The host processor is a dual-core ARM cortex A9. The STHORM fabric comprises
computing clusters, inter-connected via a high-performance fully-asynchronous (2D mesh struc-
ture) network-on-chip (NoC), which provides communication with high, scalable bandwidth. Each
cluster aggregates a multi-core computing engine, called ENCore, and a cluster controller (CC).
The ENCore embeds a set of tightly-coupled processors elements (PE) which are customizable
32-bit STxP70-v4 RISC processors from ST Microelectronics. On the STHORM test-board used
in our experiments, the fabric comprises 4 clusters, with 16 PEs each. The PEs in one cluster
share a multi-banked level-1 (L1) data memory of 256 KBytes. The banks of the L1 memory can
be accessed in parallel in one processor cycle. Each PE has its private instruction cache with a
size of 16 KBytes.

The CC consists of a cluster core (STxP70-v4), a multi-channel advanced DMA engine, and
specialized hardware for synchronization. The latter two are accessible also by the PEs. The
CC interconnects with two interfaces: one to the ENCore and one to the asynchronous NoC. All
clusters share 1 MByte of level-2 (L2) memory, accessible via the NoC. The access time is several
tens of cycles. A DDR3 level-3 (L3) memory is available off-chip (1 GByte); this memory has
a large size, however its access time and bandwidth are much slower than the ones of on-chip
memory.

In summary, due to area and power constraints, the fast memory available on the chip is
scarce. Furthermore, the host processor and the cores on the fabric have a different instruction-
set-architecture. These two aspects make efficient programming on STHORM a challenging task.

3.2 MCAPI Implementation on STHORM

The main objective of the MCAPI implementation on STHORM is to offer a homogeneous pro-
gramming interface for the entire platform (fabric and host). This uniform representation covering
the entire platform can perfectly integrate the full design flow targeting STHORM, which signif-
icantly eases code generation and analysis. The current MCAPI implementation features five
domains: one for each cluster on the fabric, and one for the host as shown in Figure 3.

Figure 3: MCAPI Domains on STHORM.

The five domains naturally reflect the STHORM hardware organization. Furthermore, in each
cluster-domain each
MCAPI node is mapped on a PE. The host-domain has only a single node corresponding to the
ARM dual-core processor. The host node is responsible for the deployment of the entire execution,
as it is the main entry point of an application. The MCAPI initialization of the host node auto-
matically loads the fabric binary code into the L2 memory, and starts the fabric MCAPI nodes.
The MCAPI implementation totally hides from application the complexity of binary and symbols
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dynamic load and dependencies solving. A single semantic for the entire STHORM platform is
exposed for homogeneous programming.

The channels are implemented using FIFO buffers allocated in any of the memory levels avail-
able on STHORM. The size of the allocated buffer and its memory placement can be set by using
endpoint attributes, as specified in the MCAPI standard. The sending endpoint and the receiving
endpoint must have consistent attributes definition for the creation of a channel. No MCAPI node
is mapped on the CCs, meaning that they are not directly visible to the programmer. Instead,
they are used internally in the MCAPI implementation to support the various communication
mechanisms and synchronizations. DMA engines are also hidden from the programmer, but used
by the implementation to transfer data from one level to the another.

4 Code Generation and Analysis

This section describes the transformation and exploration steps performed to obtain low-level
running code with appropriate design parameters. It consists mainly to produce an intermediate
BIP model enabling analysis and code generation. The process is shown on an illustrative example.

4.1 Generating the BIP Software Model

Figure 4 shows a KPN model composed by six processes, namely Config, Splitter, Joiner, and three
Worker instances. The communication between these processes is based on blocking Read/Write
primitives on FIFO channels following the DOL semantics. In this example, the initial step consists
to configure (data size, data type, etc.) the Worker processes. It is performed by the Config
process. Generic processes are considered to enable the processing of different data types/sizes.
After configuration, the data to be processed is split and sent by the Splitter to the workers that
run in parallel. Finally, the results is collected by the Joiner. The code sample below shows the
corresponding DOL implementation of the Worker process.

Splitter

Worker

Worker Joiner

Worker

Config

Figure 4: A KPN model example.

/** DOL Worker Process **/

void worker_init(){status = CONFIG;}

void worker_fire()

{ if(status == CONFIG){

// Read configuration parameters

// from input configuration FIFO

read(CONF_FIFO, &config);

// Update number of steps

step = config.step;

// Update status

status = EXEC;}

if(status == EXEC){

// Read data from input data FIFO;

read(DATA_FIFO_IN, &data);

// Execute computation function

compute(&data);

// Write data to output FIFO;

write(DATA_FIFO_OUT, data);

// Update number of steps
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step--;

// Update status

if(step == 0) status = CONFIG;}}

Given the KPN model in Figure 4, the generation of the corresponding BIP representation is
straightforward. As shown in Figure 5, each process is transformed to an atomic BIP component
modeled as an extended automaton following the BIP formalism. An example of the Worker
BIP component (which corresponds to the code sample above) is depicted in Figure 6. In this
automaton, the DOL Read/Write calls are transformed to equivalent BIP interactions (ports)
synchronized with BIP FIFO components providing send/receive primitives. Parametrized FIFO
components (with a maximum capacity) are explicitly inserted for each inter-process communica-
tion. An example of a FIFO component is shown is Figure 7. The connection of the processing
components (Splitter, Gabors, Joiner) with FIFOs is made through BIP render-vous connectors
that models strong synchronization.

read_data

read_conf

write_data

read_data

read_conf

write_data

Worker

read_data

read_conf

write_data

Worker

writeSplitter

push pop

Data_fifo_out

push pop

Data_fifo_out

push pop

Data_fifo_out

read Joiner

Worker

push

push

pop

pop

push pop

Conf_fifo

push pop

poppush

Conf_fifo

Conf_fifo

writeConfig push pop

Data_fifo_in

Data_fifo_in

Data_fifo_in

Figure 5: The BIP Model of the Worker example.

S0

read(CONF_FIFO, &config);

step = config.step;

status = EXEC;

S1 S2

S4 S3

[status == CONFIG]

read_conf

read_conf read_data

write_data

config data

data

[step == 0]

status = CONFIG;

write_data

compute(&data);

read(DATA_FIFO_IN, &data);

read_data

[step != 0]

write(DATA_FIFO_OUT, data);

step−−;

[status==EXEC]

Figure 6: The BIP model of the Worker process.

data

send

receive

data

b = new Buffer(max);

send

push(b, data);

S0

receive [b.size < max]

[b.size > 0]

pop(b,&data);

Figure 7: The BIP model of the FIFO component.

4.2 Exploring the BIP System Model

In this phase we aim to analyze the generated model in order to find good design parameters (fifo
sizes, etc.). Note that the BIP software model generated in the previous step is limited to the ap-
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plication behavior which is not sufficient for parameter exploration. Those are strongly correlated
to the hardware platform. We propose a method to enrich the BIP software model with relevant
hardware extra-functional information while keeping it small enough for simulation/exploration.

The idea is to use the BIP software model to generate running code on the target platform,
that is, in this context, STHORM. Initial parameters values can be given by expert or chosen
arbitrarily, similarly for the mapping of the processes on the platform. This code will be profiled
and executed on the real platform to retrieve concrete information about execution time, latency,
energy consumption, etc. This information is then injected in the BIP model in form of probability
distributions (calibration phase). Note that the retrieved information is subject to random vari-
ability because of inherent hardware characteristics. Figure 8 shows the Worker BIP component
of Figure 6 annotated with time information trough the tick transitions on states S2, S3, S4. The
component uses three different probability distributions f read(),f exec(), and f write() (obtained
from a concrete run on the platform) to model respectively the read, the compute, and the write
time. The distributions are used to update the time variable in a stochastic manner. This amount
of time is consumed on the tick transition. When it becomes null, the next transition is enabled.
The obtained model is a stochastic BIP model [6].

S0

read(CONF_FIFO, &config);

step = config.step;

status = EXEC;

S1 S2

S3

[status == CONFIG]

read_conf

write_data

data

status = CONFIG;

compute(&data);

read(DATA_FIFO_IN, &data);

read_data

[status==EXEC]

read_data

data

read_conf

config

tick
time−−;

[time == 0]

time=f_exec();

tick
time−−;

[time == 0]

write_data
step−−;

time=f_write();

write(DATA_FIFO_OUT, data);

tick

time−−;

[step != 0 && time == 0]

S4

time=f_read();

[step == 0 && time == 0]

tick
time

Figure 8: Time annotated BIP Worker component.

The obtained BIP system model is more faithful than the BIP software model since it takes
into account, in addition, the hardawre characteristics. Using the BIP back-end simulation and
debugging tools, it is possible to quickly explore several parameters. This exploration phase is
iterative, that is, it may lead, given the simulation results, to change the high level KPN model
and/or the associated mapping, regenerate and re-explore the new model, and so on. When good
parameters/mapping are found, they are used together with the software BIP model to generate
a final running version of the application.

4.3 Generating C/MCAPI Executable Code

Given the software BIP model, a set of design parameters, and a mapping, this step consists
to generate the low-level running C/MCAPI code for STHORM. This phase is divided into two
main steps: (1) Object generation, that is processes, FIFO buffers, and shared objects and (2)
Deployment/Glue code generation that consists on mapping the generated objects on the physical
platform.

Process Generation During this step, each BIP component is transformed to a C/MCAPI
process. A challenging point at this level is to generate small set of process local variables to fit
the small amount of available memory per process stack on STHORM. The generated processes
are basically composed of two parts:

• Initialization: in this part, BIP components interfaces (ports) are transformed into equiv-
alent MCAPI endpoints (Appendix A shows a sample of initialization code). The generated
process endpoints are initialized, opened, and connected to other processes in this same
block. Moreover, endpoints memory attributes are generated to allocate FIFO buffers and
shared objects (given their sizes) and to map them into specific memory locations. MCAPI
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implementation for STHORM provides several possibility to map buffers into specific target
memory as shown in Table 1. Buffers could be mapped either in L3, L2 or L1 memory using
the attributes shown in the table. For L1 memory, it depends on the sender/receiver pro-
cesses location. If these run in the same cluster, the buffer is allocated in the L1 memory of
that cluster. Otherwise, it is mapped in the L1 of the cluster where the sender (respectively
the receiver) runs.

Target Memory Sender Attribute Receiver Attribute
L3 Remote Remote
L2 Shared Shared

Receiver L1 Shared Local
Sender L1 Local Shared

Table 1: MCAPI endpoints memory attributes.

• Behavior: in this part, BIP component behavior is transformed to equivalent C code with
MCAPI primitives calls. It consists essentially on an infinite while loop with several steps
(using Switch/Case statements) reproducing the BIP automata behavior as shown in the
code sample below that corresponds to the BIP component in Figure 6. In the generated
code, all BIP synchronizations are transformed to C/MCAPI Send/Receive primitives.

void worker_ins_execute(void* arg) {

/* Initialization */

...

/* Behavior */

while(Wlcontinue){

switch(BIP_CTRL_LOC){

case S0 : {

if (status == CONFIG) {

...

status = EXEC; BIP_CTRL_LOC = S0;}

if (status == EXEC) BIP_CTRL_LOC = S1;

break;}

case S1 : {

mcapi_pktchan_recv(h_WORKER_read_data,

(void**)&mcapi_buffer, &mcapi_received, &mcapi_status);

if((mcapi_received != size) ||

(mcapi_status != MCAPI_SUCCESS))

ERR_RAISE("FAIL TO READ DATA");

memcpy(data, mcapi_buffer, mcapi_received);

size = mcapi_received;

mcapi_pktchan_release(mcapi_buffer, &mcapi_status);

if(mcapi_status != MCAPI_SUCCESS)

ERR_RAISE("FAIL TO RELEASE CHANNEL");

BIP_CTRL_LOC=S2 ;

break;}

case S2 : {

compute(&data); BIP_CTRL_LOC=S3;

break;}

case S3 : {

mcapi_pktchan_send(h_WORKER_write_data, data,

size, &mcapi_status);

if(mcapi_status != MCAPI_SUCCESS)

ERR_RAISE("FAIL TO SEND DATA");

step--; BIP_CTRL_LOC=S4;

break;}

... }}}
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Deployment/Glue Code Generation This code is composed by two parts as well: a generic
and a generated part. The generic part is parametrized by the amount of memory to be allocated
per processes stack. It is meant to allocate the generated processes memory and to launch them on
the specified hardware location (given the mapping). The generated part is the one that specifies
the mapping of the generated objects on the physical platform. This is obtained based on the
input mapping. In addition, parametric Makefiles are automatically generated to compile and run
the generated C/MCAPI code on the STHORM test-board.

5 Case study

This section introduces the HMAX Models algorithm for image recognition and shows the perti-
nence of using our flow to perform design exploration on high-level models trough simulation and
automatic code generation.

5.1 Application Overview

HMAX [17] is an hierarchical computational model of object recognition which attempts to mimic
the rapid object recognition of human brain. Hierarchical approaches to generic object recogni-
tion have become increasingly popular over the years, they indeed have been shown to consistently
outperform flat single-template (holistic) object recognition systems on a variety of object recog-
nition task. Recognition typically involves the computation of a set of target features at one step,
and their combination in the next step. A combination of target features at one step is called a
layer, and can be modeled by a 3D array of units which collectively represent the activity of set
of features (F) at a given location in a 2D input grid. HMAX starts with an image layer of gray
scale pixels (a single feature layer) and successively computes higher layers, alternating “S” and
“C” layers: Simple (“S”) layers apply local filters that compute higher-order features by combining
different types of units in the previous layer. Complex (“C”) layers increase invariance by pooling
units of the same type in the previous layer over limited ranges. At the same time, the number of
units is reduced by sub-sampling.

In the case study, we only focus in the first layer of the HMAX Models algorithm (see Figure 9)
as it is the most computationally intensive. In a pre-processing phase, the input raw image is
converted to gray scale input (only one input feature: intensity at pixel level) and the image is
then sub-sampled at several resolutions (12 scales in our case). For the S1 layer, a battery of
three 2D-Gabor filters is applied to the sub-sampled images and then for C1 layer, the spatial
max of computed filters across two successive scales is taken. In this application, parallelism can
be exploited at several levels. First, at layer level, where independent features can be computed
simultaneously. Second, at pixel level, that is, the computation of contribution to a feature may
be distributed among computing resources.

1 × Y × X

1 × Y × X (× S)

F1 × Y × X (× S)

F1 × Y × X (× S)

F2 × Y × X (× S)

F2

Dimension Names

C2 (max)

S2 (grbf)

C1 (max)

S1 (ndp)

SI (scaled images)

Layer name

RI (raw image)

Figure 9: HMAX Models algorithm overview.
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5.2 High-Level Reconfigurable KPN Model

We developed a parametric KPN model for the S1 layer of HMAX in DOL. The model is based on
the worker pattern presented in Section 4. It uses a certain number of reconfigurable processes for
implementing the 2D-Gabor filtering and image splitting/joining. Every image is handled by one
”processing group” consisting of a Splitter, one or more Gabor (Worker) processes and a Joiner
process, connected through blocking FIFO channels as illustrated in Figure 4. This model exploits
parallelism both at image level, as different images are processed in parallel by different processing
groups and at pixel level, as different stripes of the image are processed in parallel by different
Gabor processes. Moreover, parallelism is exploited between pure computation on Gabor processes
and data transfer from/to main memory by Splitter/Joiner processes.

The computation of the entire S1 layer is coordinated by a single main process. Several image
scales are handled concurrently. That is, the twelve scaled images are statically pre-allocated
and mapped on different processing groups. For every image scale, the processing is pipelined as
follows. Initially, the main process sends the first 10 + P lines to the corresponding processing
group, where P ≥ 0 is an integer parameter called line pressure that specifies the pipelining rate.
In normal regime, one input line is sent and one output line is received, for every filter rotation
(that is, actually three output lines). Finally, once all the input image has been sent, the main
process receives P more output lines. At this point, the processing group is ready (empty) and
can be reconfigured to restart computation for another image scale.

Within the processing group, the Splitter receives input images (see Appendix), line by line from
the main process. Every line is split into a number of equal length (and overlapping) fragments, one
for every Gabor process, and sent to these processes. Gabor processes implement the computation
of the 2D-filter itself. Filter size is fixed to 11 × 11 in the case study. Hence, Gabor processes need
to accumulate 11 line fragments in order to perform computation. Henceforth, they maintain and
compute the result operating on an internal ”sliding” window of 11 line fragments. Finally, the
resulting fragments are sent further to the Joiner, which packs them into complete output lines
and send them to the main process.

5.3 Parameters Exploration at Image Level

Parameter-space exploration is usually required for transforming a parametrized design into a
functional and efficient implementation on the target platform. In our case, several questions are
naturally raised e.g., What is the best pipelining parameter P that gives a maximum throughput
? What are the optimal FIFOs sizes that reduce the overall execution time and fit the platform
available amount of memory ? What is the best images mapping that reduces the processing time
and the energy consumption ? All these are important design parameters that may eventually
impact the application performance and behavior. Exploring the parameters space to find good
trade-offs is essential for a good design. This task is not feasible manually even for experts,
especially, at a low-level. Our flow provides a rigorous intermediate representation (BIP) that
enables automatic verification of several aspects while taking into account hardware constraints,
that is, considering faithful models.

To answer the above questions, we consider one processing group that deals with the biggest
scale of the input image (256× 256 floating point) as shown in Figure 10, that is, one Splitter, 14
Gabors, and one Joiner. This processing group is mapped on one cluster while the coordinating
main process is mapped to the host part of the STHORM platform.

Gabor 

Gabor 

Gabor 

… x 14 

Splitter Joiner Main 
246 

Main 
256 

Cluster 

Host Host 

Figure 10: KPN model of one processing group of HMAX.

10/21 Verimag Research Report no TR-2014-9



Ayoub Nouri1, Anca Molnos2, Julien Mottin2, Marius Bozga1, Saddek Bensalem1, Arnaud
Tonda2, Francois Pacull2

Using the biggest image on one processing group will help us to correctly scale the FIFOs size
without dealing with the whole S1 layer complexity. Similarly the line pressure parameter P can
be safely analyzed at this level since it acts independently in each processing group. We follow
the steps of the flow illustrated in Figure 1:

First, generate the BIP software model The software model corresponds to the KPN shown
in Figure 10 which is similar to the Worker pattern illustrated in Section 4. Although, in this
model (Figure 10), we don’t use a Config process (the configuration phase is performed by the
Splitter) and we have an additional main process. The BIP software model is obtained through
the steps depicted in Section 4. The Gabor component is similar to the Worker model shown in
Figure 6. It basically receives an image fragment, applies the the 2D-filter (3 directions), and send
them to the Joiner. Processing components communicate through generated FIFOs as shown in
Figure 5.

Second, generate C/MCAPI code Based on initial parameters values (FIFOs sizes, line pres-
sure P = 0), we use the back-end code generator as described in Section 4 to produce C/MCAPI
code targeting STHORM from the BIP software model. Table 2 shows the initially used FIFOs
sizes and their location on the platform. Columns of the table specify the FIFOs positions in the
model. For instance M-S means the FIFO between the Main and the Splitter (G: Gabor and J:
Joiner). These values are approximately computed based on the smallest processed fragment size
(28 floating points). For instance, a FIFO with 112 Bytes can handle 1 fragments and the one with
336 Bytes can handle 3 fragments. The FIFOs buffers allocated in L3 are bigger. For instance,
the FIFO between the Main and the Splitter can handle 10 lines of 256× 256 image and the the
FIFO between the Joiner and the Main can handle 30 lines of the same image.

FIFO M-S S-G G-J J-M
Size 10 KB 112 B 336 B 30 KB

Location L3 L1 L1 L3

Table 2: Initial FIFOs sizes and mapping (Configuration A).

Gabor Execution Time (number of cycles)

F
re

q
u

e
n

c
y

298000 300000 302000 304000 306000

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

Figure 11: Gabor execution time frequency distribution.

Third, profile and run the generated code We mainly focus on execution and commu-
nication time of the processes. Our MCAPI implementation offers a set of profiling functions
covering STHROM both sides (host and fabric). We execute the generated instrumented code on
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a STHORM test-board and collect timing information. Figure 11 shows the distribution of Gabor
execution time. This correspond to the time of the gabor compute feature() function which is the
core computation part of the process (2D-filter computation). Note that all the Gabor processes
use the same function and run on identical cores. Hence, the obtained distribution is used to
calibrate all the Gabor models. We apply the same procedure for the communication time.

Forth, build and calibrate the BIP system model The system model is constructed flowing
the same principles from [4]. Given the distributions of the execution and the communication time,
we calibrate the BIP system model as shown for the Worker component in Section 4. That is, we
build a stochastic BIP model where time is explicitly modeled using tick transitions. These model
execution and communication time and are sampled from the underlying distributions obtained
from the previous step.

And Finally, explore the obtained BIP system model Using the BIP simulator capabil-
ities, we explore the stochastic system model by investigating several FIFOs sizes and P values
combinations as depicted in Table 3. In this case study, we focus on the overall execution time.
These configurations differ either in the size of the internal FIFOs (S-G, G-J ) sizes or the exter-
nal (M-S, J-M ) ones. In Configuration B, we doubled the internal FIFOs sizes with respect to
Configuration A and tripled them in Configuration C. The latter didn’t work on the STHORM
test-board due to memory overflow. In Configuration D, we kept the same internal FIFOs sizes
as Configuration B and increased the external ones to see their impact on the execution time.

Configuration FIFOs Sizes P Exec. Time (ms)

A

M-S= 10 KB 0 1098.814811
S-G= 112 B 2 956.352644
G-J = 336 B 5 956.739721
J-M = 30 KB 10 956.573830

B

M-S= 10 KB 0 1092.584741
S-G= 224 B 2 953.108584
G-J = 672 B 5 956.131459
J-M = 30 KB 10 955.818112

C

M-S= 10 KB 0

Does not work
S-G= 336 B 2

G-J = 1008 B 5
J-M = 30 KB 10

D

M-S= 20 KB 0 1076.327576
S-G= 224 B 2 953.219177
G-J = 672 B 5 956.371076
J-M = 50 KB 10 956.315780

Table 3: FIFOs sizes configurations and P values and corresponding execution time on the
STHORM test-board.

We construct the system models for all the above-mentioned configurations and simulate them.
The overall execution time of the S1 layer (one cluster version) is reported in Figure 12. This shows
the execution time evolution when increasing P for the different configurations when using simu-
lation and for concrete run on the test-board. The simulation results do not show any significant
differences between the considered FIFO sizes configurations (in Figure 12, a unique curve de-
scribes the different configurations when using simulation). Nevertheless, different results are
obtained for respectively P = 0 and P > 0 as shown in the same figure. That is, in the former
case (without pipelining), the total execution time is about 684 milli-seconds whereas in the later
(with pipelining) is about 560 milli-seconds (regardless the value of P ). One can then restrict the
exploration space to 0 < P ≤ 5 since greater values of P does not really improve the throughput.
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With respect to the FIFOs configurations, since no difference is seen, we decide to limit ourselves
to configurations using less memory, that is, Configuration A and B.
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Figure 12: Overall execution time for different P values and FIFOs sizes configurations using
simulation and concrete run on the STHORM test-board.

The simulation results are fully inline with the values measured on the test-board (detailed
in Table 3) for the same configurations as we can see on Figure 12. Nevertheless, they are more
optimistic since the built model still abstracting many hardware details. It is worth mentioning
that the simulation time did not exceed 10 seconds for any of the considered configuration.

5.4 Parameter Exploration at the Layer Level

We now consider the full S1 layer which deals with all the image scales. We are going to use the set
of candidate parameters obtained in the previous step (Configuration A and B with 2 ≤ P ≤ 5)
for further exploration with different images mapping. This version is composed by three distinct
processing groups, with different sizes. These are deployed on different STHORM clusters as shown
in Figure 13. FIFOs are mapped as earlier, that is, external FIFOs are mapped to L3 memory
and internal ones are mapped to respective clusters L1 memories.
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Figure 13: Full S1 layer mapping on the STHORM platform.

Investigating Different Images Mapping We investigate two different images mapping on
the three available processing groups as shown in Table 4. These are explored, together with
the previous candidate parameters, with respect to the application throughput as depicted in
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Table 5. In this case, we only rely on the code generator to produce C/MCAPI code which is
executed on the test-board. The reported results in this part are obtained through concrete run
of the generated implementation. BIP models are only used to generate the implementations
corresponding to the described scenarios. This helps us reducing the prototyping time since done
at system-level. Moreover, it reduces bugs introduction in the final executable code with respect
to manual approaches.

Mapping PG 1 PG 2 PG 3
1 256, 214 180, 152, 128 106, ..., 38
2 256, 180 214, 152, 106 128, 90, ..., 38

Table 4: Image scales mapping on processing groups (PG).

The execution time evolution corresponding to each scenario of Table 5 is presented in Fig-
ure 14. One can conclude out of this figure that the scenario that ensures the lower execution time
is the one of mapping 2 combined with configuration B and specifically when P = 3. In Figure
15 we show in detail the execution time of each image scale for this specific scenario compared to
mapping 1 combined with configuration B for P = 2. We can note a clear change in the execution
time of the interchanged image scale (from mapping 1 to mapping 2). For instance, image scale
106 was moved from PG3 in mapping 1 to PG2 in mapping 2. The latter is composed by 14 Gabor
processes while the latter uses only 6. This explains the fall in mapping 2 curve for that scale in
Figure 15. In contrast, scale 128 was moved from PG2 to PG3. This increases its processing time
for the same reasons. One can note the same behavior for scales 180 and 214. Apart these scales,
the other ones have more or less the same execution time in both scheduling. It seems that the
reduction due to moving certain images from PG3 to PG2 is more important than the moves in
the other way which reduces the global execution time of the S1 layer. Note that mapping 2 with
Configuration A did not work on the STHROM test-board. This is due to the small size of the
internal FIFOs (exactly one fragment) which is not sufficient for the image scale 128 on PG3 that
uses only 6 Gabor.
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Figure 14: Overall execution time for different image scales mapping, configurations, and P values.

Discussion Exploring all these alternatives would have been very difficult manually and at a
low-level. Using the automatic flow, it took as each time less than one seconds to regenerate a
configuration and run it. Modifying these parameters at a high-level is indeed much more easier. It
is worth mentioning that the BIP model of the S1 layer of HMAX is composed by 115 components
with a lot of synchronization. The size of the generated C/MCAPI code is about 15000 loc over
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Figure 15: Execution time for each image scale with different mapping, configurations, and P
values.

Mapping Configuration P Time (ms)

1

A

2 2856.689953
3 2857.666856
4 2870.034837
5 2859.473209

B

2 2853.114112
3 2854.920466
4 2870.643097
5 2931.616685

2

A

2

Does not work
3
4
5

B

2 2806.075242
3 2805.817190
4 2814.848947
5 2815.199160

Table 5: Investigated scheduling, configuration, and P values with respect to the application
execution time.

47 files (1 file per process plus 6 files for the deployment). The MCAPI library size is about 7000
loc. Its footprint on the fabric is 190 KBytes and 66 KBytes on the host side.

6 Related Work

Many frameworks encompass code generation, analysis, and simulation tools like our flow. VISTA
[16] is a tool enabling modeling and performance analysis of embedded applications on virtual
architecture and exploration at system level. It relies on SystemC/TLM models to provide a
cycle-accurate functional representations for simulation which could be seen as a drawback because
of long simulation time and lack of formal semantics. The Artemis workbench [18] begins with
Simulink representations that are transformed later to KPN models. These could be used to
generate VHDL code for FPGA-based prototyping. The framework enables co-simulation to avoid
long simulation when estimating performance numbers. It performs, like our approach, system-
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level model calibration. Similarly, the Sesame environment [9] aims at early system performance
analysis and design space exploration. This tool is more specific to multimedia applications and
also uses co-simulation and model calibration techniques.

Other tools use formal methods for system level performance analysis like SymTA/S [10] or
Real Time Calculus [19]. They basically rely on analytical techniques to determine latencies,
worst-case scheduling scenario, buffer sizes, etc. This require adequate abstract models of the
application software. Moreover, they allow only estimation of pessimistic quantities. MetaMoc
[8] is another tool that uses formal methods but is more specific to Worst Case Execution Time
(WCET) and schedulability analysis for hard real-time embedded software. It is based on UPPAAL
[5] modeling and model checking, in addition to static analysis techniques. Our flow proposes an
alternative based on rigorous, formal semantics model (BIP) plus scalable analysis techniques
combining simulation and SMC.

Prior work has been done to generate code for Native Programming Layer (NPL) from BIP
models in the context of the MPARM virtual platform [4]. Compared to MCAPI, the NPL
library provides a minimal set of low-level communication mechanisms that only covers the clusters
side (no host part). Moreover, it lacks standard definition and clear semantics likely to make it
portable on different platforms. Among the most related examples covering code generation,
Leung et al. [13] also consider KPN as a high-level specification model. In this work, the low-level
target is the Message Passing Interface (MPI), a more sophisticated API with over 300 functions
which make it heavier than MCAPI. Like in our case, the flow is based on correct-by-construction
transformations. A code generation process based on graph transformations has been proposed in
[14]. Here, the authors consider UML/OCL description as specification model. Despite their wide
use in industry, this models lacks formal semantics which could be a hindrance towards formal
analysis. This flow targets specifically CUDA/NPP primitives for image processing applications.

7 Conclusion

We presented a framework for rapid exploration of parallel applications on manycore platforms.
The flow is centered on the BIP formal semantics which enables performance analysis using for-
mal techniques and simulation, in addition to automatic code generation for different hardware
platforms. In this paper we focus on STHORM as target which is a manycore and power efficient
platform designed by STMicroelectronics. We implemented a runtime for STHORM following
the MCAPI standard specification. The goal is to reduce STHORM programming complexity by
providing homogeneous view of the whole platform and hide burden details for the designer.

Moreover, we presented a method to build faithful system models, that is, BIP models encom-
passing application software and hardware behavior. It consists of instrumenting the application
software model and using the flow code generator to perform rapid execution on a concrete hard-
ware platform to obtain performance measures. These are characterized as probability distribu-
tions and are used to build a stochastic BIP model of the whole software/hardware system. The
latter is then used for exploration purposes. This paper mainly focuses on the simulation capabil-
ities of the the flow. It is worth mentioning that the obtained stochastic BIP model enables also
formal analysis techniques such as Statistical Model Checking (SMC) [21, 11]. As future work,
we are planning to use this technique for quantitative analysis of performance. Indeed, BIP is
equipped with an SMC engine called SBIP [6].

For the time being, the flow has been used for design space exploration for complex dataflow
applications in the context of different research projects. As illustrated for HMAX Models, we
used it for finding trade-offs between FIFOs sizes (especially with the platform memory scarceness),
pipelining rates, and task deployment on multi-cluster platforms. Our analysis focus on timing
constraints. We plan to extend them towards other classes of extra-functional constraints, such as
energy or thermal constraints.
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8 Appendix

A Code Generation Steps

The code sample below illustrates the initialization phase of a generated process. Initially, MCAPI
related variables are declared and initialized. Then, local and distant endpoints are created,
connected and opened.

...

/*auxilliary MCAPI variables*/

size_t mcapi_received;

size_t mcapi_pipo;

void* mcapi_buffer;

mcapi_node_attributes_t mcapi_attribute;

mcapi_status_t mcapi_status;

mcapi_request_t mcapi_req;

mcapi_info_t mcapi_info;

/*Node and Domain id*/

process_map_t p_map = process_map[WORKER];

mcapi_domain_t domain_id = p_map.cluster_id;

mcapi_node_t node_id = p_map.core_id;

/*Get default attributes*/

mcapi_node_init_attributes(&mcapi_attribute,

&mcapi_status);

if(mcapi_status != MCAPI_SUCCESS)

ERR_RAISE("FAIL TO GET DEFAULT NODE ATTRIBUTES");

/*Initialize MCAPI for this node*/

mcapi_initialize(domain_id, node_id,

&mcapi_attribute, NULL, &mcapi_info, &mcapi_status);

if(mcapi_status != MCAPI_SUCCESS)

ERR_RAISE("FAIL TO INIT MCAPI");

else MCAPI_TRACE_C("STARTING NODE");

/*Create local endpoints and set attributes*/

mcapi_endpoint_t endp_WORKER_read_data =

mcapi_endpoint_create(WORKER_read_data,

&mcapi_status);

if(mcapi_status != MCAPI_SUCCESS)

ERR_RAISE("FAIL TO CREATE PORT");

else MCAPI_TRACE_C("PORT CREATED");

setEndPAttributes(endp_WORKER_read_data, 152,

MCAPI_ENDP_ATTR_LOCAL_MEMORY, MCAPI_TIMEOUT_INFINITE);

mcapi_endpoint_t endp_WORKER_write_data =

mcapi_endpoint_create(WORKER_write_data,

&mcapi_status);

if(mcapi_status != MCAPI_SUCCESS)

ERR_RAISE("FAIL TO CREATE PORT");

else MCAPI_TRACE_C("PORT CREATED");

setEndPAttributes(endp_WORKER_write_data, 152,

MCAPI_ENDP_ATTR_LOCAL_MEMORY, MCAPI_TIMEOUT_INFINITE);

/*Create Distant endpoints if any

(only for send ports)*/
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p_map = process_map[JOINER];

mcapi_endpoint_t endp_JOINER_read_data =

mcapi_endpoint_get(p_map.cluster_id, p_map.core_id,

JOINER_read_data, MCAPI_TIMEOUT_INFINITE,

&mcapi_status);

if(mcapi_status != MCAPI_SUCCESS)

ERR_RAISE("FAIL TO GET DISTANT PORT");

...

/*Connect local endpoints with distant one if any*/

do {

mcapi_pktchan_connect_i(endp_WORKER_write_data,

endp_JOINER_read_data, &mcapi_req, &mcapi_status);

} while(mcapi_status == MCAPI_ERR_ATTR_INCOMPATIBLE);

if(mcapi_status != MCAPI_SUCCESS)

ERR_RAISE("FAIL TO CONNECT PORTS");

if(!mcapi_wait(&mcapi_req, &mcapi_pipo,

MCAPI_TIMEOUT_INFINITE, &mcapi_status))

ERR_RAISE("FAIL TO CONNECT PORTS");

...

/*Open local endpoints*/

mcapi_pktchan_recv_hndl_t h_WORKER_read_data;

mcapi_pktchan_recv_open_i(&h_WORKER_read_data,

endp_WORKER_read_data, &mcapi_req, &mcapi_status);

if(!mcapi_wait(&mcapi_req, &mcapi_pipo,

MCAPI_TIMEOUT_INFINITE, &mcapi_status))

ERR_RAISE("FAIL TO OPEN CONNECTION");

mcapi_pktchan_send_hndl_t h_WORKER_write_data;

mcapi_pktchan_send_open_i(&h_WORKER_write_data,

endp_WORKER_write_data, &mcapi_req, &mcapi_status);

if(!mcapi_wait(&mcapi_req, &mcapi_pipo,

MCAPI_TIMEOUT_INFINITE, &mcapi_status))

ERR_RAISE("FAIL TO OPEN CONNECTION");

...

B HMAX Models Case study

The figures below show examples of input and output images of HMAX. Figure 16 is an input
image of 118×118 resolution. The corresponding output images are illustrated in Figure 17 which
shows the three computed directions.

Figure 16: Grayscale input image of resolution 118× 118.

20/21 Verimag Research Report no TR-2014-9



Ayoub Nouri1, Anca Molnos2, Julien Mottin2, Marius Bozga1, Saddek Bensalem1, Arnaud
Tonda2, Francois Pacull2

(a) Direction 1 (b) Direction 2 (c) Direction 3

Figure 17: A sample of output images (3 directions).
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