
Three linearization techniques for
multivariate polynomials in static
analysis using convex polyhedra

Alexandre Maréchal, Michaël Périn

Verimag Research Report no TR-2014-7

July 2014

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UJF
Centre Équation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Three linearization techniques for multivariate polynomials in static
analysis using convex polyhedra

Alexandre Maréchal, Michaël Périn

July 2014

Abstract

We present three linearization methods to over-approximate non-linear multivariate
polynomials with convex polyhedra. The first one is based on the substitution of
some variables by intervals. The principle of the second linearization technique is
to express polynomials in the Bernstein basis and deduce a polyhedron from the
Bernstein coefficients. The last method is based on Handelman’s theorem and con-
sists in using products of constraints of a starting polyhedron to over-approximate a
polynomial. As a part of the VERASCO project, the goal is to prove such methods
with the proof assistant Coq.

Keywords: polyhedra abstract domain, linearization

Reviewers: Bertrand Jeannet, Alexis Fouilhé

How to cite this report:

@techreport {TR-2014-7,
title = {Three linearization techniques for multivariate polynomials in static analysis using

convex polyhedra},
author = {Alexandre Maréchal, Michaël Périn},
institution = {{Verimag} Research Report},
number = {TR-2014-7},
year = {}

}

Contents
1 Toward Certification of a C compiler 2

1.1 The VERASCO project . 2
1.2 VERIMAG’s contributions . 2

1.2.1 Static analysis by abstract interpretation . 2
1.2.2 A certified library for convex polyhedra . 2

1.3 Linearization . 2

2 Linearization by variable intervalization 4
2.1 Principle of the intervalization algorithm . 5

2.1.1 Variable intervalization . 5
2.1.2 Interval elimination and polyhedron approximation 6
2.1.3 The main steps of the algorithm . 6

2.2 Correctness criteria of the linearization process . 9
2.2.1 Valuations of variables . 9
2.2.2 Correctness of assignment linearization . 10
2.2.3 Correctness of if-then-else linearization . 11

2.3 Certification in Coq: formalization and correctness proof 11
2.3.1 Main Coq types . 11
2.3.2 The semantics of GCL . 12
2.3.3 Correctness proof of the linearization algorithm 13

3 Linearization on polytopes using Bernstein basis 14
3.1 Bernstein representation of polynomials on [0, 1]l . 14

3.1.1 The Bernstein basis . 14
3.1.2 Change of basis . 16

3.2 Polyhedron from Bernstein coefficients . 17
3.3 Polyhedron refinement . 21
3.4 Toward certification in Coq . 21

4 Linearization on polytopes using Handelman representation 22
4.1 Handelman representation of positive polynomials . 22
4.2 Handelman approximation as a Parametric Linear Optimization Problem 23
4.3 Toward certification in Coq . 28

5 Comparison of the linearization methods and future work 28

A Interval elimination: the general case 32
A.1 Interval elimination in conditions (general case) . 32
A.2 Interval elimination in assignments (general case) . 32
A.3 Expression minimization and maximization . 33

B Shape of the output of the algorithm 33

C Coq types 35
C.1 Type exprZ . 35
C.2 Type exprZ∪⊥ . 36
C.3 Type expr_expZ . 36
C.4 Type expr_linitv(Z∪⊥) . 36
C.5 Type expr . 36

D Semantics of GCL 36

1

1 Toward Certification of a C compiler

1.1 The VERASCO project
The CompCert project (2006-2010) from Inria Paris-Rocquencourt and Rennes consisted in the formal
verification of a C compiler. The goal was to avoid miscompilation which is the production of an executable
that does not match the source code. The project led to CompCert, the first C compiler certified using the
proof assistant Coq. This compiler is proved to produce a correct executable code if the corresponding
source code can not lead to a runtime error. Thus, the correctness of the executable code depends on
an assumption on the source code. The VERASCO project follows CompCert and gathers Inria Paris-
Rocquencourt, Inria Saclay, VERIMAG laboratory, Airbus and the University of Rennes. VERASCO aims
at developing a certified static analyzer capable of proving the absence of error in the source code, hence
discarding the CompCert assumption. The principle of verification based on static analysis is to compute
an over-approximation of all possible reachable states of the program, examining only the source code,
then to check that no error state is reachable. As every program, such a verification tool is not protected
from a failure and a bug in the analyzer can make it miss errors. That’s why the correctness of the analyzer
must be certified in Coq too.

1.2 VERIMAG’s contributions
1.2.1 Static analysis by abstract interpretation

The VERIMAG laboratory performs research about program verification using static analysis by abstract
interpretation [2]. Static analysis differs from test since, first, the source code is not actually executed, and
second, abstract interpretation ensures that no reachable state is omitted. It uses abstract domains (such
as intervals, polyhedra, etc.) instead of usual variables to approximate the sets of program states. The
effect of each instruction is captured by symbolic computations using abstract domains. Static analysis
catches the (potentially infinite) set of possible behaviours of the source code at the price of approximating
the reachable states. As a result, some states considered during the analysis are not reachable in practice.
When precision is needed, programs can be analyzed using the domain of convex polyhedra which is able
to reason about linear relations between program variables.

1.2.2 A certified library for convex polyhedra

A convex polyhedron1 is defined as a conjunction of linear constraints of the form
∑n
i=1 λixi ≤ c where

∀i ∈ {1, ..., n}, xi is a variable, λi ∈ Q and c ∈ Q are constants. For instance, the polyhedron P1 defined
by the system {x ≥ 1, y ≥ −2, x− y ≥ 0, x+ y ≤ 5} defines a geometrical space represented in the plane
(Figure 1). A polyhedron which is fully bounded is called a polytope.

Polyhedra are used in static analyzers to automatically discover linear relations between variables of the
source code. Those relations help deducing necessary properties to prove the correctness of the program.
A Coq library was recently created by Fouilhé [5], allowing safe handling of polyhedra operators such as
intersection and convex hull, that is the smallest polyhedron containing the union of P1 and P2.

Polyhedra suffer from an ontological limitation: they cannot deal with non-linear relations, i.e. expres-
sions containing products of variables. Hence, the analyzer cannot exploit the information on a variable z
when encountering a non-linear assignment z := x ∗ y. Moreover, after such an assignment, all the previ-
ously determined linear constraints containing z do not hold anymore. That’s why a linearization technique
that approximates x ∗ y by a linear expression is necessary to avoid dramatic loss of precision during the
analysis.

1.3 Linearization
The goal of linearization is to approximate non-linear relations by linear ones. In this work we do not
consider expressions formed of non-algebraic functions like sin, log, ...2 Our linearization methods only

1We only deal with convex polyhedra. For readability, we will omit the adjective convex in the following.
2We could in principle treat analytic functions by considering their Taylor polynomials.

2

Figure 1 – Graphical representation of P1 : {x ≥ 1, y ≥ −2, x− y ≥ 0, x+ y ≤ 5}

1 i n t x , y , z ;
2 i f (x >= 1 && y >= −2 && x >= y && x <= 5 − y)
3 {
4 i f (x∗x + y∗y <= 4)
5 z = y∗x ;
6 e l s e
7 z = 0 ;
8 }

Example 2 – C program containing two non-linear expressions x ∗ x+ y ∗ y ≤ 4 and y ∗ x

address polynomial expressions containing products of variables. Thus, in this paper f represents a poly-
nomial expression on the variables of the program (x1, . . . , xn). The lines 4 and 5 of Example 2 contain
such non-linear relations.

Let us explain how the effect of a guard or an assignment on a polyhedron is computed, and how the
linearization process is involved. Without loss of generality, we focus in this paper on the treatment of a
guard f ≥ 0 where f denotes a polynomial in the (x1, . . . , xn) variables of the program. For instance the
guard x2 + y2 ≤ 4 corresponds to the case f(x, y) , 4− x2 − y2.

The effect of an assignment x := f on a polyhedron P corresponds to the intersection of P with
a polyhedron G formed of two inequalities x̃ − f ≥ 0 ∧ f − x̃ ≥ 0 (encoding the equality x̃ = f).
This computation uses a fresh variable x̃ that is renamed in x after elimination of the old value of x by
projection. We denote by P/x the polyhedron P where the variable x has been projected. Formally, the

effect of x := f on P is the polyhedron
(
(P uG)/x

)
[x̃/x]

The effect of a guard f ≥ 0 on a polyhedron P consists in the intersection of the points of P
with the set of points (x1, . . . , xn) satisfying the condition f(x1, . . . , xn) ≥ 0. This intersection is
not necessarily a polyhedron. Let us denote by P the set of points after the guard, i.e. P = P ∩
{(x1, . . . , xn) | f(x1, . . . , xn) ≥ 0} = {(x1, . . . , xn) ∈ P | f(x1, . . . , xn) ≥ 0}.

When the guard is linear, say x − y ≥ 0, we simply add the constraint x − y ≥ 0 to P and obtain a
polyhedron. With the polyhedron P1 from Figure 1, we obtain the polyhedron P = P1 ∧ (x − y ≥ 0) =
{x ≥ 1, y ≥ −2, x− y ≥ 0, x+ y ≤ 5, x ≤ y}.

When the guard is not linear, finding its effect on P is done by computing a convex polyhedron P ′ such

3

Figure 3 – Graphical representations of P1 , {x ≥ 1, y ≥ −2, x− y ≥ 0, x+ y ≤ 5} in orange and the guard
G ,

{
(x, y) | x2 + y2 ≤ 4

}
in blue. The set P = P1 ∩ G is represented in red.

that P ⊆ P ′. There is no unique polyhedron P ′: any choice of P ′ satisfying P ⊆ P ′ would give a correct
approximation.

As an example, the effect of the non-linear guard G , x2 + y2 ≤ 4 on the polyhedron P1 of Figure 1
is represented on Figures 3 and 4. The green polyhedron G of Figure 4 is a linear approximation of G by
an octagon. We obtain the red polyhedron P ′ shown by computing the intersection of polyhedra P1 ∩G.

Shape of real life non-linear expressions We tested the three techniques on statements taken from the
benchmarks debie1, based on a satellite control software, and papabench which is a flight control code. In
general, polynomials of such programs contain less than four variables and their power rarely exceed two.
Indeed, most non-linear expressions appear in computation of Euclidian distances, that’s why we encounter
square roots as well. As a consequence, the exponential complexity of some algorithms is manageable.

Overview of the paper Three linearization methods are presented and compared in this paper. The first
one uses the principle of variable intervalization introduced by Miné [11], it is discussed in Section 2.
This algorithm has been implemented and proven in Coq. The second linearization method consists in
representing the polynomial f in the Bernstein basis which allows to deduce a bounding polyhedron from
its Bernstein coefficients. This is the subject of Section 3. Section 4 explores a new linearization method
based on Handelman’s theorem. Given a starting polyhedron P , Handelman’s method consists in using
products of constraints of P to obtain a linear over-approximation of the polynomial constraint f ≥ 0.
These three methods have been implemented in SAGE (a free open-source mathematics software system
similar to maple or mathematica) in order to compare them in terms of precision.

2 Linearization by variable intervalization
In this chapter, we present a linearization method called intervalization [11]. The main idea is to replace
some variables by intervals in order to remove products of variables. We shall see how to eliminate these
intervals to get into linear expressions over Z. We treat only the case where scalar values are integers and
where expressions are composed of additions and multiplications.

4

Figure 4 – Graphical representations of P1 , {x ≥ 1, y ≥ −2, x− y ≥ 0, x+ y ≤ 5} in orange and the guard
G ,

{
(x, y) | x2 + y2 ≤ 4

}
in blue. A linear over-approximation G of G is drawn in green. The approximation P ′

of P ∩ G is represented in red.

2.1 Principle of the intervalization algorithm

2.1.1 Variable intervalization

Variable bounds can be extracted from a polyhedron, in the sense that each program variable is associated
with the interval of all the values it can take at a particular program point3. A static analyzer running on the
program of Example 1 associates line 2 with the polyhedron S , {x ≥ 1, y ≥ −2, x− y ≥ 0, x+ y ≤ 5}.
This polyhedron allows to deduce x ∈ [1, 7] and y ∈ [−2, 3].

The linearization method of Miné [11] named intervalization consists in replacing some variables with
their corresponding intervals. The idea is to use the known information (the intervals) to over-approximate
the behaviours engendered by the non-linear relation. We say that we intervalize x if we choose to replace
the variable x with its interval.

Example 1. Consider the following program.

1 i n t x , y , z ;
2 i f (x >= 1 && y >= −2 && x >= y && x <= 5 − y)
3 {
4 i f (x∗x + y∗y <= 4)
5 z = y∗x ;
6 e l s e
7 z = 0 ;
8 }

If we intervalize x ∈ [1, 7] at line 4 and 5, and we do the same at line 4 with one occurrence
of y ∈ [−2, 3], we obtain the following program.

3Broadly speaking, program points correspond to line numbering. We use this simplification to make easier the reading of
examples.

5

1 i n t x , y , z ;
2 i f (x <= 1 && y >= −2 && x >= y && x <= 5 − y)
3 {
4 i f (x ∗ [1 , 7] + y ∗ [−2 ,3] <= 4)
5 z = y ∗ [1 , 7] ;
6 e l s e
7 z = 0 ;
8 }

This new program is linear: it does not contain any product of variables anymore, they have
been replaced with intervals. However, the linearization process is not over because the pro-
gram contains linear interval expressions4 whereas coefficients of standard linear expressions
must be scalar values.

We then have to eliminate the intervals to obtain standard convex polyhedra. An alternative that avoid
interval elimination would be to switch to the abstract domain of interval polyhedra [1]. That domain
directly operates on polyhedra of the form

∑n
i=1 [ai, bi]xi ≤ c i.e., with intervals as coefficients. However,

this abstract domain uses adapted versions of the polyhedron operators - projection, intersection. Therefore,
we would have to certify in Coq these operators to handle interval polyhedra. Since we already have the
certified library for standard convex polyhedra of Fouilhé [5], we choose to stay within the abstract domain
of convex polyhedra.

2.1.2 Interval elimination and polyhedron approximation

The purpose of interval elimination is to replace an interval polyhedron5 Pitv with a rational polyhedron P
such that S (Pitv) ⊆ S (P), where S (P) is the set of points (x1, . . . , xn) that satisfy the constraints of
P .

Consider Example 1 where we want to eliminate the interval [1, 7]. Every number in [1, 7] would lead
to a convex polyhedron, but recall that the goal of abstract interpretation is to consider all possible states
of the program. That’s why the scalar that will replace an interval has to be chosen carefully to perform an
over-approximation of the program behaviours.

The elimination technique proposed by Miné [11] consists in replacing every interval by its middle and
increasing the constant member c of each linear constraint by a value depending on the intervals size. This
technique is efficient but an important imprecision due to the constant can be expected.

2.1.3 The main steps of the algorithm

Given a statement containing a polynomial expression over Z, say (x+ y)(x+ y)− 2x ∗ y, the main steps
of our algorithm are :

(1) Expand the polynomial expression into x∗x+y ∗y+x∗y+y ∗x−2x∗y, which is still a non-linear
expression over Z. This step is used to determine which variables appear most frequently.

(2) Intervalize some variables, e.g. x ∈ [1, 7], y ∈ [−2, 3], to obtain a linear expression [1, 7] ∗ x +
[−2, 3] ∗ y with intervals as coefficients.

(3) Perform a case analysis on the sign of the remaining variables in order to replace intervals by their
upper or lower bound to get into the linear expressions over Z. Finally the linearization of the
assignment z := (x+ y) ∗ (x+ y)− 2 ∗ x ∗ y produces the non-deterministic program:

if (y ≥ 0)

{
then z :

ND
= {z | x− 2y ≤ z ≤ 7x+ 3y}

else z :
ND
= {z | x+ 3y ≤ z ≤ 7x− 2y}

4A linear interval expression is a linear expression where coefficients are intervals.
5An interval polyhedron is a conjunction of linear intervals constraints.

6

It uses a non-deterministic assignment that we shall detail further. The output of the linearization
algorithm is a program expressed in a guarded command language presented in Section 2.1.3. The choice
of variable to intervalize is discussed in Section 2.1.3. The interval elimination is explained in Section 2.1.3
and 2.1.3.

The Guarded Command Language of linearized expression In general, the linearization of an instruc-
tion produces a program formed of nested conditionals. The linear programs are expressed in a Guarded
Command Langage (GCL) with no loop. GCL reuses expressions and if-then-else of the Cminor interme-
diate representation of CompCert [7] and introduces guards, denoted if...then, and two non-deterministic
statements alt and :

ND
= .

Non-Deterministic Branching It often happens that the approximation of a guard g and its negation
¬g are not disjoint. The statement if (g) then S1 else S2 is therefore analyzed as a non-deterministic
alternative:

alt
{

if (approximation(g)) then S1

if (approximation(¬g)) then S2

Semantically, the alternative statement alt non-deterministically chooses to execute one branch or the
other. Hence, faced with the alt statement, the analyzer considers the two branches as feasible and pursues
the analysis on both. It builds a polyhedron that captures the effect of each branch and merges them at the
exit of the alt by computing their convex hull.

Non-Deterministic Assignment Non-determinism also arises in the linearization of an assignment.
It is captured by the construction z :

ND
= {z | C} that non-deterministically chooses a value satisfying the

linear condition C and assigns it to z. More specifically, the linearization will produce assignments of the
form z :

ND
= {z̃ | `1 ≤ z̃ ≤ `2}, where `1 and `2 are linear expressions. A non-deterministic assignment

is a straightforward generalization of the standard assignment z := `. Instead of intersecting the initial
polyhedron P with an equality constraint (see Section 1), we consider the intersection with the constraint
C. The standard assignment is thus equivalent to z :

ND
= {z̃ | ` ≤ z̃ ≤ `}. Formally, the effect of z :

ND
=

{z̃ | `1 ≤ z̃ ≤ `2} on P is the polyhedron
(
(P u `1 ≤ z̃ ≤ `2)/z

)
[z̃/z] where z̃ is a fresh variable that is

renamed into z after the projection of the old value of z.

Choice of the variables to intervalize Before intervalizing, we must determine what variables must be
eliminated. This choice influences the accuracy of the result. Several choices are discussed by Miné [11].
In our implementation, we eliminate the variables that appear the most frequently in the expression. This
simple heuristic intervalizes as few variables as possible in order to maintain precision.

In our current implementation, it is not possible to intervalize only some occurrences of a variable.
When a variable is chosen to be intervalized, all of its occurrences are. This can lead to a loss of precision,
especially when the polynomial that needs to be linearized contains powers of variables. Indeed, if a
variable x appears in the expression with a power n strictly greater than one, x must be intervalized at least
n−1 times but we can keep one occurrence of x ; we would end with x× [a, b]n−1. The following example
gives a trick to improve precision without modifying the implementation.

Example 2. Consider a statement z := f(x, y) with the polynomial f , 4−x2−y2. Knowing
that x ∈ [1, 7] and y ∈ [−2, 3], a naive intervalization would give z := 4 − [1, 7] ∗ [1, 7] −
[−2, 3] ∗ [−2, 3] , [−54,−1], and would loose all dependencies on x and y. To avoid this,
one can rename variables before intervalization. With the equalities x1 = x and y1 = y, the
polynomial f is equal to 4−x×x1−y×y1. Then, the intervalization of x1 and y1 is sufficient
to get a linear expression over intervals and returns z := 4− x× [1, 7]− y × [−2, 3].

This process can be generalized to any power of variable: xn is renamed into x×x1× ...×xn−1, then
x1, ..., xn−1 are intervalized.

7

Interval elimination on an example We now explain how to eliminate the intervals from linear interval
expressions generated by the intervalization of variables. In the following examples, we assume that the
sign of the variable y is known: y ≥ 0. We deal with the general case in Appendix A.

Interval elimination in conditional expressions Let us consider the following program obtained
after intervalization of x ∈ [1, 3], and focus on the interval [1, 3] from the condition [1, 3]×y ≤ 8.

Example 3.

1 i n t y , z ;
2 i f (y ∗ [1 , 3] <= 8)
3 z = y ∗ [1 , 3] ;
4 e l s e
5 z = 0 ;

Suppose that y ∈ [3, 5]. Then, the condition [1, 3]×y ≤ 8 can be true for some values of [1, 3] (e.g. for
1 or 2) or it can be false for other values (e.g. 2 or 3).

A static analyzer must consider all behaviors of the program ; it must then analyze

• the "then" branch in any case where [1, 3]×y ≤ 8 may be true,
that is when ∃i ∈ [1, 3], i×y ≤ 8 (1)

• the "else" branch in any case where [1, 3]×y > 8 may be true,
that is when ∃i ∈ [1, 3], i×y > 8 (2)

Recalling that y ∈ [3, 5], if we choose 1 for i ∈ [1, 3] then (1) becomes true. For i = 3, then (2)
becomes true and if i = 2 is chosen, both (1) and (2) can be true depending on the value of y. The if-then-
else construction cannot express these non-exclusive branchings, instead we use the non-deterministic
construction alt with if-then guards:

alt
{

if (∃i ∈ [1, 3], i×y ≤ 8) then z := y×[1, 3]
if (∃i ∈ [1, 3], i×y > 8) then z := 0

Now, to get an actual program, we have to remove the existential quantifiers in the conditions. This is
done following Pugh’s techniques for elimination of existential quantifiers [13]. The reduction to quantifier
free arithmetic conditions is based on the following equivalences:

∃i ∈ [a, b], i×y ≤ k ⇔ min([a, b]×y) ≤ k (1)
∃i ∈ [a, b], i×y ≥ k ⇔ max([a, b]×y) ≥ k (2)

min([a, b]×y) =
{
a×y if y ≥ 0
b×y if y < 0

(3)

max([a, b]×y) =
{
b×y if y ≥ 0
a×y if y < 0

(4)

Example 3 (following). Back to our example, since we know that y ≥ 0 we can replace ∃i ∈
[1, 3], i×y ≤ 8 by 1×y ≤ 8 and ∃i ∈ [1, 3], i×y > 8 by 3×y > 8. Finally, the elimination of
the interval in the condition [1, 3]×y ≤ 8 of the program of Example 3 produces the following
program fragment:

alt
{

if (y ≤ 8) then z := y×[1, 3]
if (3×y > 8) then z := 0

Interval elimination in assignments Going on with our example, the interval that appears in the
assignment z := [1, 3]×y needs to be eliminated. The value of z after the assignment is between y and
3×y. This corresponds to the constraint y ≤ z ≤ 3×y since y ≥ 0. The assignment is then replaced by
z :

ND
= {z̃ | y ≤ z̃ ≤ 3×y}.

8

(a) (b)

Figure 5 – (a): starting polyhedron P = [1, 3]× [3, 5]. The red points are elements of
{
(x, y) ∈ Z2 | x ∗ y ≤ 8

}
,

blue points are elements of
{
(x, y) ∈ Z2 | x ∗ y > 8

}
. (b): representation in green of the effect of the program 2.1.3

on P . The points are the images of the points of (a) by the code of Example 3 .

Finally, the linearization algorithm returns the following non-deterministic linear program that is ana-
lyzed with the domain of polyhedra:

alt
{

if (y ≤ 8) then z :ND
= {z̃ | y ≤ z̃ ≤ 3×y}

if (3×y > 8) then z := 0

A starting polyhedron P = {x ≥ 1, x ≤ 3, y ≥ 3, y ≤ 5} and the result after the previous program are
displayed on Figure 5.

Example 4. The Figure 6 shows the starting polyhedron {x ≥ 1, y ≥ −2, x− y ≥ 0, x+ y ≤
5} and the polyhedron corresponding to the linearization of Example 1. We can see that the
green polyhedron adds a dimension (corresponding to the variable z) to the blue one. The
GCL code resulting from this linearization is available in Appendix B, as well as a summary
of the main steps of the algorithm.

2.2 Correctness criteria of the linearization process
Recall that, as a part of VERASCO, the aim is to certify this linearization technique in Coq. We start by
defining the correctness criteria for assignment and if-then-else. We shall detail the Coq implementation
further. Correctness of the linear approximation consists in checking that the linearized program covers
all the behaviours of the original statement. The idea is to compare the effects on variable values of a
statement to that of its linearization. To this end, we need to define a memory state as the value of the
program variables at a given program point.

2.2.1 Valuations of variables

Let us define a memory state as a valuation function val : variable 7→ Z, that associates a value with each
variable. For instance, the valuation [x 7→ 1; y 7→ −2; z 7→ 0] means that x, y and z are respectively 1,
-2 and 0. Then, given variables and corresponding intervals, the set of all possible valuations is defined by
enumerating possible values of each interval. For instance, the valuations of [(x, [0, 1]); (y, [−1, 1])] is the
set of functions

{[x 7→ 0; y 7→ −1], [x 7→ 0; y 7→ 0], [x 7→ 0; y 7→ 1],

[x 7→ 1; y 7→ −1], [x 7→ 1; y 7→ 0], [x 7→ 1; y 7→ 1]}

9

Figure 6 – In blue: the initial polyhedron {x ≥ 1, y ≥ −2, x− y ≥ 0, x+ y ≤ 5}. In green: the image of the initial
polyhedron by the linearization of Example 1.

During the proof, we shall need to compare the value of variables before and after a statement. In order
to compute the value of an expression at a given memory state, we define the following function:

eval : expressionA×valuation → Z
(f, v) 7→ f [xi ← v(xi)]

Given an arithmetical expression f and a valuation v, the function replaces each variable in f with its value
in v.

The linearization of a statement returns a linear program prg in a form of a tree of nested conditional
statements. We denote by brancht,v the branch of prg corresponding to the valuation v, in the sense that
at every node if (xi ≥ 0) of t, we chose the branch corresponding to the sign of v(xi).

In the case of an assignment x := f , brancht,v has the form x :
ND
=
{
x̃ | `j ≤ x̃ ≤ `′j

}
for some

j ∈ [1, k]. For the linearization of a test if (f ≤ f ′) then S1 else S2, brancht,v has the form

alt
{

if
(
`j ≤ `′j

)
then S1

if
(
`j > `′j

)
then S2

2.2.2 Correctness of assignment linearization

Consider a polyhedronP , an assignment asg of the form x := f where f is a polynomial in the (x1, . . . , xn)
variables of the program and prg = linearizationP (asg) the program resulting from the linearization of
asg with respect to the polyhedron P . As said previously, prg is a tree where nodes are sign assumptions
on the variables (x1, . . . , xn), and leaves have the form x :

ND
= {x̃ | `i ≤ x̃ ≤ `′i}. Given a valuation v, an

execution of prg leads into a branch ending by x :
ND
=
{
x̃ | `j ≤ x̃ ≤ `′j

}
for some j ∈ [1, k]. The linear

program prg is a correct approximation of x := f if the value of x after this assignment is reached by
an execution of prg. Thus, we want to ensure that eval(f, v) ∈ [eval(`j , v), eval(`

′
j , v)]. We define the

correctness criterion for assignments as follows (where v sat P means that the valuation v defines a point
satisfying the constraints of P):

10

Definition 1 (Correctness criterion - assignment).

∀ expression f, ∀ Polyhedron P, ∀ valuation v,(
prg , linearizationP (x := f) ∧ v sat P ∧ branch(prg,v) , x :

ND
=
{
x̃ | `j ≤ x̃ ≤ `′j

})
⇒ eval(f, v) ∈

[
eval(`j , v), eval(`

′
j , v)

]
2.2.3 Correctness of if-then-else linearization

Consider a polyhedron P , a conditional statement ineq , if (f ≤ f ′) then S1 else S2 and prg ,
linearizationP (ineq). prg is a tree where nodes are sign assumptions on the variables (x1, . . . , xn),
and leaves have the form ` ≤ `′. Given a valuation v, an incomplete execution of prg ends to an alternative
of the form

alt
{

if (`1 ≤ `′1) then S1

if (`2 > `′2) then S2

When f ≤ f ′, we want S1 to be executed, thus we want `1 ≤ `′1 to be true. Conversely, when f > f ′, we
want S2 to be executed, thus we want `2 > `′2 to be true. Thus, the correctness criteria is:

Definition 2 (Correctness criterion - if-then-else).

∀ expression f, f ′, ∀ Polyhedron P, ∀ valuation v,
prg , linearizationP (if (f ≤ f ′) then S1 else S2)

∧ v sat P

∧ branch(prg,v) = alt
{

if (`1 ≤ `′1) then S1

if (`2 > `′2) then S2


⇒

 (f ≤ f ′ ⇒ `1 ≤ `′1)
∧
(f > f ′ ⇒ `2 > `′2)

2.3 Certification in Coq: formalization and correctness proof
Coq is a proof assistant that can be used to develop programs respecting properties or specifications [9]. The
Coq specification language is called Gallina and organizes the theories with axioms, lemmas, theorems and
definitions in order to express mathematical properties. Proofs are built interactively : the user can apply
tactics or lemmas on hypotheses or on the goal. Lots of lemmas are already defined in Coq libraries,
helping the manipulation of simple types such as integers or boolean.

2.3.1 Main Coq types

The type Z ∪ ⊥ of unbounded intervals Recall that during the intervalization process, some variables
are replaced by intervals. Besides, a variable can be unbounded on one or both sides and its intervalization
would lead to a half-bounded or unbounded interval. In order to manipulate such intervals, let us introduce
the type Z ∪ ⊥, which is the usual coq type Z of integers which is added a constructor ⊥. For instance,
x ∈ [−2,+∞[will be written as x ∈ [−2,⊥] and means that x ≥ −2 and x has no upper bound. Remark
that we don’t need ⊥ to have an explicit sign because in our algorithm, the context is always sufficient to
deduce it. Indeed, recall that intervals represent possible values for variables, that’s why we forbid]_,−∞[
and] +∞, _[which have no sense in our use. Thus, when ⊥ appears in an interval, its sign is determined
by the side it belongs to. An ambiguity could appear when intervals are eliminated during expression
maxi/minimization. As a matter of fact, if ⊥ persists after the maximization (resp. minimization) of an
expression, it is necessarily positive (resp. negative). Knowing that an interval maximization returns its
upper bound, if a negative ⊥ is the result of an interval maximization, it means that the upper bound of this
interval was −∞. This is impossible, for the reason we mentioned earlier. The same reasoning shows that
an interval minimization cannot give a positive ⊥.
⊥ should not be thought of as a representation of infinity but as an unbounded value of a variable. That’s

why we can define 0×⊥ = 0. This representation of ⊥ ensures the associativity of interval multiplication

11

that is needed in the proof. However, assuming 0 × ⊥ = 0 breaks the distributivity property on Z ∪ ⊥.
Indeed, (2 − 2) ×⊥ = 0×⊥ = 0 and 2 ×⊥ − 2 ×⊥ = ⊥. This forbids the expansion of expression in
Z ∪ ⊥.

The type expr of expressions One way to prove that an element of a type t satisfies a property is to
express it in a type that constructively enforces this property, meaning that any elements of type t that
can be produced possesses the property by construction. That’s why we use several types for expressions,
depending on what property we need to ensure. The Coq definition of these types are given in Appendix C.

• Given a piece of code containing a non-linear expression f , we first expand in Z before intervaliza-
tion. The reason is that expanding relies on distributivity of multiplication on addition which does
not hold in the domain Z ∪ ⊥ of unbounded intervals. The expansion is performed by a function
expand : exprZ −→ expr_expZ, where expr_expZ is a type defining expanded expressions over
Z, which constructively only allows expressions of the form

∑∏
cixi.

• The second step is to intervalize variables of the expanded expression. This is done by the function
intervalize : expr_expZ −→ expr_linitv(Z∪⊥), where expr_linitv(Z∪⊥) is the type of linear
interval expressions whose constants are intervals over Z ∪ ⊥.

• The last step is the interval elimination. It returns a GCL program fragment containing expressions
in exprZ∪⊥, which is the type of expressions over Z∪⊥. As shown previously, interval elimination
requires to build a tree where nodes make assumptions about variable sign. This operation is done by
the function build_tree : expr_linitv(Z∪⊥) −→ stmt. At each leaf, the sign of every variable is
known and the function maximinize : expr_linitv(Z∪⊥) −→ exprZ∪⊥ finishes the linearization,
maximizing or minimizing inequalities. We end up with a tree where leaves are linear expressions
on Z ∪ ⊥.

The proof of correctness requires to compare the possible result of the original program according to
the semantics of CompCert C to the values returned by the GCL program. To conduct this reasoning, the
first step is to provide GCL a semantics.

2.3.2 The semantics of GCL

From now on, we will consider more general programs with the notion of program state, instead of iso-
lated statements. A program state gathers the value of each variable at a given point as well as infor-
mations about the next statement. It is represented as stmt×cont×valuation, and denoted in Coq by
(State stmt cont valuation). The cont member is used to store the next statement of a state.
Our Coq type for statements is

Inductive stmt : Type :=
| Sskip : stmt
| Sseq : stmt→ stmt→ stmt
| Sassign : var→ a_expr→ stmt
| SNDassign : a_exprZ∪⊥→ var→ a_exprZ∪⊥→ stmt
| Sifthen : expr→ stmt→ stmt
| Salt : stmt→ stmt→ stmt
| Sifthenelse : expr→ stmt→ stmt→ stmt.

Knowing that expr handles expressions over both Z and Z ∪ ⊥, a statement can manipulate at the same
time expressions over Z as well as expressions over Z ∪ ⊥. This is because we want the input and output
language of the linearization to be the same.

To build the proof, we need a link between statements and the memory. This link is done by the
semantics, which states how the memory behaves faced to each statement. The semantics of a program is
represented as steps from a state to another. In the Appendix D, we define the semantics of our GCL. It is
inspired from the Clight semantics of CompCert, which is extended with semantics for Sifthen, Salt and
SNDassign. In the following, we give an extract of the semantics which concerns Salt and SNDassign.

12

Inductive step : state→ state→ Prop :=
| step_alt1 : ∀ (s1 s2 : stmt) (k : cont) (v : valuation),

step
(State (Salt s1 s2) k v)
(State s1 k v)

| step_alt2 : ∀ (s1 s2 : stmt) (k : cont) (v : valuation),
step

(State (Salt s1 s2) k v)
(State s2 k v)

| step_NDassign : ∀ (x:var) (z zmin zmin:Z ∪ ⊥)
(fmin fmax :a_exprZ∪⊥) (k:cont) (v:valuation),
zmin = (eval_a_exprZ∪⊥ fmin v)→
zmax = (eval_a_exprZ∪⊥ fmax v)→
zmin <= z→ z <= zmax→
step

(State (SNDassign fmin x fmax) k v)
(State (Sassign x (AexprZ∪⊥ (ZEconst_int z))) k v).

The cases step_alt1 and step_alt1 show that there exists a step from the program state (State

(Salt s1 s2) k v) to both the states (State s1 k v) and (State s2 k v). This is how we repre-
sent non-determinism: both branches can be taken by the program. The case step_NDassign states that if
z∈[emin,emax], there exists a step from the program state (State (SNDassign emin x emax) k v)

to (State (Sassign x z) k v). As a comparison, the semantics of the classical assignment is:

| step_assign : ∀ (x:var) (f:a_expr) (k:cont) (v v’:valuation),
v’ = (update v x (eval_a_expr f v))→
step

(State (Sassign x f) k v)
(State Sskip k v’)

It means that in memory, the value of x after the assignment x := f is equal to the evaluation of the
expression f in the valuation v, i.e. (eval_a_expr f v)

This semantics allows only to link two states by a step. During the proof, we will manipulate programs
composed of several states and steps. We define the relation exec, able to link two states with several steps,
as follows:

Inductive exec : state→ state→ Prop :=
| no_step : ∀ (S : state), exec S S
| more_step : ∀ (S1 S2 S3 : state), step S1 S2→ exec S2 S3→ exec S1 S3.

This definition states that if there exists an execution between two program states S1 and S3 (i.e.
exec S1 S3), either S1 = S3 or there exists a third state S2 such that step S1 S2 and exec S2 S3.

2.3.3 Correctness proof of the linearization algorithm

Correctness of the assignment linearization The main theorem ensuring the correctness for assignment
is the following one:

Theorem lin_assign_wf (x:var) (f:a_exprZ (P:polyhedron)
(v:valuation) (k:cont) :
v ∈ P→
exec

(State (linearize (Sassign x f) P) k v)
(State (Sassign x (eval f v)) k v).

This theorem ensures that there exists an execution from the linearized GCL program – i.e. (linearize
(Sassign x f) P) – to a program state where x equals to its value in the original program – that is
(eval f v). This is the translation of the correctness criterion 1 according to the semantics we have
defined.

13

Correctness of the linearization of if-then-else The property expressed in Definition 2 that we want
to ensure about if-then-else is reformulated in two parts here:

Lemma lin_ifthenelse_true_wf (s1 s2 : stmt) (op : b_binop)
(f:b_exprZ) (P:polyhedron) (v:valuation) (k:cont) :
v ∈ P→
bool_of_expr f v true→
exec

(State (linearize (Sifthenelse f s1 s2) P) k v)
(State s1 k v).

Lemma lin_ifthenelse_false_wf (s1 s2 : stmt) (op : b_binop)
(f:b_exprZ) (P:polyhedron) (v:valuation) (k:cont) :
v ∈ P→
bool_of_expr f v false→
exec

(State (linearize (Sifthenelse f s1 s2) P) k v)
(State s2 k v).

The first lemma states that if the condition f is true, then there exists an execution of the linearization of
(Sifthenelse f s1 s2) leading to a state where s1 is executed. Conversely, the second lemma ensures
that if the condition f is false, then there exists an execution of the linearization of (Sifthenelse f s1

s2) leading to a state where s2 is executed.
Note that f can be an arithmetical expression as well as a boolean expression. As in the C language, an

arithmetical expression is false if it is equal to zero, true otherwise.

3 Linearization on polytopes using Bernstein basis
In this section, we introduce a linearization technique based on the approximation of non-linear expressions
by multivariate polynomials in the Bernstein basis. Given a polyhedron P and a polynomial f defined on
the variables x1, ..., xl, we want to over-approximate P u f ≥ 0. As f is expressed in the canonical basis
C, the method consists in converting f into the Bernstein basis. From the coefficients of f in this basis, we
can deduce a polyhedron containing {(x1, ..., xl) ∈ P | f(x1, ..., xl) ≥ 0}. We begin by giving reminders
about the Bernstein basis, and some clue about the conversion from the canonical to the Bernstein basis.
Then, we show how to obtain an over-approximating polyhedron from Bernstein coefficients. We will use
the polyhedron P , {(x, y) | x− 1 ≥ 0, y + 2 ≥ 0, x− y ≥ 0, −x− y + 5 ≥ 0} and the polynomial
f(x, y) , 4− x2 − y2 as a running example.

3.1 Bernstein representation of polynomials on [0, 1]l

3.1.1 The Bernstein basis

The univariate Bernstein basis We begin by reminding what the univariate Bernstein basis is, following
the notations of Farouki’s survey [3]. The univariate Bernstein basis B of degree n is the set of polynomials
bnk defined on x ∈ [0, 1] as

bnk (x) ,

(
n

k

)
(1− x)n−kxk, k = 0, ..., n

These polynomials form a basis B of the space of polynomials on [0, 1]. Thus, any polynomial p(x) with
x ∈ [0, 1] can be written in the Bernstein basis

p(x) ,
n∑
k=0

ckb
n
k (x), x ∈ [0, 1], ck ∈ R

A remarkable property of Bernstein polynomials is that the coefficients ck allow to deduce control
points. As we shall see further, the convex hull of these control points contains the polynomial itself. For

14

Figure 7 – Representation of f(x) = −x3 − x2 + 2x in red. The green curve is the convex hull of the control points
(0, 0),

(
1
3
, 2
3

)
,
(
2
3
, 1
)

and (1, 0).

instance, the Figure 7 shows the polynomial f(x) = 3 ∗ x2 − x and the convex hull of four control points.
The Bernstein polynomial of degree 3 corresponding to f is 0× (1− x)3x0 + 1

3 × (1− x)2x1 + 2
3 × (1−

x)1x2+1× (1−x)0x3. From this polynomial, we can deduce the four control points (0, 0),
(
1
3 ,

2
3

)
,
(
2
3 , 1
)

and (1, 0).
Because we are manipulating multivariate polynomials, we need to define the multivariate Bernstein

basis. Let us introduce first some useful notations.

Notations: Multi-indexes Tuples and multi-indexes are typed in boldface. Following the notations from
[14], let l be the number of variables, let I = (i1, ..., il) ∈ Nl be a multi-index and xI , xi11 × ... × x

il
l

be a multi-power. We define a partial order on multi-indexes by I ≤ J ⇔ ∀k = 1, .., l, ik ≤ jk.
Let

(
J
I

)
=
(
j1
i1

)
...
(
jl
il

)
. The degree N of a multi-index I is the index vector (n1, ..., nl) such that ∀k =

1, ..., l, ik ≤ nk.

The multivariate Bernstein basis The Bernstein basis B of degreeN = (n1, ..., nl) onx = (x1, ..., xl) ∈
[0, 1]l is defined as

BNI (x) = bn1
i1
(x1)× ...× bnl

il
(xl), I ≤N

A multivariate polynomial expressed in this basis is written

p(x) =
∑
I≤N

cIB
N
I (x), x ∈ [0, 1]l, cI ∈ R

The Bernstein basis B respects the following properties:

∀I ≤N , ∀x ∈ [0, 1]l, BNI (x) ∈ [0, 1] (5)

∀x ∈ [0, 1]l,
∑
I≤N

BNI (x) = 1 (6)

The Property 6 is called the partition-of-unity property. These two properties allow us to handle the Bern-
stein basis elements as coefficients of a convex combination. Indeed, given points A0, ..., AN ∈ Rl and
x ∈ [0, 1]l, the point A ,

∑
I≤N AIB

N
I (x) is a convex combination of A0, ..., AN . It means that A

belongs to the convex hull of A0, ..., AN .

15

Figure 8 – Scaling of f(x, y) = −x2 − y2 + 4 from [1, 7]× [−2, 3] (in blue) to [0, 1]2 (in red).

3.1.2 Change of basis

In this part, we show how to translate a polynomial from C to B with the conventional method explained
by [14] and [12]. The conversion algorithm has been implemented and proven in the Prototype Veri-
fication System by [12]. As Bernstein polynomials are defined on [0, 1]l, a polynomial f defined as
f(t) =

∑
I≤N dIt

I on [a1, b1]×...×[al, bl] in C needs to be scaled and shifted into [0, 1]l. For k = 1, ..., l,
let σk : [0, 1] → [ak, bk] be an affine mapping function. We are looking for the coefficients d′I such that
∀(x1, ..., xl) ∈ [0, 1]l, f ′(x1, ...xl) , f(σ1(x1), ..., σl(xl)) =

∑
I≤N d′Ix

I . These coefficients d′I can be
expressed in function of the dI in the following way :

d′I = (b− a)I
N∑
J=I

dJ

((
J

I

)
aJ−I

)
, I ≤N , a = (a1, ..., al), b = (b1, ..., bl)

Example 5. Let us take the example f = −x2 − y2 + 4 with x ∈ [1, 7], y ∈ [−2, 3]. The
degree of f is the multi-index N = (2, 2), meaning that x and y have maximum degree 2. The
coefficients of f are d(0,0) = 4, d(2,0) = d(0,2) = −1 and dI = 0 for all others indexes I . The
computation of d′(2,0) is done as follows:

d′(2,0) =
(
(7− 1)2

)
×
(
(2 + 3)0

)
×

(2,2)∑
J=(2,0)

((
J

(2,0)

)
× dJ ×

(
1j1−2

)
×
(
(−2)j2−0

))
= 36×

(
(2,0)
(2,0)

)
(−1)(12−2)× ((−2)0−0) because d(2,1) = d(2,2) = 0

= −36

Finally, the polynomial f(x, y) = −x2 − y2 + 4 mapped into [0, 1]2 is f ′(x, y) = −36x2 −
25y2 − 12x+ 20y − 1, as shown on Figure 8. When (x, y) range over [0, 1]2, the polynomial
f ′(x, y) covers the image of f on [1, 7]× [−2, 3].

Now, given a polynomial
∑
I≤N d′Ix

I in C defined on [0, 1]l, the classical method to compute the
Bernstein coefficients cI is :

cI =
∑
J≤I

(
I
J

)(
N
J

)d′J
As shown in [14], the translation from C to B using the conventional method has a complexity of

O(n2l).

Example 6. We can now compute the Bernstein representation of the scaled polynomial f ′ =
−36x2 − 25y2 − 12x+ 20y − 1 :

f ′ = −B(2,2)
(0,0) + 9B

(2,2)
(0,1) − 6B

(2,2)
(0,2) − 7B

(2,2)
(1,0) + 3B

(2,2)
(1,1)

−12B(2,2)
(1,2) − 49B

(2,2)
(2,0) − 39B

(2,2)
(2,1) − 54B

(2,2)
(2,2)

16

3.2 Polyhedron from Bernstein coefficients
Let P be a polyhedron, and assume we want to approximate the effect of the guard f ≥ 0 on P . As said
in Sect. 2.1.1, we can deduce intervals for each variable from P . Let us call [ai, bi] the interval associated
with the variable xi, i = 1, ..., l. Let us call Pbox = [a1, b1] × ... × [al, bl] and suppose f is defined on
Pbox. In the following, we denote by σ(x) the vector (σ1(x1), ..., σl(xl)), where σk are the affine functions
defined in Sect. 3.1.2. The change of basis provided a polynomial f ′ whose image on [0, 1]l coincides with
the image of the original polynomial f on Pbox. Since f ′ is defined on [0, 1]l, we ended with a Bernstein
representation of f ′ as

f ′(x) =
∑
I≤N

cIB
N
K (x), x ∈ [0, 1]l, cI ∈ R

In this section, we explain how to build a polyhedron, over-approximating f ′, from its Bernstein co-
efficients. We define the set V ′, containing control points whose first l dimensions form a l-dimensional
mesh:

V ′ = {v′I | I ≤N}
where I = (i1, . . . , il)

N = (n1, . . . , nl)

v′I =
(
i1
n1
, ..., ilnl

, cI

)
Let us define the convex hull P ′V of the control points V ′. Note that the vertices of P ′V belong to V ′,

but the points of V ′ that are within the interior of P ′V are not vertices of P ′V . We will now prove that
P ′V is an over-approximating polyhedron of f ′. We start by noticing that the Bernstein coefficients of an

indeterminate xk are
(

1
nk
, 2
nk
, . . . , nk

nk

)
. We prove it through the following lemma:

Lemma 1. Let k ∈ N, 1 ≤ k ≤ l.

xk =
∑
I≤N

ik
nk
BNI (x), x ∈ [0, 1]l

Proof. We generalize to multivariate polynomials the proof of [3] for the univariate case. Let us define
a truncated multi-index I \ k = (i1, ..., ik−1, ik+1, ..., il). Let x ∈ [0, 1]l and consider the Bernstein
polynomial p(x) ,

∑
I≤N

ik
nk
BNI (x). We will show that p(x) = xk. Let us focus on the Bernstein

monomials issued by the kth component of the index I .

p(x) =
∑

(I\k)≤(N\k)

ik=0,...,nk

ik
nk
bnk
ik
×BN\k

I\k (x)

=
∑

(I\k)≤(N\k)

ik=0,...,nk

ik
nk

(
nk

ik

)
xikk (1− xk)nk−ik ×BN\k

I\k (x) by definition of bnk
ik

As the terms of the sum corresponding to ik = 0 vanish, we can start the summation at ik = 1. We can
therefore exploit the property of the binomial coefficients ik

nk

(
nk

ik

)
=
(
nk−1
ik−1

)
, for ik ≥ 1. Thus,

p(x) =
∑

(I\k)≤(N\k)

ik=1,...,nk

(
nk − 1

ik − 1

)
xikk (1− xk)nk−ik ×BN\k

I\k (x)

With the change of variable i′k = ik − 1,

p(x) =
∑

(I\k)≤(N\k)

i′k=0,...,nk−1

(
nk−1
i′k

)
x
i′k+1
k (1− xk)nk−1−i′k ×BN\k

I\k (x)

= xk×
∑

(I\k)≤(N\k)

i′k=0,...,nk−1

(
nk − 1

i′k

)
x
i′k
k (1− xk)nk−1−i′k︸ ︷︷ ︸ ×BN\k

I\k (x) we recognize bnk−1
i′k

= xk×
∑

(I\k)≤(N\k)

i′k=0,...,nk−1

bnk−1
i′k

×BN\k
I\k (x)

17

Finally, by the partition-of-unity property of the Bernstein basis of degree N ′ , (n1, ..., nk − 1, ..., nl),
we obtain

p(x) = xk ×
∑
I≤N ′

BN
′

I (x)︸ ︷︷ ︸
= xk × 1

Thanks to Lemma 1, we can relate the set V ′ of control points to the Bernstein coefficients of f ′. For
each indeterminate x1, . . . , xl, we associate the Bernstein coefficients given in Lemma 1. Similarly, we
associate to f ′ its Bernstein coefficients cI as follows:

∀x , (x1, . . . , xl) ∈ [0, 1]l,


x1
...
xl

f ′(x)

 =
∑
I≤N


i1
n1

...
il
nl

cI

BNI (x) =
∑
I≤N

v′I B
N
I (x) (7)

As a consequence of properties 6 and 5,
∑
I≤N v′I B

N
I (x) is a convex combination of the points

v′I . Thus, Equality 7 means that any point of f ′, say (x1, ..., xl, f
′(x)), can be expressed as a convex

combination of the control points v′I . Therefore, (x1, ..., xl, f ′(x)) belongs to P ′V , the convex hull of the
points v′I . It means that P ′V is an over-approximation of the set

{
(x1, ..., xl, f

′(x)) | x ∈ [0, 1]l
}

.
We can now make a link between P ′V and f : let us define PV as the convex hull of the elements of

V = {vI | I ≤N}
where I = (i1, . . . , il)

N = (n1, . . . , nl)

vI =
(
σ1

(
i1
n1

)
, ..., σl

(
il
nl

)
, cI

)
The following lemma makes a link between the coefficients of the indeterminates x1, . . . , xl in B and

their correspondance through σ.

Lemma 2. Let k ∈ N, 1 ≤ k ≤ l. Let σk : t 7−→ αt+ β, α, β ∈ R be an affine function.

σk(xk) =
∑
I≤N

σk

(
ik
nk

)
BNI (x), x ∈ [0, 1]l

Proof. Let x ∈ [0, 1]l and consider the Bernstein polynomial p(x) ,
∑
I≤N σk

(
ik
nk

)
BNI (x). We will

show that p(x) = σk(xk).

p(x) =
∑
I≤N

σk

(
ik
nk

)
BNI (x)

=
∑
I≤N

(
α ik
nk

+ β
)
BNI (x)

= α

(∑
I≤N

ik
nk
BNI (x)

)
+ β

(∑
I≤N

BNI (x)

)

= α

(∑
I≤N

ik
nk
BNI (x)

)
+ β by the Property 6

= αxk + β by Lemma 1
= σk(xk)

18

(a) (b)

Figure 9 – Representation in different points of view of the polyhedron PV in green. The blue surface corresponds to
the polynomial f = −x2 − y2 + 4. The red points are the points of V .

As previously, Lemma 2 allows us to link the set V to the Bernstein coefficients of f . Recalling that by
definition of σ, ∀x , (x1, ..., xl) ∈ [0, 1]l, f(σ(x)) = f ′(x), we obtain that


σ1(x1)
...

σl(xl)
f(σ(x))

 =


σ1(x1)
...

σl(xl)
f ′(x)

 =
∑
I≤N


σ1

(
i1
n1

)
...

σl

(
il
nl

)
cI

BNI (x) =
∑
I≤N

vIB
N
I (x) (8)

Following the same reasoning as above,
∑
I≤N vIB

N
I (x) is a convex combination of the control

points vI . Thus, equality 8 implies that any point of f , say (σ1(x1), ..., σl(xl), f(σ(x))), can be expressed
as a convex combination of the vI . That’s why (σ1(x1), ..., σl(xl), f(σ(x))) belongs to PV , the con-
vex hull of the vI . It means that PV is an over-approximation of the set {(σ1(x1), ..., σl(xl), f(σ(x))) |
(x1, ..., xl) ∈ [0, 1]l

}
which is equal to the set {(x1, ..., xl, f(x)) | (x1, ..., xl) ∈ Pbox}

Example 7. With our running example, PV is the convex hull of the red points shown on Fig-
ure 9(a), where we can see that the surface {(x1, ..., xl, f(x1, ..., xl)) | (x1, ..., xl) ∈ Pbox}
is clearly inside PV . Moreover, Figure 9(b) shows that the points of V form a l-dimensional
mesh.

Recall that we are looking for a polyhedron over-approximating P u f ≥ 0. We have built the poly-
hedron PV that contains the set {(x1, ..., xl, f(x1, ..., xl)) | (x1, ..., xl) ∈ Pbox}, but we are looking for an
over-approximation of {(x1, ..., xl) ∈ P | f(x1, ..., xl) ≥ 0}. In order to approximate f ≥ 0, consider the
polyhedron

P+
V = PV ∩

{
(x1, ..., xl, xl+1) ∈ Rl+1 | xl+1 ≥ 0

}
P+
V is the intersection ofPV with the half space where xl+1 is positive. It contains the set {(x1, ..., xl, f(x)) |

(x1, ..., xl) ∈ Pbox, f(x1, ..., xl) ≥ 0}.
We compute P+

V /xl+1
, the projection of P+

V on the variable xl+1. P+
V /xl+1

is a polyhedron over-
approximating the set {(x1, ..., xl) ∈ Pbox | f(x1, ..., xl) ≥ 0}. Knowing that P ⊂ Pbox, we finally calcu-
late P ′ , P+

V /xl+1
u P to obtain the approximation of {(x1, ..., xl) ∈ P | f(x1, ..., xl) ≥ 0}. P ′ is the

effect of the guard f ≥ 0 on the polyhedron P , as defined in the introduction.

Example 8. The representation of P+
V is given for our example on Figure 10. P+

V /xl+1
and

P ′ are represented on Figure 11.

19

Figure 10 – Representation of the polyhedron P+
V in green. The blue surface corresponds to the polynomial

f = −x2 − y2 + 4. The red surface is the plane xl+1 = 0.

(a) (b)

Figure 11 – The starting polyhedron S = {(x, y) | x− 1 ≥ 0, y + 2 ≥ 0, x− y ≥ 0, −x− y + 5 ≥ 0} is
represented in orange. The circle

{
x2 + y2 ≤ 4

}
is drawn in blue. (a): Representation of P+

V /xl+1
in green. (b):

Representation of P ′ in green. It over-approximates the effect of the guard x2 + y2 ≤ 4 on P .

20

(a) (b)

Figure 12 – Representation of f(x) = −x3 − x2 + 2x in red. (a): PV deduced from a polynomial of degree 3. (b):
PV deduced from a polynomial of degree 10.

3.3 Polyhedron refinement
There exists two methods to improve the approximation precision: degree elevation and interval splitting.
The goal of both of them is to to find points that are closer to f .

Degree elevation consists in converting f from C to a Bernstein basis of higher degree. Thereby, the set
V contains more points, and as they are regularly spaced, they are closer to f . Thus, their convex hull PV
is also closer to f , as shown on Figure 12.

The principle of interval splitting is to split the starting box [a1, b1]× ...× [al, bl] around a point in some
dimensions. This process gives k different boxes , k = 2l if we split in every dimension. For each of these
boxes, we get an expression of f in the basis B, and we obtain k times more points in V . Note that we
don’t need to convert f from C to B for each box, we can deduce the expression of f in B on another box
directly from its expression in the original one thanks to an algorithm by De Casteljau [12]. The difficulty
is to find the good points where to split.

The main drawback of these methods is that although they refine the over-approximating polyhedron
PV , they increase the number of its faces as well. A polyhedron with many faces leads to more computa-
tion.

3.4 Toward certification in Coq
In the following, we give some clues about the certification in Coq of the Bernstein linearization method.
Note that we do not need to prove the change of basis in Coq. We can do it externally, and give the result as
a certificate to Coq. This certificate is composed of the coefficients cI of f in B and the mapping function
σ. Then, some remaining properties have to be verified in Coq:

(1) ∀x ∈ [0, 1]l, f(σ(x)) =
∑
I≤N cIB

N
I (x). This can be done by expanding both sides of the

equality, and compare each monomial coefficient.

(2) The properties 5 and 6 of the Bernstein basis.

(3) PV is an over-approximation of {(x1, ..., xl, f(x)) | (x1, ..., xl) ∈ Pbox}. This is done by proving in
Coq the Lemmas 1 and 2.

Remark that the properties (2) and (3) require to be proven once for all, while (1) needs to be proven
for each linearization. Once the set of control points V is known, we can build a certified polytope P ′ that
approximates the guard using the certified operators provided by the Verasco/Verimag Polyhedra Library
developed by Fouilhé [5]. This library deals with polyhedra represented as conjunction of constraints,
whereas we have obtained a representation of V as a set of vertices. The construction of P ′ can be obtained
by adding the control points one after the other to the empty polyhedron, then computing the intersection
with the initial polyhedron P . Although this algorithm is correct in principle, its cost is prohibitive: the

21

union of a polyhedron with a polyhedron reduced to a point is the heaviest operator of the VPL. Some work
is still needed to switch to a certified constraint polyhedron at a reasonable cost.

4 Linearization on polytopes using Handelman representation
In this section, we explain how to exploit Handelman’s Theorem [6] as a new linearization technique. This
theorem gives a characterization of positive polynomials over a compact set. This kind of description is
usually called a positivstellensatz. As said in the introduction, we focus on the treatment of a guard f ≥ 0
where f denotes a polynomial in the (x1, . . . , xn) variables of the program.

Consider a compact polytope P = {(x1, . . . , xn) | C1 ≥ 0, . . . , Cp ≥ 0} where Ci are linear poly-
nomials over (x1, . . . , xn). Suppose P describes the possible values of (x1, . . . , xn) at a program point
before the guard, we seek a polyhedron that approximates P ∧ f ≥ 0. We will use as a running example

P = {(x, y) | x− 1 ≥ 0, y + 2 ≥ 0, x− y ≥ 0, −x− y + 5 ≥ 0} and f = 4− x2 − y2.

The affine approximation problem A naive call P uf ≥ 0 to the intersection operator of the polyhedral
domain would return P not exploiting the constraint f ≥ 0 which is not affine. Our approximation problem
is to find an affine constraint α0 + α1x1 + . . . + αnxn, denoted by aff (f), such that P ⇒ aff (f) > f
meaning that aff (f) bounds f on the polyhedron P . By transitivity of ≥ we will conclude that P ∧ f ≥
0⇒ P ∧ aff (f) > 0. Thus, P u aff (f) > 0 will be a polyhedral approximation of the program state after
the polynomial guard f > 0.

4.1 Handelman representation of positive polynomials
Notations Following the notations defined in Sect.3.1.1, let I = (i1, ..., ip) ∈ Np be a multi-index. Let
us define the set of Handelman products

HP =
{
Ci11 × · · · × Cipp | (i1, . . . , ip) ∈ Np

}
where P , C1 ≥ 0 ∧ . . . ∧ Cp ≥ 0

This set contains all products of constraints Ci of P . Given a multi-index I = (i1, . . . , ip), HI ,∏p
j=1 C

ij
j denotes an element of HP . Note that the HI are positive polynomials on P as products of

positive constraints of P .

Example 9. Considering our running example, H(0,2,0,0) = (y + 2)2, H(1,0,1,0) = (x −
1)(x− y) and H(1,0,0,3) = (−x− y + 5)3(x− 1) belongs to HP .

The Handelman representation of a positive polynomial Q(x) on P is

Q(x) =
∑
I∈Np

λI︸︷︷︸
≥0

HI︸︷︷︸
≥0

with λI ∈ R+

This representation is used in mathematics as a certificate ensuring that Q(x) is positive on P . Obviously
if a polynomial can be written in this form, then it is necessarily positive on P . Handelman’s theorem [6],
that we summarize here, concerns the non trivial opposite implication:

Theorem 1 (Handelman’s Theorem). Let P = {(x1, . . . , xn) ∈ Rn | C1 ≥ 0, . . . , Cp ≥ 0} be a compact
polytope where each Ci is a linear polynomial over x = (x1, . . . , xn). Let Q(x) be positive polynomial
on P . Then there exists λI ∈ R+ and HI ∈HP such that

Q(x) =
∑
I∈Np

λIH
I

Usually, the Handelman representation of a polynomial Q(x) is used to determine a constant lower
bound of Q(x) on P thanks to Schweighofer’s algorithm [8] that focuses on iteratively improving the
bound by increasing the degree of the HI . In this chapter we present another use of Handelman’s theorem:
we are not interested in just one (tight) bound but in a polytope wrapping the polynomial Q(x).

22

4.2 Handelman approximation as a Parametric Linear Optimization Problem

We are looking for an affine constraint aff (f), such that aff (f) ≥ f on P , which is equivalent to aff (f)−
f ≥ 0 on P . Then, Handelman’s theorem applies:

The polynomial aff (f)−f which is positive on the polytopeP has an Handelman representation
as a positive linear combination of products of the constraints of P , i.e.,

aff (f)− f =
∑
I∈Np

λIH
I with λI ∈ R+, HI ∈HP (9)

The relation 9 of Handelman’s theorem ensures that there exists some positive combinations of f and
some HI ∈HP that remove the monomials of total degree >1 and lead to affine forms:

α0 + α1x1 + . . .+ αnxn = aff (f) = 1 · f +
∑
I∈Np

λIH
I

Note that the polynomials of HP are generators of the positive polynomials on P but they do not form
a basis. Indeed, it is possible to have one H ∈ HP being a positive linear combination of other elements
of HP .

Example 10. Consider P = {(x, y) | x ≥ 0, y ≥ 0, x− y ≥ 0, x+ y ≥ 0}.
Then, H(2,0,0,0) , x2, H(1,1,0,0) = xy, H(0,2,0,0) = y2, H(0,0,0,2) = (x+ y)2 belongs to Handelman
products and they are not independent.
Indeed, H(0,0,0,2) = x2 + 2xy + y2 = H(2,0,0,0) + 2H(1,1,0,0) +H(0,2,0,0)

As a consequence, a positive polynomial aff (f)−f can have several Handelman representations, even
on a given set of Handelman products. Actually, we exploit the non-uniqueness of representation to get a
precise approximation of the guard: we look for many affine constraints aff (f) that bound f on P . Their
conjunction forms a polyhedron that over-approximates f on P .

We now explain how the determination of all affine constraints bounding f can be expressed as a
Parametric Linear Optimization Problem (PLOP).

Notations Given a multi-index I and n variables x1, ..., xn, let xI be the monomial xi11 × ...× xinn . We
define the total degree of the monomial xI as deg(I) =

∑n
j=1 ij . For monomial of degree ≤ 1 we simply

write αixi instead of αI xI when I = (0, . . . , 0, 1, 0, . . . , 0) with 1 in its ith coordinate. With this settings,
the relation 9 can be rephrased:

For some choice of λI , the coefficient αI of the monomial xI in the polynomial f+
∑
I∈Np

λI H
I

is null for all multi-index I with deg(I) > 1.

Now, let df ∈ Nn be the maximal degree of the monomials of f . We restrict our search to finding
a Handelman representation of aff (f) − f on the subset {H1, . . . ,Hq} of all the Handelman products
of degree ≤ df , instead of the whole set HP . If we fail with monomials of degree ≤ d we increase d.
Handelman’s theorem ensures that we will eventually succeed.

Example 11. With f = 4− x2 − y2, df = 2. Therefore, we shall consider the 15 following
Handelman products:

H1 = H(0,0,0,0) = 1 H2 = H(1,0,0,0) = x− 1 H3 = H(0,1,0,0) = y + 2

H4 = H(0,0,1,0) = x− y H5 = H(0,0,0,1) = −x− y + 5 H6 = H(2,0,0,0) = (x− 1)2

H7 = H(0,2,0,0) = (y + 2)2 H8 = H(0,0,2,0) = (x− y)2 H9 = H(0,0,0,2) = (−x− y + 5)2

H10 = H(1,1,0,0) = (x− 1)(y + 2) H11 = H(1,0,1,0) = (x− 1)(x− y) H12 = H(1,0,0,1) = (x− 1)(−x− y + 5)
H13 = H(0,1,1,0) = (y + 2)(x− y) H14 = H(0,1,0,1) = (y + 2)(−x− y + 5) H15 = H(0,0,1,1) = (x− y)(−x− y + 5)

23

With the restriction to {H1, . . . ,Hq}, finding the λI can be formulated as a PLOP.
The relation 9 on {H1, . . . ,Hq} amounts to find positive λ1, . . . , λq ∈ R+ such that

aff (f)
=

= 1 · f +
∑q
i=1 λiHi

=

= (

=1︷︸︸︷
λf , λ1, . . . , λq)︸ ︷︷ ︸

λ

· (f,H1, . . . ,Hq)
ᵀ︸ ︷︷ ︸

Hf ·mᵀ

α0 + α1x1 + . . .+ αnxn

=

λ · Hf ·mᵀ

=

m · (α0, . . . , αn, 0, . . . , 0)
ᵀ

= m · Hfᵀ · λᵀ

where:

• Hf is the matrix of the coefficients of f and the Hi in the canonical basis of monomials of degree
≤ df denoted bym = (1, x1, . . . , xn,x

d1 , . . . ,xdf)

• the vector λ characterizes the Handelman’s positive combination of f and the Hi

• we associated a coefficient λf = 1 to f just to get convenient notations.

Finally, the problem can be rephrased as finding λ ∈ {1} × (R+)
q such that

Hfᵀ · λᵀ = (α0, . . . , αn, 0, . . . , 0)
ᵀ

The result of the matrix-vector product Hfᵀλᵀ is a vector α , (α0, α1, . . . , αn, αd1 , . . . , αdf
) that

represents the constraint α0 + α1x1 + . . . + αnxn +
∑
I≤df

αI x
I in the m basis. Since we seek an

affine constraints aff (f) we are interested in finding λ such that Hfᵀλᵀ = (α0, .., αn, 0, .., 0)
ᵀ. Each

such λ gives an affine constraint aff (f) that bounds f on P . Therefore, the conjunction of all constraints
aff (f) ≥ 0 form a polyhedron Af that approximates the guard f ≥ 0 on P .

Example 12. Here is the transposed matrix Hfᵀ of f and our 15 Handelman products with
respect to the basism = (1, x, y, xy, x2, y2)

f H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15

1
x
y
xy
x2

y2


4 1 -1 2 0 5 1 4 0 25 -2 0 -5 0 10 0
0 0 1 0 1 -1 -2 0 0 -10 2 -1 6 2 -2 5
0 0 0 1 -1 -1 0 4 0 -10 -1 1 1 -2 3 -5
0 0 0 0 0 0 0 0 -2 2 1 -1 -1 1 -1 0
-1 0 0 0 0 0 1 0 1 1 0 1 -1 0 0 -1
-1 0 0 0 0 0 0 1 1 1 0 0 0 -1 -1 1


With λf = λ6 = λ7 = 1 and every other λi = 0, we obtain

αᵀ = Hfᵀλᵀ =


9
−2
4
0
0
0


1
x
y
xy
x2

y2

Thus, aff (f) = −2x+4y+9 is a constraint that bounds f on P , as shown on the Figure 13(a).
Indeed, we can see that the plane−2x+4y+9 is above the polynomial f . Figure 13(b) shows
the approximation of f that we obtain with the constraint −2x+ 4y + 9 ≥ 0.

In order to obtain a better approximation, we need to find others affine approximations bound-
ing f on P . For instance, with λf = λ8 = 1, λ11 = λ5 = 2, and every other λi = 0,
αᵀ = (21,−2,−8, 0, 0, 0). The Figure 14 shows the approximation of f with the two con-
straints −2x+ 4y + 9 ≥ 0 and −2x− 8y + 21 ≥ 0.

24

(a) (b)

Figure 13 – (a): The surface z = f(x, y) , −x2 − y2 + 4 is in blue, the plane z = aff (f)(x, y) , −2x+ 4y + 9
in yellow. (b): The representation of the polyhedron

P , {(x, y) | x− 1 ≥ 0, y + 2 ≥ 0, x− y ≥ 0, −x− y + 5 ≥ 0} is in red and the area of the circle in blue
represents {(x, y) | f(x, y) ≥ 0}. The green line is the constraint −2x+ 4y + 9 = 0. The yellow area is the

polyhedron P u {(x, y) | −2x+ 4y + 9 ≥ 0} that over-approximates the conjunction P ∧ f ≥ 0.

Figure 14 – The material is that of Figure 13 augmented with a cyan line which corresponds to the constraint
−2x− 8y + 21 = 0. The yellow area is the polyhedron P u {(x, y) | −2x+ 4y + 9 ≥ 0, −2x− 8y + 21 ≥ 0}

that over-approximates the conjunction P ∧ f ≥ 0.

25

Figure 15 – The 9 points pk selected to instantiate the parametric simplex. The polyhedron
P = {(x, y) | x− 1 ≥ 0, y + 2 ≥ 0, x− y ≥ 0, −x− y + 5 ≥ 0} is in orange.

The Parametric Linear Optimization Problem Finding all and the tightest approximations aff (f) that
bounds f on P can now be expressed as the following PLOP which can be solved using a Parametric
Simplex in the spirit of [4].

Given a set {H1, . . . ,Hq} ⊆HP of Handelman products,

minimize aff (f), that is, α0 + α1x1 + . . .+ αnxn
under the constraints Hf

ᵀ(λf , λ1, . . . , λq)
ᵀ
= (α0, . . . , αn, 0, . . . , 0)

ᵀ

λf = 1
λi ≥ 0, i = 1..q

where

• The λ1, . . . , λq are the variables of the PLOP.

• The α0, . . . , αn are kept for the sake of presentation ; in practise they are substituted by
their expression issued fromHfᵀλᵀ.

• The x1, . . . , xn are the parameters of the PLOP.

Each instantiation (x1, . . . , xn) of the parameters defines a standard Linear Optimization Problem
which can be solved by the simplex algorithm, providing the optimum associated to the given parame-
ters. We don’t have an implementation of the parametric simplex yet ; we plan to reuse or implement a
version of Feautrier’s Parametric Simplex, called PIP (for Parametric Integer Programming) [4]. For ex-
perimentations in the meantime, we generate several instantiations of the PLOP and execute a standard
simplex on each. Each run gives an aff (f) constraint and their conjunction forms the final polytope Af .
The points (x1, . . . , xn) used for instanciation are:

• The vertices vi of the inital polyhedron P

• The centroid of these vertices (called isobarycentre in French)

• Each point pk satisfying 2−−→pkvk +
∑
j 6=k

−−→pkvj =
−→
0 . The point pk is the barycenter of the points

(v1, ..., vn) where we associate the weight 2 to one vertex and 1 to the others.

Example 13. Back to our example, we show in Figure 15 the points pk chosen to instantiate
the parametric simplex. The result of the linearization is represented on Figure 16. We can see
that one constraint is redundant in the sense that it does not constrain the resulting polyhedron.

26

Figure 16 – The polyhedron P = {(x, y) | x− 1 ≥ 0, y + 2 ≥ 0, x− y ≥ 0, −x− y + 5 ≥ 0} is drawn in
orange. The area delimited by the blue circle represents the guard

{
(x, y) | x2 + y2 ≤ 4

}
. The red surface is the

approximation of
{
(x, y) | x2 + y2 ≤ 4

}
∩ P . The green lines are the results of the parametric simplexes with points

of Figure 15.

Applications to other abstract domains The PLOP can be adapted to produce constraints of other ab-
stract domains such as Difference Bound Matrices (DBM) or octagons.

DBM is an abstract domain represented by linear constraints of the form xi − xj ≤ c, with xi and xj
two distinct variables and c a constant. We can enforce solutions of the PLOP to be DBM constraints by
adding constraints that make the general template of the objective α0 +α1x1 + . . .+αnxn be of the form
α0 + αixi + αjxj , i 6= j, αi = 1 and αj = −1. For this purpose, we introduce for each αk two boolean
variables pk and mk that model the fact that αk is positive or negative:

pk =

{
1 if αk > 0
0 if αk ≤ 0

mk =

{
1 if αk < 0
0 if αk ≥ 0

We finally end with a Mixed Boolean/Rational PLOP:

minimize aff (f), that is, α0 + α1x1 + . . .+ αnxn
under the constraints

Hfᵀ(λf , λ1, . . . , λq)ᵀ = (α0, . . . , αn, 0, . . . , 0)
ᵀ (10)

λf = 1 (11)
αi ≤ pi, i = 1, ..., n (12)

−αi ≤ mi, i = 1, ..., n (13)
pi +mi = 1, i = 1, ..., n (14)

n∑
i=0

pi = 1 (15)

n∑
i=0

mi = 1 (16)

−1 ≤ αi ≤ 1, i = 1, ..., n (17)
n∑
i=0

αi =

n∑
i=0

pi −
n∑
i=0

mi (18)

pi,mi ∈ {0, 1}, αi ∈ Q, i = 1, ..., n (19)
λi ∈ Q+, i = 1, ..., q (20)

27

A solution of this PLOP leads to one pi equal to 1, one mj (i 6= j) equal to 1, and every other pk and
mk equal to 0, which is encoded by the equations 15 and 16. The equations 12, 13 and 17 ensures that
αk = 1 ⇒ pk = 1 and αk = −1 ⇒ mk = 1. Equation 14 ensures that for a given k, pk and mk are
opposite literals, that is pk = ¬mk. Note that we do not need αk to be exactly 1 or -1, actually we need
|αi| = |αj |. Indeed, if αi = −αj , then aff (f) = α0+αixi+αjxj is equivalent to aff (f) = α0

αi
+xi−xj .

In the case of DBM, we can therefore solve the problem with −1 ≤ αk ≤ 1, αk ∈ Q instead of αk ∈
{−1, 0, 1}. Equation 18 captures the fact that αi = −αj .

The PLOP can also be adapted to the abstract domain of octagons [10], characterized by linear con-
straints of the form ±xi ± xj ≤ c with xi and xj two distinct variables and c a constant. In this case, we
allow the following patterns: αi = αj = 1 or αi = αj = −1 or αi = 1, αj = −1. In order to obtain
solutions of this form, one has to replace the equations 15 and 16 by

∑n
i=0 pi +mi = 2.

4.3 Toward certification in Coq
In this part, we give intuitions about the certification in Coq of the linearization using Handelman.

We want to prove that aff (f) > f , or equivalently that aff (f) − f > 0, on the polytope P . Given
indexes (i1,1, ..., i1,p), . . . , (iq,1, ..., iq,p) and the coefficients λ1, .., λq , we have to check in Coq that:

(1) f +
q∑
j=1

λjC
ij,1
1 . . . C

ij,p
p is linear. This can be done by expanding the polynomial and looking at the

coefficient of monomials of degree > 1.

(2) The product of positive polynomials is positive. This can be proven in Coq once for all. We obtain

finally that f +
q∑
j=1

λjC
ij,1
1 . . . C

ij,p
p is a linear over-approximation of f .

The computation of aff (f) does not have to be done in Coq. Thus, (i1,1, ..., i1,p), . . . , (iq,1, ..., iq,p)
and λ1, .., λq are used as a certificate.

5 Comparison of the linearization methods and future work
We have implemented and proved in Coq the linearization algorithm based on intervalization. The Bern-
stein and Handelman methods have been implemented in SAGE. In order to compare the three methods,
we realised a simple analyzer in SAGE. It is able to handle C programs containing guards, assignments and
if-then-else but no function call, no loop. Given a starting polyhedron P and a list of statements s, the an-
alyzer computes the effect of s on P with the three techniques. The intervalization algorithm is performed
by an Ocaml program obtained by automatic extraction from our Coq development. This Ocaml code is
called by the SAGE script. We are then able to measure and compare the volume of the resulting polyhedra
using an existing SAGE library.

Comparison We realised experimentations on statements taken from the satellite code. In general, inter-
valization is the fastest but the less accurate of the three methods. Bernstein’s method can be as accurate
as needed, but at the price of an high algorithmic cost. Handelman’s method is about as accurate as the
Bernstein one. Up to now, it is the most expensive method, mainly because it is new, we implemented it in
a naive way and no attention has been paid to improve the computations as it has been done, for decades,
for Bernstein approximations.

The Bernstein approximation relies on the interval where ranges each variable. Extracting the interval
of a variable from a polyhedron requires to solve two linear optimization problems to get the maximum
and minimum value of the variable in the polyhedron. This overhead is avoided in Handelman’s method
which reasons directly on the constraints of the polyhedron. Hence, the Bernstein’s method is convenient
when the polyhedron is in fact an hypercube – that is the product of the interval of each variable – whereas
the Handelman’s method is promising at program point associated with a general polyhedron. Specifically,
we think the Handelman’s method can be more suitable in terms of precision, even in complexity, in case

28

Figure 17 – Representation of the effect of the guard
{
(x, y) | x2 + y2 ≤ 4

}
(yellow circle) on the polyhedron

{(x, y) | x− 1 ≥ 0, y + 2 ≥ 0, x− y ≥ 0, −x− y + 5 ≥ 0} (black outline). The green surface is the result of the
linearization using intervalization. The blue one is the result of Bernstein’s linearization. The red one is the

linearization with the Handelman’s method.

of successive linearizations. Indeed, where the Bernstein’s method stacks approximation errors at each
new linearization, the Handelman one does not degrade. Moreover, in order to certify these methods,
the Bernstein one requires to switch from the polyhedron representation using vertices to the polyhedron
representation by linear constraints, which is not the case for Handelman.

In practice, the three linearization methods can be combined: analysis is an iterative process that
switches to finer methods when the cheapest ones failed to prove correctness of the program. We can
imagine starting an analysis with intervals which are cheap and deal with non-linear expressions. Then,
switching to the domain of polyhedra if more precision is required. This second phase can reuse the in-
tervals computed by the first one and apply intervalization or Bernstein’s linearization without paying the
overhead of extracting intervals. This time the analysis associates polyhedra to program points. Then, to
gain more precision, a third phase can run the analysis with Handelman’s linearization. Other combina-
tions are possible and Handelman can be directly used at any phase since a product of bounded interval is
a special case of polytope, called an hypercube.

We show on Figure 17 the results of the three methods to approximate the guard {(x, y) | x2 + y2 ≤ 4
}

on P , {(x, y) | x− 1 ≥ 0, y + 2 ≥ 0, x− y ≥ 0, −x− y + 5 ≥ 0}. We can see that intervalization is
not precise enough to approximate the guard. Indeed, the resulting polyhedron is the same as the initial
one, and the guard does not add any information in the analysis.

We compute Bernstein’s method without any interval splitting or degree elevation. Even without any
refinement process, Bernstein is more accurate than intervalization but slower.

Handelman’s polyhedron is the most precise of the three techniques. However, its execution time is
for now significantly slower compared to the other ones. Handelman’s polyhedron has been computed by
instantiating the parametric simplex with a large number of points - nine in this example. It means that nine
simplexes are performed to approximate the guard. Moreover, we chose as subset {H1, . . . ,Hq} the 15
possible products of constraints of P of degree ≤ 2, meaning that we are faced with a Linear Optimization
Problem with 15 variables. Industrial linear solvers are able to deal with hundreds of variables, but this is
obviously the shortfall of Handelman’s linearization.

Future work Along the document we identified several points that still need work prior to the integration
of our linearization methods in the VERASCO analyser. We review them quickly and sketch direction of
improvement.

29

Unbounded polyhedron Up to now, we considered only the linearization with Bernstein or Handel-
man on polytopes. Indeed, the Bernstein basis is defined only on [0, 1]l and Handelman’s theorem applies
on a compact polyhedron. However, we do not necessarily have full bounds on each variable of the poly-
nomial expression f , therefore we need to be able to manipulate unbounded polyhedra. We already treat
this case for intervalization, it was done thanks to the Coq type Z ∪ ⊥. There exists a method to handle
partially unbounded intervals during the transformation of a polynomial into the Bernstein basis [12]. It
is based on a bijective transformation of the partially unbounded polynomial to a bounded one which has
the same sign. Handelman’s theorem addresses only compact polyhedra. Obviously, if a polynomial grows
non-linearly in the unbounded direction, it cannot be bounded by any affine function. However, the growth
of f with respect to the unbounded variable can be bounded, e.g. f(x) = 1 − x2. The adaptation of
Handelman’s method to this case is an open question.

Certification in Coq Recall that as a part of VERASCO project, the linearization techniques need
to be certified. We have done this for the intervalization algorithm, but it still requires to be included
in the VERASCO analyzer. The two other linearization methods have not been certified yet. We shall
certify them in Coq using certificates, meaning that parts of the computations are done outside of Coq. As
mentioned in Sect 3.4, we do not want to compute the change to the Bernstein basis inside Coq. We shall
make these computations in an external program producing hints, called certificates, that can be used in
Coq to prove the correction of the result. Similarly, we do not plan to implement the Handelman’s method
in Coq but to use certificates that drive the verification in Coq that aff (f) is an affine constraint and an
approximation of f .

Bernstein’s Linearization Several improvements can be performed on our Bernstein implementa-
tion. First, the change of basis can be done in O(nl+1) - instead of O(n2l) - thanks to a method called the
Matrix method [14]. Second, as said in Sect 3.3, the refinement method of interval splitting can be done
efficiently. The goal is to avoid computing the change of basis for each sub-box. Thereby, we could imple-
ment interval splitting with an algorithm by De Casteljau [12] that recursively applies linear interpolations.

Handelman’s Linearization The main improvements of Handelman’s linearization that we shall
work on are:

• The choice of the subset {H1, . . . ,Hq}. On the one hand, considering a lot of Hi allows lots of
Handelman’s representations, therefore an improved accuracy. On the other hand, each new Hi adds
a variable λi in the simplex. In order to minimize the number of Hi to consider, starting with a small
subset {H1, . . . ,Hq}, we could imagine an incremental approach that adds newHi when no solution
is found. We must pay attention to the algorithm in order to exploit the computations of the previous
attempt.

• A proper implementation of the parametric simplex. The points that we choose to instantiate
our parametric simplex are selected arbitrarily. The difficulty is to instantiate only with points that
give the best approximations. Instead, we plan to exploit existing tools for solving Parametric Linear
Optimization Problems, such as Paul Feautrier’s tool PIP [4]. Instead of instantiating the problem
with some particular points, PIP splits the parameter space into polyhedral regions and associates
to each region a parametric solution (i.e. a linear combination of the parameters). Some work is
needed to turn our Handelman problem in the PIP format and to correctly interpret the solution. In
particular, it is not obvious that PIP can find the best approximations of f since PIP is designed for
lexicographic enumeration, meaning that the definition in PIP of the optimization objective is not
that of standard optimization problems.

Experiments in the large Once all the three linearization techniques are integrated in the VERASCO
analyzer, series of code benchmarks and testings shall be realised. Then, combination of the three methods
shall be adjusted, as well as the heuristics we are using. Indeed, we have to adapt our linearization tech-
niques depending on the type of code we want to analyse. For instance, the satellite code contains lots of

30

sums of squares, thus we must adjust our heuristics to be more effective on this kind of expressions. Simi-
larly, if an expression appears many times in the program, we should pay a special attention to linearize it
precisely.

References

[1] Liqian Chen, Antoine Miné, Ji Wang, and Patrick Cousot. Interval polyhedra: An abstract domain to
infer interval linear relationships. the 16th International Static Analysis Symposium, 5673:309–325,
December 2009. 2.1.1

[2] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static anal-
ysis of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, pages 238–252. ACM,
1977. 1.2.1

[3] Rida T. Farouki. The bernstein polynomial basis: A centennial retrospective. Computer Aided
Geometric Design, 29(6):379–419, 2012. 3.1.1, 3.2

[4] Paul Feautrier. Parametric integer programming. RAIRO Recherche opérationnelle, 22(3):243–268,
1988. 4.2, 5

[5] Alexis Fouilhé, David Monniaux, and Michaël Périn. Efficient generation of correctness certificates
for the abstract domain of polyhedra. In SAS2013, 2013. 1.2.2, 2.1.1, 3.4

[6] David Handelman. Representing polynomials by positive linear functions on compact convex poly-
hedra. Pac. J. Math, 132(1):35–62, 1988. 4, 4.1

[7] Xavier Leroy. A formally verified compiler back-end. Journal of Automated Reasoning, 43(4):363–
446, 2009. 2.1.3

[8] Markus Schweighofer. An algorithmic approach to schmüdgen’s positivstellensatz. Elsevier Preprint,
June 2001. 4.1

[9] The Coq development team. The Coq proof assistant reference manual. LogiCal Project, 2004. Ver-
sion 8.0. 2.3

[10] Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Computation, 19(1):31–
100, 2006. 4.2

[11] Antoine Miné. Symbolic methods to enhance the precision of numerical abtract domains. the 7th
International Conference on Verification, Model Checking and Abstract Interpretation, 3855:348–
363, January 2006. 1.3, 2, 2.1.1, 2.1.2, 2.1.3

[12] César Muñoz and Anthony Narkawicz. Formalization of a representation of Bernstein polynomials
and applications to global optimization. Journal of Automated Reasoning, 51(2):151–196, August
2013. 3.1.2, 3.3, 5, 5

[13] William Pugh. The omega test: a fast and practical integer programming algorithm for dependence
analysis. In Proceedings of the 1991 ACM/IEEE conference on Supercomputing, pages 4–13. ACM,
1991. 2.1.3

[14] Shashwati Ray and P. S. V. Nataraj. A matrix method for efficient computation of bernstein coeffi-
cients. Reliable Computing, 17(1):40–71, 2012. 3.1.1, 3.1.2, 3.1.2, 5

31

A Interval elimination: the general case

A.1 Interval elimination in conditions (general case)
We present the interval elimination for a general condition containing an inequality of the form

if (`itv ≤ `′itv) then S1 else S2

with `itv =
∑

[ai, bi]×xi and `′itv =
∑

[a′i, b
′
i]×x′i

As explained previously, the linearization of the condition e1 ≤ e2 leads to two conditions which do
not exclude each other. Hence, the code provided to the analyzer is non deterministic.

alt


if

 ∃λ1 ∈ [a1, b1], ..., λn ∈ [an, bn],
∃λ′1 ∈ [a′1, b

′
1], ..., λ

′
n ∈ [a′n, b

′
n],∑

λixi ≤
∑
λ′ix
′
i

 then S1

if

 ∃λ1 ∈ [a1, b1], ..., λn ∈ [an, bn],
∃λ′1 ∈ [a′1, b

′
1], ..., λ

′
n ∈ [a′n, b

′
n],

¬ (
∑
λixi ≤

∑
λ′ix
′
i)

 then S2

As in the example, the existential quantifiers are eliminated using equivalences 1 and 2. The conditions
of the previous code become

• min (
∑

[ai, bi]×xi) ≤ max (
∑

[a′i, b
′
i]×x′i) for the first alternative.

• max (
∑

[ai, bi]×xi) ≤ min (
∑

[a′i, b
′
i]×x′i) for the second one.

Remark that whatever are the signs of the xi,

min

(∑
i

[ai, bi]×xi

)
=
∑
i

min([ai, bi]×xi) and max

(∑
i

[ai, bi]×xi

)
=
∑
i

max([ai, bi×xi)

The conditions are now

•
∑
min ([ai, bi]×xi) ≤

∑
max ([a′i, b

′
i]×x′i) for the first alternative.

•
∑
max ([ai, bi]×xi) >

∑
min ([a′i, b

′
i]×x′i) for the second one.

Thus, the initial program is translated into the following linear program:

alt
{

if (
∑
min ([ai, bi]×xi) ≤

∑
max ([a′i, b

′
i]×x′i)) then S1

if (
∑
max ([ai, bi]×xi) >

∑
min ([a′i, b

′
i]×x′i)) then S2

Remark that knowing the sign of xi,min ([ai, bi]×xi) andmax ([ai, bi]×xi) can be simplified in either
ai ∗ xi or bi ∗ xi. As a consequence, the previous program would not contain any interval anymore. We
shall detail this process in Section A.3.

A.2 Interval elimination in assignments (general case)
Going back to the program of Example 3, the interval that appears in the assignment on line 3 needs to be
eliminated. The value of z after the assignment z := [1, 3]×y is between y and 3×y. This corresponds
to the constraint y ≤ z ≤ 3×y since y ≥ 0. The assignment on line 3 is then replaced by z :

ND
=

{z̃ | y ≤ z̃ ≤ 3×y}.
The interval elimination of an assignment of a linear interval expression to a variable, e.g. x :=∑
[ai, bi]xi is

x :
ND
=
{
x̃ |
∑

min ([ai, bi]×xi) ≤ x̃ ≤
∑

max ([ai, bi]×xi)
}

As explained in the previous section, the final step for interval elimination is to maximize or minimize
expressions. This requires to know the sign of some sub-expressions, as we shall see in the next section.

32

x := f
lin−→ if (x1 ≥ 0)



if (xn ≥ 0)

{
then x :

ND
= {x̃ | `1 ≤ x̃ ≤ `′1}

else x :
ND
= {x̃ | `2 ≤ x̃ ≤ `′2}

then...
else...

if (xn ≥ 0)

{
then x :

ND
=
{
x̃ | `k−1 ≤ x̃ ≤ `′k−1

}
else x :

ND
= {x̃ | `k ≤ x̃ ≤ `′k}

Figure 18 – Shape of the result of an assignment linearization

A.3 Expression minimization and maximization
We have seen previously how to handle inequalities. This requires to minimize or maximize expressions, it
can be done with two different techniques. Both of them rely on knowledge of sub-expression’s sign. The
first one consists in expanding the expression, this is the method we have chosen. The particularity of this
one is that it requires only the sign of variables. This process is based on the following equalities :

• min([a, b]×x) = if (x ≥ 0)

{
then min([a, b]) ∗ x
else max([a, b]) ∗ x

• max([a, b]×x) = if (x ≥ 0)

{
then max([a, b]) ∗ x
else min([a, b]) ∗ x

For instance, assume we want to maximize the expression f := [−1, 2](x + [1, 5]). By expanding f ,
the code produced is

max([−1, 2](x+ [1, 5])) −→ max([−1, 2]x+ [−1, 2][1, 5]) −→ if (x ≥ 0)

{
then 2x+ 10
else −x+ 10

The second method uses the non-deterministic structure Alt, as defined in Section 2.1.3, to determine
the sign of sub-expressions. Applied on f , this technique would give the following code:

max([−1, 2](x+ [1, 5])) −→ alt
{

if (max(x+ [1, 5]) ≥ 0) then 2× max (x+ [1, 5])
if (min(x+ [1, 5]) < 0) then − 1× min (x+ [1, 5])

≡ alt
{

if ((x+ 5) ≥ 0) then 2× (x+ 5)
if ((x+ 1) < 0) then − 1× (x+ 1)

In both cases, the expression maximization or minimization leads to the creation of a tree of Alt or
if_then_else whose size depends on the expression size. In particular, the first method allows to bound
the size of the tree with the number of non-intervalized variable. This can be interesting in case of a
complex expression, or for a conjunction or disjunction. This is detailed in Appendix B. Another reason
for our choice is that it makes the proof in Coq easier.

However, this choice implies a loss of precision. Indeed, it allows to eliminate one interval with several
values at the same time, which was not possible before expansion. For instance in the expression [−1, 2]x+
[−1, 2][1, 5], we can replace the first [−1, 2] by -1, and the second one by 2, which gives−x+2[1, 5]. This
expression can give−x+10 if we replace [1, 5] by 5. In the initial expression [−1, 2](x+[1, 5]), we could
only replace [-1,2] by one value, and we could not obtain −x+10. By expanding, we have allowed values
that were not possible initially.

B Shape of the output of the algorithm
In this section, we summarize the different steps of the algorithm and show the shape of its output. As
said previously, the interval elimination gives an expression containing max and min. The minimization

33

if (f1 ≤ f2) then S1 else S2
lin−→ alt



if (x1 ≥ 0)



if (xn ≥ 0)

{
then if (`1 ≤ `′1) then S1

else if (`2 ≤ `′2) then S1

then...
else...

if (xn ≥ 0)

{
then if (`k−1 ≤ `′k−1) then S1

else if (`k ≤ `′k) then S1

if (x1 ≥ 0)



if (xn ≥ 0)

{
then if (`k+1 > `′k+1) then S2

else if (`k+2 > `′k+2) then S2

then...
else...

if (xn ≥ 0)

{
then if (`2k−1 > `′2k−1) then S2

else if (`2k > `′2k) then S2

Figure 19 – Shape of the result of the linearization of if (f1 ≤ f2) then S1 else S2

and maximization of expressions require a knowledge about the sign of some variables, as detailed in
Appendix A.3. This process leads to a tree where all possible sign of non-intervalized variables are treated.
That’s why the resulting GCL code is a tree whose nodes are assumptions on the sign of variables.

• Figure 18 shows the result for an assignment linearization. As the interval elimination gives expres-
sion of the form NDassign

∑
min ([ai, bi]×xi) ≤ x ≤

∑
max ([ai, bi]×xi), the tree leaves have

the form x :
ND
= {x̃ | `i ≤ x̃ ≤ `′i}.

• Figure 19 shows the result of the linearization of a if-then-else. The interval elimination for this
statement gives an alt structure. That’s why the result is a tree starting with an alt. The top half of
the tree approximates the part if (f1 ≤ f2) then S1 whereas the bottom one approximates if (f1 >
f2) then S2.

Example 14. The result of the linearization of the Example 1 is the following GCL code:

alt



if (y ≥ 0)



then if (x ≥ 0)


then if (x− 2y ≤ 4) then if (x ≥ 0)

{
then z :

ND
= {z̃ | −2 ∗ x ≤ z̃ ≤ 3 ∗ x}

else z :
ND
= {z̃ | 3 ∗ x ≤ z̃ ≤ −2 ∗ x}

else if (7 ∗ x− 2 ∗ y ≤ 4) then if (x ≥ 0)

{
then z :

ND
= {z̃ | −2 ∗ x ≤ z̃ ≤ 3 ∗ x}

else z :
ND
= {z̃ | 3 ∗ x ≤ z̃ ≤ −2 ∗ x}

else if (x ≥ 0)


then if (x+ 3y ≤ 4) then if (x ≥ 0)

{
then z :

ND
= {z̃ | −2 ∗ x ≤ z̃ ≤ 3 ∗ x}

else z :
ND
= {z̃ | 3 ∗ x ≤ z̃ ≤ −2 ∗ x}

else if (7 ∗ x+ 3 ∗ y ≤ 4) then if (x ≥ 0)

{
then z :

ND
= {z̃ | −2 ∗ x ≤ z̃ ≤ 3 ∗ x}

else z :
ND
= {z̃ | 3 ∗ x ≤ z̃ ≤ −2 ∗ x}

if (y ≥ 0)


then if (x ≥ 0)

{
then if (7x+ 3y > 4) then z := 0
else if (x+ 3y > 4) then z := 0

else if (x ≥ 0)

{
then if (7x− 2y > 4) then z := 0
else if (x− 2y > 4) then z := 0

Remark that the condition x2 + y2 ≤ 4 and the assignment z = y ∗ x are linearized indepen-
dently - for the simplicity of the proof. As a consequence, even if we know that y ≥ 0 in the
first branch of the tree, the linearization of z = y ∗ x cannot use directly this assumption. That
is the reason why we are doing twice the sign distinction for y. This can be easily improved
by a post-processing algorithm which would cut the unfeasible branches. We would obtain the
following code:

34

alt



if (y ≥ 0)


then if (x ≥ 0)

{
then if (x− 2y ≤ 4) then z :

ND
= {z̃ | −2 ∗ x ≤ z̃ ≤ 3 ∗ x}

else if (7 ∗ x− 2 ∗ y ≤ 4) then z :
ND
= {z̃ | 3 ∗ x ≤ z̃ ≤ −2 ∗ x}

else if (x ≥ 0)

{
then if (x+ 3y ≤ 4) then z :

ND
= {z̃ | −2 ∗ x ≤ z̃ ≤ 3 ∗ x}

else if (7 ∗ x+ 3 ∗ y ≤ 4) then z :
ND
= {z̃ | 3 ∗ x ≤ z̃ ≤ −2 ∗ x}

if (y ≥ 0)


then if (x ≥ 0)

{
then if (7x+ 3y > 4) then z := 0
else if (x+ 3y > 4) then z := 0

else if (x ≥ 0)

{
then if (7x− 2y > 4) then z := 0
else if (x− 2y > 4) then z := 0

Conjunctions, disjunctions and equalities Up to now, the only conditional expressions we considered
contained inequalities. Let us now treat the case of conjunctions (disjunctions are handled similarly, by
inverting ∧ and ∨ in the following reasoning). First, given a conditional expression if (f1 ≤ f2 ∧ f3 ≤ f4)
then S1 else S2, we compute the negation of the condition and get (f1 > f2 ∨ f3 > f4). Second, we
apply the same linearization algorithm as detailed above. Thereby, we obtain a tree with the same shape as
Figure 19, where leaves have the form if (`1 ≤ `2 ∧ `3 ≤ `4) then S1 or if (`1 > `2 ∨ `3 > `4) then S2.
Note that (f1 ≤ f2 ∧ f3 ≤ f4) is treated as a single expression, in the sense that a single tree will be
generated to treat this condition. It means that if a variable appears at the same time in f1, f2, f3 and f4, it
will be treated only once. This is one reason why we have chosen to eliminate intervals by expanding ex-
pressions instead of making assumptions on bigger sub-expressions. Indeed, the second method explained
in Appendix A.3 would give a larger tree if f1, f2, f3 and f4 did not share the same sub-expressions.

The case of equalities is treated simply by replacing if (f1 == f2) then S1 else S2 by if (f1 ≤
f2 ∧ f2 ≥ f1) then S1 else S2, then apply the linearization algorithm as explained above.

C Coq types

C.1 Type exprZ

Inductive var : Type := X : positive→ var.

Inductive a_binopZ : Type :=
| Oadd
| Omul.

Inductive a_exprZ : Type :=
| Zconst_int : Z→ a_exprZ
| Zvar : var→ a_exprZ
| Zbinop : a_binopZ→ a_exprZ→ a_exprZ→ a_exprZ .

Inductive b_binop : Type :=
| Ole
| Oge
| Olt
| Ogt.

Inductive b_exprZ : Type :=
| ZBbinop : b_binop→ a_exprZ→ a_exprZ→ b_exprZ
| ZOR : b_exprZ→ b_exprZ→ b_exprZ
| ZAND : b_exprZ→ b_exprZ→ b_exprZ.

Inductive exprZ : Type :=
| AexprZ : a_exprZ→ exprZ
| BexprZ : b_exprZ→ exprZ.

35

C.2 Type exprZ∪⊥

Inductive a_exprZ∪⊥ : Type :=
| ZEconst_int : Z ∪ ⊥→ a_exprZ∪⊥
| ZEvar : var→ a_exprZ∪⊥
| ZEbinop : a_binopZ→ a_exprZ∪⊥→ a_exprZ∪⊥→ a_exprZ∪⊥.

Inductive b_exprZ∪⊥ : Type :=
| ZEBbinop : b_binop→ a_exprZ∪⊥→ a_exprZ∪⊥→ b_exprZ∪⊥
| ZEOR : b_exprZ∪⊥→ b_exprZ∪⊥→ b_exprZ∪⊥
| ZEAND : b_exprZ∪⊥→ b_exprZ∪⊥→ b_exprZ∪⊥.

Inductive exprZ∪⊥ : Type :=
| AexprZ∪⊥ : a_exprZ∪⊥→ exprZ∪⊥
| BexprZ∪⊥ : b_exprZ∪⊥→ exprZ∪⊥.

C.3 Type expr_expZ

Inductive monome : Type :=
| MCste : Z→ monome
| MVar : var→ monome
| MP : monome→ monome→ monome.

Inductive expr_expZ : Type :=
| Mm : monome→ monomes
| Madd : expr_expZ→ expr_expZ→ expr_expZ .

C.4 Type expr_linitv(Z∪⊥)

Record itv : Type := ITV{ min:ZE ; max:ZE}.

Record itv_wf : Type := ITV_WF{ itvl:itv ; wf : min itvl <= max itvl}.

Inductive a_expr_linitv(Z∪⊥) : Type :=
| Dsum : a_expr_linitv(Z∪⊥)→ a_expr_linitv(Z∪⊥)→ a_expr_linitv(Z∪⊥)

| Ditv : itv_wf→ a_expr_linitv(Z∪⊥)

| Dvaritv : var→ itv_wf→ a_expr_linitv(Z∪⊥)

| DAerror.

Inductive b_expr_linitv(Z∪⊥) : Type :=
| DOR : b_expr_linitv(Z∪⊥)→ b_expr_linitv(Z∪⊥)→ b_expr_linitv(Z∪⊥)

| DAND : b_expr_linitv(Z∪⊥)→ b_expr_linitv(Z∪⊥)→ b_expr_linitv(Z∪⊥)

| DBerror
| DBbinop : b_binop→ a_expr_linitv(Z∪⊥)→ a_expr_linitv(Z∪⊥)→ b_expr_linitv(Z∪⊥).

C.5 Type expr

Inductive expr : Type :=
| ExprZ : exprZ→ expr
| ExprZ∪⊥ : exprZ∪⊥→ expr.

D Semantics of GCL

Inductive step : state→ state→ Prop :=
| step_skip_seq: ∀ (s:stmt) (k:cont) (v:valuation),

step
(State Sskip (Kseq s k) v)

36

(State s k v)

| step_assign : ∀ (x:var) (e:a_expr) (k:cont) (v v’:valuation),
v’ = (update v x (eval_a_expr e v))→
step

(State (Sassign x e) k v)
(State Sskip k v’)

| step_seq: ∀ (s1:stmt) (s2:stmt) (k:cont) (v:valuation),
step

(State (Sseq s1 s2) k v)
(State s1 (Kseq s2 k) v)

| step_ifthen: ∀ (e:expr) (s:stmt) (k:cont) (v:valuation),
bool_of_expr e v true→
step

(State (Sifthen e s) k v)
(State s k v)

| step_ifthenelse: ∀ e s1 s2 k v b,
bool_of_expr e v b→
step

(State (Sifthenelse e s1 s2) k v)
(State (if b then s1 else s2) k v)

| step_alt1 : ∀ (s1 s2 : stmt) (k : cont) (v : valuation),
step

(State (Salt s1 s2) k v)
(State s1 k v)

| step_alt2 : ∀ (s1 s2 : stmt) (k : cont) (v : valuation),
step

(State (Salt s1 s2) k v)
(State s2 k v)

| step_NDassign : ∀ (x:var) (z zmin zmin:Z ∪ ⊥)
(emin emax :a_exprZ∪⊥) (k:cont) (v:valuation),
zmin = (eval_a_exprZ∪⊥ emin v)→
zmax = (eval_a_exprZ∪⊥ emax v)→
zmin <= z→ z <= zmax→
step

(State (SNDassign emin x emax) k v)
(State (Sassign x (AexprZ∪⊥ (ZEconst_int z))) k v).

37

	Toward Certification of a C compiler
	The VERASCO project
	VERIMAG's contributions
	Static analysis by abstract interpretation
	A certified library for convex polyhedra

	Linearization

	Linearization by variable intervalization
	Principle of the intervalization algorithm
	Variable intervalization
	Interval elimination and polyhedron approximation
	The main steps of the algorithm

	Correctness criteria of the linearization process
	Valuations of variables
	Correctness of assignment linearization
	Correctness of if-then-else linearization

	Certification in Coq: formalization and correctness proof
	Main Coq types
	The semantics of GCL
	Correctness proof of the linearization algorithm

	Linearization on polytopes using Bernstein basis
	Bernstein representation of polynomials on [0,1]l
	The Bernstein basis
	Change of basis

	Polyhedron from Bernstein coefficients
	Polyhedron refinement
	Toward certification in Coq

	Linearization on polytopes using Handelman representation
	Handelman representation of positive polynomials
	Handelman approximation as a Parametric Linear Optimization Problem
	Toward certification in Coq

	Comparison of the linearization methods and future work
	Interval elimination: the general case
	Interval elimination in conditions (general case)
	Interval elimination in assignments (general case)
	Expression minimization and maximization

	Shape of the output of the algorithm
	Coq types
	Type exprZ
	Type exprZ
	Type expr_expZ
	Type expr_linitv(Z)
	Type expr

	Semantics of GCL

