
Strictly Periodic Scheduling of Acyclic
Synchronous Dataflow Graphs using

SMT Solvers

Pranav Tendulkar, Peter Poplavko, Oded Maler

Verimag Research Report no TR-2014-5

01-May-2014

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Strictly Periodic Scheduling of Acyclic Synchronous Dataflow
Graphs using SMT Solvers

Pranav Tendulkar, Peter Poplavko, Oded Maler

01-May-2014

Abstract

We consider compile-time multi-core mapping and scheduling problem for synchronous dataflow
(SDF) graphs, proved an important model of computation for streaming applications, such
as signal/image processing and video/image coding. In general the real-time constraints for
these applications include both the task periods / throughput and the deadlines / latency. The
deadlines are typically larger than the periods, which enables pipelined scheduling, allow-
ing concurrent execution of different iterations of an application. A majority of algorithms
for scheduling SDF graphs on a limited number of processors do not consider both latency
and period real-time constraints at the same time. For this problem, we propose an efficient
method based on SMT (satisfiability modulo theory) solvers. We restrict ourselves to strictly
periodic scheduling and acyclic graphs, giving up some efficiency for the sake of simplicity.
We also upgrade and integrate two alternative methods – unfolding and modulo scheduling –
into our scheduling framework. Experiments for different methods are performed for a set of
application benchmarks and advantages of the proposed method is demonstrated empirically.

Keywords: synchronous dataflow graphs, multiprocessor scheduling, multi-rate data-flow graphs, pipelined
scheduling, modulo scheduling, non-preemptive scheduling, constraint solving, SAT/SMT solving

Reviewers: Oded Maler

How to cite this report:

@techreport {TR-2014-5,
title = {Strictly Periodic Scheduling of Acyclic Synchronous Dataflow Graphs using SMT

Solvers},
author = {Pranav Tendulkar, Peter Poplavko, Oded Maler},
institution = {{Verimag} Research Report},
number = {TR-2014-5},
year = {}

}

Scheduling Acyclic SDF using SMT Solvers Pranav Tendulkar, Peter Poplavko, Oded Maler

1 Introduction
Streaming applications process streams of data of indefinite length, where output stream(s) are func-
tion(s) of input streams. Typical examples are digital signal processing (DSP) applications, video/audio
(de-)coding, digital radio and television applications [19]. Such applications have high computational
demands and hence they are often implemented in dedicated hardware. However, the semiconductor tech-
nology advances make it worthwhile to port many such applications to programmable parallel architectures
with dedicated support of DSP in the instruction set. These architectures can be classified as multi-cores
and ‘reconfigurable computing’ arrays of processing elements. To meet the performance targets on pro-
grammable hardware, it is crucial to make use of task parallelism through optimizing compiler tools. To
this end, the designers represent their application by a model of computation that exposes the parallelism.
The streaming applications can be conveniently expressed using dataflow models, such as synchronous
dataflow graph (SDF) [11], also referred to as multi-rate dataflow (MRDF). Several multi-core compilers
for SDF and other dataflow models have been proposed, e.g., StreamIt [8]. Our work contributes to possible
SDF compiler optimization for the resource and real-time constraints. For simplicity, we restrict ourselves
to acyclic graphs (i.e., all feedback loops are hidden inside the graph nodes).

Deployment of a model on a platform consists of mapping and scheduling, which have to satisfy real-
time constraints on both throughput (i.e., period) and latency (i.e., response time, deadline). What makes
the problem harder is the typical lack of support of task preemption in DSP multi-cores, which invalidates
many real-time scheduling policies, such as EDF, making it computationally hard to analyze the schedu-
lability. Moreover, even if preemptions were allowed, another problem is that DSP applications are task
graphs and not independent tasks, which makes it hard to compute the response times. Therefore, many
scheduling algorithms for DSP multi-cores are non-preemptive and they sacrifice the latency for the sake of
throughput e.g., [10]. Satisfying both throughput and latency constraints at the same time when scheduling
task and SDF graphs on a bounded number processors is a hard combinatorial problem rarely addressed in
the literature, especially if one tries to obtain or approximate the exact solution.

Due to hardness of this problem, generic constraint solving techniques are typically applied for it, such
as, SMT (Satisfiability Modulo Theory), ILP (integer linear programming), ASP (Answer Set Program-
ming), and CP (constraint propagation). In our previous work [18], we apply SMT solvers for mapping
and scheduling a (subclass of) acyclic SDF graphs, but we still focused on latency constraint and ignored
the throughput constraint. In this paper, we propose extensions of that work for period/throughput, as-
suming pipelined scheduling, i.e., the period can be smaller than the latency. For simplicity, we restrict
ourselves to strictly periodic schedules.

To take into account the previous related work we adapt and implement two alternative exact constraint-
solver based methods: the unfolding ([13]) and the modulo scheduling (see e.g., [14, 6]). Hereby we make
sure both methods are expressed in the same constraint coding style, thus enabling fair comparison between
them. The empirical comparison of their performance is one of the contributions of this work. Further,
as alternative to these methods, we propose a new one, called ‘period locality’. The proposed method
represents the periodic pipelined scheduling by significantly simpler set of constraints, in exchange of
possible loss of optimality, because it admits a heuristic restriction on the schedule properties.

We perform experiments on a popular set of SDF application benchmarks, comparing the three alter-
native methods in terms of solver computation times and the number of cost trade-off points that could be
obtained within a given time budget. In this context the proposed method, the period locality, did not show
any inferiority in quality due to theoretical sub-optimality, whereas it tended to show better computation
times compared to the exact methods.

2 Acyclic Synchronous Dataflow Graphs
Suppose you want to perform some processing on an image. The image is first zipped in some format
and you have to decode it sequentially. After that, you can split the image into N blocks of equal size,
assuming that processing a block does not depend on information outside the block, and the processing of
different blocks can run in parallel. Suppose each processing can be decomposed into two sequential parts,
and subsequently whole processed image should be merged together and zipped again. The SDF graph of

Verimag Research Report no TR-2014-5 1/19

Pranav Tendulkar, Peter Poplavko, Oded Maler Scheduling Acyclic SDF using SMT Solvers

A B C D
N 1 1 1 1 N

Figure 1: An SDF graph

A0 B1

B0

B2

C0

C1

C2

D0

Figure 2: The task-graph derived from the SDF graph in Fig. 1 by expanding the data-parallel tasks for N = 3.

Fig. 1 captures the structure of this application. Process (“actor”) A models the unzipping, processes B
and C reflect the two processing parts that every image block goes through, while process D is the zipping
after the processing. The splitting and joining of the image into N blocks is captured by the unequal
“token rates” on the links between actors. The pair (N, 1) between A and B means that an instance of A
produces N tokens while an instance of B consumes only one token. To keep everything balanced then,
an instance of A should spawn N instances of B, each spawning 1 instance of C (the pair (1, 1) on the
edge between them). Finally a single instance of the zipping process D will consume and merge all the
tokens produced by the N instances of C. In Fig. 2 we expand the SDF graph of this example into a task
graph that details the processing tasks described above. As this example shows, the SDF graph can be seen
as a more compact way to express parallel applications than the task graph. Needless to say, SDF does
not replace actual application code, it just structures it into components, each being a piece of code with
bounded execution time.

Definition 2.1 (Acyclic SDF Graph). An acyclic SDF graph is a tuple S = (V,E, d, r) where (V,E) is
a finite direct acyclic graph (DAG) whose nodes are repeatedly executed processes (actors) and edges are
FIFO (first-in-first-out) channels, d : V → R+ is a function assigning an execution time to each node,
r : E → N+ × N+ assigns pairs of token production/consumption rates to channels. We use the notation
r(u, v) = (α(u, v), β (u, v)). The meaning of α is the number of data tokens produced to the channel at
the end of each execution of actor u, and β is the number of data tokens consumed at the start of each
execution of actor v. An SDF graph with r(e) = (1, 1) for every e is called a task-graph and is denoted by
T = (U, E , δ), renaming the first three tuple components and skipping the implicit component r.

We deviate from the common definition of SDF graph by forbidding cyclic paths and initial tokens, as
certain part of the theory that we use in scheduling does not support these properties yet. Therefore, in the
application benchmarks for the experiments we contracted all strongly connected components (which were
anyway rare) into actors.

A practical SDF graph should satisfy the consistency property [11], namely, it should be possible to
execute the actors such that the total amount of data produced on each channel is equal to the total amount
of data consumed. This condition is ensured by so-called balance equations. Let c(v) denote the number
of times actor v is executed. The balance equation for an SDF channel (v, v′) is written as:

c(v) · α(v, v′) = c(v′) · β (v, v′) (1)

Applying Equation (1) to every edge results in the system of balance equations of the SDF graph. This
system of linear equations can be solved by algebraic methods, but a more efficient procedure is proposed
in [1]. It is required that this system should be solvable, in which case the SDF graph is consistent.
Obviously, if c(v), v ∈ V is a solution thenC ·c(v) is a solution as well. To identify the minimal meaningful
processing that can be executed by a given SDF graph, we use the minimal positive integer solution and
henceforth we apply the notation c(v) for it. For the example in Fig. 1 we have the following solution:

2/19 Verimag Research Report no TR-2014-5

Scheduling Acyclic SDF using SMT Solvers Pranav Tendulkar, Peter Poplavko, Oded Maler

c(A) = 1, c(B) = N , c(C) = N , c(D) = 1. An execution of an SDF graph where each actor executes
c(v) times is called an SDF graph iteration.

In fact, the task graph derived from an acyclic SDF corresponds to one SDF iteration. Therefore, for
each actor v the task graph contains c(v) tasks {v0, v1, . . . vc(v)−1}. For example, Fig. 2 contains three task
instances for actors B and C because c(B) = c(C) = N and we assume N = 3.

Let us define the edges of the derived task graph. For an SDF channel (v, v′) with r = (α, β) let
us consider the sequence of α · c(v) tokens produced in the channel in one iteration when the SDF graph
is executed sequentially. Let us number these tokens by index i in the order they are produced by the
tasks of actor v executing in sequence: v0, v1, Obviously, token i is produced by the task vm where
m = bi/αc. In sequential execution of an SDF graph, the actor executions, represented here by the tasks,
consume the tokens in the same order as they are produced (the FIFO order). Therefore, the first β tokens
will be consumed by the task v′0, then the next β tokens by v′1, etc.. In general, the token i is consumed by
task v′n where n = bi/β c. To model the dependency of token production and consumption, the task graph
should contain edge (vm, v

′
n). For example, in Fig. 1 for channel (B,C), we have α = 1 and β = 1 and

hence m = n = i we join (Bm, Cn) whose m and n are equal. The execution times of SDF actors are
copied to the tasks: δ(vn) = d(v). These rules to derive the task graph from an SDF graph are based on
the well-known translation of an SDF graph into the equivalent homogeneous SDF graph [1].

The definition below summarizes these rules to derive the task graph from an acyclic SDF graph.

Definition 2.2 (Derived Task Graph). From a consistent acyclic SDF graph S = (V,E, d, r) we derive the
task graph T = (U, E , δ) as follows:

U = {vh| v ∈ V, 0 ≤ h < c(v)}

E = {(vh, v′h′) ∈ E ∧ ε(v, v′, h, h′)}
where ε is predicate defined by:

ε(v, v′, h, h′) : ∃ i ∈ N : h = bi/α(v, v′)c, h′ = bi/β (v, v′)c, vh, v′h′ ∈ U

and ∀vh ∈ U . δ(vh) = d(v).

3 Non-pipelined Deployment
A problem instance of the deployment problem consists of an acyclic SDF graph S and the costs. As
explained later, the costs are the number of processors M , the latency `, and, in the case of pipelined
scheduling, period P . The deployment is actually done not for graph S itself but for the task graph T
derived from it. But we still exploit the relation between T and S to establish certain properties of the
deployment that are important for solving the problem efficiently. Below we define the form in which the
solution to the deployment problem is represented. Then, in this section we present the constraints for
less general and simpler problem – the non-pipelined scheduling. These constraints are generalized to the
pipelined scheduling in the next section.

Definition 3.1 (Deployment). A deployment for a task graph T = (U, E , δ) on an execution platform with
a finite set of M processors consists of a mapping function µ : U → {1 . . .M} and a scheduling function
s : U → R≥0 indicating the start time of each task.

A scheduling interval for task u is interval [s(u), e(u)), where e(u) = s(u) + δ(u). We assume non-
preemptive scheduling, and hence the task executes entirely inside this interval.

Not every possible deployment is realizable. It is only such if the scheduling intervals of different tasks
mapped to the same processor do not overlap (i.e., have an empty intersection). A feasible deployment is a
realizable deployment which respects the task dependencies and the cost constraints. We define a realizable
and feasible deployment in terms of constraints that can be presented to the constraint solver tools.

In the context of so-called satisfiability modulo theory (SMT) solvers, the constraints are defined in
terms of predicates (i.e., logical assertions) on a set of decision variables.

Verimag Research Report no TR-2014-5 3/19

Pranav Tendulkar, Peter Poplavko, Oded Maler Scheduling Acyclic SDF using SMT Solvers

The primary decision variables for the deployment problem are the scheduling and the mapping func-
tions. The solver has to compute the value of these functions for each task, so each s(u) and µ(u) is a
decision variable, assuming real s(u) ∈ R≥0 and integer µ(u) ∈ N+. Note that the task completion time
e(u) differs from s(u) only by a constant task delay δ(u).

For the definition of scheduling constraints, it is convenient to define the following predicate:

ψu,u′ : e(u) ≤ s(u′)

This predicate states that the scheduling interval of task u′ follows after the interval of task u.
The following constraint is necessary to ensure that the deployment is realizable (see e.g., [13]):

ϕµ :
∧

u6=u′∈U

(µ(u) = µ(u′))⇒ ψu,u′ ∨ ψu′,u

ϕµ is called mutual exclusion constraint. It asserts that the scheduling intervals of two tasks running on the
same processor have an empty intersection.

For a realizable deployment, one needs to add the precedence and the cost constraints. The former
ensures that the task graph dependencies are respected by the schedule:

ϕε :
∧

(u,u′)∈E

ψu,u′ (2)

We define two cost constraints: one for the latency (termination of the last task), denoted `, and the other
one for the number of processors used, denoted M :

ζ` :
∧
u∈U

e(u) ≤ ` ∧ ζM :
∧
u∈U

µ(u) ≤M

Putting all constraints together, we have the following encoding for the deployment problem:

Φµε`M : ϕε ∧ ϕµ ∧ ζ` ∧ ζM (3)

As argued in the next section, although these constraints are sufficient for non-pipelined deployment, which
schedules only one SDF iteration at a time, they are too weak for the pipelined deployment, where multiple
iterations can execute on different processors at the same time.

To ensure efficient encoding of the deployment problem in the constraint solvers, in our constraints we
also take into account the symmetry of the solution space, which means existence of equivalent feasible
solutions obtained from each other by permutation of decision variables. Also we take into account the
existence of equisatisfiable problem formulations whose scheduling decisions differ by the degree of lazi-
ness of the schedule, i.e., by the amount of unnecessary idle waiting of processors in the presence of ready
tasks. The constraint solving can become significantly more efficient if one adds auxiliary constraints to
the solver which would reduce the number of equivalent solutions. These auxiliary constraints are symme-
try breaking [5] constraints and laziness reduction (‘tightening’) [3]. Unlike the previous work [18], now
we do not focus on evaluating the direct impact of auxiliary constraints; instead, we summarize them in
Appendix C, while enabling them by default in our empirical studies. In this paper, we show the indirect
impact of laziness tightening constraints, deriving from them new results that facilitate efficient pipelined
scheduling.

4 Pipelined Deployment

4.1 Basic Considerations
The pipelined periodic scheduling problem can be explained as follows. Suppose we are given an infinite
set of subsequent iterations of the SDF graph, each represented by a task graph copy. The SDF iterations
arrive and execute strictly periodically, where the variables s(u) give the start times in the first iteration, see
Fig. 3. As shown in Fig. 3b, a new iteration may start even before the previous one has finished. Therefore

4/19 Verimag Research Report no TR-2014-5

Scheduling Acyclic SDF using SMT Solvers Pranav Tendulkar, Peter Poplavko, Oded Maler

A0 B0

B1

B2

C0

C1

C2

D0

iteration 0 iteration 1

A0 B0

B1

B2

Time

P1

P2

P3

(a) Non-Pipelined, P ≥ `

A0 B0

B1

B2

C0

C1

C2

D0

iteration 0
iteration 1

A0 B0

B1

B2

Time

P1

P2

P3

(b) Pipelined, P < `

Figure 3: Periodic Schedule Examples for the SDF Graph in Fig. 2

the mutual exclusion conditions ϕµ are not sufficient to ensure a realizable deployment, because they do
not take into account the processor conflicts between the iterations. In this section we propose a new simple
method that extends ϕµ such that these conflicts are avoided using a heuristic restriction on the schedule
properties. The proposed method is called the period locality method. We also adopt two other methods
that model the inter-iteration conflicts exactly, without heuristic restrictions. Those are unfolding [13] and
modulo scheduling e.g., [2, 6]. We upgrade these two methods so that they encode the pipelined deployment
to exactly model the deployment problem we want to address. These two methods are logically equivalent
but significantly different in form, and one of our contributions is putting them in the same framework for
a fair comparison between them.

Note that due to periodic repetition of relative start times s(u) in all graph iterations, during the transi-
tion from non-pipelined to pipelined problem formulation we can leave the precedence and cost constraints
exactly the same. Thus, only mutual exclusion constraints are modified at this transition, and the period
cost, which should be dealt with in the pipelined scheduling, is not modeled as a separate constraint but is
embedded in the modified mutual exclusion constraints.

Let P be the period, let ` be the latency. If P ≥ ` then one can use the non-pipelined schedule and
repeat it periodically(see Fig. 3a). But in general we can have P < `. Let us index the iterations with index
k starting from k = 0.

Period P

Latency `

Period0 Period1 Period2 Period3

Time

iteration0 iteration1 iteration2 iteration3

P0

P1

P2

P3

reference period

Figure 4: Pipelined Execution, K = 2

Iteration k = 0 executes according to schedule s(u). Every new iteration executes at time P after the
previous one, according to a strictly periodic schedule; iteration k assumes the schedule s(u) + k · P and
the same processor mapping µ(u). Note that we select only values P such that ∀u ∈ U,P ≥ δ(u). This
condition prevents the overlap between the scheduling intervals of the same task in subsequent iterations,
which would be non-realisable, as all iterations of a task u execute on the same processor, µ(u).

Let us refer to the time interval [k · P, (k + 1) · P) as the ‘k-th period’. The periods and iterations
are illustrated in Fig. 4. In 0-th period, only iteration 0 of the graph is executing. Further, when the 1-st
iteration starts the 0-th iteration is still executing. Due to this overlap, we have a higher processor usage in

Verimag Research Report no TR-2014-5 5/19

Pranav Tendulkar, Peter Poplavko, Oded Maler Scheduling Acyclic SDF using SMT Solvers

the 1-st period than in the 0-th one. Similarly, in periods 1, 2, . . . the processor usage gradually increases
until we reach period k = K, where K = d`/P e − 1. It is inside this period that the last task of iteration
0 finishes. Starting from this period, the number of simultaneously executing iterations saturates at its
maximum level: (K + 1). Consequently, the processor usage observed inside the K-th period is maximal
and repeats periodically forever in the future. We call this period the reference period.

To formalize the observations above, let us first define that task u executes at period k if one of its
periodic scheduling intervals [s(u) + i · P, e(u) + i · P) intersects with the time interval of period k. For
example, in Fig. 3(b), task D0 does not execute at period 0, but it executes at periods 1 and later. This
is because task D0 in iteration 0 is scheduled later than period 0, such that period 1 is the first period
where it executes. In general, task u in iteration 0 starts at period ks = bs(u)/P c and ends in period
ke = d(s(u) + δ(u))/P e − 1. Therefore, we can make the following observation:

Proposition 4.1 (Reference Period). In a schedule of latency cost ` any task executes at period K and
later, where K = d`/P e − 1. Therefore K is identified as the reference period.

From Proposition 4.1 and from periodic repetition of scheduling intervals follows that if the scheduling
intervals of two tasks ever overlap with one another then they also overlap in the reference period. There-
fore, for mutual exclusion of the tasks mapped to the same processor it is sufficient (and, obviously, also
necessary) to ensure their non-overlap in the reference period. Later in this section, this observation is
exploited in the mutual exclusion constraints of unfolding and modulo scheduling.

4.2 Period Non-laziness
In the literature on constraint-solution based modulo scheduling, one can encounter a particular type of
laziness reduction constraints for periodic schedules. For example, in [6] these constraints are formulated
for pseudo-Boolean scheduling variables, and in [2] for real variables, as in this paper. In both cases, these
constraints were reported to improve the performance of constraint solving for modulo scheduling. We
refer to these constraints as period non-laziness, and we use them not only for the modulo scheduling but
also derive an important result for all pipelined scheduling methods.

Proposition 4.2 (Period Non-laziness). [2] If task u′ is the latest predecessor of task u then without loss
of feasibility we can constrain u to start within time P after the completion of u′, more formally:

s(u)− e(u′) < P

If task u has no predecessors than u can be constrained to start in period 0:

s(u) < P

To give an intuitive argument for this proposition, we observe that in a feasible periodic deployment
it always holds that inside an arbitrary time interval of length P any task can find a reserved moment of
time where the processor µ(u) is available to start its execution. Therefore, any task can start within time
P after the latest predecessor, which ensures that the precedence constraints are satisfied.

Corollary (Latency Upper Bound). Let Ωmax be the maximal edge count in an SDF graph path. Let
Lmax = 2 · (Ωmax + 1) · P If there exists a feasible periodic schedule (of any latency cost) then there also
exists a periodic schedule with the latency cost ` = Lmax.

Proof. See Appendix A.

For example, for the SDF graph in Fig. 1 we have Ωmax = 3, so the upper bound on the latency cost is
Lmax = 8 · P .

From the corollary follows that ` = Lmax can be considered an upper bound on a ‘reasonable’ latency
constraint, because a larger ` does not influence the feasibility of the problem. Thus, the reference period
K can be always limited to 2 · Ωmax + 1.

Note that if the real application’s maximal latency constraint is Lmax or larger then one can use the
well-known load balancing approach, where it is sufficient to compute the mapping such that the load per
processor is at most P , after which it is trivial to construct a feasible schedule that satisfies the latency and
the precedence constraints. It is latency-restricted applications (i.e., the latency constraint strictly below
Lmax) that the methods of this paper should be applied for.

6/19 Verimag Research Report no TR-2014-5

Scheduling Acyclic SDF using SMT Solvers Pranav Tendulkar, Peter Poplavko, Oded Maler

4.3 Method 1: Period Locality
The period locality method is the first of the three alternative methods to encode the pipelined mutual
exclusion discussed in the present paper. We are not aware of any previous work describing this method.
The idea is to use the same mutual exclusion constraints as the non-pipelined deployment, but to restrict
the scheduling such that different iterations cannot compete for processors. For this we require that all task
scheduling intervals assigned to the same processor fit within a timing interval of length P .

ϕλ :
∧

u6=u′∈U

(µ(u) = µ(u′))⇒ e(u)− s(u′) ≤ P

Obviously, in a strictly periodic schedule with period P this condition eliminates the inter-iteration proces-
sor conflicts. Hence, we have the following encoding of the period locality method:

Φλµε`M : ϕλ ∧ ϕε ∧ ϕµ ∧ ζ` ∧ ζM

The period locality is a heuristic, as it restricts the periodic schedule such that the iterations do not
overtake each other on a processor. The other methods do not have this restriction.

4.4 Method 2: Unfolding
The unfolding [13] takes explicitly into account the first K + 1 iterations and treats them as if we had to
find a non-pipelined deployment for a task graph T f , T f = T [0] ∪ T [1] ∪ . . . T [K], where T [k] is the k-th
distinct copy of task graph T , and the value of K is again defined as K = dl/P e − 1.

In a strictly periodic schedule, the k-copies of each task should be scheduled with a time shift of k
periods and run on the same processor. This is captured in the periodicity constraint:

ϕp :
∧
u∈U

∧
0≤k≤K

[s(u[k]) = s(u) + kP ∧ µ(u[k]) = µ(u)]

The precedence constraints remain intact, because they hold in all task graph copies by periodicity. As for
the mutual exclusion constraints, we obtain them from the non-pipelined ones by substituting the decision
variables of tasks u by those of u[k]:

ϕf
µ :

∧
u[k]6=u′[k′]∈U f

(µ(u) = µ(u′))⇒ ψu[k],u′[k′] ∨ ψu′[k′],u[k]

According to a theorem proved in [13] if we thus satisfy the mutual exclusion for iterations 0 . . .K then
we satisfy them for the whole infinite set of periodic iterations. This theorem holds because, as it can be
easily shown, these constraints ensure the mutual exclusion inside the reference period. To summarize, the
unfolding method is encoded by:

Φf
µpε`M : ϕf

µ ∧ ϕp ∧ ϕε ∧ ζ` ∧ ζM

From Corollary 4.2, we observe that the number of unfolded task graph copies can be restricted to
2 · (Ωmax + 1). In practice, this observation means giving an upper bound on the overhead of the unfolding
method. This is our contribution to the unfolding method.

4.5 Method 3: Modulo Scheduling
Finally, the modulo (or cyclic) scheduling, e.g., [2], focuses exclusively on the reference period, i.e., the
period k = K, which is comparable to considering periods k : 0 . . .K according to the unfolding method.
This is justified by the fact that proper mutual exclusion inside the reference period implies proper mutual
exclusion in the whole periodic schedule.

The modulo encoding methods known to us from the previous work do not perform explicit static
mapping of tasks to processors, instead, it either completely ignores the mapping and the processor cost

Verimag Research Report no TR-2014-5 7/19

Pranav Tendulkar, Peter Poplavko, Oded Maler Scheduling Acyclic SDF using SMT Solvers

(while considering the buffer storage constraints instead), or just ensure a weaker constraint on the maximal
number of parallel tasks. Consequently these works do not propose any mutual exclusion constraints. In
this section, we therefore propose a variant of mutual exclusion for the modulo scheduling.

Following the modulo scheduling approach, we introduce auxiliary variables s′(u) and e′(u):

ϕm
s :

∧
u∈U

s′(u) = s(u)− ks(u)P ∧ ks(u) = bs(u)/P c

ϕm
e :

∧
u∈U

e′(u) = e(u)− ke(u)P ∧ ke(u) = be(u)/P c

where variables ks(u), ke(u) ∈ N≥0 specify the period in which a given task starts and ends in iteration 0.
Variables s′(u), e′(u) ∈ R≥0 are start and end variables coerced into the reference period, i.e., measured
taking the start of the reference period as zero. Note that if s(u) and e(u) were not reals but integers then
we could write: s′(u) = s(u) mod P and hence the name modulo scheduling.

By our earlier observations on the properties of the reference period, to ensure mutual exclusion in
a pipelined schedule it is enough to ensure it in the reference period. Therefore, we put the following
constraint:

ϕm(I)
µ :

∧
u6=u′∈U

(µ(u) = µ(u′))⇒ ψ′u,u′ ∨ ψ′u′,u

where:
ψ′u,u′ : e′(u) ≤ s′(u′)

Note that these constraints are similar to the mutual exclusion constraints in the non-pipelined schedul-
ing case. However, unlike that case, it is possible to have e′(u) ≤ s′(u), i.e., a task seems to end its execu-
tion before starting. This happens when the scheduling interval [s(u), e(u)) of a task crosses a boundary
between periods k and k + 1, and hence s′(u) and e′(u) are residuals for different periods. We refer to
such tasks as ‘type II’ tasks, whereas the ‘normal’ tasks, where s(u) and e(u) belong to the same period,
are referred to as ‘type I’ tasks. The reference-period scheduling intervals for type II tasks are [0, e′(u))
and [s′(u), P).

The ‘usual’ mutual exclusion constraints ϕm(I)
µ are necessary and sufficient only for ‘type I’ tasks. For

‘type II’ tasks they can also be shown necessary but not sufficient.
In order to support ‘type II’ tasks as well, we first note that ‘type II’ are identified by predicate ψ′u,u,

whereas ‘type I’ tasks are identified by ¬ψ′u,u. Observe that we may have no more than one ‘type II’ task
per processor, as a ‘type II’ occupies the processor at time instance K · P , and no other task can occupy it
at the same time. This fact is reflected by the following constraint:

ϕm(II−1)
µ :

∧
u6=u′∈U

(µ(u) = µ(u′))⇒ ¬ψ′u,u ∨ ¬ψ′u′,u′

One can show that for a mutual exclusion of a type I-type II task pair it is necessary and sufficient that each
task starts after the completion of the other one:

ϕm(II−2)
µ :

∧
u6=u′∈U

(µ(u) = µ(u′)) ∧ ψ′u,u ⇒ ψ′u,u′ ∧ ψ′u′,u

To summarize, the mutual exclusion constraints for modulo scheduling are as follows:

ϕm
µ : ϕm

s ∧ ϕm
e ∧ ϕm(I)

µ ∧ ϕm(II−1)
µ ∧ ϕm(II−2)

µ

Thus, the modulo scheduling is defined by the following constraints:

Φm
µε′`M : ϕm

µ ∧ ϕε′ ∧ ζ` ∧ ζM
For more efficient use of the SMT solver, in the case of modulo scheduling we add the period non-

laziness constraints that are similar to the constraints proposed in [2], see Appendix C.3. Also in Ap-
pendix B we discuss a modified encoding of variables s′(u) and e′(u), using so-called difference logic,
which further improves the efficiency of modulo scheduling.

8/19 Verimag Research Report no TR-2014-5

Scheduling Acyclic SDF using SMT Solvers Pranav Tendulkar, Peter Poplavko, Oded Maler

A B C
α 1 1 α

Figure 5: Synthetic Benchmark

Table 1: The Benchmarks

Benchmark Total tasks Benchmark Total tasks
h263-encoder 201 jpeg-decoder 25
mp3-decoder1 27 mp3-decoder2 27
video-decoder1 26 video-decoder5 122
video-decoder10 242 synthetic α + 2

5 Experimental Results

5.1 Experimental Setup
In the experiments, we evaluate the performance of the three alternative encoding for the periodic pipelined
deployment using an SMT solver. Hereby, the deployment problem is treated as a multi-criteria cost opti-
mization problem. Two costs are minimized: the period P and the number of processors M , whereas the
latency cost is fixed. Two sets of experiments are run: for the latency fixed at the minimal possible value
Lmin and the maximal reasonable value, Lmax. Latency cost Lmax is defined by Corollary 4.2, the cost
Lmin equals to the total delay of the longest-delay path in the task graph.

In the two-dimensional cost space (P,M), we first determine the cube that covers the ‘reasonable’
costs from a lower bound to an upper bound. As the lower bound of the period P , we use the largest task
execution time, the upper bound is the sum of the execution times of all tasks. The lower bound on M is
1, the upper bound is the total number of tasks. We set the cost values to different points inside the cost
space cube bounded by these values. For each cost point we query the solver for the existence of feasible
solutions for the given point. Within a certain predefined timeout, the solver should provide a sat or unsat
answer i.e., satisfiable (feasible), non-satisfiable (unfeasible), or a timeout answer when it cannot conclude
on the feasibility within the given time.

To improve the speed of the cost space exploration by faster detection of certain unfeasible costs, we
add auxiliary constraint: ξP : P ≥ ∑

δ(u)/M . This constraint does not involve decision variables and
evaluates statically to true or false, in the later case helping the solver to avoid spending time in cost space
regions with too small cost P .

We use two types of benchmarks: (1) the synthetic benchmarks in Fig. 5, having a free parameter α
and assuming execution time of all three actors d(v) = 10; (2) the benchmarks modeling certain streaming
applications. This includes video decoder, jpeg decoder(from [18]); mp3 decoder, and h263 encoder are
SDF3 benchmarks(from [17]). Table 1 shows the number of tasks in the task graph derived from the SDF
graph for each benchmark.

For the synthetic benchmark, we perform a binary search to find the minimum period cost while fixing
the processor costM to 5 and 80 processors. To experiment with different problem sizes, we vary parameter
α, i.e., the number of data-parallel tasks of actor B. We also assume a per-query solver timeout of 20
minutes. If a query takes longer than the timeout, the experiment stops.

For the application benchmarks we do the grid-based exploration to approximate the Pareto front [16]
as described in [18]. For this exploration we set the per query timeout value of 3 minutes and a global
timing budget of 20 minutes per experiment. All the experiments were performed using the Z3 Solver [15]
version 4.1 running on Intel Core 2 Duo E7500 processor at 2.93 GHz clock with 2 GB of memory.

5.2 Synthetic Benchmark
We present the synthetic benchmark results in terms of solver computation time in Fig. 6. We observe
that period locality performs better than all the other types for 5 processors. Unfolding performs slightly
worse than the other two. It times out for α = 15. However, when we increase number of processors,
period-locality and unfolding performs equally, whereas the default modulo scheduling lags behind in

Verimag Research Report no TR-2014-5 9/19

Pranav Tendulkar, Peter Poplavko, Oded Maler Scheduling Acyclic SDF using SMT Solvers

0 10 20 30

0

500

1,000

timeout

α

M
ax

.T
im

e
fo

ra
qu

er
y

(s
ec

on
ds

)

(a) 5 proc. at Lmax

0 10 20 30 40 50

0

500

1,000

timeout

α

M
ax

.T
im

e
fo

ra
qu

er
y

(s
ec

on
ds

)

(b) 80 proc. at Lmax

0 10 20 30

0

500

1,000

timeout

α

M
ax

.T
im

e
fo

ra
qu

er
y

(s
ec

on
ds

)

(c) 5 proc. at Lmin

0 10 20 30 40 50

0

500

1,000

timeout

α

M
ax

.T
im

e
fo

ra
qu

er
y

(s
ec

on
ds

)

(d) 80 proc. at Lmin

modulo : diff. logic period-locality modulo : default encoding unfolding

Figure 6: Max. time per query in binary search to find optimal period as a function of the number of tasks for 5 and
80 processors.
performance. Nevertheless, when using the difference logic encoding proposed in Appendix B, the modulo
scheduling has similar performance as the other methods. The optimal periods computed by all three
methods were equal, which means that the period locality, being a heuristic, still computed exact optimal
solutions.

For the strict latency constraint Lmin the problem is unfeasible for α > 3 if we are, in addition,
restricted by 5 processors. Consequently, as we see in Fig. 6c, the solver detects the infeasibility easily.

5.3 Application Benchmarks

We present the results of the two-dimensional Pareto exploration for the loose latency constraint Lmax

in Fig. 8a. The bar diagram shows the total number of queried points within the same global budget for
different applications. Obviously, the benchmarks with larger number of tasks are more difficult to solve,
and hence less points were explored. In larger benchmarks we encountered a higher number of timeout
points, where the solver spent time without being able to produce an answer. This typically happens for the
costs that are close to the Pareto front, in line with an observation in [12]. We observe that period locality
slightly dominated the modulo scheduling in performance and the latter slightly dominated the unfolding.
Note that period locality is a heuristic technique which nevertheless in our experiments produced equally
good Pareto points as the unfolding.

Fig. 7a shows the detailed results of Pareto exploration for the mp3-decoder2 benchmark. To prevent
overloading the figure, we have plotted only the explored points for the modulo scheduling, but we plot

10/19 Verimag Research Report no TR-2014-5

Scheduling Acyclic SDF using SMT Solvers Pranav Tendulkar, Peter Poplavko, Oded Maler

the approximated Pareto front for all three methods, which is almost the same. We can see that the timeout
points indeed appear close to the Pareto front.

0 1 2 3 4 5 6 7 8

Period 1e6
0

2

4

6

8

10

12

14

Pr
oc

es
so

rs

sat points
unsat points

timed out points
pareto-modulo

pareto-period-locality
pareto-unfolding

(a) latency at Lmax

0 1 2 3 4 5 6 7 8

Period ×106

0

2

4

6

8

10

12

14

P
ro

ce
ss

or
s

sat points
unsat points

timed out points
with Lmax

with Lmin

(b) latency at Lmin

Figure 7: exploration of mp3dec2 benchmark

Again, we perform another set of experiments, this time with the tight latency cost. The results of
this experiment are shown in Fig. 8b. We observe that due to a very strict latency constraint there is an
increase in number of sat points. At the same time, the time out points have vanished in the mp3 decoder
benchmarks, and also has led to increased number of sat and unsat points. The probable reason that the
most timeouts are likely to happen for unfeasible instances, and with more strict constraints it is simpler
for the solver to prove unsat.

Fig. 7b shows explored points for mp3decoder benchmark. We observe that the timeout points near
the Pareto front and a few sat points, with few processors are turned to unsat points. However the Pareto
front obtained is close to the one that is obtained at Lmax.

We would like to conclude by an observation on the scalability of the SMT solver for the pipelined vs
non-pipelined deployment. The former is definitely more difficult to solve than the latter. Typically we
can solve a pipelined problem of up to 30-40 tasks. For the non-pipelined deployment, this limit is about
120 tasks. Thus, we are much more restricted in the use of data parallelism in the pipelined deployment.
Fortunately, pipelining itself introduces extra parallelism which compensates this disadvantage to some
extent.

P M U
H263
Enc

P M U
Jpeg
Dec

P M U
Mp3
Dec1

P M U
Mp3
Dec2

P M U
Video
Dec1

P M U
Video
Dec5

P M U
Video
Dec10

Application Benchmarks

0

10

20

30

40

50

60

To
ta

l N
o.

 O
f P

oi
nt

s

 P-period-locality
 M-modulo
 U-unfolding

Sat Points UnSatPoints Timed Out Points

(a) latency at Lmax

P M U
H263
Enc

P M U
Jpeg
Dec

P M U
Mp3
Dec1

P M U
Mp3
Dec2

P M U
Video
Dec1

P M U
Video
Dec5

P M U
Video
Dec10

Application Benchmarks

0

50

100

150

200

To
ta

l N
o.

 O
f P

oi
nt

s

 P-period-locality
 M-modulo
 U-unfolding

Sat Points UnSatPoints Timed Out Points

(b) latency at Lmin (note the larger scale than in Fig. 8a)

Figure 8: exploration of application benchmarks

Verimag Research Report no TR-2014-5 11/19

Pranav Tendulkar, Peter Poplavko, Oded Maler Scheduling Acyclic SDF using SMT Solvers

6 Conclusions and Related Work
In this paper we applied SMT solvers to address the pipelined scheduling and mapping problem for SDF
graphs on shared memory multi-cores with instantaneous inter-core communication. Hereby, we consid-
ered both throughput (i.e., period) and latency constraints simultaneously, a problem that is rarely addressed
in the literature. However, we restricted ourselves so far to the cases of acyclic SDF graphs (i.e., the appli-
cations with no feedback loops), and require that feedback loops are hidden inside actors.

We proposed the period locality heuristic, whose main advantage is simplicity, whereas in practical ex-
periments the possible loss in quality did not occur. We also implemented two exact methods for pipelined
scheduling, the unfolding and the modulo scheduling, and compared them to period locality on a set of
benchmarks. This period locality heuristic in many cases showed better computation times than the ex-
act methods, while never showing inferior quality of results. Also, unlike unfolding, the period locality
heuristic never showed SMT solver ‘out of memory’ errors for relatively large benchmarks. Note that we
also enhanced both exact methods. The modulo scheduling method was enhanced by non-trivial mutual
exclusion constraints to correctly solve the deployment problem with bounded processor cost. The unfold-
ing was enhanced to prevent exponential growth in unfolding factor for larger data parallelism parameter.
We also augmented both modulo scheduling and unfolding with task and processor symmetry breaking
constraints and extended the proof of task symmetry breaking correctness from split-join graphs [18] to a
general class of SDF graphs with no restrictions on the channel rates.

In the previous literature, various generic solving methods have been employed for the pipelined
deployment of dataflow and task graphs. The SMT solvers were applied for scheduling task graphs
e.g., in [13]. CP (constraint programming) was applied for SDF e.g., in [2], and we extend their work
by support of limited processors. Also (integer) linear programming (ILP), applied for SDF e.g., in [9]
and for task graphs e.g., in [10], as well as model checking, genetic programming etc. We believe that the
methodology collected and demonstrated in this paper, especially the symmetry breaking and the latency
bounds, can be potentially reused in other generic approaches for pipelined scheduling of dataflow and task
graphs.

In future work, we plan to investigate the modeling of communication delays, the communication
buffers, as well as look for better approximation methods for the Pareto, e.g., by using approximation
algorithms instead of exact solving. We also plan to do an additional literature search for heuristics that
can handle both period and latency costs at the same time, such as in [7], to compare our approach to
this work. When evaluating any such heuristics, next to latency and period, it would also be important to
incorporate the third cost – the bounded number of processors.

12/19 Verimag Research Report no TR-2014-5

Scheduling Acyclic SDF using SMT Solvers Pranav Tendulkar, Peter Poplavko, Oded Maler

References
[1] Bhattacharyya, S.S., Murthy, P.K., Lee, E.A.: Software synthesis from dataflow graphs. Springer

(1996) 2

[2] Bonfietti, A., Lombardi, M., Benini, L., Milano, M.: A constraint based approach to cyclic RCPSP.
CP (2011) 4.1, 4.2, 4.2, 4.5, 6, C.3

[3] Chaudhuri, S., Walker, R.A., Mitchell, J.E.: Analyzing and exploiting the structure of the constraints
in the ILP approach to the scheduling problem. IEEE Trans. VLSI Syst. 2(4), 456–471 (1994) 3

[4] Cotton, S., Maler, O.: Fast and flexible difference constraint propagation for DPLL(T). SAT’06,
Springer-Verlag, Berlin, Heidelberg (2006) B

[5] Darga, P.T., Sakallah, K.A., Markov, I.L.: Faster symmetry discovery using sparsity of symmetries.
In: DAC (2008) 3, C

[6] Eichenberger, A.E., Davidson, E.S.: Efficient formulation for optimal modulo schedulers. In: Chen,
M.C., Cytron, R.K., Berman, A.M. (eds.) PLDI. pp. 194–205. ACM (1997) 1, 4.1, 4.2

[7] Ghamarian, A.H., Stuijk, S., Basten, T., Geilen, M., Theelen, B.D.: Latency minimization for syn-
chronous data flow graphs. In: DSD. pp. 189–196. IEEE (2007) 6

[8] Gordon, M.I., Thies, W., Amarasinghe, S.: Exploiting coarse-grained task, data, and pipeline paral-
lelism in stream programs. In: ASPLOS (2006) 1

[9] Govindarajan, R., Gao, G.R., Desai, P.: Minimizing buffer requirements under rate-optimal schedule
in regular dataflow networks. J. VLSI Signal Process. Syst. 31(3) (Jul 2002) 6

[10] Kudlur, M.V.: Streamroller : A Unified Compilation and Synthesis System for Streaming Applica-
tions. Ph.D. thesis, The University of Michigan (2008) 1, 6

[11] Lee, E., Messerschmitt, D.: Synchronous data flow. Proceedings of the IEEE 75 (1987) 1, 2

[12] Legriel, J., Le Guernic, C., Cotton, S., Maler, O.: Approximating the Pareto front of multi-criteria
optimization problems. In: TACAS (2010) 5.3

[13] Legriel, J., Maler, O.: Meeting deadlines cheaply. In: ECRTS (2011) 1, 3, 4.1, 4.4, 4.4, 6, B

[14] Lombardi, M., Bonfietti, A., Milano, M., Benini, L.: Precedence constraint posting for cyclic schedul-
ing problems. CPAIOR’11 (2011) 1

[15] de Moura, L., Bjorner, N.: Z3: An efficient SMT solver. In: TACAS (2008) 5.1

[16] Pareto, V.: Manuel d’économie politique. Bull. Amer. Math. Soc. 18 (1912) 5.1

[17] Stuijk, S., Geilen, M., Basten, T.: SDF3: SDF For Free. In: ACSD (2006), http://www.es.ele.
tue.nl/sdf3 5.1

[18] Tendulkar, P., Poplavko, P., Maler, O.: Symmetry breaking for multi-criteria mapping and scheduling
on multicores. In: FORMATS (2013) 1, 3, 5.1, 6, C.1, D, D

[19] Thies, W., Amarasinghe, S.: An empirical characterization of stream programs and its implications
for language and compiler design. In: PACT (2010) 1

Verimag Research Report no TR-2014-5 13/19

http://www.es.ele.tue.nl/sdf3
http://www.es.ele.tue.nl/sdf3

Pranav Tendulkar, Peter Poplavko, Oded Maler Scheduling Acyclic SDF using SMT Solvers

A Latency Cost Upper Bound
For convenience, we repeat Corollary 4.2 here:

Corollary (Latency Upper Bound). Let Ωmax be the maximal edge count in an SDF graph path. Let
Lmax = 2 · (Ωmax + 1) · P If there exists a feasible periodic schedule (of any latency cost) then there also
exists a periodic schedule with the latency cost ` = Lmax.

The rest of this section is dedicated to proving this lemma.
Let Ω(v) denote the maximal edge count in SDF graph path to actor v and Ω(u) denote the same for

task u in the derived task graph. It can be easily shown that: ∀vh ∈ U . Ω(vh) = Ω(v).
We prove the corollary by proving the equivalent claim that if there exists a feasible periodic deploy-

ment then there exists another one that satisfies extra constraint applied for each task u:

e(u) < 2 · (Ω(u) + 1) · P (4)

We prove this claim by induction, starting from the sources of the task graph, i.e., the nodes that have
no predecessors, and visiting the task graph nodes on breadth-first-search order (i.e., visiting at each step a
node whose all predecessors have been visited).

By Proposition 4.2, at the sources we can add the constraint: s(u) < P and hence by our assumption
δ(u) ≤ P we have s(u) + δ(u) < 2P , and therefore e(u) < 2P . Observing that for the sources we have
Ω(u) = 0, we have established (4) for these tasks.

For the induction step consider task u and its latest predecessor u′, whereby u′ satisfies (4) when
substituting u′ for u. From Proposition 4.2 we can constrain the schedule to satisfy

s(u)− e(u′) < P

By δ(u) ≤ P we derive: s(u) + δ(u)− e(u′) < 2P and hence

e(u) < e(u′) + 2P

By substitution of u′ into (4), we get:

e(u) < 2 · (Ω(u′) + 1) · P + 2P

By construction (Ω(u′) + 1) ≤ Ω(u) and hence:

e(u) < 2 · Ω(u) · P + 2P

which is equivalent to (4) and we have our thesis.

B Modulo Scheduling with Difference Logic
In, Section 4.5 we introduced constraints that define the modulo scheduling variables s′(u) and e′(u):

ϕm
s :

∧
u∈U

s′(u) = s(u)− ks(u)P ∧ ks(u) = bs(u)/P c

ϕm
e :

∧
u∈U

e′(u) = e(u)− ke(u)P ∧ ke(u) = be(u)/P c

In this section we discuss and improve the form in which these constraints can be presented to the
solver in order to achieve better solver performance.

SMT problems and solvers are characterized by the type of admitted constraints e.g., linear or nonlinear
inequalities. The ‘bc’ and ‘mod’ operators can be expressed in terms of linear inequalities. This is so
because in our formulation P is a constant, and:

x = by/Cc ⇔ Cx ≤ y ∧ y < Cx+ C

14/19 Verimag Research Report no TR-2014-5

Scheduling Acyclic SDF using SMT Solvers Pranav Tendulkar, Peter Poplavko, Oded Maler

The effective linearity of the modulo constraints makes them better amenable for automated constraint
solving tools (due to the use of linear programming techniques under the hood) than if we had non-linear
constraints.

However, it is well known, see e.g., [13], that scheduling constraints (both precedence and mutual
exclusion) are usually expressed using difference logic, i.e., constraints of the form x < c or x− y < c for
a constant c1. Note that all the constraints we discussed in this paper, except ϕs and ϕe are difference logic
compliant. Satisfiability of difference logic is easier and sometimes more efficient [4] than that of linear
constraints.

Therefore, in this section we reformulate the definition of s′(u) and e′(u) in the difference logic. In
this formulation we require that the solutions satisfy period non-laziness property. For such solutions, in
the proof of Corollary 4.2 we derived an upper bound on ks(u), which we present below as a constraint:

ϕm
diff1 :

∧
u∈U

ks(u) ≤ 2 · Ω(u)

where Ω(u) is the length of the longest (in terms of the edge count) path to node u.
Therefore, constraint ϕm

s can be replaced by the following difference logic constraints:

ϕm
diff2 :

∧
u∈U

∧
i=0...2·Ω(u)

ks(u) = i ⇒ s′(u) = s(u)− i · P

ϕm
diff3 :

∧
u∈U

0 ≤ s′(u) < P

To derive e′(u) we first define its estimated value, e′′(u). The task completion time is its start time plus
the task delay, so we write:

ϕm
diff4 :

∧
u∈U

e′′(u) = s′(u) + δ(u)

However, in the case e′′(u) ≥ P the value e′′(u) is not the proper estimation of e′(u) and needs to be
corrected. This case would also mean that the task completes not in the same period as where it started, but
in the next one, so, to correct e′′(u) we have to subtract P from it. So we have:

ϕm
diff5 :

∧
u∈U e

′′(u) < P ⇒ ke(u) = ks(u) ∧ e′(u) = e′′(u)
ϕm

diff6 :
∧
u∈U e

′′(u) ≥ P ⇒ ke(u) = ks(u) + 1 ∧ e′(u) = e′′(u)− P

In the experiments section Fig. 6 we empirically observed some improvement of solver performance
when comparing the default (linear) and the difference-logic encoding of modulo scheduling constraints.

C Auxiliary Constraints
The constraint solving can become significantly more efficient if one adds auxiliary constraints, i.e., sym-
metry breaking [5] and non-laziness constraints.

In this section we revisit all such constraints we apply in pipelined scheduling. In all such constraints
we use letter ξ to indicate that the given constraint is auxiliary. Because these constraints are optional, we
do not explicitly add these constraints in the problem definitions, denoted by letter Φ, like (3) in Section 3.
However in all our experiments they are added to the problem definition unless mentioned otherwise.

C.1 Task and Processor Symmetry
In this case, we take into account a symmetry property of identical tasks. Recall that each SDF actor
v is expanded into tasks v0, v1, . . . , vh, Index h indicates the order in which the tasks execute and
communicate via the FIFO channels in the sequential execution. In general, the scheduler is free to schedule

1a logical combination of such constraints permits to use not only ‘<’ but also ‘=’, ‘>’, ‘≤’, ‘≥’

Verimag Research Report no TR-2014-5 15/19

Pranav Tendulkar, Peter Poplavko, Oded Maler Scheduling Acyclic SDF using SMT Solvers

the tasks in a different order. However, in [18], for a subclass of the SDF model we proved that enforcing a
FIFO-compatible schedule order is a symmetry breaking, we refer to it as the task symmetry. In Appendix D
we extend this proof to the SDF graphs that have no initial tokens, i.e., the ones defined in Section 2,
extending these results to (some cases of) initial tokens is future work.

We also describe in [18] the breaking of processor symmetry, which eliminates equivalent permutations
of the task mappings between the processors. For the pipelined scheduling, it is trivial to show that both
task and processor symmetry breaking constraints are applicable as well, and our experiments confirm their
efficiency, see Appendix E. We therefore assume here that these constraints are always added by default.

C.2 Non-lazy Start of the Schedule

In addition to the above mentioned symmetry breaking constraints, we also add an auxiliary constraint that
prefers a solution where at least one task with no predecessors starts at time zero.

Let Pred(u) denote the set of predecessors of task u.

ξZ :
∨

u∈U :Pred(u)=∅

s(u) = 0

This constraint eliminates the equivalent schedules that differ from each other only by a constant time
shift and eliminates this form of schedule laziness.

C.3 Period Non-laziness Constraints

These constraints enforce the period-non-laziness property of pipelined schedules as defined in Section 4.
For convenience, we repeat the corresponding proposition below.

Proposition C.1 (Period Non-laziness). If task u′ is the latest predecessor of task u then without loss of
feasibility we can constrain u to start within time P after the completion of u′, more formally:

s(u)− e(u′) < P

If task u has no predecessors than u can be constrained to start in 0-th period:

s(u) < P

From this proposition we imply the non-laziness constraints for the modulo scheduling, in a form
similar to [2]. Let variable kmax(u) be the index of the period where the latest predecessor of task u
completes. From Proposition C.1 follows that task u can be constrained to start in the same or the next
period as kmax(u), or in the period 0 if it has no predecessors.

Let Pred(u) denote the set of predecessors of task u. Based on the observations above, the period
non-laziness constraints are formulated as:

ξK1 :
∧
u∈U :Pred(u)6=∅ kmax(u) = maxu′∈Pred(u) ke(u′)

ξK2 :
∧
u∈U :Pred(u)6=∅ ks(u) = kmax(u) ∨ ks(u) = kmax(u) + 1

ξK3 :
∧
u∈U :Pred(u)=∅ ks(u) = 0

In our experiments presented in Section 5, the period non-laziness constraints ξK were included in
the modulo scheduling experiments, both in the default and the difference logic encoding. In additional
experiments, for the default encoding, we compared the solver efficiency with and without these constraints,
which showed a significant improvement due to non-laziness constraints.

For the unfolding method we also tried to add period non-laziness constraints, taken directly from
Proposition C.1, but they did not lead to a noticeable improvement of the solver performance.

16/19 Verimag Research Report no TR-2014-5

Scheduling Acyclic SDF using SMT Solvers Pranav Tendulkar, Peter Poplavko, Oded Maler

D Task Symmetry Theorem
Recall that in the translation from SDF to the derived task graph, each actor v is expanded to tasks Uv =
{v0, v1, . . . vh . . .}, where h is the index that indicates the sequential order in which the tasks access the
FIFO channels if the SDF model is executed sequentially. In the presence of data parallelism, the parallel
scheduler can reorder the execution of tasks vh in time and different re-orderings may result in different
alternative solutions. In [18] we showed that such re-orderings correspond to a symmetry class – task
symmetry, and hence one does not eliminate all feasible solutions if one constrains the solver to not explore
various alternative re-orderings but stick to one particular order. However, in [18] the proof was restricted
for a subclass of SDF graphs called split-join graphs, which have restrictions on the rates of the channels.

In this section we generalize this result to SDF graphs that have no initial tokens and hence also no
cyclic paths, as defined in Section 2. Extending these results to the case of initial tokens (and hence cyclic
graphs) is future work.

Let us refer to index h of task vh as FIFO index. A schedule is said to be FIFO-compatible if the order
of start times is sorted in the FIFO index order: s(v0) ≤ s(v1) ≤ s(v2) The task symmetry constraint,
among all alternative solutions, prefers only FIFO-compatible ones:

ξT :
∧
v∈V

∧
vh,vh+1∈Uv

s(vh) ≤ s(vh+1)

To show this constraint is a symmetry breaking constraint, we prove that if there exists a feasible
deployment then we can obtain another one by the following transformation. For each actor v, we swap
the scheduling and mapping variables between its tasks v0, v1, . . . in order to make the schedule FIFO-
compatible and keep the mutual exclusion constraints satisfied. Thus, if task vh+1 starts earlier than vh
then their scheduling and mapping assignments are swapped. Since the set of scheduling intervals on each
processor remains the same, no processor conflicts are introduced by such a modification of the deployment,
even in the pipelined deployment case.

What remains to be proved is that no precedence constraints are violated by this transformation of the
deployment. Before presenting and proving a theorem that establishes this result, in the sequel we first give
some important definitions and lemmas.

Definition D.1 (Upsampling). Upsampling of vector g of lengthK by a factor α is a vector, denoted g ↑ α
being ‘α’ times longer and being defined as:

g ↑ α = (g0, g0, . . .︸ ︷︷ ︸
repeat α times

, g1, g1, . . .︸ ︷︷ ︸
α times

, . . .) = (gbi/αc)0≤i<α·K

Definition D.2 (Vector Sorting). The new vector obtained by sorting a numeric vector g in non-decreasing
order is denoted sort(g).

Proposition D.3 (Sorting and Upsampling). Sorting an upsampled vector is the same as upsampling a
sorted vector:

sort(g ↑ α) = sort(g) ↑ α
Proposition D.4 (Sorting and Order). Sorting preserves the element-wise ‘≥’ relation (i.e., ‘order’ rela-
tion) between two numeric vectors:

g ≥ g′ ⇒ sort(g) ≥ sort(g′)

Note that it is the ‘Sorting and Order’ proposition that is the least trivial one, serving as the core of
the proof of the task symmetry breaking results. The proof of the task symmetry theorem in [18] gives an
example of arguments that can be used to establish this proposition.

Definition D.5 (Schedule Vector). Let v be an actor. The schedule vector for actor v, denoted s(v) is the
vector of schedule start times for tasks v0, v1

s(v) = (s(v0), s(v1), . . . , s(vc(v)−1))

Verimag Research Report no TR-2014-5 17/19

Pranav Tendulkar, Peter Poplavko, Oded Maler Scheduling Acyclic SDF using SMT Solvers

Observation D.6 (Sorting the Schedule). Note that sorting a schedule vector changes the scheduling of
the tasks. For example s(v) = (0, 5, 2) assumes s(v0) = 0, s(v1) = 5, s(v2) = 2. New schedule vector
s′(v)=sort(s(v))=(0, 2, 5) swaps the starting times of v1 and v2, and we have s′(v1) = 2 and s′(v2) = 5.

Proposition D.7 (Precedence by Upsampling). The precedence constraints for the task graph edges de-
rived for SDF channel (v, v∗) ∈ E with r(v, v∗) = (α, β) can be rewritten in the form:

s(v∗) ↑ β ≥ s(v) ↑ α+ d(v)

where adding scalar to vector means adding the scalar element-wise to all vector elements.

This proposition follows directly from the algorithm of construction of equivalent task graph.

Theorem D.8 (Sorting Keeps a Schedule Feasible). Given a schedule s : U → R that satisfies the prece-
dence constraints. Let schedule s′ be obtained from sorting the schedule vectors of s, i.e., :

s′(v) = sort(s(v)) (5)

Then the schedule s′ satisfies the precedence constraints as well.

Proof. Consider an arbitrary SDF channel (v, v∗).
By Precedence by Upsampling proposition:

s(v∗) ↑ β ≥ s(v) ↑ α+ d(v)

By Sorting and Order proposition:

sort(s(v∗) ↑ β) ≥ sort(s(v) ↑ α) + d(v)

By Sorting and Upsampling proposition:

sort(s(v∗)) ↑ β ≥ sort(s(v)) ↑ α+ d(v)

Substituting (5) we get:
s′(v∗) ↑ β ≥ s′(v) ↑ α+ d(v)

By Precedence by Upsampling Proposition, this implies that s′ satisfies the precedence constraints.

E Empirical Evaluation of Task and Processor Symmetry Breaking
Figure 9 shows the solver computation times for the synthetic benchmark experiment (see Section 5 Fig. 5)
where we use binary search to explore the minimum period for 5 and 20 processors at the loose latency
constraint. We turn on and off the task and processor symmetry breaking constraints to see its effect. We
can clearly observe that without the symmetry breaking, the results obtained are worse than with symmetry
breaking. The solver times out for smaller task graphs in the case of no symmetry breaking constraints.

18/19 Verimag Research Report no TR-2014-5

Scheduling Acyclic SDF using SMT Solvers Pranav Tendulkar, Peter Poplavko, Oded Maler

0 10 20 30

0

500

1,000

timeout

α

M
ax

.T
im

e
fo

ra
qu

er
y

(s
ec

on
ds

)

(a) without symmetry: 5 proc.

0 10 20 30

0

500

1,000

timeout

α

M
ax

.T
im

e
fo

ra
qu

er
y

(s
ec

on
ds

)

(b) without symmetry: 20 proc.

0 10 20 30

0

500

1,000

timeout

α

M
ax

.T
im

e
fo

ra
qu

er
y

(s
ec

on
ds

)

(c) with symmetry: 5 proc.

0 10 20 30 40

0

500

1,000

timeout

α

M
ax

.T
im

e
fo

ra
qu

er
y

(s
ec

on
ds

)

(d) with symmetry: 20 proc.

period-locality modulo : default encoding unfolding

Figure 9: Max. time per query in binary search to find optimal period as a function of the number of tasks for 5 and
20 processors.

Verimag Research Report no TR-2014-5 19/19

	Introduction
	Acyclic Synchronous Dataflow Graphs
	Non-pipelined Deployment
	Pipelined Deployment
	Basic Considerations
	Period Non-laziness
	Method 1: Period Locality
	Method 2: Unfolding
	Method 3: Modulo Scheduling

	Experimental Results
	Experimental Setup
	Synthetic Benchmark
	Application Benchmarks

	Conclusions and Related Work
	Latency Cost Upper Bound
	Modulo Scheduling with Difference Logic
	Auxiliary Constraints
	Task and Processor Symmetry
	Non-lazy Start of the Schedule
	Period Non-laziness Constraints

	Task Symmetry Theorem
	Empirical Evaluation of Task and Processor Symmetry Breaking

