
Compositional Invariant Generation
for Timed Systems

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga,
J. Combaz

Verimag Research Report no TR-2014-14

November 12, 2014

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Compositional Invariant Generation for Timed Systems

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

November 12, 2014

Abstract

We address the state space explosion problem inherent to model-checking timed systems with
a large number of components. The main challenge is to obtain pertinent global timing con-
straints from the timings in the components alone. To this end, we make use of auxiliary
clocks to automatically generate new invariants which capture the constraints induced by the
synchronisations between components. The method has been implemented as an extension of
the D-Finder tool and successfully experimented on several benchmarks.

Keywords: compositional verification, timed automata, invariants, component invariants, interaction in-
variants, interactions

Reviewers:

Notes: Research supported by the European Integrated Project 257414 ASCENS, ICT Collaborative Project
288175 CERTAINTY and STREP 318772 D-MILS.

How to cite this report:

@techreport {TR-2014-14,
title = {Compositional Invariant Generation for Timed Systems},
author = {L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz},
institution = {{Verimag} Research Report},
number = {TR-2014-14},
year = {}

}

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

1 Introduction

Compositional methods in verification have been developed to cope with state space explosion. Generally
based on divide et impera principles, these methods attempt to break monolithic verification problems into
smaller sub-problems by exploiting either the structure of the system or the property or both. Compositional
reasoning can be used in different manners e.g., for deductive verification, assume-guarantee, contract-
based verification, compositional generation, etc.

The development of compositional verification for timed systems remains however challenging. State-
of-the-art tools [7, 14, 29, 22] for the verification of such systems are mostly based on symbolic state
space exploration, using efficient data structures and particularly involved exploration techniques. In the
timed context, the use of compositional reasoning is inherently difficult due to the synchronous model of
time. Time progress is an action that synchronises continuously all the components of the system. Getting
rid of the time synchronisation is necessary for analysing independently different parts of the system (or
of the property) but becomes problematic when attempting to re-compose the partial verification results.
Nonetheless, compositional verification is actively investigated and several approaches have been recently
developed and employed in timed interfaces [2] and contract-based assume-guarantee reasoning [16, 25].

In this paper, we propose a different approach for exploiting compositionality for analysis of timed
systems using invariants. In contrast to exact reachability analysis, invariants are symbolic approximations
of the set of reachable states of the system. We show that rather precise invariants can be computed
compositionally, from the separate analysis of the components in the system and from their composition
glue. This method is proved to be sound for the verification of safety state properties. However, it is not
complete.

The starting point is the verification method of [10], summarised in Figure 1. The method exploits
compositionality as explained next. Consider a system consisting of components Bi interacting by means
of a set γ of multi-party interactions, and let ϕ be a system property of interest. Assume that all Bi as
well as the composition through γ can be independently characterised by means of component invariants
CI (Bi), respectively interaction invariants II (γ). The connection between the invariants and the system
property ϕ can be intuitively understood as follows: if ϕ can be proved to be a logical consequence of the
conjunction of components and interaction invariants, then ϕ holds for the system.

`
∧
i CI (Bi) ∧ II (γ)→ ϕ

‖γBi |= �ϕ
(VR)

Figure 1: Compositional Verification

In the rule (V R) the symbol “ ` ” is used to underline that the logical implication can be effectively
proved (for instance with an SMT solver) and the notation “‖γBi |= �ϕ” is to be read as “ϕ holds in every
reachable state of ‖γBi”.

The verification rule (VR) in [10] has been developed for untimed systems. Its direct application to
timed systems may be weak as interaction invariants do not capture global timings of interactions between
components. The key contribution of this paper is to improve the invariant generation method so to better
track such global timings by means of auxiliary history clocks for actions and interactions. At component
level, history clocks expose the local timing constraints relevant to the interactions of the participating
components. At composition level, extra constraints on history clocks are enforced due to the simultaneity
of interactions and to the synchrony of time progress.

As an illustration, let us consider as running example the timed system in Figure 2 which depicts a
“controller” component serving n “worker” components, one at a time. The interactions between the con-
troller and the workers are defined by the set of synchronisations {(a | bi), (c | di) | i ≤ n}. Periodically,
after every 4 units of time, the controller synchronises its action a with the action bi of any worker i whose
clock shows at least 4n units of time. Initially, such a worker exists because the controller waits for 4n
units of time before interacting with workers. The cycle repeats forever because there is always a worker
“willing” to do b, that is, the system is deadlock-free. Proving deadlock-freedom of the system requires to
establish that when the controller is at location lc1 there is at least one worker such that yi − x ≥ 4n− 4.

Verimag Research Report no TR-2014-14 1/23

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

Unfortunately, this property cannot be shown if we use (VR) as it is in [10]. Intuitively, this is because the
proposed invariants are too weak to infer cross constraints relating the clocks of the controller and those of
the workers: interaction invariants II (γ) relates only locations of components and thus at most eliminates
unreachable configurations like (lc1, . . . , l2i, . . .), while the component invariants can only state local con-
ditions on clocks such as that x ≤ 4 at lc1. Using history clocks allows to recover additional constraints.
For example, after the first execution of the loop, each time when the controller is at location lc1, there
exists a worker i whose clock has an equal value as that of the controller. Similarly, history clocks allow to
infer that different (a | bi) interactions are separated by at least 4 time units. These constraints altogether
are sufficient to prove the deadlock freedom property.

lc0

lc1x ≤ 4

lc2

x ≥ 4n
x := 0

a, x = 4
x:=0

c
x := 0

a

c

Controller

l11

l21

b1
y1 ≥ 4n

d1
y1 := 0

b1

d1

Worker1l12

l22

b2
y2 ≥ 4n

d2
y2 := 0

b2

d2

Worker2

l13

l23

b3
y3 ≥ 4n

d3
y3 := 0

b3

d3

Worker3

Figure 2: A Timed System

Related Work

Automatic generation of invariants for concurrent systems is a long-time studied topic. Yet, to our knowl-
edge, specific extensions or applications for timed systems are rather limited. As an exception, the papers
[5, 21] propose a monolithic, non-compositional method for finding invariants in the case of systems rep-
resented as a single timed automaton.

Compositional verification for timed systems has been mainly considered in the context of timed in-
terface theories [2] and contract-based assume guarantee reasoning [16, 25]. These methods usually rely
upon choosing a “good” decomposition structure and require individual abstractions for components to be
deterministic timed I/O automata. Finding the abstractions is in general difficult, however, their construc-
tion can be automated by using learning techniques [25] in some cases. In contrast to the above, we are
proposing a fully automated method generating, in a compositional manner, an invariant approximating the
reachable states of a timed system.

Abstractions serve also for compositional minimisation, for instance [11] minimises by constructing
timed automata quotients with respect to simulation; these quotients are in turn composed for model-
checking. Our approach is orthogonal in that we do not compose at all. Compositional deductive verifica-
tion as in [17] is also orthogonal on our work in that, by choosing a particular class of local invariants to
work with, we need not focus on elaborate proof systems but reason at a level closer to intuition.

The use of additional clocks has been considered, for instance, in [8]. There, extra reference clocks
are added to components to faithfully implement a partial order reduction strategy for symbolic state space
exploration. Time is allowed to progress desynchronised for individual components and re-synchronised
only when needed, i.e., for direct interaction within components. Clearly, the history clocks in our work
behave in a similar way, however, our use of clocks is as a helper construction in the generation of invariants
and we are totally avoiding state space exploration. Finally, another successful application of extra clocks
has been provided in [27] for timing analysis of asynchronous circuits. There, specific history clocks are
reset on input signals and used to provide a new time basis for the construction of an abstract model of
output signals of the circuit.

2/23 Verimag Research Report no TR-2014-14

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

Finally, this paper is essentially an extended version of the conference paper [4]. The extension is with
respect to incorporating proofs, detailing some technicalities about handling initial states, and formalising
some heuristics implicitly used in the conference paper.

Organisation of the paper
Section 2 recalls the needed definitions for modelling timed systems and their properties. Section 3 presents
our method for compositional generation of invariants. Section 4 describes three heuristics to speed up and
simplify invariant generation. Section 5 describes the prototype implementing the method and presents
concrete results obtained on case studies. Section 6 concludes.

2 Timed Systems and Properties
In the framework of the present paper, components are timed automata and systems are compositions of
timed automata with respect to multi-party interactions. The timed automata we use are essentially the
ones from [3], however, slightly adapted to embrace a uniform notation throughout the paper.

Definition 1 (Syntax). A component is a timed automaton (L,A,X , T, tpc, s0) where L is a finite set of
locations, A a finite set of actions, X is a finite set of local1 clocks, T ⊆ L × (A × C × 2X) × L is a
set of edges labelled with an action, a guard, and a set of clocks to be reset, tpc : L → C assigns a time
progress condition2 to each location. C is the set of clock constraints and s0 ∈ L × C provides the initial
configuration. A clock constraint is defined by the grammar:

C ::= true | x#ct | x− y#ct | C ∧ C

with x, y ∈ X , # ∈ {<,≤,=,≥, >} and ct ∈ Z. Time progress conditions are restricted to conjunctions
of constraints as x ≤ ct .

Before recalling the semantics of a component, we first fix some notation. Let V be the set of all clock
valuation functions v : X → R≥0. For a clock constraint C, C(v) denotes the evaluation of C in v. The
notation v + δ represents a new v′ defined as v′(x) = v(x) + δ while v[r] represents a new v′ which
assigns any x in r to 0 and otherwise preserves the values from v.

Definition 2 (Semantics). The semantics of a componentB = (L,A,X , T, tpc, s0) is given by the labelled
transition system (Q,A,→, Q0) where Q ⊆ L ×V denotes the states of B, → ⊆ Q × (A ∪ R≥0) × Q
denotes the transitions according to the rules:

• (l,v)
δ→ (l,v + δ) if

(
∀δ′ ∈ [0, δ]

)
.(tpc(l)(v + δ′)) (time progress);

• (l,v)
a→ (l′,v[r]) if

(
l, (a, g, r), l′

)
∈ T , g(v) ∧ tpc(l′)(v[r]) (action step).

and Q0 = {(l0,v0)|s0 = (l0, c0) ∧ c0(v0)} denotes the initial states.

Because the semantics defined above is in general infinite, we work with the so called zone graph [23]
as a finite symbolic representation. The symbolic states in a zone graph are pairs (l, ζ) where l is a location
of B and ζ is a zone, a set of clock valuations defined by clock constraints. The initial configuration
s0 = (l0, c0) corresponds trivially to a symbolic state (l0, ζ0). Given a symbolic state (l, ζ), its successor
with respect to a transition t of B is denoted as succ(t, (l, ζ)) and defined by means of its timed and its
discrete successor:

• time_succ((l, ζ)) = (l,↗ ζ ∩ tpc(l))

• disc_succ(t, (l, ζ)) = (l′, (ζ ∩ g)[r] ∩ tpc(l′)) if t =
(
l, (_, g, r), l′

)
1Locality is essential for avoiding side effects which would break compositionality and local analysis.
2To avoid confusion with invariant properties, we prefer to adopt the terminology of “time progress condition” from [12] instead

of “location invariants”.

Verimag Research Report no TR-2014-14 3/23

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

• succ(t, (l, ζ)) = norm(time_succ(disc_succ(t, (l, ζ))))

where ↗, [r], norm are usual operations on zones: ↗ ζ is the forward diagonal projection of ζ, i.e., it
contains any valuation v′ for which there exists a real δ such that v′ − δ is in ζ; ζ[r] is the set of all
valuations in ζ after applying the resets in r; norm(ζ) corresponds to normalising ζ such that all bounds
on clocks and clock differences are either bounded by some finite value or infinite. Since we are seeking
component invariants which are over-approximations of the reachable states, a more thorough discussion
on normalisation is not relevant for the present paper. The interested reader may refer to [9, 13] for more
precise definitions.

A symbolic execution of B is a sequence of symbolic states s0, . . . , si, . . .
3 such that for any i > 0,

there exists a transition t for which si is succ(t, si−1). The set of reachable symbolic states of B is
ReachB(s0) where ReachB is defined recursively as:

ReachB(s) = {s} ∪
⋃
t∈T

ReachB(succ(t, s)).

for an arbitrary s and T the set of transitions in B . We remind that the set ReachB(s0) can be shown finite
knowing that the number of normalised zones is finite. In general, the symbolic zone graph provides an
over-approximation of the set of reachable states. This over-approximation is exact only for timed automata
without diagonal constraints [9, 13].

In our framework, components communicate by means of interactions, which are synchronisations
between actions. Given n components (Bi)i=1,n, with disjoint sets of actions Ai, an interaction is a subset
α ⊆ ∪iAi containing at most one action per component. We denote interactions α as sets {ai}i∈I , with
ai ∈ Ai for all i ∈ I ⊆ {1, . . . , n}. For readability, in examples, we use the alternative notation (a1 | a2 |
· · · | ai) instead. Given a set of interactions γ, we denote by Act(γ) the set of actions involved in γ, that
is, Act(γ) = ∪α∈γα.

Definition 3 (Timed System). Let n components (Bi)i=1,n with disjoint sets of actions, where Bi = (Li,
Ai, Xi, Ti, tpci, s0i), s0i = (l0i, c0i). Let γ be a set of interactions constructed from ∪iAi. The timed
system ‖γBi is defined as the component (L, γ,X , Tγ , tpc, s0) where L = ×iLi, X = ∪iXi, tpc(l̄) =∧
i tpc(li), s0 = ((l01, ..., l0n),

∧
i c0i) and

Tγ =

(l̄, (α, g, r), l̄′)
l̄ = (l1, ..., ln) ∈ L, l̄′ = (l′1, ..., l

′
n) ∈ L

α = {ai}i∈I ∈ γ, ∀i ∈ I.(li, (ai, gi, ri), l′i) ∈ Ti, ∀i 6∈ I.li = l′i
g =

∧
i∈I gi, r =

⋃
i∈I ri


In the timed system ‖γBi, a component Bi can execute an action ai only as part of an interaction α,

ai ∈ α, that is, along with the execution of all other actions aj ∈ α. This corresponds to the usual notion
of multi-party interaction. We note that interactions can only restrict the behaviour of components, i.e.,
the states reached by Bi in ‖γBi belong to ReachBi(s0i). This is a property which is exploited in the
verification rule (VR).

To give a logical characterisation of components and their properties, we use invariants. An invariant
Φ is a state predicate which holds in every reachable state of B , in symbols, B |= �Φ. We use CI (B) and
II (γ), to denote component, respectively interaction invariants. For component invariants, our choice
is to work with their reachable symbolic set. More precisely, for component B , its associated component
invariant CI (B) is the disjunction of (l ∧ ζ) for all symbolic states (l, ζ) in ReachB(s0). To ease the
reading, we abuse of notation and use l as a place holder for a state predicate “at(l)” which holds in any
symbolic state with location l, that is, the semantics of at(l) is given by (l, ζ) |= at(l). As an example, the
component invariants for the example in Figure 2 with one worker are:

CI (Controller) = (lc0 ∧ x ≥ 0) ∨ (lc1 ∧ x ≤ 4) ∨ (lc2 ∧ x ≥ 0)

CI (Worker1) = (l11 ∧ y1 ≥ 0) ∨ (l21 ∧ y1 ≥ 4).

3We tacitly assume that s0 is such that s0 = time_succ(s0). If this is not the case, one can always consider time_succ(s0)
instead of s0 for the definition of symbolic executions and reachable states.

4/23 Verimag Research Report no TR-2014-14

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

The interaction invariants are computed by the method explained in [10]. Interaction invariants are over-
approximations of the global state space allowing us to disregard certain tuples of local states as unreach-
able. As an illustration, consider the interaction invariant for the running example when the controller is
interacting with one worker:

II
(
{(a | b1), (c | d1)}

)
= (l11 ∨ lc2) ∧ (l21 ∨ lc0 ∨ lc1).

Let us remark that component and interaction invariants proposed 4 above are inductive invariants. A
state predicate is called inductive for a component or system B if, whenever it holds for a state s of B it
equally holds for any of its successors s′. That is, the validity of an inductive predicate is preserved by
executing any transition, timed or discrete. An inductive predicate which moreover holds at initial states is
an (inductive) invariant. Trivially, such a predicate holds in all reachable states.

As for component properties, we are interested in arbitrary invariant state properties that can be ex-
pressed as boolean combinations of “at(l)” predicates and clock constraints. Invariant properties include
generic properties such as mutual exclusion, absence of deadlock, unreachability of “bad” states, etc. As a
simple illustration consider the property lc1 →

∨
i(yi − x ≥ 4n − 4), discussed for our running example

introduced in Section 1. As a more sophisticated example, consider absence of deadlock. Intuitively, a
timed system with a set of interactions γ is deadlocked when no interaction in γ is enabled. Absence of
deadlock is therefore expressed as the disjunction ∨α∈γenabled(α). As for the enabledness predicate, we
borrow it from [28] where it is essentially constructed from the syntactic definition of the timed system.
More precisely, for an interaction α, enabled(α) is ∨tenabled(t), with t being a global transition triggered
by α. In turn, for t =

(
l̄, (α, g, r), l̄′

)
, enabled(t) is defined using elementary operations on zones as

l̄∧ ↙ (g ∩ [r]tpc(l̄′) ∩ tpc(l̄)), where ↙ ζ is the backward diagonal projection of ζ, [r]ζ is the set of
valuations v such that v[r] is in ζ.

3 Timed Invariant Generation
As explained in the introduction, a direct application of the compositional verification rule (VR) may not be
useful in itself in the sense that the component and the interaction invariants alone are usually not enough
to prove global properties, especially when such properties involve relations between clocks in different
components. More precisely, though component invariants encode timings of local clocks, there is no
direct way – the interaction invariant is orthogonal on timing aspects – to constrain the bounds on the
differences between clocks in different components. To give a concrete illustration, consider the property
ϕSafe = (lc1 ∧ l11 → x ≤ y1) that holds in the running example with one worker. We note that if this
property is satisfied, it is guaranteed that the global system is not deadlocked when the controller is at
location lc1 and the worker is at location l11. It is not difficult to see that ϕSafe cannot be deduced from
CI (Controller) ∧ CI (Worker1) ∧ II

(
{(a | b1), (c | d1)}

)
as no relation can be established between x

and y1.

3.1 History Clocks for Actions
In this section, we show how we can, by means of some auxiliary constructions, apply (VR) more success-
fully. To this end, we “equip” components (and later, interactions) with history clocks, a clock per action;
then, at interaction time, the clocks corresponding to the actions participating in the interaction are reset.
This basic transformation allows us to automatically compute a new invariant of the system with history
clocks. This new invariant, together with the component and interaction invariants, is shown to be, after
projection of history clocks, an invariant of the initial system.

Definition 4 (Components with History Clocks). Given component B = (L,A,X , T , tpc, s0), its exten-
sion with history clocks is the component Bh = (L,A,X ∪HA, Th, tpc, sh0) where

• HA = {h0} ∪ {ha | a ∈ A} is the set of history clocks,

4The rule (VR) is generic enough to work with other types of invariants. For example, one could use any over-approximation of
the reachable set in the case of component invariants, however, this comes at the price of losing precision.

Verimag Research Report no TR-2014-14 5/23

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

• Th =
{(
l, (a, g, r ∪ {ha}), l′

)
|
(
l, (a, g, r), l′

)
∈ T

}
,

• sh0 = (l0, c
h
0), where ch0 = (c0 ∧ h0 = 0 ∧

∧
a∈A ha > 0), given s0 = (l0, c0).

The clock h0 measures the time from the initialisation. This clock equals 0 in sh0 and is never tested or
reset. Due to this very restricted use, the same clock h0 can be consistently used (shared) by all components
Bh and consequently, allows to capture clock constraints derived from the common system initialisation
time.

Every history clock ha measures the time passed from the last occurrence of action a. These history
clocks are initially strictly greater than 0 and are reset when the corresponding action is executed. As a side
effect, whenever ha is strictly bigger than h0, we can infer that the action a has not been (yet) executed.

Since there is no timing constraint involving history clocks, these have no influence on the behaviour.
The extended model is, in fact, bisimilar to the original model. Moreover, any invariant of the extended
model of Bh corresponds to an invariant of original component. By abuse of notation, given set of actions
A = {a1, ..., am} use ∃HA to stand for ∃ha1∃ha2 . . . ∃ham∃h0.

Proposition 1.

1. If Φh is an invariant of Bh then Φ = ∃HA.Φh is an invariant of B.

2. If Φh is an invariant of Bh and Ψh an inductive assertion of Bh expressed on history clocks HA \
{h0} then Φ = ∃HA.(Φh ∧Ψh) is an invariant of B.

Proof. (1) It suffices to notice that any symbolic state (l, ζh) in the reachable set ReachBh(sh0) corresponds
to a symbolic state (l, ζ) in the reachable set ReachB (s0) such that moreover ζ is the projection of ζh to
clocks in X , that is ζ ≡ ∃HA.ζh. Henceforth, ∃HA.ReachBh(sh0) ≡ ReachB (s0). Moreover, for any
invariant Φh of Bh it holds ∃HA.ReachBh(sh0) ⊆ ∃HA.Φh. By combining the two facts, we obtain that Φ
is an invariant of B .

(2) Consider the modified component with history clocks Bh
Ψ defined as Bh but with initial config-

uration (l0, c
h
0 ∧Ψh). This initial configuration is valid, as Ψh constrain exclusively clocks inHA whereas

ch0 leaves all of them unconstrained. Now, it can be easily shown that Φh ∧Ψh is an invariant of Bh
Ψ. Then,

following the same reasoning as for point (1) we obtain that ∃HA.(Φh ∧Ψh) is an invariant of B .
The only operation acting on history clocks is reset. Its effect is that immediately after an interaction

takes place, all history clocks involved in the interaction are equal to zero. All the remaining ones preserve
their previous values, thus they are at least greater in value than those being reset. This basic observation
is exploited in the following definition, which builds, recursively, all the inequalities that could hold given
an interaction set γ.

Definition 5 (Interaction Inequalities for History Clocks). Given an interaction set γ, we define the follow-
ing interaction inequalities E(γ):

E(γ) =
∨
α∈γ

((∧
ai,aj∈α

ak∈Act(γ	α)

hai = haj ≤ hak
)
∧ E(γ 	 α)

)
.

where γ 	 α = {β \ α | β ∈ γ ∧ β 6⊆ α}.

We can use the interpreted function “min” as syntactic sugar to have a slightly more compact expression
for E(γ) as follows:

E(γ) =
∨
α∈γ

(∧
ai,aj∈α

hai = haj ≤ min
ak∈Act(γ	α)

hak ∧ E(γ 	 α)
)
.

As an example, for γ = {(a | b1), (c | d1)} corresponding to the interactions between the controller and
one worker in Figure 2, the compact form is:(

ha = hb1 ≤ min(hc, hd1) ∧ hc = hd1
)
∨
(
hc = hd1 ≤ min(ha, hb1) ∧ ha = hb1

)
.

E(γ) characterises the relations between history clocks during any possible execution. It can be shown
that this characterisation is, in fact, an inductive predicate of the extended system with history clocks.

6/23 Verimag Research Report no TR-2014-14

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

Proposition 2. E(γ) is an inductive predicate of ‖γBh
i .

Proof. Assume E(γ) holds in some arbitrary state s of ‖γBh
i . We have two categories of successor states

for s, namely time successors and discrete successors. Obviously E(γ) holds for all time successors s′, as
all clocks progress uniformly and henceforth all the relations between them are preserved. Let now s′ be
a discrete successor of s by an arbitrary interaction α. As all the history clocks for actions in α have just
been reset, s′ satisfies ∧

ai,aj∈α
ak∈Act(γ	α)

0 = hai = haj ≤ hak

To conclude the proof, we need to show that moreover, for the remaining clocks of actions in Act(γ 	 α),
they satisfy E(γ	α). Actually, we can show the more general fact that for any set of interactions γ and for
any interaction α the implication E(γ) → E(γ 	 α) is valid. This fact can be simply proven by induction
on the size of the set interactions γ following the definition of E .

By using Proposition 2 and Proposition 1, we can safely combine the component and interaction invari-
ants of the system with history clocks with the interaction inequalities. We can eliminate the history clocks
from

∧
i CI (Bh

i) ∧ II (γ) ∧ E(γ) and obtain an invariant of the original system. This invariant is usually
stronger than

∧
i CI (Bi) ∧ II (γ) and yields more successful applications of the rule (VR).

Corrolary 1. Φ = ∃HA.(
∧
i CI (Bh

i) ∧ II (γ) ∧ E(γ)) is an invariant of ‖γBi.

Example 1. We reconsider the model of a controller and a worker from Figure 2. We illustrate how the
safety property ϕSafe = (lc1 ∧ l11 → x ≤ y1) introduced in the beginning of the section can be shown to
hold by using the newly generated invariant. The invariants for the components with history clocks are:

CI (Controllerh) =(lc0 ∧ x = h0 < ha ∧ h0 < hc) ∨
(lc1 ∧ x ≤ h0 − 4 ∧ x ≤ 4 ∧ h0 < ha ∧ h0 < hc) ∨
(lc1 ∧ x ≤ 4 ∧ x = hc ≤ ha ≤ h0 − 8) ∨
(lc2 ∧ x ≤ h0 − 8 ∧ ha = x ∧ h0 < hc) ∨
(lc2 ∧ x = ha ∧ hc = ha + 4 ≤ h0 − 8)

CI (〈Workerh1) =(l11 ∧ y1 = h0 < hd1 ∧ h0 < hb1) ∨
(l11 ∧ y1 = hd1 ≤ hb1 ≤ h0 − 4) ∨
(l21 ∧ hb1 + 4 ≤ y1 = h0 < hd1)) ∨
(l21 ∧ y1 = hd1 ≤ h0 − 4 ∧ hb1 ≤ hd1 − 4)

By using the interaction invariant described in Section 2 and the inequality constraints E((a | b1), (c | d1)),
after the elimination of the existential quantifiers in(

∃ha.∃hb1 .∃hc.∃hd1 .∃h0

)
CI (Controllerh) ∧ CI (Workerh1) ∧ II (γ) ∧ E(γ)

)
we obtain the following invariant Φ :

Φ =(l11 ∧ lc0 ∧ x = y1)∨(
l11 ∧ lc1 ∧ (y1 = x ∨ x+ 4 ≤ y1)

)
∨(

l21 ∧ lc2 ∧ (y1 = x+ 4 ∨ x+ 8 ≤ y1)
)
.

We used bold fonts in Φ to highlight relations between x and y1 which are not in CI (Controller) ∧
CI (Worker1) ∧ II (γ). It can be easily checked now that that Φ → ϕSafe holds and consequently, this
proves that ϕSafe holds for the system.

To sum up, the basic steps of our invariant generation method described so far are:

1. compute the interaction invariant II (γ)

Verimag Research Report no TR-2014-14 7/23

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

2. extend the components Bi to components with history clocks Bh
i

3. compute component invariants CI (Bh
i)

4. compute inequality constraints E(γ) for interactions γ

5. finally, eliminate the history clocks in
∧
i CI (Bh

i) ∧ II (γ) ∧ E(γ).

We conclude the section with a remark on the size of E(γ). Due to the combination of recursion and
disjunction, E(γ) can be large. Much more compact formulae can be obtained by exploiting non-conflicting
interactions, i.e., interactions that do not share actions.

Proposition 3. If γ = γ1 ∪ γ2 such that Act(γ1) ∩Act(γ2) = ∅ then E(γ) ≡ E(γ1) ∧ E(γ2).

Proof. By induction on the number of interactions in γ. In the base case, γ has a single interaction and the
property trivially holds. For the induction step, for the ease of reading, we introduce eq(α) and leq(α, γ) to
denote respectively

∧
ai,aj∈α hai = haj and

∧
ai∈α

ak∈Act(γ	α)
hai ≤ hak . E(γ) can be rewritten as follows:

E(γ) =
∨
α∈γ1

eq(α) ∧ leq(α, γ) ∧ E((γ1 ∪ γ2)	 α) ∨
∨
α∈γ2

eq(α) ∧ leq(α, γ) ∧ E((γ1 ∪ γ2)	 α)(
using γ2 	 α = γ2 for α ∈ γ1 and by ind. for γ′ = (γ1 	 α) ∪ γ2

)
≡
∨
α∈γ1

eq(α) ∧ leq(α, γ) ∧ E(γ1 	 α) ∧ E(γ2) ∨
∨
α∈γ2

eq(α) ∧ leq(α, γ) ∧ E(γ1)E(γ2 	 α)

(
using

∨
α∈γ1

eq(α) ∧ leq(α, γ1) ∧ E(γ1 	 α) = E(γ1)
)

≡ E(γ1) ∧ E(γ2) ∧
(∨
α∈γ1

leq(α, γ2) ∨
∨
α∈γ2

leq(α, γ1))

(using totality of "≤" and disjointness of γi)
≡ E(γ1) ∧ E(γ2)

The following corollary is an immediate consequence of Proposition 3.

Corrolary 2. If the interaction model γ has only disjoint interactions, i.e., for any α1, α2 ∈ γ, α1∩α2 = ∅,
then E(γ) ≡

∧
α∈γ

(∧
ai,aj∈α

hai = haj

)
.

The two interactions in γ = {(a | b1), (c | d1)} are disjoint. Thus, we can simplify the expression of
E(γ) to (ha = hb1) ∧ (hc = hd1).

3.2 History Clocks for Interactions
The equality constraints on history clocks allow to relate the local constraints obtained individually on
components. In the case of non-conflicting interactions, the relation is rather “tight”, that is, expressed
as conjunction of equalities on history clocks. In contrast, the presence of conflicts lead to a significantly
weaker form. Intuitively, every action in conflict can be potentially used in different interactions. The
uncertainty on its exact use leads to a disjunctive expression as well as to more restricted equalities and
inequalities amongst history clocks.

Nonetheless, the presence of conflicts themselves can be additionally exploited for the generation of
new invariants. That is, in contrast to equality constraints obtained from interaction, the presence of con-
flicting actions enforce disequalities (or separation) constraints between all interactions using them. In
what follows, we show a generic way to automatically compute such invariants enforcing differences be-
tween the timings of the interactions themselves. To effectively implement this, we proceed in a similar
manner as in the previous section: we again make use of history clocks and corresponding resets but this
time we associate them to interactions, at the system level.

8/23 Verimag Research Report no TR-2014-14

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

Definition 6 (System with Interaction History Clocks). Given a timed system ‖γBi, its extension with
history clocks for interactions is the timed system B∗‖γhBhi where:

• B∗ is an auxiliary component ({l∗}, Aγ ,Hγ , T, (l∗ 7→ true), (l∗, true)) where:

– the set of actions Aγ = {aα | α ∈ γ}

– the set of interaction history clocksHγ = {hα | α ∈ γ}

– the set of transitions T = {(l∗, (aα, true, {hα}), l∗) | α ∈ γ}

• γh = {(aα | α) | α ∈ γ} with (aα | α) denoting {aα} ∪ {a | a ∈ α}.

As before, it can be shown that any invariant of B∗‖γhBhi corresponds to an invariant of ‖γBi. The
history clocks for interactions do not impact the behaviour and henceforth the two systems are bisimilar.

Proposition 4.

1. If Φh is an invariant of B∗‖γhBhi , then Φ = ∃HA∃Hγ .Φh is an invariant of ‖γBi.

2. If Φh is an invariant of B∗‖γhBhi and Ψh an inductive predicate of B∗‖γhBhi expressed on history
clocks for actions and interactionsHγ ∪HA \ {h0} then Φ = ∃HA∃Hγ .(Φh ∧Ψh) is an invariant
of ‖γBi.

Proof. Similar to Proposition 1.
We use history clocks for interactions to express additional constraints on their timing. The starting

point is the observation that when two conflicting interactions compete for the same action a, no matter
which one is first, the latter must wait until the component which owns a is again able to execute a. This is
referred to as a “separation constraint” for conflicting interactions.

Definition 7 (Separation Constraints for Interaction Clocks). Given an interaction set γ, the induced sep-
aration constraints, S(γ), are defined as follows:

S(γ) =
∧

a∈Act(γ)

∧
α6=β∈γ
a∈α∩β

| hα − hβ |≥ ka

where | x | denotes the absolute value of x and ka is a constant computed locally on the component
executing a, and representing the minimum elapsed time between two consecutive executions of a.

In our running example the only conflicting actions are a and c within the controller, and both ka and
kc are equal to 4. The expression of the separation constraints reduces to:

S((a | bi)i, (c | di)i) ≡
∧
i6=j

|hc|di − hc|dj | ≥ 4 ∧
∧
i 6=j

|ha|bi − ha|bj | ≥ 4.

Proposition 5. Let

S∗(γ) =
∧

a∈Act(γ)

∧
α6=β∈γ
a∈α∩β

(ha ≤ hα ≤ hβ − ka ∨ ha ≤ hβ ≤ hα − ka)

Then

1. S∗(γ) is an inductive predicate of B∗‖γhBhi .

2. The equivalence S(γ) ≡ ∃HA.S∗(γ) is a valid formula.

Verimag Research Report no TR-2014-14 9/23

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

Proof. (1) Let us fix an arbitrary term S(a, α, β) defined as

S(a, α, β) = (ha ≤ hα ≤ hβ − ka ∨ ha ≤ hβ ≤ hα − ka)

Assume S(a, α, β) holds in an arbitrary state s of B∗‖γhBhi . Then, it obviously holds for any time suc-
cessors as well as for any discrete successors by interactions not containing the action a. For an interaction
involving a, but different than α and β, ha is reset to zero whereas hα and hβ are unchanged. Henceforth,
S(a, α, β) remains valid as only ha changes to 0. Let consider the situation α is executed (the case of β is
perfectly dual). In this case, both ha and hα are reset to 0, whereas hβ is unchanged. Two situations can
happen, either

1. ha ≤ hα ≤ hβ − ka holds in s. Then, obviously, the same holds in s′ where ha and hα are reset.

2. ha ≤ hβ ≤ hα − ka holds in s. This is the interesting case where we need the assumption about the
separation time ka. As consecutive executions of a are separated by ka, to execute α it must actually
hold that ha ≥ ka in s. Consequently, hβ ≥ ka in s, as well as in s′ (because hβ does not change
from s to s′). Then, knowing that ha = hα = 0 in s′ we have that ha ≤ hα ≤ hβ − ka in s′.

(2) We can equivalently write

S∗(γ) ≡
∧

a∈Act(γ)

∧
α6=β∈γ
a∈α∩β

(ha ≤ hα ∧ ha ≤ hβ∧ | hα − hβ |≤ ka)

≡ S(γ) ∧
∧

a∈Act(γ)

∧
α6=β∈γ
a∈α∩β

(ha ≤ hα ∧ ha ≤ hβ)

which leads immediately to the result.

The predicate S(γ) is expressed over history clocks for interactions. Component invariants CI (Bh
i)

are however expressed using history clocks for actions. In order to “glue” them together in a meaningful
way, we need some tighter connection between action and interaction history clocks. This connection is
formally addressed by the constraints E∗ defined below.

Definition 8 (E∗). Given an interaction set γ, we define E∗(γ) as follows:

E∗(γ) =
∧

a∈Act(γ)

ha = min
α∈γ,a∈α

hα.

By a similar argument as the one in Proposition 2, it can be shown that E∗(γ) is an inductive predicate
of the extended system B∗‖γhBhi . Moreover, there exists a tight connection between E and E∗ as given in
Proposition 6.

Proposition 6.

1. E∗(γ) is an inductive predicate of B∗‖γhBhi .

2. The equivalence ∃Hγ .E∗(γ) ≡ E(γ) is a valid formula.

Proof. (1) To see that E∗(γ) is an inductive predicate it suffices to note that, the predicate is preserved by
time progress transitions and for any discrete action a, there is always an interaction α containing a such
that ha and hα are both reset in the same time.

10/23 Verimag Research Report no TR-2014-14

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

(2) The proof follows directly from the definitions of E(γ) and E∗(γ). Consider that γ = {α1, α2, ..., αm}.
We have the following equivalences:

∃Hγ .E∗(γ) ≡ ∃Hγ .
∨

αk1≺αk2≺...≺αkm

(
hαk1 ≤ hαk2 ≤ ... ≤ hαkm ∧ E

∗(γ)
)

(by choosing an arbitrary ordering ≺ on interactions)

≡ ∃Hγ .
∨

αk1≺αk2≺...≺αkm

(
hαk1 ≤ hαk2 ≤ ... ≤ hαkm∧∧

a∈αk1

(ha = hαk1) ∧
∧

a∈αk2\αk1

(ha = hαk2) ∧ ...
∧

a∈αkm\αk1 ...αkm−1

(ha = hαkm)
)

(by expanding the definition of E∗(γ) along the chosen order)

≡ ∃Hγ .
∨

αk1≺αk2≺...≺αkm

(
hαk1 ≤ hαk2 ≤ ... ≤ hαkm ∧

m∧
`=1

∧
a∈αk`\αk1 ...αk`−1

(ha = hαk`)
)

(by rewriting to a more compact form)

≡
∨

αk1≺αk2≺...≺αkm

∃Hγ .
(
hαk1 ≤ hαk2 ≤ ... ≤ hαkm ∧

m∧
`=1

∧
a∈αk`\αk1 ...αk`−1

(ha = hαk`)
)

(by distributing the existential quantifiers over the disjunction)

≡
∨

αk1≺αk2≺...≺αkm

m∧
`=1

∧
ai,aj∈αk`\αk1 ...αk`−1

ak 6∈αk1 ...αk`

(hai = haj ≤ hak) ≡ E(γ)

(by eliminating the existential quantifiers)

From Propositions 6, 4, and 5, it follows that ∃HA∃Hγ .(
∧
i CI (Bh

i) ∧ II (γ) ∧ E∗(γ) ∧ S(γ)) is an
invariant of ‖γBi. This new invariant is in general stronger than ∃HA.(

∧
i CI (Bh

i) ∧ II (γ) ∧ E(γ)) and it
provides better state space approximations for timed systems with conflicting interactions.

Corrolary 3. Φ = ∃HA∃Hγ .(
∧
i CI (Bh

i) ∧ II (γ) ∧ E∗(γ) ∧ S(γ)) is an invariant of ‖γBi
Example 2. To get some intuition about the invariant generated using separation constraints, let us recon-
sider the running example with two workers. The subformula which we emphasise here is the conjunction
of E∗ and S. The interaction invariant is:

II (γ) =(l11 ∨ lc1 ∨ lc2) ∧ (l12 ∨ lc1 ∨ lc2) ∧ (lc2 ∨ l11 ∨ l12) ∧ (lc0 ∨ lc1 ∨ l21 ∨ l22)

The components invariants are:

CI (Controllerh) =(lc0 ∧ x = h0 ∧ h0 < ha ∧ h0 < hc) ∨
(lc1 ∧ x ≤ h0 − 8 ∧ x ≤ 4 ∧ h0 < ha ∧ h0 < hc) ∨
(lc1 ∧ x ≤ 4 ∧ x = hc ≤ ha ≤ h0 − 12) ∨
(lc2 ∧ x ≤ h0 − 12 ∧ ha = x ∧ h0 < hc)) ∨
(lc2 ∧ x = ha ∧ hc = ha + 4 ≤ h0 − 12)

CI (Workerhi) =(l1i ∧ yi = h0 ∧ h0 < hdi ∧ h0 < hbi) ∨
(l1i ∧ yi = hdi ≤ hbi ≤ h0 − 8) ∨
(l2i ∧ yi ≥ hbi + 8 ≤ h0 < hdi)) ∨
(l2i ∧ yi = hdi ≤ h0 − 8 ∧ hbi ≤ hdi − 8)

Verimag Research Report no TR-2014-14 11/23

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

The inequalities for action and interaction history clocks are:

E∗(γ) =(hb1 = ha|b1) ∧ (hb2 = ha|b2) ∧ (ha = min
i=1,2

(ha|bi))∧

(hd1 = hc|d1) ∧ (hd2 = hc|d2) ∧ (hc = min
i=1,2

(hc|di))

By recalling the expression of S(γ) from above we obtain that:

∃Hγ .E∗ (γ) ∧ S(γ) = (|hb2 − hb1 | ≥ 4 ∧ |hd2 − hd1 | ≥ 4)

and thus, after quantifier elimination in

∃HA∃Hγ .(CI (Controllerh) ∧
∧
i

CI (Workerhi) ∧ II (γ) ∧ E∗(γ) ∧ S(γ))

After simplification, we obtain the following invariant Φ:

Φ =
(
l11 ∧ l12 ∧ lc0 ∧ x = y1 = y2

)
∨(

l11 ∧ l12 ∧ lc1 ∧ x ≤ 4 ∧ (y1 = y2 ≥ x+ 8∨
(y1 = x ∧ y2 − y1 ≥ 4)∨
(y1 ≥ x+ 8 ∧ y1 − y2 ≥ 8)∨
(y2 = x ∧ y1 − y2 ≥ 4)∨
(y2 ≥ x+ 8 ∧ y2 − y1 ≥ 8))

)
∨(

l21 ∧ l12 ∧ lc2 ∧ y1 ≥ x+ 8 ∧ ((y2 ≥ x+ 4 ∧ |y1 − y2| ≥ 4)∨
y2 ≥ x+ 12)

)
∨(

l11 ∧ l22 ∧ lc2 ∧ y2 ≥ x+ 8 ∧ ((y1 ≥ x+ 4 ∧ |y1 − y2| ≥ 4)∨
y1 ≥ x+ 12)

)
We emphasised in the expression of Φ the newly discovered constraints. All in all, Φ is strong enough to
prove that the system is deadlock free.

We conclude the section with a discussion about the computation of the separation constants ka. A
simple but incomplete heuristics to test that a given value ka is a correct separation constraint for an action
a is as follows. Consider all elementary paths connecting two transitions (not necessarily distinct) labelled
by a. If on every such path, there exists a clock x which is reset and then tested in a guard x ≥ ct,
with ct ≥ ka then, it is safe to conclude that actually ka is a correct separation value. Nonetheless,
alternative methods to exactly compute ka have been already proposed in the litterature. For details, the
interested reader can refer, for instance, to [15] which reduces this computation to finding a shortest path
in a weighted graph built from the zone graph associated to the component.

4 Improving (VR) - Three Heuristics
We describe and elaborate on heuristics allowing to strengthen the generated invariants and to reduce the
generation time. These heuristics have been mandatory for handling our case studies considered later in
section 5.

4.1 More about conflicting interactions
The use of initialising the history clock h0 provides a convenient way to express and reason about invariants
relating occurences of various actions and interactions at execution. The assertion hα ≤ h0 has the intuitive
meaning that “α has been executed”. We describe below a new family of invariants providing a finer
characherisation for the execution of conflicting interactions and related actions.

12/23 Verimag Research Report no TR-2014-14

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

We fix a as a potential conflicting action within some componentB = (L,A, T,X , tpc). We define the
set of preceding actions Prec(a) as all actions of B that can immediately precede a at execution, formally

Prec(a) = {a′ ∈ A | ∃l, l′, l′′ ∈ L. l a
′

→ l′, l′
a→ l′′}. For any two conflicting interactions α1, α2 involving

a the following assertion:

hα1
≤ h0 ∧ hα2

≤ h0 ⇒
∨

a′∈Prec(a)

ha′ ≤ h0

is an invariant. Intuitively, the assertion states that whenever α1 and α2 have both been executed (implying
that a has also been executed twice or more), at least one of the preceding actions of a must also has been
executed. We remark that the invariant above is rather weak and can be implied by the component invariant
CI(B) and the glue invariant E∗ in many situations. In fact, whenever a is an action which is not enabled
at the initial location of B, the component invariant CI(B) implies that

ha ≤ h0 ⇒
∨

a′∈Prec(a)

ha′ ≤ h0.

This states that whenever a has been executed, at least one of its preceding actions has been executed as
well. Knowing moreover that ha = mina∈α hα, we can then infer the invariant above.

Nonetheless, if a is an action that is enabled at the initial location, the newly proposed invariant is
stronger and cannot be derived as shown before. In this case, a can be actually executed once while none
of its predecessors has been executed yet. The component invariant alone does not relate anymore the
execution of a to the execution of its preceding actions. Moreover, the component invariant considers
always the last occurence of a and has no means to distinguish cases where a has been executed only once
or more. This information can sometimes be re-discovered when interaction history clocks hα1

, hα2
are

taken into account, henceforth, leading to the proposed invariant. A concrete illustration is provided later
in Section 5.

4.2 Invariant computation using regular expressions
There exist situations where the computation of component invariants can be extremely costly. In par-
ticular, for untimed components extended with history clocks, their zone graphs will most likely have an
exponential size. In fact, due to history clocks, the zones will record the order of (the last) occurences of
actions, and there could be exponentially many of them, reachable at different locations. Obviously, the
same issue exists for timed components as well, however, the timing constraints expressed on local clocks
bring more information in a zone graph, thus restricting the number of possible successors from a given
zone.

The above observation suggests (and was confirmed by our experiments) that applying the same method-
ology for computing component invariants (based on the reachability graph of the corresponding compo-
nents with history clocks) regardless of the components being timed or not leads to large characterisations
(in the size of the formulae) when possibly shorter ones exist.

Example 3. Consider the untimed component presented in Figure 3 (left) and its extension with history
clocks (right). The entire zone graph reachable from 〈l0, ζ0〉, with ζ0 = (h0 = 0, ha,b,c > 0) has 6
symbolic states. Therefore, the component invariant is expressed as a disjunction of 16 terms, 9 of them
are related to location l0 and 7 are related to location l1.

We recall that untimed automata have elegant and compact encodings as regular expressions. This ba-
sic fact can be exploited in order to provide an alternative computation method for component invariants.
More concretely, given an untimed component B = (L,A, T) we show how to automatically compute the
invariant describing the relations between the history clocks of Bh at some location `, from the language
accepted by B at some designated location `. The first key observation is that only the last occurrence of
each action should be retained. This implies that it is safe to abstract with respect to a last occurrence reten-
tion operation the regular expression characterising the language accepted at the chosen control location.
The second key observation is that, regular expressions in some restricted form, can be used to directly

Verimag Research Report no TR-2014-14 13/23

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

l0 l1

a

b

b

c

a b c

l0 l1

a, ha := 0

b, hb := 0

b, hb := 0

c, hc := 0

a b c

Figure 3: An untimed component (left) and its extension with history clocks (right).

generate the associated constraint on the history clocks, in a much compact form. Our regular expression
based method can be therefore summarised as follows:

1. construct the regular expression E` representing the language accepted by B at location `,

2. abstract E` with respect to the last occurence retention towards some restricted form E]` =
∑
i e
]
i

where, every e]i contains each action at most once, and does not contain nested *-operators,

3. generate from every e]i a characteristic formula on history clocks φ(e]i) and obtain as invariant for B
the assertion `⇒ ∨iφ(e]i).

The first step is well known for finite automata and will not be detailed here. For the second abstraction
step, the key ingredients are the simplification rules in Figure 4.

Rule 1 [Last Occurrence Retention]: E · a −→ (E r a) · a
Rule 2 [Back-unfolding]: E∗ −→ (E∗ · E) + ε

Figure 4: Simplification Rules

Rule 1 eliminates all but the last occurrence of the trailing a symbol from a regular expression of the
formE ·a. The “r” denotes a syntactic elimination operator defined structurally on expressions as follows.
Let a and x be two symbols and E, E1 and E2 be arbitrary regular expressions.

εr a = ε

xr a =

{
ε if x = a

x if x 6= a

(E1 + E2) r a = (E1 r a) + (E2 r a)

(E1.E2) r a = (E1 r a).(E2 r a)

E∗ r a = (E r a)∗

Rule 2 simply unfolds *-expressions once. By using this rule and other basic manipulation of regular
expressions, further simplification opportunities for Rule 1 are enabled.

Example 4. Let consider again the example presented in Figure 3. The language accepted at l1 is defined
as (a+ bc∗b)∗bc∗. This expression is progressively abstracted into the restricted form as follows:

(a+ bc∗b)∗bc∗ (a+ c∗)∗bc∗ (by Rule 1)
≡ (a+ c∗)∗b(c∗c+ ε) (by Rule 2)
≡ (a+ c∗)∗bc∗c+ (a+ c∗)∗b (by splitting the last +)
 (a+ ε)∗bc+ (a+ c∗)∗b (by Rule 1)
≡ a∗bc+ (a+ c)∗b (by standard transformation)

14/23 Verimag Research Report no TR-2014-14

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

In the example above, we have applied the iterative strategy consisting of (1) choosing symbols from
right to left and applying Rule 1 until no longer possible and then (2) applying Rule 2 to unfold the right-
most *-expression and split the incoming +. It can be shown that such a strategy always terminates with
expressions in the restricted form. Intuitively, what happens is that Rule 2 splits larger expressions into
smaller ones and, further, for each of these Rule 1 eliminates repetitions of symbols.

For the third step, we construct from regular expressions in restricted form an equivalent formula on
history clocks. This formula represents exactly the set of orders on actions (the strings) encoded by the
regular expression, formally:

φ(e) ≡
∨

a1...an∈L(e)

(
h0 ≥ ha1 ≥ ... ≥ han ∧

∧
c 6=a1,...,an

hc > h0

)
We introduce the principle of the construction with the help of a generic example. Consider the regular

expression (b1 + ... + bm)∗a1...an in restricted form (whenever a1, ..., an, b1, ..., bm are distinct). The
corresponding formula on history clocks is

h0 ≥ ha1 ≥ ... ≥ han
∧
hb1 ≥ ha1 ∧ ... ∧ hbm ≥ ha1 ∧

∧
c6=ai,bj

hc > h0.

The first part encodes the ordering constraints on the mandatory string a1...an. These actions all occur
(consequently, their history clocks are smaller than h0) in this precise order. The second part considers the
constraints on occurences of bj actions, which are optional. If some of them occur at execution, they are
unconstrained each other, but should however take place before a1. Finally, the last part deals with actions c
which do not appear in the regular expression. For all of them, their history clocks should be strictly greater
than h0. We remark that, for this particular example, the obtained formula has linear size with respect to
the size of the regular expression. In contrast, the number of strings encoded (i.e., whenever restricted
to last occurrences of symbols) is exponential, with respect to the number of b actions. The construction
above can be generalised for arbitrary restricted regular expressions without much difficulty. The resulting
formula remains of polynomial size (at worse quadratic) with respect to the size of the restricted regular
expression provided as input.

Example 5. The restricted regular expression a∗bc+(a+c)∗b obtained in the previous example translates
into the following expression:

(h0 ≥ hb ≥ hc ∧ ha ≥ hb)
∨

(h0 ≥ hb ∧ ha ≥ hb ∧ hc ≥ hb)

We note this expression is significantly smaller, yet logically equivalent to the disjunction of 7 distinct terms
corresponding to symbolic zones reached at l1 as initially presented in Example 3.

To sum up, we described an heuristic which can be applied to untimed components to automatically
compute an invariant with a reasonable enough size to be handled by existing SMT solvers. Given an
untimed component B, our heuristic makes use of the regular expressions characterizing the language
accepted by B to avoid a direct construction of the zone graph of Bh which would result in considerably
large invariants.

Proposition 7. Given B an untimed component, El the regular expression characterising the language
accepted by B at location l. Let E]l be the result of applying the simplification rules. We have that∨
l(l ∧ φ(E]l)) is an invariant of Bh.

4.3 Exploiting Symmetry
At a closer examination of the definition of separation constraints in Section 3.2, it can be noticed that it
characterises all possible orderings of conflicting interactions with respect to permutations. The size of the
corresponding search space is exponential in the number of conflicting interactions and this, in turn, may be
a bottleneck for the solver. Such situations are to (and can) be avoided especially in the case of symmetric

Verimag Research Report no TR-2014-14 15/23

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

systems. What we show next is how the inherent symmetry in the formula can be eliminated such that the
search space becomes considerably smaller.

The use of symmetry has long been addressed, mostly with the intention of making model-checking
more feasible and especially in the context of parameterised systems [19, 20, 18, 26]. There the goal is to
show the existence of a small cutoff bound which allows the reduction of the verification problem from an
arbitrary number of instances to a small, fixed one. Our context is different, that is, breaking the symmetry
in some of the generated invariants, for an a priori known number of components.

The types of systems we consider next are formed of a fixed number, be it n, of isomorphic components
interacting with a controller, thus the interactions are binary. Isomorphic components are obtained from a
generic component B by attaching an index i (from 1 to n) to all symbols in B . The resulting component
is denoted by Pi. For any i, j, Bi and Bj are isomorphic5. For the ease of reference, we denote systems
like C‖γBi by the letter M and we use Exec to denote the set of their global executions.

In this framework, the notion of symmetry is intrinsically related to permutations. Let Πn denote the
group of permutations of n. The application of permutations is defined on the structure of systems and
properties. For a systemM as C‖nγBi, and a permutation π, π(M) is defined as C‖nπ(γ)π(Bi) where π(Bi)

is defined as Bπ(i) and π(γ) as {π(α) | α ∈ γ} with π(ac | ai) = ac | aπ(i) for α an arbitrary binary
interaction between an action ac of C and an action ai of a Pi. For an execution σ = α1, . . . αi, . . . αk,
π(σ) is defined as π(α1), π(α2) . . . π(αi), . . . , π(αk). For a global state s = (sc, s1, . . . , sn), π(s) is
defined as (sc, sπ(1), . . . , sπ(n)). As for system properties ϕ, we restrict to those built (with the usual
logical connectors) from clock constraints and locations, and define:

π(ϕ) =


xπ(i) rop xπ(j) if ϕ = xi rop xj and rop ∈ {<,≤,=, >,≥}
lπ(i) if ϕ = li

¬π(ϕ1) if ϕ = ¬ϕ1

π(ϕ1) op π(ϕ2) if ϕ = ϕ1 op ϕ2 and op ∈ {∧,∨}

where li, xi denote a location, respectively. a clock in Pi.
The symmetric systems we consider are symmetric in a “strong” sense, i.e., they are fully symmetric. A

systemM is fully symmetric if for any π ∈ Πn, π(M) is syntactically identical toM . Similarly, a property
ϕ is fully symmetric if for any permutation π, π(ϕ) is equivalent to ϕ. A property like l1 ∧ l2 ∧ ... ∧ ln
is symmetric. On the contrary, G = x1 ≤ x2 is not as for the permutation π(1) = 2, π(2) = 1, π(G) =
xπ(1) ≤ xπ(2) = x2 ≤ x1 which is not equivalent to G.

Symmetric systems have the convenient property that, whenever started in a symmetric state, for any
of its executions σ ∈ Exec, π(σ) is itself an execution, that is, π(σ) ∈ Exec. To see why this is indeed the
case, let γ be the interaction set and α = (ac | ai) an interaction in γ. It suffices to note that if α is possible
after σ, then it is also the case for π(α) after π(σ). Note also that, thanks to symmetry, π(α) is in γ.

The idea behind simplifying the separation constraints S is to break the symmetry by replacing the
constraints on absolute values | hαi−hαj |. More precisely, given a conflicting (controller) action ac, in an
execution where interaction αi = ac | ai executes before αj = ac | aj for j > i, we can naturally replace
| hαi − hαj | by hαi − hαj . As for an execution which violates this natural ordering (or “canonicity”),
we show that we can make use of symmetry to rearrange it. First, we formalise what we mean more
precisely by canonicity. Given an execution σ and an interaction αi = ac | ai we denote by lpos(σ, αi)
the last position of αi in σ. An execution σ is canonical with respect to ac if lpos(σ, αi) < lpos(σ, αj)
for any i < j. Let Execc be the set of canonical executions. Thanks to symmetry, any execution has a
corresponding canonical execution. Assume σ is such that there is a conflicting ac and for i > j the last
occurrence of αi = ac | ai appears latter than that of αj = ac | aj . Let π be such that π(i) = j and
π(j) = i. Then π(σ) is itself an execution and is canonical.

For a canonical execution with ac being the action of interest S simplifies to:

Sc(γ) =
∧
i<j

ac∈αi∩αj

hαi − hαj ≥ kac ∧
∧
b 6=ac

b∈βi∩βj

| hβi − hβj |≥ kb

5We note that, by construction, isomorphic components cannot have clock constraints involving indices: any constraint in a worker
Bi is obtained from those in B which are oblivious to indices i.

16/23 Verimag Research Report no TR-2014-14

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

We note that Sc reduces S by n!. This is the best we can get in general. However, under particular
conditions, S can be further reduced. For instance, if the controller is such that it ensures mutual exclusion
and moreover, requires the use of some designated action ac, then S further reduces to:∧

a∈Act(C)

∧
i<j

a∈αi∩αj

hαi − hαj ≥ kac

This is because by mutual exclusion, all conflicting interactions involving the controller follow the same
order as defined for the designated action ac.

Finally, we show that for symmetric systems and properties it is correct to consider Sc instead of S.

Proposition 8. Let M be a symmetric system and ϕ be a symmetric property. We have that if ` GI [S ←
Sc]→ ϕ then M |= �ϕ.

Proof. (sketch) It suffices to show that ` GI [S ← Sc]→ ϕ iff ` GI → ϕ.
“⇐”: trivial. “⇒”: It boils down to show that if ϕ is an invariant of Execc then it is also an invariant of
the remaining executions σ in Exec \ Execc. If σ does not have a, we are done, as Sc is an invariant by
default. Else, we make use of the fact that σ has a canonical representation and that ϕ is symmetric.

An immediate application of the above reduction results in the simplification we make use of in the
Temperature controller example from Section 5. Naturally, the results can be extended also to systems with
less symmetry by adapting the standard constructions of automorphisms from, for example, [20]. More
precisely, for a system M for which Aut(M) = {π | π(M) = M} is a proper subgroup of Πn, we
need to restrict to canonical executions which are consistent with the permutations in Aut(M). However,
though such a generalisation is possible, it is not clear if it is also useful: as it is well pointed out in the
literature about symmetries, determining Aut(M) is, in itself, is a hard problem. This, together with the
goal of keeping the presentation as clear as possible, were the reasons why we strictly considered only fully
symmetric systems.

5 Implementation and Experiments

The method has been implemented in a Scala (scala-lang.org/) prototype (www-verimag.imag.
fr/~lastefan/tas) which is currently being integrated with the D-Finder tool [10] for verification of
Real-Time BIP systems [1]. The prototype takes as input components Bi, an interaction set γ and a global
safety property ϕ and checks whether the system satisfies ϕ. Internally, it uses PPL (bugseng.com/
products/ppl) to manipulate zones (essentially polyhedra) and to compute component invariants. It
generates Z3 (z3.codeplex.com) Python code to check the satisfiability of the formula ∧iCI (Bi) ∧
II (γ) ∧ Φ∗ ∧ ¬ϕ where Φ∗, depending on whether γ is conflicting, stands for E(γ) or E∗(γ) ∧ S(γ). If
the formula is not satisfiable, the prototype returns no solution, that is, the system is guaranteed to
satisfy ϕ. Otherwise, it returns a substitution for which the formula is satisfiable, that is, the conjunction
of invariants is true while ϕ is not. This substitution may correspond to a false positive in the sense that the
state represented by the substitution could be unreachable.
For experiments, we chose three classical benchmarks which we discuss below.

5.1 Train gate controller (TGC)

This is a classical example from [3]. The system is composed of a controller, a gate and a number of trains.
For simplicity, Figure 5 depicts only one train interacting with the controller and the gate. The controller
lowers and raises the gate when a train enters, respectively exits. The safety property of interest is that when
a train is at location in, the gate has been lowered: ∧i(ini → g2). The results are presented in Table. 1.
When there is only one train in the system, E(γ) is enough to show safety. When there are more trains,
be it n, the interactions approachi | approach (respectively exiti | exit), for 1 ≥ i ≥ n are in conflict
on approach (respectively exit) of the controller. In this case, in addition to the separation constraints,

Verimag Research Report no TR-2014-14 17/23

scala-lang.org/
www-verimag.imag.fr/~lastefan/tas
www-verimag.imag.fr/~lastefan/tas
bugseng.com/products/ppl
bugseng.com/products/ppl
z3.codeplex.com

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

we made use of the first heuristic presented in Section 4.1. More precisely, the invariant generated by the
heuristic is as follows: ∧

i6=j

(
(happroachi ≤ h0 ∧ happroachj ≤ h0)→ hraise ≤ h0

)
Thanks to its addition, we were able to show that the system is safe also for an arbitrary number of trains.

far1 near1

x1 ≤ 5

in1

x1 ≤ 5

Train

approach

x := 0

x1 ≥ 3exit1

a
p
p
ro
a
ch

1
ex
it

1

c0 c1

z ≤ 1

c2c3

Controller

z ≤ 1

exit

lo
w
er

a
p
p
roa

ch

ra
is
e

approach

z := 0

z = 1
lower

z := 0

exit

raise

g0 g1

y ≤ 1

g2g3

y ≤ 2

Gate

lo
w
er

ra
ise

lower

y := 0

raise

y := 0

y ≥ 1

Figure 5: A Controller Interacting with a Train and a Gate

5.2 Fischer protocol
This is a well-studied protocol for mutual exclusion [24]. The protocol specifies how processes can share
a resource one at a time by means of a shared variable to which each process assigns its own identifier
number. After θ time units, the process with the id stored in the variable enters the critical state and uses
the resource. We use an auxiliary component Id Variable to mimic the role of the shared variable.
The system with two concurrent processes is represented in Figure 6. The property of interest is mutual
exclusion: (csi ∧ csj)→ i = j.

The component Id Variable has combinatorial behavior and a large number of actions (2n + 1),
thus the generated invariant is huge except for very small values of n. To overcome this issue, we made use
of the second heuristic presented in Section 4.2. To simplify, we write si instead of seti and ei instead of
eqi. We construct the regular expression corresponding to location li and project it for actions ei, ej , si, sj ,
respectively ei, e0, si, s0. The latter projection leads to the following regular expression in restricted form:

Ri = (e0 + s0)∗ei.si + (e0 + s0)∗si.ei + (e0 + ei)
∗s0si + (ei + s0)∗e0si + si

This regular expression translates into the following constraint on history clocks:

φ(Ri) =(he0 ≥ hei ∧ hs0 ≥ hei ∧ hei ≥ hsi ∧ hei ≤ h0) ∨
(he0 ≥ hsi ∧ hs0 ≥ hsi ∧ hei ≤ hsi ∧ hsi ≤ h0) ∨
(he0 ≥ hs0 ∧ hei ≥ hs0 ∧ hs0 ≥ hsi ∧ hs0 ≤ h0) ∨
(hs0 ≥ he0 ∧ hei ≥ he0 ∧ he0 ≥ hsi ∧ he0 ≤ h0) ∨
(hsi ≤ h0 ∧ hs0 , he0 , hei > h0)

We deduce that at(li) → φ(Ri) is an invariant of the Id Variable, for any i. These invariants in
addition to component invariants of processes and inequality constraints E(γ) are sufficient to show that
mutual exclusion holds.

5.3 Temperature controller (TC)
This example is an adaptation from [10]. It represents a simplified model of a nuclear plant. The system
consists of a controller interacting with an arbitrary number n of rods (two, in Figure 7) in order to maintain
the temperature between the bounds 450 and 900: when the temperature in the reactor reaches 900 (resp.
450), a rod must be used to cool (resp. heat) the reactor. The rods are enabled to cool only after 900n units

18/23 Verimag Research Report no TR-2014-14

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

S1 S2

S0

Id Variable
eq1, set1 eq2, set2

eq0

set1 set2

set2

set1

eq0 eq2

se
t 2

eq1

se
t 1

i1r1

x1 ≤ θ

w1 cs1

Process1

try1, x1 := 0

set1
x1 := 0

enter1, x1 > θ

enter1try1

se
t 1

i2 r2

x2 ≤ θ

w2cs2

Process2

try2, x2 := 0

set2
x2 := 0

enter2, x2 > θ

enter2 try2

se
t 2

Figure 6: The Fischer Protocol

of time. The global property of interest is the absence of deadlock, that is, the system can run continuously
and keep the temperature between the bounds. To express this property in our prototype, we adapt from
[28] the definition of enabled states, while in Uppaal, we use the query A[] not deadlock. For one
rod, E(γ) is enough to show the property. For more rods, because interactions are conflicting, we need the
separation constraints which basically bring as new information conjunctions as∧i(hrestπ(i)

−hrestπ(i−1)
≥

1350) for π an ordering on rods. Recalling the discussion from Section 4.3, such a reduction is correct
because the system enjoys the particularly helpful property of being symmetric.

l00

l10

l20

t0 := 1800

cool0
t0 ≥ 1800

rest0, t0:= 0

rest0

cool0

Rod0

lc0

lc1t ≤ 900

lc2t ≤ 450

Controller

t := 0

cool, t=900
t:=0

heat, t=450
t := 0

heat

cool

l01

l11

l21

t1 := 1800

cool1
t1 ≥ 1800

rest1, t1:= 0

rest1

cool1

Rod1

Figure 7: A Controller Interacting with 2 Rods

5.4 Results

The experiments were run on a Dell machine with Ubuntu 12.04, an Intel(R) Core(TM)i5-2430M processor
of frequency 2.4GHz×4, and 5.7GiB memory. The results, synthesised in Table 1, show the potential of
our method in terms of accuracy (no false positives) and scalability. For larger numbers of components, the
size of the resulting invariants was not problematic for Z3. However, it may be the case that history clocks
considerably increase the size of the generated formulae. It can also be observed that Uppaal being highly
optimised, it has better scores on the first example in particular and on smaller systems in general. The
timings for our prototype are obtained with the Unix command time while the results for Uppaal come
from the command verifyta which comes with the Uppaal 4.1.14 distribution.

6 Conclusion and Future Work

We presented a fully automated compositional method to generate global invariants for timed systems de-
scribed as parallel compositions of timed automata components using multi-party interactions. The sound-
ness of the method proposed has been proven. In addition, it has been implemented and successfully tested
on several benchmarks. The results show that our method may outperform existing exhaustive exploration-
based techniques for large systems, thanks to the use of compositionality and over-approximations.

Verimag Research Report no TR-2014-14 19/23

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

Model & Size Time/Space
Property E∗ ∧ S Uppaal

1∗ 0m0.156s/2.6kB+140B 0ms/8 states
TGC & 2 0m0.176s/3.2kB+350B 0ms/13 states
mutual 64 0m4.82s/530kB+170kB 0m0.210s/323 states

exclusion 124 0m17.718s/700kB+640kB 0m1.52s/623 states
2∗ 0m0.144/3kB 0m0.008s/14 states

Fischer & 4∗ 0m0.22s/6.5kB 0m0.012s/156 states
mutual 6∗ 0m0.36s/12.5kB 0m0.013s/1714 states

exclusion 14∗ 0m2.840s/112kB no results in 4 hours
1∗ 0m0.172s/840B+60B 0m0.01s/4 states

TC & 8 0m0.5s/23kB+2.4kB 11m0.348s/57922 states
absence of 16 0m2.132s/127kB+9kB no results in 6 hours
deadlock 124 0m19.22s/460kB+510kB idem

Table 1: Results from Experiments. The marking “∗” highlights the cases when E alone was enough
to prove the property. The expressions x + y are to be read as the formula ∧iCI (Bi) ∧ II (γ) ∧ E(γ),
respectively E∗(γ) ∧ S(γ), has length x, respectively y.

This work is currently being extended in several directions. First, we work on integrating it within
D-Finder tool [10] and the Real-Time BIP framework [1]. In order to achieve a better integration, we
are working on handling urgencies [6] on transitions. Actually, urgencies provide an alternative way to
constrain time progress, which is more intuitive to use by programmers but much difficult to handle in a
compositional way. A second direction of research which is potentially interesting for systems containing
identical, replicated components and closely related to the symmetry-based reduction is the application
of our method to the verification of parameterised timed systems. Finally, we are considering specific
extensions to particular classes of timed systems and properties, in particular, for schedulability analysis of
systems with mixed-critical tasks.

References
[1] T. Abdellatif, J. Combaz, and J. Sifakis. Model-based implementation of real-time applications. In

EMSOFT, 2010. 5, 6

[2] L. D. Alfaro, T. A. Henzinger, and M. Stoelinga. Timed interfaces. In EMSOFT, 2002. 1, 1

[3] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci., 1994. 2, 5.1

[4] L. Astefanoaei, S. B. Rayana, S. Bensalem, M. Bozga, and J. Combaz. Compositional invariant
generation for timed systems. In TACAS, 2014. 1

[5] B. Badban, S. Leue, and J.-G. Smaus. Automated invariant generation for the verification of real-time
systems. In WING@ETAPS/IJCAR, 2010. 1

[6] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components in BIP. In SEFM,
2006. 6

[7] G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson, W. Yi, and M. Hendriks. UPPAAL
4.0. In QEST, 2006. 1

[8] J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial order reductions for timed systems. In CON-
CUR, 1998. 1

[9] J. Bengtsson and W. Yi. On clock difference constraints and termination in reachability analysis of
timed automata. In ICFEM, 2003. 2

20/23 Verimag Research Report no TR-2014-14

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

[10] S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen. Compositional verification for component-
based systems and application. In ATVA, 2008. 1, 1, 2, 5, 5.3, 6

[11] J. Berendsen and F. W. Vaandrager. Compositional abstraction in real-time model checking. In
FORMATS, 2008. 1

[12] S. Bornot and J. Sifakis. An algebraic framework for urgency. Information and Computation, 1998.
2

[13] P. Bouyer. Forward analysis of updatable timed automata. Form. Methods Syst. Des., 2004. 2

[14] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: A model-checking
tool for real-time systems. In CAV, 1998. 1

[15] C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in real-time systems.
Formal Methods in System Design, 1992. 3.2

[16] A. David, K. G. Larsen, A. Legay, M. H. Møller, U. Nyman, A. P. Ravn, A. Skou, and A. Wasowski.
Compositional verification of real-time systems using Ecdar. STTT, 2012. 1, 1

[17] F. S. de Boer, U. Hannemann, and W. P. de Roever. Hoare-style compositional proof systems for
reactive shared variable concurency. In FSTTCS, 1997. 1

[18] E. A. Emerson and V. Kahlon. Reducing model checking of the many to the few. In CADE, 2000. 4.3

[19] E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In POPL, 1995. 4.3

[20] E. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal Methods in System Design,
9(1/2), 1996. 4.3, 4.3

[21] A. Fietzke and C. Weidenbach. Superposition as a decision procedure for timed automata. Mathe-
matics in Computer Science, 2012. 1

[22] G. Gardey, D. Lime, M. Magnin, and O. H. Roux. ROMEO: A tool for analyzing time petri nets. In
CAV, 2005. 1

[23] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time
systems. Inf. Comput., 1994. 2

[24] L. Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst., 1987. 5.2

[25] S.-W. Lin, Y. Liu, P.-A. Hsiung, J. Sun, and J. S. Dong. Automatic generation of provably correct
embedded systems. In ICFEM, 2012. 1, 1

[26] K. S. Namjoshi. Symmetry and completeness in the analysis of parameterized systems. In VMCAI,
2007. 4.3

[27] R. B. Salah, M. Bozga, and O. Maler. Compositional timing analysis. In EMSOFT, 2009. 1

[28] S. Tripakis. Verifying progress in timed systems. In ARTS, 1999. 2, 5.3

[29] F. Wang. Redlib for the formal verification of embedded systems. In ISoLA, 2006. 1

Verimag Research Report no TR-2014-14 21/23

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

References
[1] T. Abdellatif, J. Combaz, and J. Sifakis. Model-based implementation of real-time applications. In

EMSOFT, 2010. 5, 6

[2] L. D. Alfaro, T. A. Henzinger, and M. Stoelinga. Timed interfaces. In EMSOFT, 2002. 1, 1

[3] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci., 1994. 2, 5.1

[4] L. Astefanoaei, S. B. Rayana, S. Bensalem, M. Bozga, and J. Combaz. Compositional invariant
generation for timed systems. In TACAS, 2014. 1

[5] B. Badban, S. Leue, and J.-G. Smaus. Automated invariant generation for the verification of real-time
systems. In WING@ETAPS/IJCAR, 2010. 1

[6] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components in BIP. In SEFM,
2006. 6

[7] G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson, W. Yi, and M. Hendriks. UPPAAL
4.0. In QEST, 2006. 1

[8] J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial order reductions for timed systems. In CON-
CUR, 1998. 1

[9] J. Bengtsson and W. Yi. On clock difference constraints and termination in reachability analysis of
timed automata. In ICFEM, 2003. 2

[10] S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen. Compositional verification for component-
based systems and application. In ATVA, 2008. 1, 1, 2, 5, 5.3, 6

[11] J. Berendsen and F. W. Vaandrager. Compositional abstraction in real-time model checking. In
FORMATS, 2008. 1

[12] S. Bornot and J. Sifakis. An algebraic framework for urgency. Information and Computation, 1998.
2

[13] P. Bouyer. Forward analysis of updatable timed automata. Form. Methods Syst. Des., 2004. 2

[14] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: A model-checking
tool for real-time systems. In CAV, 1998. 1

[15] C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in real-time systems.
Formal Methods in System Design, 1992. 3.2

[16] A. David, K. G. Larsen, A. Legay, M. H. Møller, U. Nyman, A. P. Ravn, A. Skou, and A. Wasowski.
Compositional verification of real-time systems using Ecdar. STTT, 2012. 1, 1

[17] F. S. de Boer, U. Hannemann, and W. P. de Roever. Hoare-style compositional proof systems for
reactive shared variable concurency. In FSTTCS, 1997. 1

[18] E. A. Emerson and V. Kahlon. Reducing model checking of the many to the few. In CADE, 2000. 4.3

[19] E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In POPL, 1995. 4.3

[20] E. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal Methods in System Design,
9(1/2), 1996. 4.3, 4.3

[21] A. Fietzke and C. Weidenbach. Superposition as a decision procedure for timed automata. Mathe-
matics in Computer Science, 2012. 1

[22] G. Gardey, D. Lime, M. Magnin, and O. H. Roux. ROMEO: A tool for analyzing time petri nets. In
CAV, 2005. 1

22/23 Verimag Research Report no TR-2014-14

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

[23] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time
systems. Inf. Comput., 1994. 2

[24] L. Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst., 1987. 5.2

[25] S.-W. Lin, Y. Liu, P.-A. Hsiung, J. Sun, and J. S. Dong. Automatic generation of provably correct
embedded systems. In ICFEM, 2012. 1, 1

[26] K. S. Namjoshi. Symmetry and completeness in the analysis of parameterized systems. In VMCAI,
2007. 4.3

[27] R. B. Salah, M. Bozga, and O. Maler. Compositional timing analysis. In EMSOFT, 2009. 1

[28] S. Tripakis. Verifying progress in timed systems. In ARTS, 1999. 2, 5.3

[29] F. Wang. Redlib for the formal verification of embedded systems. In ISoLA, 2006. 1

Verimag Research Report no TR-2014-14 23/23

	Introduction
	Timed Systems and Properties
	Timed Invariant Generation
	History Clocks for Actions
	History Clocks for Interactions

	Improving (VR) - Three Heuristics
	More about conflicting interactions
	Invariant computation using regular expressions
	Exploiting Symmetry

	Implementation and Experiments
	Train gate controller (TGC)
	Fischer protocol
	Temperature controller (TC)
	Results

	Conclusion and Future Work

