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Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr


Models for Deterministic Execution of Real-time Multiprocessor
Applications

Peter Poplavko, Dario Socci, Paraskevas Bourgos, Saddek Bensalem, Marius Bozga

November 2014

Abstract

With the proliferation of multi-cores in embedded real-time systems, many industrial applica-
tions are being (re-)targeted to multiprocessor platforms. However, exactly reproducible data
values at the outputs as function of the data and timing of the inputs is less trivial to realize
in multiprocessors, while it can be imperative for various practical reasons. Also for paral-
lel platforms it is harder to evaluate the task utilization and ensure schedulability, especially
for end-to-end communication timing constraints and aperiodic events. Based upon reactive
system extensions of Kahn process networks, we propose a model of computation that em-
ploys synchronous events and event priority relations to ensure deterministic execution. For
this model, we propose an online scheduling policy and establish a link to a well-developed
scheduling theory. We also implement this model in publicly available prototype tools and
evaluate them on state-of-the art multi-core hardware, with a streaming benchmark and an
avionics case study.
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1 Introduction
A not so well known fact about fixed-priority scheduling is that it is commonly used in real-time systems
not only for meeting the deadlines but also for ensuring functional determinism on uniprocessor platforms.
This is so because the schedule priority define the precedence (i.e., the relative execution order) of com-
municating tasks [1, 2]. However, when re-targeting the applications from single- to multi- processors
this property of priority is lost, and hence alternative ways of ensuring ‘schedulable’ determinism is an
important issue for industry [3], where multi-cores are considered an important target for next-generation
real-time systems [3, 4]. Determinism is required for control stability and digital signal quality, for testing
and fault-tolerance by triple-modular redundancy. Without deterministic communication it is impossible to
define and guarantee end-to-end timing constraints.

Deterministic execution in any concurrent platform can be ensured by programming the application
based on a deterministic model of computation, i.e., a formal design language, and providing a correct
implementation of the model semantics by safe synchronization between concurrent threads. Historically,
in the academic research the streaming/KPN(Kahn process network)-based models of computation have
gained a lot of popularity due to their affinity to signal/image processing, relative ease of multiproces-
sor implementation and applicability of well-established task graph scheduling and timing analysis the-
ory [5]. In contrary, in industrial real-time applications synchronous languages have gained popularity due
to their simple concept of timing through synchronous events, well-studied formal basis to define end-to-
end precedence relationships between events (and hence their timing constraints) as well as their affinity to
‘reactive-control’ applications.

Nowadays, with ever growing integration of various functionalities on shared resources it is practically
relevant to consider hybrid streaming/reactive control applications. A step forward in this direction was
combining KPNs with synchronous events in reactive process networks (RPNs) in [6]. However, so far no
scheduling algorithms have been proposed for any proper subclass of RPN.

To close this gap and to help to address the industry needs in deterministic and schedulable multiproces-
sor models, in this paper we propose a subclass of RPNs called fixed-priority process networks (FPPNs).
The model and its semantics is described in Section 2. Then in Sections 3 and 4, for a quite general subclass
of FPPNs, we propose a scheduling approach based on the scheduling theory of task graphs. In Section 5
we evaluate our publicly available FPPN code generation tools with a streaming (FFT) and a reactive con-
trol (avionics) applications. In the last section we discuss related work and present conclusions.

2 Fixed Priority Process Networks

2.1 Preliminaries
Functional determinism requires that the data sequences and time stamps at the outputs should be a well-
defined function of the data sequences and time stamps at the inputs. Among deterministic models, the
KPN (Kahn process networks) have gained popularity in the research on multiprocessor scheduling. They
are deterministic due to the blocking of the reads from the empty channels. Reactive process networks
(RPN) [6] extend KPN by events. Simultaneous occurrence of events can lead to non-determinism, but [6]
suggest that determinism can be ensured by priorities between events. This suggestion is exploited in
our model, Fixed Priority Process Network (FPPN). Our model differs from KPN and RPN by assuming
blocking access of processes to events and non-blocking one to the data channels. Nevertheless, any FPPN
can be directly translated to an equivalent RPN where processes never have to block for data.1

We ensure determinism by so-called functional priorities, whose effect is equivalent to the effect of
fixed priorities on a set of tasks under uniprocessor fixed-priority scheduling with zero task execution
times. The order in which such tasks execute is defined first of all by the time stamps when the tasks are
released (we say, ‘invoked’) and secondly by the task priorities. Controlling the execution order implies
determinism. This property extends from zero-delay to conventional tasks provided their periods and dead-
lines have some restrictions [1, 2]. Modeling their behavior makes FPPN functionally equivalent to such
real-time systems. However, we do not put any restrictions on periods and deadlines. We use the priorities

1We are working on a description of the link between FPPN and RPN, we will update this report accordingly.
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not directly in scheduling, but rather in the definition of model semantics. FPPN can be scheduled on sin-
gle or multiple processors by scheduling policies with and without priorities, provided that the semantics
is respected.

To define the semantics, we introduce some preliminary definitions. We assume a set of variables, each
variable initialized at start. The set of variables is divided into the set of local variables, X , and channels.
The latter are subdivided into internal channels C, i.e., those shared between pairs of processes, and the
external inputs and outputs, denoted I and O. Access to the channels is determined by channel type,
which define the effect of read and write actions. We define two default channel types: a FIFO (first-
in-first-out) and a blackboard. The FIFO has a semantics of a queue. The blackboard remembers the
last written value, and it can be read multiple times. Reading from an empty FIFO or a non-initialized
blackboard returns an indicator of non-availability of data. An action of writing variable x ∈ X to channel
c ∈ C is denoted x!c. An action of reading is denoted x?c.

An event generator e is defined by the set of possible sequences of time stamps τk that it can produce
online. A generator e is characterized by deadline de and a partitioned subset Ie and Oe of external
channels. [τk, τk + de] define the time interval when k-th sample in Ie and Oe can be read resp. written.
The corresponding actions are denoted x?[k]Iei and x![k]Oej . We define two types of event generators:
multi-periodic and sporadic. Both are parameterized by me, the burst size, and Te, the period. Bursts of
me periodic events occur at times 0, Te, 2Te, etc.. For sporadic events, at most me events can occur in any
half-closed interval of length Te.

Next to write and read actions, we define variable assignment and waiting until time stamp τ : w(τ).
The actions are assumed to have zero delay. The set of all actions is denoted Act . Execution trace
α ∈ Act∗ is a sequence of actions, e.g.,

α = w(0), x?[1]I1, x := x2, x!c1,w(100), y?c1, O1![2]y

In this example, at time 0 we read data from I1 sample [1] and compute its square. Then we write to
channel c1. At time 100 we read from c1 and write to output O1 sample [2].

InputA

200ms200ms200ms200ms

FilterB

200ms200ms200ms200ms

FilterA

100ms100ms100ms100ms

OutputA

200ms200ms200ms200ms

NormA

200ms200ms200ms200ms

CoefB

2 per700ms2 per700ms2 per700ms2 per700ms
OutputB

100ms100ms100ms100ms

relative writer / reader process priorityFIFO

blackboard (shared variable)

spradic process

periodic process

Input Channel

Output Channel 1

Output Channel 2

bust size and  min. period

Figure 1: Fixed Priority Process Network Example

Definition 2.1 (FPPN) An FPPN is a tuple PN = (P,C,FP, ep, Ie, Oe, de,Σc,CT c) where P is a set
of processes, C ⊆ P × P is a set of internal channels, so (P,C) is a directed graph. In addition to
process network graph, which can be cyclic, we define a directed graph (P,FP), FP ⊂ P × P , called
functional priority graph, which must be acyclic (a DAG). We use notation p1 → p2 for (p1, p2) ∈ FP .
The functional priority should be defined at least for the processes accessing the same channel: (p1, p2) ∈
C ⇒ p1 → p2 ∨ p2 → p1. ep is a mapping from process p to a unique event generator, whereas Ie and
Oe are mappings from event generator to a (possibly empty) partition subset of external input and output
(I/O) channels. de defines the relative deadline for accessing the I/O channels of generator e. Σc defines
alphabets for internal and external I/O channels. CT c defines the channel types.
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By abuse of notation c ∈ C is a channel (state variable) and at the same time a pair of writer and reader,
(p1, p2). For p1 the channel is said to be an output and for p2 an input.

Because processes p are related one-to-one to event generators ep, we associate the generator attributes
with the processes, and use notations Tp, mp, dp, Ip and Op.

An example is shown in Figure 1. It represents an imaginary signal processing application with input
sample period 200ms, reconfigurable filter coefficients and a feedback loop.

Definition 2.2 (Process) Each process p is associated with a deterministic automaton (`p
0, Lp, Xp, Xp

0,
Ip, Op, Ap, Tp). where Lp is a set of locations, `p

0 is initial location, Xp is set of internal variables, Xp
0

are initial values of variables. Ip,Op are (both internal and external) input and output channels: Ip ⊆ Ip,
Op ⊆ Op. Ap is a set actions, which consists of variable assignments for Xp, reads from Ip, and writes
to Op. Tp is transition relation Tp : Lp × Gp × Ap × Lp, where Gp is the set of predicates (guarding
conditions) defined on the variables from Xp.

Informally, a process represents a software subroutine with a given set of locations (source-code line
numbers), variables and transitions (data and operators). The latter include the current location (line num-
ber), the guard on variables (‘if’ condition), the action (operator body) and the next location. A job execu-
tion run of a process automaton is a non-empty sequence of automaton steps (executed lines of code) that
brings it back to its initial location (as a subroutine). We assume that at k-th job execution run the external
inputs Ip and outputs Op are read/written only at sample index [k].

We give two definitions of FPPN semantics. An imperative requirement for the execution of FPPN is
synchronous arrival of all simultaneous event invocations.

The zero-delay semantics can be defined in terms of rules to construct the execution trace of FPPN
for a given sequence (t1,P

1), (t2,P
2) . . . where t1 < t2 < . . . are time stamps and Pi is the multiset of

processes invoked at time ti by their event generators. The execution trace has the form:

Trace(PN ) = w(t1) ◦ α1 ◦w(t2) ◦ α2 . . .

where αi is a concatenation of job execution runs for the processes in Pi included in an order such that if
p1 → p2 then the job(s) of p1 execute earlier than the job(s) of p2.

The real-time semantics is a relaxed version of the zero-delay one. It allows jobs to have any execution
time and to start concurrently to each other at any time after their invocation. However, the FPPN execution
should satisfy timeliness and precedence. Timeliness means completion within the relative deadline dp.
Precedence concerns the jobs of the same process and the jobs accessing the same channel. Each such
subset of jobs should execute in a mutually exclusive way and respect the execution order of zero-delay
semantics, sorted by invocation time and priority.

Proposition 2.1 (Deterministic Execution) The sequences of values written at all external and internal
channels are functionally dependent on the time stamps of the event generators and on the data samples at
the external inputs.2

Basically, this property means that the outputs calculated by FPPN depend only on the event invoca-
tion times and the input data sequences, but not on the scheduling. To realize this requirement, in the
implementation [7] we employ multi-thread synchronization mechanisms, such as mutexes.

3 Scheduling Models

3.1 Task Graph Derivation
FPPN is a model of computation designed to formalize the behavior of real-time tasks with deterministic
communication, including those uniprocessor scheduling settings that exploit the schedule priority to en-
sure determinism. For the latter there exists a family of relevant scheduling techniques, such as [1, 2]. Such

2We will finalise a formal definition of the semantics and determinism and update this report accordingly.
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techniques can be seen as ready-to-use uniprocessor scheduling methods applicable to FPPN and related
models, such as synchronous languages [2].

As a formal language, FPPN should show the same deterministic behavior no matter which platform
it is implemented on. A correctly implemented formal language would ensure deterministic execution on
multiple processors, but ensuring timeliness by multiprocessor scheduling would remain to be challenging.
This problem gets even harder when sporadic tasks are involved. Therefore, to demonstrate scheduling for
FPPNs, we consider a practically relevant subclass of FPPNs where the use of sporadic tasks is restricted.

From the subclass of FPPNs considered here one can statically derive a task graph which then serves
as input to a scheduling algorithm. The algorithm generates a static schedule, where we model sporadic
processes by periodic ones with worst-case demand of resources. To make it possible, we put a restriction
that each sporadic process p be connected by a channel to exactly one ‘user’ process u(p), which must
be periodic and which must have at most the same period3: Tu(p) ≤ Tp. This restriction is practically
relevant, because a sporadic process often plays an utility role, ‘configuring’ some application parameters
of a periodic process, e.g., in Fig. 1 process CoefB configures the filter coefficients of user process FilterB.

task subgraph :
≤ m real jobs p[k] invoked

current subset 

of m jobs p’[k]

a b

sporadic p:

user u : user job

time

if p[k] invoked exactly at b

handled in the current subset?

p →→→→ u - yes

u →→→→ p - no

(in the next subset instead) 

the subset of m server jobs

current user period

handling the priority of p:

jobs arrivals:

deadlines:
real dp

server dp'

p’ : the server for  p:

b

user job

handled by:

Figure 2: Handling a Sporadic Process (for handling the priority – see Sec. 4)

The run-time sporadic jobs invoked inside the user period are modeled by ‘periodic server’ jobs that
arrive at the boundaries of the user period intervals. As indicated in the task subgraph, the server jobs at time
b must have precedence over the user job that also arrives at time b. This is so because for causality reasons
the server jobs can only handle the real jobs that have been invoked in the past, i.e., inside (a, b), whereas
FPPN semantics requires that the earlier jobs have precedence over the later ones. For convenience, we say
that the server jobs for process p are generated by an imaginary m-periodic ‘server process’ p′. To ensure
the precedence of the server jobs we set: p′ → u(p). Note that this does not mean that sporadic processes
must always have priority over their users, the higher priority is only required for their ‘servers’, which are
imaginary processes introduced to define the scheduling algorithm.

The deadlines of the server jobs are corrected to compensate for worst-case one-period postponement
of job arrival due to waiting until the job is handled by the server4: dp′ = dp − Tu(p). Thus, we effectively
assume arrival at time b but count the deadline from time a, in order to be conservative.

Definition 3.1 (Task Graph) A task graph is a directed acyclic graph (DAG) T G(J , E) whose nodes are
jobs: J = {Ji}. A job is characterized by a 6-tuple Ji = (pi, ki, Ai, Di, Ci), where: pi is the process
to which the job belongs, ki is the invocation count of job, Ai ∈ Q≥0 is the arrival time, Di ∈ Q+ is
the required time (absolute deadline), Ci ∈ Q+ is the WCET (worst-case execution time). A job can be

3one could relax the restrictions on the number of user processes and their periods at the cost of somewhat more complex task
graph construction

4here we implicitly require that dp > Tu(p) but if it is not the case we can use server jobs with a period T ′ being a fraction of
Tu(p) instead, so that the server deadlines become positive
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denoted p[k], i.e., k-th job of process p. The edges E are called precedence edges and represent constraints
on job execution order.

The task graph for PN is derived as follows:

1. Obtain an imaginary process network PN ′ where each sporadic process p is replaced by m-periodic
‘server’ process p′ with burst sizemp′ = mp, period: Tp′ = Tu(p), and priority relation: FP ′ : p′ →
u(p).

2. Simulate the job invocation order in PN ′ for one hyperperiod, i.e., time interval [0,H), where H is
the least common multiple5 of Tp in PN ′. The simulation results in a sequence of jobs J = (pi[ki]).
Sequence J defines a total order <J

3. Construct graph T G(J , E) where the nodes J are the elements of sequence J and the edges are
defined for a pair of jobs Ja = pa[ka] and Jb = pb[kb] as follows:

• (Ja, Jb) ∈ E ⇔ Ja<JJb ∧ (pa ./pb ∨ pa =pb),
where:

• pa ./pb ⇔ (pa, pb)∈ FP ′ ∨ (pb, pa)∈ FP ′.

and the job parameters for job Ji = p[k] defined by:

• Ai = Tp · b(k − 1)/mpc and Di = Ai + dp if p is m-periodic

• Ai = Tp′ · b(k − 1)/mp′c and Di = Ai + dp − Tp′ if p is sporadic

4. Truncate all the required times Di to the hyperperiod: Di := min(H,Di). This is required by the
algorithm described in Section 3.2.

5. Remove redundant edges by transitive reduction.

Fig. 3 shows an example assuming Ci = 25ms.

FilterB[1]
(0,200,25)

OutputB[1]
(0,100,25)

InputA[1]
(0,200,25)

FilterA[1]
(0,100,25)

OutputA[1]
(0,200,25)

CoefB[1]
(0,200,25)

CoefB[2]
(0,200,25)

FilterA[2]
(100,200,25)

NormA[1]
(0,200,25)

OutputB[2]
(100,200,25)

p i [k i]

(A i , D i , C i ) 

redundant

Figure 3: Task Graph for the Process Network in Fig. 1

In this example, H = 200. Every process is represented by mp · H/Tp vertices. Since CoefB is
represented by its server process, its period 700 is replaced by the period of its user (FilterB), 200. Since
mp = 2, CoefB is represented by two jobs. InputA has priority over FilterA and NormA, and hence it
is joined to both of them. However, in the latter case the edge is redundant due to a path from InputA to
NormA.

5Tp ∈ Q+, so the lcm is computed for rational numbers
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3.2 Compile-time Scheduling Algorithm
To demonstrate availability of proper scheduling techniques applicable for FPPNs, in this paper the schedul-
ing is defined by compile-time scheduling algorithm and online scheduling policy. The compile-time al-
gorithm schedules the given task graph and prepares a configuration for the online policy. This algorithm
must have a scalable complexity, as it may face large hyperperiods in multi-rate systems. We apply the
precedence-constrained scheduling theory, which is commonly used in streaming languages [5] and which
usually does not consider jobs with multiple different arrival times and deadlines, but they can be naturally
incorporated, as shown here.

Currently we assume non-preemptive scheduling on a set of M identical processors. We restrict our-
selves to non-pipelined scheduling and thus truncate the deadlines to avoid overlap of subsequent task
graph executions. We adopt this restriction because of too little previous research on scalable pipelined
scheduling which would directly support periods, deadlines and bounded number of processors at the same
time. 6

The compile-time scheduling algorithm constructs a static schedule, where all start times are fixed.
This schedule is repeated periodically and therefore is referred to as periodic frame. The frame period is
the hyperperiodH.

Let si be the starting time of job Ji w.r.t. the beginning of the frame. The execution interval for job Ji
is interval [si, ei), where ei = si + Ci. Let us define the following predicate: ψi,j : ei ≤ sj , stating that
job Jj executes after Ji.

OutputB[1]

MMMM1111
InputA[1] FilterA[1] OutputA[1]

CoefB[1] CoefB[2]

FilterA[2]

OutputB[2]

100 ms100 ms100 ms100 ms0000

MMMM2222

222200000000    mmmmssss

FilterB[1]

NormA[1]

Figure 4: A Static Schedule for the Task Graph in Fig. 3

Definition 3.2 (Static Schedule) A static schedule for a task graph T G = (J , E) on a multiprocessor
platform with a finite set M of processors consists of defining for each job Ji a mapping µi ∈ M and a
start time si ∈ Q≥0. A schedule is called feasible if it satisfies the following constraints:

Arrival time: ∀i si ≥ Ai

Deadline: ∀i ei ≤ Di

Precedence: ∀i, j (Ji, Jj) ∈ E ⇒ ψi,j

Mutual exclusion: ∀i, j µi = µj ⇒ ψi,j ∨ ψj,i

The problem formulation can be seen as a generalization of the classical problem, where all jobs have
a zero arrival and a common required time. The classical problem is NP-complete. Therefore a heuristic
algorithm is generally required in practice. Like many precedence-constrained scheduling algorithms, at
compile time we also use list scheduling, which assumes a heuristically computed schedule priority SP ,
a total order where earlier jobs have higher priority. Note that SP should not be confused with functional
priority, FP , used to determine the precedences in E . Normally, priority-based scheduling defines a job Ji
to be ready at time t if at that time it has arrived and has not completed yet: Ai ≤ t < ei. The list scheduling

6 For this combination of constraints, pipelined streaming currently knows a rich set of scalable timing analysis but not scheduling
techniques. One usually employs non deadline-aware retiming and unfolding [5] or employs less-scalable methods based on constraint
solving and model checking.
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extends this condition by also requiring that all predecessors should have completed: ∀j ∈ Pred(i).ej ≤ t,
where Pred(i) = {j |(Jj , Ji) ∈ E}. For a given SP , list scheduling consists of a simple simulation of the
fixed-priority policy using the updated definition of ready jobs.

If the obtained static schedule satisfies the job deadlines then it is feasible, otherwise the selected
schedule priority may be sub-optimal. Different heuristics exist for optimizing priority order SP [8]. For
defining the heuristics as well as for facilitating the problem analysis in general it is useful to introduce the
well-known notions of ASAP start time A′i and ALAP7 completion time D ′i (which stands for ‘as soon’
and ‘as late’ as possible). They provide a lower bound on si and an upper bound on ei for any feasible
schedule if one exists. These times can be defined by recursive formulas:

A′i = max(Ai, max
j∈Prec(i)

A′j + Cj)

D ′i = min(Di, min
j∈Succ(i)

D ′j − Cj)

where Pred(i) and Succ(i) are predecessors and successors. A less commonly known fact about ASAP
and ALAP is that they can serve to define an utilization metric that takes into account the precedence
constraints. This metric was originally introduced for the case of no precedences and was called load [9].
We define the task graph load as:

Load(T G) = max
0≤t1<t2

∑
Ji: t1≤A′

i∧D′
i≤t2

Ci

t2 − t1

where A′i and D ′i are ASAP and ALAP times.

Proposition 3.1 (Necessary condition for schedulability) A task graph T G can be scheduled on M pro-
cessors only if ∀i.A′i + Ci ≤ D ′i and dLoad(T G)e ≤M .

As for heuristics to compute SP , apparently also in this case it is useful to consider the EDF (earliest-
deadline first), often applied in preemptive online scheduling. For task graphs, the definition of EDF should
be adjusted by using ALAP instead of the nominal job deadlines. Different variants of this heuristics exist,
such as ‘ALAP’-heuristic, b-level heuristic [8], modified deadline monotonic [1], etc.. For certain problem
restrictions the EDF was proven optimal, see [8].

4 Online Scheduling Policy
Our scheduling policy consists of repetition of the schedule frame with period H. The jobs are mapped to
the processors according to mapping µi. In fully static scheduling, we would also have used si for the start
time of the jobs w.r.t. the start of the frame. However, the statically computed start times are not robust
against inaccuracies in estimations of WCET, which can appear in measurement-based and probabilistic
WCET estimations. Therefore instead we use a policy where the jobs synchronize with their predecessors
instead of relying on si to ensure precedence constraint satisfaction. This policy is predictable and known
as static-order scheduling [5]. We have adapted this policy to sporadic processes. After the start of the new
frame, on each processor independently the scheduler picks the jobs in the order defined by the schedule
si and executes a ‘round’ that consists of the following steps:

• Synchronize Invocation: Wait for the event invocation that corresponds to the current job. For
periodic and m-periodic processes the event invocation occurs at time Ai. For sporadic ones the
invocation occurs either at time Ai or earlier or does not occur at all. In the latter case at time Ai the
job is marked ‘false’.

• Synchronize Precedence: Wait until all task-graph predecessors that run on other processors have
completed. For example for job FilterB[1] we would wait until InputA[1] has completed,

• Execute the job: unless it is marked ‘false’.

7in the literature ALAP often refers to arrival

Verimag Research Report no TR-2014-12 7/11



Peter Poplavko, Dario Socci, Paraskevas Bourgos, Saddek Bensalem, Marius Bozga

Recall (see Fig. 2) that for each sporadic process p the variable number of jobs per frame is represented
in the task graph by server jobs. In general, the latter can be split into H/Tu(p) subsets of the mp jobs
invoked in the same user period Tu(p). The jobs in n-th subset arrive at the same time: A[n] = (n−1)·Tu(p)
and always have a direct precedence to the user job arriving at time A[n]. For example, in Fig. 3, jobs
CoefB[1] and CoefB[2] are in the same subset, they arrive at time 0 and have precedence edge to FilterB[1].

All the jobs in a subset are invoked in time interval between a = A[n]−Tu(p) and b = A[n], see Fig. 2.
In our example, for the jobs of process CoefB, we have arrival: A[1] = 0 and Tu(p) = 200, so the jobs can
be invoked in the interval from a = −200 to b = 0. The negative time values should not be surprising, as
they are relative to the start of the current frame.

Consider the t-th job inside the subset. This job represents the t-th real job invoked between a and b.
If at run time less than t jobs were invoked our scheduling policy marks the t-th job and later jobs in the
subset as ‘false’ and skips them.

If the real job of process p is invoked between a and b then the online policy should see them as part
of the subset, see Fig. 2. However, what if the job arrives exactly on the boundary? By periodicity, it is
enough to consider only boundary b. If the process has a higher priority than its user then it should be
executed before the user and therefore included in the subset. Otherwise it should be executed after the
user and thus postponed to the next subset (or frame).

Therefore, if p→ u(p) then the server jobs arriving at b handle the real jobs invoked in the right-closed
interval (a, b], and in the opposite case the interval is left-closed.

Proposition 4.1 (Schedule Correctness) When based on a feasible static schedule, the static-order policy
always meets the deadlines and correctly implements the real-time semantics of FPPN.8

5 Experiments
In the context of CERTAINTY EU project an FPPN-related programming language was defined. For that
language we developed scheduling and code generation tools as well as a runtime environment for shared-
memory multiprocessors [7]. The execution times for scheduling are obtained from profiling, which is
suitable for soft real-time applications. The runtime was deployed to Linux multi-thread as well as MPPA
many-core [10] platforms. The tools are based on automatic translation of the FPPN network and the
schedule to a network of timed automata. We support both the zero-delay semantics for simulation and
real-time semantics for concurrent real-time execution, where multiple process automata can be mapped to
the same thread according to static mapping µi.

FFT2_0_1

generator

FFT2_0_2

FFT2_0_3

FFT2_0_0

FFT2_1_1

FFT2_1_2

FFT2_1_3

FFT2_1_0

FFT2_2_1

FFT2_2_2

FFT2_2_3

FFT2_2_0

consumer

Figure 5: FFT Task Graph

5.1 Streaming Application: FFT Transform
In this use case we have programmed a classical streaming application: the FFT (Fast Fourier Transform)
of four floating-point numbers, shown in Fig. 5. We use our design framework to compile and run this

8 We will finalise a more formal argumentation and update this report accordingly.
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application on the Kalray MPPA platform. All processes had the same period and deadline Tp = dp =
200 ms, and the direction of data flow in FIFO channels coincided with functional priority relation, and
hence the task graph maps one-to-one to the process-network graph.

The execution times of all processes were roughly 14ms, which resulted in a load 0.93. However,
single-processor mapping did not meet deadlines, due to the runtime overhead. The application was thus
mapped on two processors, where no deadline misses were observed. The Gantt chart of the execution
traces is shown in Figure 6. The first two rows show the application jobs on two processors, while the third
one shows the execution of the runtime, on a separate processor.

Figure 6: Real-time Execution of FFT on MPPA Platform

As it can be seen the runtime causes an overhead at the beginning of each frame, which is 41 ms for the
first frame (probably due to initial cache misses) and 20 ms for all subsequent frames, required to manage
the arrival of 14 jobs. Also inside the frame the runtime serves read/write synchronisation requests from
the processes. While read/write overhead is included in WCET estimations, the arrival overhead is not,
and taking it into account in schedulability analysis is future work. For now we modeled it by an extra
41 ms job with a precedence edge directed to the generator. This yielded a load of ≈ 1.2, which explains
the deadline misses in single-processor mapping. We also observe that this application is very fine grain
(processing just one number per job), whereas more coarse grain implementation would make the relative
impact of overhead small compared to the computation times.

5.2 Reactive-Control Application: FMS

In this experiment we consider a subsystem of avionics Flight Management System (FMS) [4]. Because
of current limitations of our tools, we could only run it on a Linux platform. We used one with an Intel i7
processor at 3.6GHz. Figure 7 shows the application process network. This FMS subsystem is responsible
for calculating the best computed position (BCP) and predicting the performance (e.g., fuel usage) of the
airplane based on the sensor data and sporadic configuration commands from the pilot.

The sporadic processes had less functional priority than their periodic users. The relative functional
priority of the periodic processes is rate-monotonic, which was in line with the scheduling priority of
the original uniprocessor prototype, making the two implementations functionally equivalent, which we
verified by testing.

For this process network we encountered a too high code generation overhead due to a long hyperperiod
(40 s) (an online policy subroutine handling a few thousands jobs explicitly). Therefore, we reduced it to
10 s by reducing the period of MagnDeclin from 1600ms to 400ms and executing the main body of the job
once per four invocations. The derived task graph contained 812 jobs and 1977 edges. The load of this task
graph was low ≈ 0.23 and, consistently, a single-processor mapping encountered no deadline misses. To
test multi-processor execution, we still generated schedules for different number of processors and reached
similar conclusions as for FFT concerning the runtime overhead and the job granularity.
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Figure 7: FMS Process Network

6 Related Work and Conclusions

In this work we proposed FPPN, a new model of computation that generalizes the determinism of real-time
fixed-priority systems [1, 2, 3] from single- to multiprocessor platforms by reproducing the deterministic
behavior of such systems using precedence constraints in semantics. From a quite general practically-
relevant subclass of FPPN, we derive static task graphs and adapt the corresponding scheduling methods to
support deterministic and predictable communication between deadline-constrained periodic and sporadic
processes.

FPPN combines certain concepts of synchronous and streaming languages. While practiced for a long
time in streaming, derivation of multi-tasking models from synchronous languages has received attention
only recently. [2] proposes a task graph derivation and scheduling algorithm, not supporting, however,
sporadic events and multiple processors. [1] also propose a task-graph priority assignment algorithm for
uniprocessors. From the streaming domain, the novelty of our approach is the support of (a)periodic
deadline-constrained events. [11] is one of the few streaming languages supporting external events with
deadlines, though only periodic ones. In [6] reactive process networks (RPNs) are proposed. FPPNs
represent a restriction of RPNs adapted to real-time tasks by introducing the priority and explicit timing of
events.

We provide prototype tools [7] and present promising evaluation results on two use cases, including one
from industry. In future we plan to support scheduling with buffering, pipelining, and mixed criticality.

References

[1] J. Forget, F. Boniol, E. Grolleau, D. Lesens, and C. Pagetti, “Scheduling dependent periodic tasks
without synchronization mechanisms,” in RTAS’10, pp. 301–310. 1, 2.1, 3.1, 3.2, 6

[2] S. Baruah, “Semantics-preserving implementation of multirate mixed-criticality synchronous pro-
grams,” in RTNS’12, pp. 11–19, ACM, 2012. 1, 2.1, 3.1, 6

[3] D. Claraz, F. Grimal, T. Laydier, R. Mader, and G. Wirrer, “Introducing multi-core at automotive
engine systems,” in ERTSS’14, Embedded Real-time Software and Systems, 2014. 1, 6
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