
SR3: A Secure and Resilient
Reputation-Based Routing Protocol

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal
Lafourcade

Verimag Research Report no TR-2013-4

April 26, 2013

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr

SR3: A Secure and Resilient Reputation-Based Routing Protocol

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

April 26, 2013

Abstract

We propose SR3, a secure and resilient algorithm for convergecast routing in WSNs. SR3 uses
lightweight cryptographic primitives to achieve data confidentiality and data packet unforge-
ability. SR3 has a security proven by formal tool. We made simulations to show the resiliency
of SR3 against various scenarios, where we mixed selective forwarding, blackhole, wormhole,
and Sybil attacks. We compared our solution to several routing algorithms of the literature.
Our results show that the resiliency accomplished by SR3 is drastically better than the one
achieved by those protocols, especially when the network is sparse. Moreover, unlike previous
solutions, SR3 self-adapts after compromised nodes suddenly change their behavior.

Keywords: Wireless sensor networks, routing, security, resiliency

Reviewers: Stéphane Devismes

How to cite this report:

@techreport {TR-2013-4,
title = {SR3: A Secure and Resilient Reputation-Based Routing Protocol},
author = {Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade},
institution = {{Verimag} Research Report},
number = {TR-2013-4},
year = {2013}
}

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

Contents

1 Introduction 3
1.1 Contribution . 3

2 Related work 4
2.1 Resiliency . 4
2.2 Routing in WSNs . 4
2.3 Roadmap . 5

3 Presentation of our algorithm 5
3.1 Assumptions . 5
3.2 Overview . 5
3.3 Reputation Mechanism . 6
3.4 Compute the Reputation . 6
3.5 Acknowledgment Routing . 7

4 Cryptographic proof of the packet format 11
4.1 Idea . 11
4.2 Background . 11

4.2.1 Pseudorandom Permutations . 11
4.2.2 Hash functions in the Random Oracle Model . 12

4.3 Cryptoverif . 13
4.4 SR3 modelization . 13
4.5 Find-then-guess security . 14
4.6 Unforgeability . 15
4.7 Nonce confidentiality . 17
4.8 Using these results . 18

5 Attacker Models 18
5.1 Blackholes . 19
5.2 Selective forwarding nodes . 19
5.3 Wormholes . 19
5.4 Sybil Nodes . 20

6 Related Routing Algorithms 20
6.1 Uniform Random Walk (RW) . 20
6.2 Greedy-Face-Greedy (GFG) . 20
6.3 Gradient-based routing and variants . 21

6.3.1 Deterministic GBR (GBR) . 21
6.3.2 Randomized GBR (RGBR) . 22
6.3.3 Probabilistic Randomized GBR (PRGBR) . 22
6.3.4 Probabilistic Randomized Duplicating GBR (PRDGBR) 22

7 Observed Behaviors and Metrics 23
7.1 Number of Hops . 23
7.2 Delivery Rate . 23

7.2.1 Average Delivery Rate . 24
7.2.2 Fairness regarding the delivery rate . 24
7.2.3 Delivery Rate Classes . 24

Verimag Research Report no TR-2013-4 1/40

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

8 Simulation Context 25
8.1 Sinalgo . 25
8.2 Network Modeling . 26
8.3 Topologies . 26

8.3.1 Graph generation . 26
8.4 Setting parameters for the SR3 algorithm . 27

8.4.1 LRouting size . 27
8.4.2 LQueue size . 28
8.4.3 LAckRouting size . 29

9 Results 29
9.1 In safe networks . 31
9.2 In networks under attack . 31

9.2.1 Against blackholes . 31
9.2.2 Against selective forwarding nodes . 36
9.2.3 Against wormholes . 36
9.2.4 Against Sybil nodes . 37

10 Conclusion 37

2/40 Verimag Research Report no TR-2013-4

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

1 Introduction
Nowadays, there is a growing interest in Wireless Sensor Networks (WSNs). WSNs are multi-hop mesh
networks made of numerous small battery-powered sensors (also called motes) that generate data about
the environment (e.g., temperature) and use them for specific services (e.g., emit an alarm when the sur-
rounding temperature is too high). Motes communicate using wireless communications and form a large
asynchronous connected network. Motes are supplied by batteries, and when those batteries are depleted,
nodes die. Hence, the energy consumption of the network is a main concern, since it will determine its
lifetime. Also, the low capabilities of the sensors, their wireless communications, and the fact that they are
deployed in open areas make them prone to attacks.

Routing is a crucial issue in WSNs. Here, we consider a routing scheme called convergecast routing.
In this problem, a node is distinguished as the sink and all non-sink nodes, called source nodes, must be
able to transmit data to the sink on request or according to an a priori unknown schedule. The sink can be
arbitrary far (in terms of hops) from other nodes. Typically, in WSNs, source nodes are sensors and the
sink is a base station that is linked to another network, like a gateway.

A routing protocol in a WSN may have to face many kinds of attacks. Here, we consider the critical
scenario, where some sensors are compromised and controlled by an attacker. In particular, such an internal
attacker has access to all secret and received information of the compromised nodes. These attacks can
rely on a number of techniques, such as forged packets, compromised nodes, cooperating intruder nodes,
communications jamming, bogus routing information, and multiple other possibilities [16].

The attacker can impact the routing protocol at two main levels. First, he can attack the data packet
to learn secret information — i.e., violate the data confidentiality1 — or make the sink deliver incorrect
information — i.e., violate the authenticity2 or integrity3 of the data messages. Secondly, the attacker can
affect the routing scheme itself: he may prevent data from being delivered by the sink (leading to degrade
the quality of service, essentially the delivery rate), or create congestion by increasing the load in all or part
of the network (leading to reduce the lifetime of the network).

Protocols designed for critical applications must be designed to prevent these kinds of malicious ac-
tions. The common security tools such as asymmetric cryptography require expensive computations, and
so energy. Hence, they are not suitable for WSNs, and so, the choice of the cryptographic primitives
should be led by the inherent constraint of WSNs. WSNs being limited in terms of resource and power,
lightweight cryptographic mechanisms [11, 22] are mandatory. An example of such a mechanism is elliptic
curve cryptography [17, 19].

On the other side, some attacks are not critical if the protocol uses mechanisms which mitigates their
effects. For instance, when an attacker compromises a few nodes in a large network, the loss of a few
packets may be acceptable, as long as most of the information is delivered later on. This characteristic
is named resilience or resiliency in the literature ([18],[12]), and we will use the definition from [12]:
resiliency is the capacity of a network to endure and overcome internal attacks. Because of the context, we
need to achieve it using power-saving methods.

1.1 Contribution
This report deals with convergecast routing in WSNs, where all source nodes have several messages to
route. We propose a Secure, Resilient, and Reputation-based Routing algorithm, called SR3. This protocol
is an reinforced random walk that is partially determinized using a reputation mechanism.

SR3 uses lightweight cryptographic primitives — symmetric cryptography, nonces, and hash functions
— to achieve several security properties: confidentiality of the data and unforgeability of the data packets,
this latter property implies integrity and authenticity of the data packets. We formally prove these properties
in the computational model using the tool CryptoVerif [7].

Then, we show the resiliency of SR3 against various scenarios, where we mixed selective forwarding,
blackhole, wormhole, and Sybil attacks. The resiliency of our algorithm is mainly captured using the
delivery rate and the fairness (roughly, the standard deviation among the delivery rates of nodes). Our

1Confidentiality guarantees that data remain secret between the source and destination.
2Authenticity guarantees that the destination is able to detect whether the alleged source in a packet is the truth one.
3Integrity guarantees that the destination is able to detect whether the data inside a packet have been modified.

Verimag Research Report no TR-2013-4 3/40

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

simulation results show in particular that unlike previous solutions, SR3 self-adapts when compromised
nodes change their behavior (e.g, an interesting case is when a compromised node behaves well to attract
the traffic and then suddenly decide to drop all received messages). We compare our solution to several
routing algorithms of the literature. Our simulations show that the resiliency accomplished by SR3 is
drastically better than the one achieved by those protocols, especially when the network is sparse.

A shortcoming of our solution is the number of hops to reach the destination, as it is usually greater than
other solutions of the literature. However, in our experiments, we observed that this complexity remains
sublinear in the number of nodes.

Note also that our solution is reactive,4 has a low overhead in terms of communications, and does not
use any underlying infrastructure, such as spanning tree. Hence, SR3 is well-suited for WSNs.

2 Related work

2.1 Resiliency
Resilience in networks (other than WSNs) is a trending topic, especially for the Internet. Resilinets5 is
a finished project which aimed to better understand and improve the resilience of computer networks,
including Internet, wireless networks, SCADA networks, and others. Resumenet 6 is another project,
which ended in the beginning of 2012, with a similar focus on resilience, but centered on the Internet. A
recent paper from members of both these projects [24] present their work regarding the notion of resiliency,
ways to measure it, and how to build networks which are more resilient. Overall, both these projects mainly
focused on node or link destructions, from hurricanes to county-wide denial of service. Our study is more
focused on ways to resist an active insider attack, which involve malicious behavior.

The notion of resiliency has been introduced in [13] as the ability of a network to “continue to operate”
in presence of compromised nodes, i.e., the capacity of a network to endure and overcome internal attacks.
For example, a resilient routing protocol should achieve a “graceful degradation” in the delivery rate with
increasing the number of compromised nodes.

David Wagner considered a different problem: instead of securing the routing, he examined resilient
aggregation in WSNs [25]. He evaluated the possible impact of an insider able to insert false data in
the network, and then detailed that attacker’s influence on the final results depending on the number of
compromised nodes and aggregation method.

2.2 Routing in WSNs
There is a lot of routing protocols for wireless sensor networks, which use different techniques. For in-
stance, this survey from 2004 [1] highlights some routing protocols, classified by type. Some of these
protocols have been created with security in mind.

Ariadne [15] is an on-demand routing protocol for ad-hoc networks, based on Dynamic Source Routing,
where route requests are authenticated and packets are acknowledged. The setting is not exactly similar
to ours, as ad-hoc networks are often a many-to-many routing environment. A flaw has been found in this
protocol by [9], who provided an amended version named endairA, which provably returns existent routes
when the network contains at most a single insider.

Although not strictly a routing protocol, SPINS [21] is a set of tools for routing, which provides security
guarantees while keeping the resources requirements low enough for WSNs. µTesla, one part of SPINS, is a
variant of Tesla[20] using delayed disclosure of symmetric keys in a key chain, which allows authenticated
broadcasts without using any asymmetric cryptography. The other part of SPINS, named SNEP, is a packet
format that guarantees security properties like authentication and confidentiality using only few additional
bits per packets.

However, all aforementioned solutions do not use specific strategies to combat attacks at the routing
level, e.g., selected forwarding, blackhole, . . . In the same paper where they introduced resiliency, [13, 12]

4I.e., in absence of data to route the protocol eventually stops
5https://wiki.ittc.ku.edu/resilinets/Main_Page
6http://www.resumenet.eu/project/index

4/40 Verimag Research Report no TR-2013-4

https://wiki.ittc.ku.edu/resilinets/Main_Page
http://www.resumenet.eu/project/index

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

proposed three other algorithms based on GBR. Mainly, they introduce randomization and duplication in
that protocol. As a result, the proposed patches drastically increase the delivery rate when the network is
subject to selective forwarding or blackhole attacks. However, in their simulations, they always assume that
the breath-first spanning tree is available and not attacked by the insiders. Moreover, they mainly consider
dense networks in their simulations, e.g., networks with average degree around 30.

In [2], M. Arnaud et al presented a model for ad-hoc routing protocols, which allow to analyze routing
protocols on any topology based on constraint solving, and provide decidability and complexity results.
Their formal methods were able to find attacks on SRP applied to DSR.

2.3 Roadmap

The remainder of this report is organized as follows. In the next section, we present our routing algorithm,
SR3. Section 4 deals with the proof of the security properties of SR3. In section 5, we present the attackers
we use in our scenarios. The next section will deal with the other algorithms we compare SR3 against.
Section 7 describes the metrics we are going to observe, and Section 8 our experimental protocol. Then, in
Section 9, we present experimental results that show the performances and resiliency of SR3. Section 10 is
dedicated to concluding remarks.

3 Presentation of our algorithm
The formal code of our routing protocol, SR3, is given in Algorithms 1 and 2. Below, we identify the
assumptions we made about networks. Then, we informally explain the behavior of SR3.

3.1 Assumptions

We consider arbitrary connected networks with bidirectional links, although we will focus on Unit Disk
Graphs (UDG) in simulations. Each node p has a unique ID (to simplify, we shall identify any node with
its identifier, whenever convenient) and knows the set of its neighbors,Neigp — this latter assumption will
be relaxed, when considering Sybil attacks.

Networks are made of one sink, which is the data collector, and numerous source nodes. The source
nodes are sensors, and consequently are limited in terms of memory, computational power, and battery.
Sensors are non-trustworthy since they are vulnerable to physical attacks and an adversary can compromise
them. In contrast, the sink is assumed to be robust and powerful in terms of memory, computation, and
energy. So, we assume that it cannot be compromised.

All nodes have access to a lightweight cryptography library (hash function, symmetric encryption, and
secure random number generation). All source nodes share a symmetric key with the sink. Moreover, we
assume that all source nodes have several data to route; however, the scheduling of the data generation is a
priori unknown. Finally, there is no time synchronization between nodes.

3.2 Overview

Randomization is interesting to obtain resilient solutions because it generates behaviors unpredictable by
an attacker. However, note that the “classical” uniform random walk, where a node chooses the next hop
uniformly at random among its neighbors, is known to be inefficient even against a small number of com-
promised nodes [13]. So, we designed SR3 rather as a reinforced random walk, based on a reputation
mechanism. The idea is to locally increase the probability of a neighbor to be chosen at the next hop, if
it behaves well. Such a reputation mechanism is based on acknowledgments. We propose a scheme in
which if a process receives a valid acknowledgment, it has the guarantee that the sink actually delivered
the corresponding data message. Hence, upon receiving such an acknowledgment, a process can legiti-
mately increase its confidence on the neighbor to which it previously sent the corresponding data message.
Therefore, eventually all honest nodes preferably choose their highly-reputed neighbors, and so the data
messages tend to follow paths that successfully route data to the sink.

Verimag Research Report no TR-2013-4 5/40

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

3.3 Reputation Mechanism

To implement our reputation mechanism, we identify each data message (tagged MSG in the algorithm) with
a nonce, i.e., an unpredictable random number that should remain secret between the source and sink until
the delivery of the data message.

Assume that node v initiates the routing of some valueData. It first generates a nonceNv (NEW NONCE(),
Line 1). Then, it encrypts in a ciphertext C the concatenation of Data and Nv using the key kvs it shares
with the sink (ENCRYPT(〈Data,Nv〉,kvs), Line 3). Then, both C and the identifier of v (in plaintext)
are routed to the sink, and only the sink is able to decrypt C. So, upon receiving the data packet, the
sink decrypts C using kvs, delivers Data, and sends back to v an acknowledgment ACK containing Nv
(Lines 36-39). Finally, if v receives this acknowledgment, it has the guarantee that Data has been deliv-
ered, thanks to Nv .

Now, during the routing, a compromised relay node can blindly modify the encrypted part of the mes-
sage. To prevent the sink from delivering erroneous data, we add a hash of the nonce into the data message
(HASH(Nv), Line 2). This way, when receiving a message 〈MSG, C,H, o〉, the sink can check the integrity
of the message by first decrypting C using kos (DECRYPT(C,keys[o]), Line 36), and then comparing the
hash of the nonce in C to H: if they do not match, the message is simply discarded. Similarly, if a compro-
mised node has modified the plaintext identifier in the message, then the sink will decrypt C with a wrong
key, and therefore the hash of the decrypted nonce will not match H .

Upon receiving an acknowledgment, if the receiving node v is the initiator of the corresponding data
message m, v can conclude that m has been delivered. In that case, v should reinforce the probability
associated to the neighbor to which it previously sent m. To achieve that, we proceed as follows: when
v initiates the routing of m, v saves in the list LQueue the nonce stored in m, together with the identifier
of the neighbor to which v sends m (LQueue is appended in Line 5 in using �, this latter operator is
defined below). Hence, on reception of an acknowledgment, v checks (in Line 20) if it is the destination
of the acknowledgment and if the nonce No attached to that acknowledgment appears in LQueue (see
the test 〈No, 〉 ∈ LQueue in Line 20).7 In that case, v gets back the corresponding neighbor from the
list (GET(LQueue, No), Line 21), increases its confidence on that neighbor, and removes the record from
LQueue (LQueue \ 〈No, 〉, Line 23). (If v is the destination of the acknowledgment, but No does not
appear in LQueue, the acknowledgment is simply discarded.)

Due to the memory limitations, LQueue must have a maximum size, sQ. If a node v has some new data
to route and LQueue is full (that is, it contains sQ elements), then the oldest element is removed from the
list to make room for the new one. A side effect is that records about lost messages or of messages whose
acknowledgment has been lost are eventually removed from LQueue.

Note that it may happen that some data message m comes back to the node v from which it originates
becausem followed a cycle in the network. In this case (Lines 8-13), the validity ofm is checked, and then
the routing process of m is restarted. Since the old entry in LQueue is not relevant anymore, it is simply
replaced by the new one.

Consequently, the concatenation of 〈x, y〉 to the list L using � works as follows: first, if L contains
any pair with a left member equal to x, that pair is removed from L; then, if L is (still) full, the rightmost
pair is removed; finally, 〈x, y〉 is inserted on the left side of the list. Note that, using �, any left member of
a pair in the list is unique.

3.4 Compute the Reputation

To choose the next hop of some data message, a node performs a random choice among its neighbors,
weighted according to their reputation (see Lines 4 and 7).

The reputation of a neighbor actually corresponds to the number of occurrences of its identifier in the
list LRouting: each time a node v wants to reinforce the reputation of some neighbor u, it simply adds an
occurrence of u into its list (Line 22).

Our reputation mechanism is implemented using the probability law LvSR3(LRouting): Let X be a
random variable taking value in Neigv; ∀x ∈ Neigv , the law LvSR3(LRouting) is defined by:

7“ ” means “any value”. So, 〈No, 〉 is any record whose left value is No.

6/40 Verimag Research Report no TR-2013-4

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

Pr(X = x) =
|LRouting|x + δ−1v
|LRouting|+ 1

where δv is the degree of v, |LRouting| is the number of elements in LRouting , and |LRouting|x is the
number of occurrences of x in LRouting . Hence, when v wants to route a data message, it chooses its next
destination according to LvSR3(LRouting) (see RAND(Neigv ,LvSR3(LRouting)) in Lines 4 and 7).

Informally, when a node needs to route a message, it draws at random a value from LRouting plus a
blank element. If the blank element is drawn, it selects a neighbor uniformly at random, and sends the
message to that neighbor. Otherwise, the message is sent to the neighbor whose identifier has been drawn.
This way, the more a neighbor is trusted, the more it will be selected. However, because of the blank
element, there is always a positive probability of selecting a neighbor without taking trust into account.
Note that, initially LRouting is empty, and consequently the first selections are made uniformly at random.

To ensure a better resiliency against attackers that change their behavior over time, and to reduce mem-
ory consumption, LRouting is defined as a FIFO list of maximum size, sR. The insertions in LRouting use
the operator • that satisfies the following condition: when the list is full, the next insertion is preceded by
the removing of the oldest (and consequently, less relevant) element.

Using such a FIFO finite list, a node only stores the freshest information. Interestingly, if a compro-
mised node first behaves well, its reputation increases, resulting in attracting the traffic. Then, it may
change its behavior to become a blackhole (a node losing all messages it receives). Now, thanks to our
mechanism, regularly some messages will be routed via other nodes and consequently the reputation of the
compromised node will gradually decrease, inducting then a severe reduction of the traffic going through
that node.

3.5 Acknowledgment Routing
Let ack be an acknowledgment message. Since ack has been emitted because the corresponding data
message m has been successfully delivered by the sink, we can suppose that the path followed by m was
safe. Therefore, we can use the bidirectionality of the links to route ack (as much as possible) through the
reverse of the path followed by m.

This reverse routing is accomplished by letting a trail along the path followed by m. This trail is
stored thanks to the list LAckRouting maintained at each node: after the reception of each data message,
the relaying nodes store the hash of the nonce available in the message, together with the identifier of the
neighbor from which they received the message (Lines 14-17). This information will be then used during
the return trip of the acknowledgment: when a node v receives an acknowledgment containing the nonce
Nx, it checks whether it is the final destination of that acknowledgment (Lines 20 and 25). If this is not the
case, v checks if an entry containing HASH(Nx) exists in LAckRouting (Lines 26-30). If v finds such an
entry, it sends the acknowledgment to the corresponding neighbor and removes the entry from LAckRouting
(Line 29). Otherwise, the next hop of the acknowledgment is chosen uniformly at random, in a best-effort
mindset (LvRW denotes the probability law of the uniform random walk, see Line 31).

If a data message loops back to a node it already visited, the most relevant information regarding ac-
knowledgments for this node is the oldest one. Therefore, before inserting a new trail, the node checks
if LAckRouting already contains a trail for that message. If a related entry exists, we do not update
LAckRouting (Lines 14-17).

Acknowledgments can be still dropped by compromised nodes. The trail for such lost acknowledg-
ments would unnecessarily clutter the memory of nodes. To avoid this, we manage LAckRouting similarly
to LRouting , i.e., LAckRouting is a list of bounded size sA, appended using operator •.

Finally, an intruder may build acknowledgments with false nonces. These fake acknowledgments will
increase the load of the network, and impact the energy consumption. Now, some nodes being compro-
mised, a safe node cannot trust information coming from its neighbors to decide whether it should forward
or drop an acknowledgment. To circumvent that problem, a relay node decides to drop a received acknowl-
edgment with probability 1

N , where N is an upper bound on the number of nodes (Lines 33 and 42). So,
on the average, an acknowledgment makes N hops in the network before being dropped. An interesting
side effect of this method is the following: in a safe network (i.e., a network without attackers), the ac-
knowledgments that follow long routes are often dropped before reaching their final destination. Since the

Verimag Research Report no TR-2013-4 7/40

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

length of the routes followed by the acknowledgments are directly related to the length of the route taken
by the corresponding messages, the reputation mechanism ends up favoring shorter routes, thus improving
the overall hops complexity.

8/40 Verimag Research Report no TR-2013-4

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

Algorithm 1 SR3 for any source node v
Input: kvs: the key of node v, shared with the sink s

Variables:
LQueue: List of at most sQ pairs, initially empty
LAckRouting: List of at most sA pairs, initially empty
LRouting: List of at most sR elements, initially empty

On generation of Data
1: Nv ← NEW NONCE()
2: H ← HASH(Nv)
3: C ← ENCRYPT(〈Data,Nv〉,kvs)
4: next← RAND(Neigv ,LvSR3(LRouting))
5: LQueue ← LQueue � 〈Nv, next〉
6: Send 〈MSG, C,H, v〉 to next

On reception of 〈MSG, C,H, o〉 from f

7: next← RAND(Neigv ,LvSR3(LRouting))
8: if v = o then
9: 〈Data,No〉 ← DECRYPT(C,kvs)

10: if HASH(No) = H then
11: LQueue ← LQueue � 〈No, next〉
12: Send 〈MSG, C,H, o〉 to next
13: end if
14: else
15: if 〈H, 〉 /∈ LAckRouting then
16: LAckRouting ← LAckRouting • 〈H, f〉
17: end if
18: Send 〈MSG, C,H, o〉 to next
19: end if

On reception of 〈ACK, No, o〉 from f

20: if v = o ∧ 〈No, 〉 ∈ LQueue then
21: first hop← GET(LQueue, No)
22: LRouting ← LRouting • first hop
23: LQueue ← LQueue \ 〈No, 〉
24: else
25: if v 6= o then
26: H ← HASH(No)
27: if 〈H, 〉 ∈ LAckRouting then
28: next← GET(LAckRouting, H)
29: LAckRouting ← LAckRouting \ 〈H, 〉
30: else
31: next← RAND(Neigv ,LvRW)
32: end if
33: Send 〈ACK, No, o〉 to next with probability N−1

N
34: end if
35: end if

Verimag Research Report no TR-2013-4 9/40

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

Algorithm 2 SR3 for the sink s
Input: keys[]: array of shared keys, indexed on node identifiers

On reception of 〈MSG, C,H, o〉 from f

36: 〈Data,No〉 ← DECRYPT(C,keys[o])
37: if HASH(No)= H then
38: Deliver Data to the application
39: Send 〈ACK, No, o〉 to f
40: end if

On reception of 〈ACK, No, o〉 from f

41: next← RAND(Neigs,LsRW)
42: Send 〈ACK, No, o〉 to next with probability N−1

N

10/40 Verimag Research Report no TR-2013-4

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

4 Cryptographic proof of the packet format

4.1 Idea
Our proof works using a simplification of the original protocol. Since legitimate nodes do not change the
message nor the acknowledgement while they are routed through the network, we model the protocol with
two nodes (the source, and the sink) in an attacker-controled network. We suppose the block cipher is a
PRP-CPA-secure family of functions, and the hash function is a random oracle.

First, we prove that our protocol is find-then-guess (FG) secure. We then prove the existential unforge-
ability (UF) of the packet format, which means that the attacker cannot forge a new valid message without
a key. Finally, we prove that an attacker has a negligible probability of being able to extract nonces from a
packet which is not delivered.

4.2 Background
We first recall some background on pseudorandom functions, which we use to model the block cipher, and
the definition of a random oracle (used to model the hash function).

4.2.1 Pseudorandom Permutations

Let K be a set of keys, and let F : K × {0, 1}ηc → {0, 1}ηc a family of permutations (and their inverses).
For all keys k in K, Fk is a permutation of {0, 1}ηc , and F−1k its inverse. We denote by Perm, the set of
all possible pairs of a permutation of {0, 1}ηc and their inverses. Since F also contains permutations of
{0, 1}ηc , we have ∀k ∈ K, (Fk, F−1k) ∈ Perm.

We formalize the attacker as an adversaryA, which is a polynomial-time probabilistic Turing machine.
We denote AO an adversary A able to query an oracle O. For instance, if Ek is the encryption oracle, we
denote AEk an adversary which can query the oracle Ek for the encryption of any message m and obtain
Ek(m), without knowing anything about k.

We write a $←− S to express the random uniform selection of an element from a set S and its assignation
to a.

To measure the ability of an attacker to distinguish between permutations from F and random permuta-
tions, we use a game, called PRP-CPA (for PseudoRandom Permutation against Chosen Plaintext Attack).

Definition 4.2.1 (ExptPRP−CPA−1F (D) and ExptPRP−CPA−0F (D) [4]). Let D be an adversary who has
access to q oracle queries, F : K×{0, 1}ηc → {0, 1}ηc a function family, and Perm the set of all possible
pairs of a permutation of {0, 1}ηc and its inverse. We define ExptPRP−CPA−1F (D) and ExptPRP−CPA−0F (D)
as:

Experiment ExptPRP−CPA−1
F (D) :

ksrc
$←− K

b
$←− DFksrc ()

Return b

Experiment ExptPRP−CPA−0
F (D) :

(OP ,OP−1)
$←− Perm

b
$←− DOP ()

Return b

Definition 4.2.1 presents the experiments for the PRP-CPA game. In the first experiment, called
ExptPRP−CPA−1F (D),D is given access to an oracle corresponding to a function drawn from F . In the sec-
ond experiment, which is called ExptPRP−CPA−0F (D), the adversary has access to an oracle corresponding
to a random function drawn from Perm.

In this game, the goal of the adversary is to determine from the given oracle which experiment it is
currently in. It should answer 1 in ExptPRP−CPA−1F , and 0 in ExptPRP−CPA−0F . The probability of the
adversary being right is called the advantage of D, and we denote it AdvPRP−CPAF (D) (Definition 4.2.2).

Verimag Research Report no TR-2013-4 11/40

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

Definition 4.2.2 (PRP-CPA advantage AdvPRP−CPAF (D) [4]). Let D be a polynomial time adversary,
F : K × {0, 1}ηc → {0, 1}ηc a function family, and Perm all possible pairs of a permutation of {0, 1}ηc
and its inverse. Then the PRP-CPA advantage of D against F is denoted AdvPRP−CPAF (D), and defined
as:

AdvPRP−CPAF (D) = Pr[ExptPRP−CPA−1F (D) = 1]− Pr[ExptPRP−CPA−0F (D) = 1]

Definition 4.2.3 (PRP-CPA security of a family of functions). A family of functions F is PRP-CPA secure
if and only if for all polynomial time adversaries D,
AdvPRP−CPAF (D) is negligible.

There is a variant of this game, called PRP-CCA (for Chosen Ciphertext Attack), which allows attacker
access to the decryption oracle. Definition 4.2.4 presents that game, and Definition 4.2.5 the corresponding
advantage.

Definition 4.2.4 (ExptPRP−CCA−1F (D) and ExptPRP−CCA−0F (D) [4]). Let D be an adversary making
q oracle queries, F : K × {0, 1}ηc → {0, 1}ηc a function family, and Perm the set of all possible
pairs of a permutation of {0, 1}ηc and its inverse. We define the experiments ExptPRP−CCA−1F (D) and
ExptPRP−CCA−0F (D) as:

Experiment ExptPRP−CCA−1
F (D) :

ksrc
$←− K

b
$←− DFksrc ,F

−1
ksrc ()

Return b

Experiment ExptPRP−CCA−0
F (D) :

(OP ,OP−1)
$←− Perm

b
$←− DOP ,OP

−1

()

Return b

Definition 4.2.5 (PRP-CCA advantage AdvPRP−CPAF (D) [4]). LetD be an adversary, F : K×{0, 1}ηc →
{0, 1}ηc a function family, and Perm the set of all permutations (and their inverses) of {0, 1}ηc . We denote
the PRP-CCA advantage of D against F as AdvPRP−CPAF (D), and it is defined as:

AdvPRP−CPAF (D) = Pr[ExptPRP−CCA−1F (D) = 1]− Pr[ExptPRP−CCA−0F (D) = 1]

4.2.2 Hash functions in the Random Oracle Model

Our algorithm uses a hash function of input size ηn, and of output size ηh, denoted H : {0, 1}ηn →
{0, 1}ηh .

We model it as a random oracle, as defined in [5]. A random oracle is an oracle which answers are
random, but consistent. To achieve this, couples of parameter and returned value are stored in a table we
call Replies. If a request has already been done, the oracle will return the same value as before, and
otherwise, generate a new one and store it in Replies.

FunctionH(i) :
If(∃o s.t. ((i, o) ∈ Replies))

Return o

Else

o
$←− {0, 1}ηh

Replies← Replies ∪ (i, o)

Return o

12/40 Verimag Research Report no TR-2013-4

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

4.3 Cryptoverif
Cryptoverif [7] is an automatic prover in the computational model, built by Bruno Blanchet, which uses
sequences of games. We used this tool to build the proofs of the security of our protocol for the following
games.

4.4 SR3 modelization
For the proof purposes, the algorithm is reduced to a simpler version of the original protocol. We focus
on the communication between the source (whose identity is src) and the sink (dest), abstracting away all
the routing process. These two identities are public. The protocol runs in three phases: initialization of the
keys, packet generation, and packet verification.

The original packet format contains a field which indicates the last node who forwarded the message.
As we have reduced the protocol to a two-party protocol, this field is not relevant anymore. We omit it for
conciseness.

A nonce is a random and unpredictable value uniformly chosen from the set {0, 1}ηn , with a fixed
size ηn, and denoted by N . We suppose all data have the same length ηd. O(·) refers to the symmetric
encryption oracle (initialized with the node’s key), which takes a plaintext for argument. The corresponding
decryption oracle is denoted O−1(·).

First, the setting is initialized using Init, then, a packet is generated by Gen, and this packet is trans-
mitted and verified by the sink using V erif .

• Init(K) is the function selecting the key the protocol is going to use. It generates a key uniformly at

random: ksrc
$←− K. This is done before the WSN is deployed.

• GenO(·)
src (Data) is the function which generates the packet from src which contains Data (required

to be of length d), using the encryption oracleO to build the packet 〈c, h, s〉 = 〈O(Data||N),H(N), src〉,
where N is a fresh unpredictable nonce of size ηn, and O(Data||N) is the encryption oracle from
{0, 1}ηc to {0, 1}ηc (where ηc = ηd + ηn). This function returns the pair 〈c, h, s〉, N .

Gen is modeled in Cryptoverif by the following process :

channel OGenIn, OGenOut.
let OGen =

!qGen
in (OGenIn, (DCPA:data));
new n_oracle_cpa : nonce;
let p_oracle_cpa =

(enc(concat(DCPA, n_oracle_cpa), k), hash(hk,n_oracle_cpa)) in
out (OGenOut, (p_oracle_cpa,n_oracle_cpa)).

• V erifO−1

(〈c, h, s〉) checks whether the packet is considered valid or not. It does three verifications:

– c ∈ {0, 1}ηc , and h ∈ {0, 1}ηh ,

– s is equal to src,

– H(Right(O−1(c))) is equal to h.8

If all of these conditions are satisfied, then the function outputs 1, and otherwise it outputs 0. This
algorithm is modeled in Cryptoverif with the following process :

channel OVerifIn, OVerifOut.
let OVerif =

!qVerif

8We recall that Right outputs the rightmost part of a concatenation.

Verimag Research Report no TR-2013-4 13/40

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

in (OVerifIn, (cVerif:block,hVerif:hashout));
let concat(dVerif:data,nVerif:nonce) = dec(cVerif, k) in
let (verifSuccess:bool) = (hash(hk, nVerif) = hVerif) in
out(OVerifOut, (verifSuccess)).

The packets 〈c, h, s〉 will be denoted p for simplicity.
As Cryptoverif do not contain the concatenation operation, we model it with a function, which takes

a data and a nonce, and outputs a block (the input of the block cipher). This function is declared as a
composition, to allow intruder access to its inverse. This construct has a property which is needed for
the unforgeability proof: it is impossible to distinguish between the concatenation of a random data and a
random nonce, and a random block. We formalized this with the following equivalence relation :

equiv
!N new b:block; a() := b

<=(0)=> [manual]
!N new d:data; new n:nonce; a() := concat(d,n).

4.5 Find-then-guess security
The confidentiality of the data should be ensured even after the response of the sink, which discloses the
nonce which was in the corresponding packet. To model this, we the nonce used in the packet to the
information given to the adversary. However, the adversary does not have control on the nonce generation.

The block cipher is modeled by the family of functions F , given as a parameter of the game. We
assume that F is PRP-CPA-secure, and we do not suppose anything aboutH.

Definition 4.5.1 presents two variants of the find then guess game from Bellare and Rogaway [3],
where we substituted packets for ciphertexts, packet-building oracles for encryption oracles, and we added
the nonce in the information given to the adversary.

Definition 4.5.1 (AdvFGF (A) [3]). Let A = (A1,A2) be an adversary running in two phases, with s the
parameter for communication between these two phases. Let F : K × {0, 1}ηc → {0, 1}ηc a function
family.

Experiment ExptFGF (A) :
ksrc ← Init(K)

(O,O−1)← (Fksrc , F
−1
ksrc

)

(Data0, Data1, s)
$←− AGen

O(·)
src (·),H(·)

1 ()

b
$←− {0, 1}

〈p,N〉 $←− GenO(·)
src (Datab)

If (b = AGen
O(·)
src (·),H(·)

2 (p,N, s))

Return 1

Else

Return 0

The find-then-guess advantage of A against F is defined as:

AdvFGF (A) = 2Pr[ExptFGF (A) = 1]− 1

This modified game measures the ability of the adversary to extract information about the data in a
packet. Due to our protocol design, the ACK will reveal its packet’s nonce once delivered. To model this,
we suppose the attacker has access to that nonce.

14/40 Verimag Research Report no TR-2013-4

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

The confidentiality of Data is ensured in our scheme if for every polynomial-time adversary A,
AdvFGF (A) is negligible.

We model this game in Cryptoverif with the previous oracles.

channel SetupIn, SetupOut, GameIn, GameOut.
process (

in(SetupIn, ());
new hk : hashkey;
new ks : keyseed;
new n_challenge : nonce;
new b : bool;
let k = kgen(ks) in
out(SetupOut,());
(

in(GameIn,(D0:data,D1:data));
let cc = concat((if b then D0 else D1) , n_challenge) in
let p_challenge = (enc(cc, k), hash(hk,n_challenge)) in
out(GameOut, (p_challenge, n_challenge))

) | OHash | OGen
)

The modelization of this game in Cryptoverif gives us that for all adversaries A making qG queries to
Gen and qH queries to Hash, there exists a B making qG + 1 queries to O such that :

AdvFGF (A) ≤ 2qG + 2q2G
2ηc

+
2q2G + 4qG + 2

2ηn
+ 2AdvPRP−CPAF (B)

Note that the equivalences associated toHash being a random oracle are not used in the corresponding
proof.

4.6 Unforgeability

Unforgeability under chosen-message and verification attack is the computational infeasibility for an ad-
versary to create a valid new packet from any data, when this attacker has access to an oracle building
packets from data, and another oracle which returns whether a packet is valid or not. This game is formally
defined in Definition 4.6.1.

This game models an attacker which tries to inject data in the network, without access to a valid key.
This attacker can make nodes send packets containing specific data by tampering with their sensors, as in
the previous subsection. This ability corresponds to the Gen oracle access. The attacker can also send
forged packets to the sink, which will answer if the packet is valid. This ability is modeled by giving the
adversary access to the V erif oracle.

Giving GenO(.)
src to the adversary does allow it to generate valid packets, which would be an easy way

to beat the game. To avoid this, we change the GenO(.)
src function for this game. When it is called, it adds

the returned packet to an array named Queries. This allows us to track which packets were returned by
the oracle, and ensures the adversary cannot win by using them.

Note also that V erif checks that the third field of a packet is equal to src, so changing this field will
always cause a packet to be refused.

Here, we assume that F is PRP-CCA-secure, and thatH is a random oracle.

Definition 4.6.1 (AdvUF−CMVAF [6]). Let A = (A1,A2) be an adversary running in two phases, with s
the state passed from one to the other. Let F : K× {0, 1}ηc → {0, 1}ηc a function family. We consider the
following experiment :

Verimag Research Report no TR-2013-4 15/40

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

Experiment ExptUF−CMVAF (A)
Queries← ∅
ksrc ← Init(K)

(O,O−1)← (Fksrc , F
−1
ksrc

)

p← AGen
O(·)
src (·),H(·),V erifO

−1(·)(·)()

If (p 6∈ Queries ∧ V erifO
−1(·)(p))

Return 1

Else

Return 0

The unforgeability advantage of A against F is defined as:

AdvUF−CMVAF (A) = Pr[ExptUF−CMVAF (A) = 1]

Definition 4.6.2 (Unforgeability of the packets). Packet unforgeability is ensured if and only if for every
polynomial-time algorithm A making q queries to its oracles, AdvUF−CMVAF (A) is negligible.

We model that game in Cryptoverif using the V erif oracle, and a table queries storing pairs of a data
and a nonce, which is updated by Gen. The event bad is set if the attacker is able to output a packet which
contains a pair of a data and a nonce never generated before by Gen.

process (
in(SetupIn, ());
new hk : hashkey;
new ks : keyseed;
let k = kgen(ks) in
out(SetupOut,());
(

in (ChallengeIn, (c:block,h:hashout));
let concat(dV:data,nV:nonce) = dec(c,k) in
get queries(d2,n2) suchthat (nV=n2 && d2=dV) in

out(ChallengeOut, ())
else

if (h = hash(hk,nV)) then (
event bad(); (* valid packet, not in queries *)
out(ChallengeOut, ())

) else
out(ChallengeOut, ())

) | OHash | OGen | OVerif
)

The modelization of this game in Cryptoverif gives us that for all adversaries A making qG queries to
Gen, qV queries to V erif and qH queries to Hash, there exists an adversary B making qG queries to O
and qV + 1 queries to O−1 such that :

16/40 Verimag Research Report no TR-2013-4

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

AdvUF−CMVAF (A) ≤ qH + qH ∗ qV + qV ∗ qG + qG + qH ∗ qG + 2q2G
2ηn

+

q2G + qG + 2(qV ∗ qG) + qV + q2V
2ηc

+

1 + qV
2ηh

+AdvPRP−CCAF (B)

4.7 Nonce confidentiality
To determine whether the attacker can generate an ACK from a packet not yet delivered, we use a third
game, which focus on the confidentiality of the nonce used in a packet. To win, the adversary, given a
packet and access to the Gen oracle, should guess the nonce in the allowed number of queries qA. We
assume that F is PRP-CPA-secure, andH is a random oracle.

Definition 4.7.1 (AdvN−confF (A)). Let A = (A1,A2) be an adversary running in two phases, with s the
parameter for communication between these two phases. Let F : K × {0, 1}ηc → {0, 1}ηc a function
family, and qA the allowed number of answers for A2.

Experiment ExptN−confF (A) :
ksrc ← Init(K)

(O,O−1)← (Fksrc , F
−1
ksrc

)

(Data, s)
$←− AGen

O(·)
src (·),H(·)

1 ()

〈p,N〉 $←− GenO(·)
src (Data)

Answers← AGen
O(·)
src (·),H(·)

2 (p, s))

If (|Answers| ≤ qA ∧N ∈ Answers)

Return 1

Else

Return 0

The nonce confidentiality advantage of A against F is defined as:

AdvN−confF (A) = Pr[ExptN−confF (A) = 1]

We model that game in Cryptoverif using an oracle able to set an event bad. This oracle checks whether
the adversary-supplied input is equal to the challenge nonce, and sets the event bad if this is the case. We
run qA copies of that process, to model the allowed number of tries, and we bound the probability of bad.

event bad().
channel WIn, WOut.
let OWin = !qAnswer

in(WIn, (n:nonce));
if (n = n_challenge) then

event bad;
out(WOut, ()).

channel SetupIn, SetupOut, GameIn, GameOut.
process (

in(SetupIn, ());

Verimag Research Report no TR-2013-4 17/40

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

new hk : hashkey;
new n_challenge : nonce;
new ks : keyseed;
let k = kgen(ks) in
out(SetupOut,());
(

in(GameIn, (D:data));
let cc = concat(D , n_challenge) in
let p_challenge = (enc(cc, k), hash(hk,n_challenge)) in
out(GameOut, (p_challenge))

) | OGen | OHash | OWin
)

The modelization of this game in Cryptoverif gives us that for all adversaries A having qA answers,
making qG queries to Gen, qV queries to V erif and qH queries to Hash, there exists an adversary B
making qG + 1 queries to O such that :

AdvN−confF (A) ≤ qA + qH + qH ∗ qG + 2qG + 2q2G
2ηn

+
qG + q2G

2ηc
+AdvPRP−CPAF (B)

4.8 Using these results

These three bounds allow us to select the necessary trade-off between the desired level of security and the
mandatory minimization of the message overhead. For instance, we can choose an advantage smaller than
2−60 for the three properties against an adversary A that can query each oracle up to 230 times (around 1
billion queries). To achieve this, we set ηn to 128 bits (16 bytes) and ηh to 96 bits (12 bytes). Then, the
advantage of A would be smaller than 2−64 + 2AdvPRP−CCAF (B) in the UFCMVA game; the results are
similar for the other properties. From this, if we use the AES-192 block cipher (allowing 64 bits of data),
the best attack known to this day needs 2189.7 operations. Therefore, we can expect AdvPRP−CCAF (B) to
be much smaller than 2−64, and consequently our security bound of 2−60 would be satisfied. Using these
sizes, the overhead for each data message would be 36 bytes: 16 bytes for the nonce, 12 bytes for the hash
function, and 8 bytes to store a node identifier.

5 Attacker Models

We proved in Section 4 that the packet format guarantees the confidentiality of the data, and the unforge-
ability of messages. But this proof was focused on the packets, and does not imply that our algorithm will
work well when the attacks focus at the routing level. For instance, could attackers stop most messages
from being delivered ? We want to evaluate what would be the effect of different attacker behaviors on the
network, compared to the algorithms described in the next section.

In the taxonomy of [16], we are looking at active insider attackers, which are intruder-controlled motes
with access to the same things as an honest node, such as a valid identity, shared keys, and so on. Aside
from their behavior, honest nodes cannot distinguish between honest and dishonest neighbors.

We aim to a fair comparison of algorithms. There are well-known attacks on the protocols we use, but
the purpose of their presence here is to be comparison points. To ensure a fair competition between all
of them, we assume that attacker do not try to cheat when determining the initial knowledge of protocols,
such as localization or gradients.

All the attacks detailed in this section are technically feasible. Since we assume that attacker nodes do
not send messages to the sink, and that no algorithm in our selection uses shared keys between nodes, an
attacker can buy the same motes as used in the network, and just drop them in range of honest nodes. The
attacks themselves do not require anything unrealistic.

18/40 Verimag Research Report no TR-2013-4

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

Figure 1: An example wormhole (sink in red)

5.1 Blackholes
The simplest attacker is a blackhole, which participates to the network as any honest node, registers as a
neighbor of other nodes, and accepts transmissions, but never forwards data.

Unless the routing protocol supports re-transmissions or duplication of messages, packets that gets
routed to one of these nodes are lost. The blackholes we are considering intercept all packets, whether they
contain data or are only control information.

5.2 Selective forwarding nodes
Selective forwarding (SF) nodes are a generalization of blackholes, which stop part of the messages they
receive. They only do so given certain rules, for instance, only messages with a specific information inside,
or messages of a given type.

Since our algorithm uses a reputation scheme, we are interested in SF attackers which try to keep a
certain reputation. This way, their neighbors will keep sending them messages, and they can keep routing
some of them, and drop the others.

We want to know whether this approach causes more damage than a simple blackhole, and to do this, we
will try SF attackers which behave either like a blackhole with a certain probability p, or follow the routing
algorithm’s rules with probability 1− p. The behavior is randomly chosen at each message’s reception.

5.3 Wormholes
Wormholes are attackers which act as a relay. They can be either a single repeater node, or two nodes
linked by a long-range, out-of-bounds connection. This way, they can transparently build a tunnel between
two distant points in the network, with an intruder at each extremity. This effectively distorts the network,
and with a good tunnel placement, wormholes can attract a lot of traffic, or totally break protocols using
geographical information.

We will consider wormholes where one extremity is in communication range of the sink, and the other
is in a remote part of the network, as the other case where the two nodes are at the same distance to the
sink does not improve attacks on the protocols we chose. Figure 1 illustrates this. The node close to the
sink will only relay communications from and to the remote node, and the remote node will behave like
any normal node, but with an added symmetric connection to the sink (through the tunnel).

Verimag Research Report no TR-2013-4 19/40

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

The remote node builds up reputation in the network, effectively creating a sinkhole, to use the termi-
nology of [16]. Once a specified amount of time has passed, it changes its behavior to become a blackhole,
and it uses its reputation to increase the effect of the attack. The node close to the sink is not used anymore
after the switch.

When the network runs SR3, wormholes can be seen as a sink by their honest neighbors. When a
message gets to its destination, the sink answers with an acknowledgement directly to the last hop of that
message (see Algorithm 2). Thus, a wormhole forwarding a message to the sink will automatically receive
the corresponding acknowledgement, which can then be forwarded to the corresponding node, which will
then trust the wormhole. After enough time, the wormhole has built trust in its neighborhood, and most
packets are routed through it. The wormhole will then use that additional routing weight by dropping all
messages it receives. The previous trust it built will then gradually fade out because of the reputation
mechanism, which will later cause messages to avoid this node.

5.4 Sybil Nodes

Sybil nodes declare multiple identities to their neighbors. This behavior is a way to enhance another attack
mechanism: in our case, we use Sybil nodes which are also blackholes, where all the fictive identities of
the node will drop packets in the same way.

This attack is usually applied to protocols where some sort of consensus or vote is done, but the mul-
tiple identities can also strongly influence protocols where the next hop is randomly selected, as multiple
identities will increase the probability of selection of the attacker. For instance, RW is vulnerable to this
attack.

6 Related Routing Algorithms
To underline the performance and resiliency of our algorithm, we chose to compare it against some other
routing algorithms. These are either well-known comparison points (RW, GFG, GBR, RGBR), or algo-
rithms designed to withstand the same kind of attacks as our algorithm (PRGBR, PRDGBR).

6.1 Uniform Random Walk (RW)

Each packet to route is sent to a random uniformly selected neighbor. As explained before, RW is simple,
lightweight, and unpredictable. There is no overhead per message, no memory cost on the nodes and few
computations to do at each step. However, messages can take many hops to reach the sink, making this
algorithm more suited to small networks where route length is not critical.

In presence of attackers, RW is affected by the number of compromised nodes. If there is a lot of
intruders, one should expect that most packets will reach one of them before the sink. However, because of
the non-determinism of this algorithm, as long as there is a safe route between a node and the sink, there
will be some delivered packets from this node.

6.2 Greedy-Face-Greedy (GFG)

This algorithm is a combination of two other algorithms: Greedy routing, and Face-Based Routing (FBR).
They both require that each node knows its position, its neighbors positions, and the sink position. FBR
requires the network graph to have no intersecting edges (a requirements which implies the planarity of the
network graph). As a consequence, the algorithm needs a transformation of the initial network, described
below.

Greedy (or geographical) routing consists in routing each message to a neighbor that is geographically
the closest to the sink. However, this algorithm can get stuck in graph components where a node is closer
to the sink than all its neighbors, creating a routing loop.

When this happens, the algorithm switches to FBR until the packet reaches a position closer to the sink
than the point where the message got stuck. Then, the algorithm switches back to Greedy, and so on.

20/40 Verimag Research Report no TR-2013-4

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

Face-based routing is described in [8]. It requires first a planarization of the graph, meaning that some
connections are ignored, so that no edges cross in the network graph. A line between the origin of the
routing and the sink is computed, and the face (a polygon delimited by the edges in the graph) adjacent to
the emitter is selected. This face is followed in a certain sense of rotation, until it goes back to the initial
vertice. Then, the messages is forwarded to one end of the edge intersected with the previous line which is
the closest to the sink. This edge is a delimitation between the face we are currently working with, and the
one the message is going to start again with. The algorithm then reiterates with the new intersection point
as the origin of the message.

In order to actually have faces, FBR requires the planarization of the graph, which we do through
Gabriel Graphs, first defined in [14]. To summarize, an edge (a, b) is kept if and only if there is no node
c in the circle of diameter a, b. This algorithm guarantees that if the initial graph is an unit disk graph
(a graph where nodes are connected if the distance between them is lower than a constant), the resulting
planarized graph will still be connected, as proved in [8].

Overall, GFG routes messages in an efficient way, as long as Greedy runs. The route lengths are not
optimal, and the algorithm is completely deterministic. The main weakness is FBR, which is not efficient.
As it is only a fall-back for when Greedy gets stuck, a lot of networks (mostly those with a high average
degree) will only run Greedy. However, some networks will almost always route messages according
to FBR, and since it requires a full traversal of the current face before any decision, a message will get
intercepted if there is an attacker on it. We experimentally observed some special cases of networks, where
a few attackers could stop all the messages, by positioning a handful of blackholes.

6.3 Gradient-based routing and variants

Gradient-based routing (GBR) is an algorithm described in [23], which works in two phases. First, the sink
floods the network with an INTEREST packet containing a counter (indicating the distance to the sink,
also called the height of the node), which is then rebroadcasted by all nodes after incrementing the counter
if the packet reflects a better route than those that were previously known.

The minimal counter value seen by a node until now is called its height. Nodes keep track of both their
height, and the height of each of their neighbors. If a new INTEREST packet with a smaller counter than
the node has seen until now, the node updates its height, and notifies its neighbors.

On each routing request, nodes choose a next hop according to the specific variant. We used the variants
and notations from [12].

By design, assuming each node knows its actual distance to the sink, and the distance for its neighbors,
the first two variants (GBR and RGBR) always route packets using the shortest routes, in terms of hops.
The two other variants do not have that property, since nodes can send messages to neighbors of the same
height.

Attackers do not tamper with the height-building process, as we consider them as compromised nodes.
Wormholes have a big advantage in this process, since they are at one hop of the sink, they always occupy
a preferential routing position.

6.3.1 Deterministic GBR (GBR)

This is the original GBR protocol, described in [23]. Nodes send their messages to a fixed lower-height
neighbor.

This variant is deterministic. Once the heights have stabilized, all the packets from a given node will
follow the same route. Since those routes are small, the efficiency (in number of hops) of the protocol is
good, and randomly positioning attacker nodes will only block a few routes, resulting in an overall good
delivery rate. However, when targeting a specific node, if there is an attacker on the route between that
target and the sink, the attacker will completely control all the messages of the emitter node. Thus, it is
fairly easy for an intruder to stop a small set of nodes from emitting messages.

Verimag Research Report no TR-2013-4 21/40

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

Figure 2: Example network where the possible paths chosen by GBR variants are highlighted. The sink is
black, the source is white.

6.3.2 Randomized GBR (RGBR)

Randomized GBR is a variant which adds randomness to the routing by uniformly selecting a random
lowest-height neighbor each time a packet needs to be routed. This mitigates the downsides to GBR’s
determinism, while still keeping optimal route lengths.

This countermeasure is more efficient on high-degree graphs, where there is a lot of possible routes to
choose from. However, when the network graph has a small degree, only a few routes are optimal, and they
frequently go through a few choke points. If one of these is an intruder, all the messages from a part of the
network will get lost. See Figure 2 for a visual example.

6.3.3 Probabilistic Randomized GBR (PRGBR)

In order to add even more randomness, RGBR can be modified to allow routes which go through same-
height nodes. There are two possible behaviors. With probability p, the message is routed to a random
same-height node if one exists, and otherwise, to a random lower-height node. We used p = 0.4, as the
protocol authors did in [12].

This algorithm takes a step further away from RGBR in the direction of RW. Routing to a same-level
node allows even more routes from a source to the sink, as seen on Figure 2. Since the followed paths
can get longer than the previous variant, the delivery rate of messages is impacted: longer paths mean
more possibilities of the message getting intercepted. However, as the algorithm gets closer to RW, it also
becomes harder to stop a single emitter from transferring data to the sink.

6.3.4 Probabilistic Randomized Duplicating GBR (PRDGBR)

This version is based on the probabilistic randomized GBR with duplication described in [12]. The only
difference is that we chose to duplicate messages at each hop (initial emission included), instead of either
at the initial emission or with each forwarding node. As described in the paper, messages already seen by
a node or the sink are discarded (we memorize them in an infinite list).

This algorithm causes some packet losses even without intruders in the network. Since the routing
decisions for the duplicated packets are independent, both packets can get routed to the same node. But
since nodes drop duplicate packets, one of the pair can be useless. Now, as each individual packet is routed
according to PRGBR, a node a can send to a same-level node b, which can then send its packets to a again.
Let us imagine that a and b are the only same-level nodes in this part of the network. The probability of a
sending both its copies to b, which then sends both its copies to a is p4, which is 0.0256 for p = 0.4, more
than 2%. This effect decreases as the degree of the network increases, and the quantity of possible routing
choices.

To avoid pointless complications with our network model, we chose to discard all other copies of a
message once a copy reached the sink. The deletion happens at the next reception of each packet. Since
these operations happen after the actual reception of the packet, they do not influence our metrics.

22/40 Verimag Research Report no TR-2013-4

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
h
o
p
s
 p

e
r

m
e
s
s
a
g
e

Time

GFG
SR3
RW

Figure 3: Route length of a few algorithms over time, on a graph of 100 nodes, average degree 8, and no
attackers

7 Observed Behaviors and Metrics

In order to evaluate the performance of the routing algorithms, we need to investigate multiple behaviors,
and find metrics that reflect these behaviors.

7.1 Number of Hops

The first thing to observe in the protocol is the length of the routes in hops. Although it does not take
into account the control messages and per-message overheads, this measure is still a good indicator of the
efficiency and speed of the routing algorithm.

We measure this using the average number of edges traversed, for each message that reached its desti-
nation. For PRDGBR, where packets are replicated, once a message reached the sink, it is considered as
delivered, and all copies are discarded.

When the network contains attackers which drop messages, this measure has to be carefully addressed.
For instance, if there is an attacker in a remote part of a network, it may artificially lower the hop count, by
causing more packet loss for packets on long routes than for packets in small networks. In the same way,
when the network contains wormholes, the topology changes makes this measure difficult to interpret.

To plot this, we sort by emission date all the messages that were delivered to the sink, and group them
in blocks of messages, which contain a fixed number of message (which we change depending on the
simulation length and overall number of messages). Then, the average hop count of each block gives the y
coordinate, and we average block’s messages emission date to have the x coordinate.

There is an example of the method in figure 3, which shows a comparison of the average hop counts per
message over time between GFG, SR3 and RW on a 200 node graph with a degree of 8, and no attackers.
In this example, each point is an average over a hundred data-bearing messages.

We can see that when using RW, the routes are longer than the routes generated with the other two
algorithms. SR3 and PRGBR have hop counts around 5 or 10 hops on average, and SR3 has a hop count
which converges after some time.

7.2 Delivery Rate

The delivery rate of a routing algorithm is the proportion of messages delivered over the messages sent.
This measure is interesting in presence of attackers.

Verimag Research Report no TR-2013-4 23/40

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000

D
e
liv

e
ry

 R
a
te

Time

GFG
SR3
RW

Figure 4: Evolution of the delivery rate of a few algorithms over time, on a graph of 200 nodes, average
degree 8 and 30 percent of attackers

7.2.1 Average Delivery Rate

The average delivery rate is a measure of how the algorithm manages to route packets to the sink.
We represent this in the same way as the route length, by grouping messages in blocks of 500 messages,

and averaging.
For PRGBR with duplication, if the sink receives a copy, the message is flagged as delivered. If all of

them are lost, the message is considered lost.
Figure 4 shows the delivery rates of GFG, SR3 and RW, over a smaller graph, with 30 percent of

attackers. GFG has a delivery rate of roughly 45 percent of messages, while RW loses most of its messages.
SR3 is the only algorithm which evolves over time: its delivery rate increases as the reputation mechanism
causes messages to avoid the blackholes, and in this case, reaching more than 80 percent of messages
delivered.

7.2.2 Fairness regarding the delivery rate

We want to show the difference between an algorithm like GBR, with deterministic routes and therefore a
0% delivery rate if a blackhole is on the path of a node, and SR3, where most of the nodes have similar
delivery rates. We are therefore looking at the delivery rates of each individual node, and the fairness is
the standard deviation of this data for one simulation run. As we would like to have uniform delivery rates
over all nodes, lower is better.

We give an example in Figure 5, which shows the fairness of different algorithms, in the same graph,
against different proportions of randomly placed blackholes. GBR’s fairness is high, since nodes either
deliver all their messages, or none of them, depending on the presence of a blackhole on their path to the
sink. PRDGBR adds a lot of randomness in the routing, and therefore has a lower (better) fairness than
GBR, but it also loses messages in safe networks, which explains its non-zero fairness in these conditions.
RW has an excellent fairness, and this indicates that all nodes have comparable delivery rates, as a large
majority of the messages get intercepted. SR3 also has a good fairness, and its delivery rate is good.
Overall, it’s important to remember that fairness only indicates the uniformity of the delivery rates, and
should be considered along with the average delivery rate.

7.2.3 Delivery Rate Classes

In order to compare different algorithms on a lot of graphs, we need a way to average the measures over
different runs of the algorithm, so that they still make sense. For this, we expanded the idea of delivery rate

24/40 Verimag Research Report no TR-2013-4

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

Blackholes proportion
0% 10% 20%

Algorithm
SR3 0 0.032 0.047
RW 0 0.049 0.041
GBR 0 0.373 0.482

PRDGBR 0.004 0.081 0.132

Figure 5: Fairness (std.dev. of each node’s delivery rate) for different percentage of attackers over the same
graph of 200 nodes and degree 16

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

GFG

0

10

20

30

40

50

60

70

80

90

100

GBR

0

10

20

30

40

50

60

70

80

90

100

RGBR

0

10

20

30

40

50

60

70

80

90

100

PRGBR

0

10

20

30

40

50

60

70

80

90

100

PRDGBR

0

10

20

30

40

50

60

70

80

90

100

RW

0

10

20

30

40

50

60

70

80

90

100

SR3

Figure 6: Example of DR stacks over 20 graphs of 400 nodes with 20 percent of attackers, and an average
degree of 16

classes from [12].
From a bundle of simulations in the same setting (same degree, number of nodes, number of intruders,

and simulation parameters), we compute the overall delivery rate of each node over all simulations. At the
end, we categorize them in classes as [12] did, but in 10 shares of 10% each: between 0% and 10% delivery
rate, 10% and 20%, and so on. We look at the proportion of nodes in each of the classes.

See Figure 6 for an illustration of this process, over 20 graphs of 400 nodes with 20 percent of attackers,
and an average degree of 16. The darker a class is, the more nodes it contains. For instance, the average
delivery rates of SR3 and PRDGBR are around 80 percent of messages, but for SR3, there are very few
nodes which have a delivery rate smaller than 70 percent, with most of them above. On the other hand,
PRDGBR has a more spread out distribution of the delivery rates. We can also see that both GFG and GBR
have nodes that either route messages, or do not, since they both are deterministic algorithms.

8 Simulation Context

8.1 Sinalgo
We used a modified version of Sinalgo9 for our simulations. Sinalgo is a network simulator, developed in
Java by the Distributed Computing group at ETH Zurich. Sinalgo is suited for simulations which abstract
the communication layers, and allows for large graphs and visualization of algorithms. We added our own

9http://disco.ethz.ch/projects/sinalgo

Verimag Research Report no TR-2013-4 25/40

http://disco.ethz.ch/projects/sinalgo

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

Number of nodes
100 200 400

Degree
8 2.8 ∗ 10−3 1.4 ∗ 10−3 7.1 ∗ 10−4
16 4.0 ∗ 10−3 2.0 ∗ 10−3 1.0 ∗ 10−3
32 5.7 ∗ 10−3 2.8 ∗ 10−3 1.4 ∗ 10−3

Figure 7: Empirically acceptable data generation λ for some settings

layer of statistics and instrumentation on top of Sinalgo, built using Perl, and some minor local utilities to
generate graphs, run simulation campaigns, and better visualize our algorithms.

8.2 Network Modeling
• Transmission model

The transmission time between two nodes for a message follows the exponential distribution with
probability density function f :

f(x;λ) =

{
λe−λx, x ≥ 0,

0, x < 0.

We set λ = 1 in this case. The simulation time unit is based on the mean transmission time (1λ = 1).

We also enforce a first-in-first-out order on the links.

• Data quantity

We chose to simulate the generation of 500 000 data units.

• Data generation

All legitimate nodes generate data, except the sink.

The interval between two data generations by the same node, and the interval between the beginning
of the simulation and the first send both follow the same exponential distribution of parameter λ. This
λ is arbitrary. We want to have a certain quantity of messages in the network (to provide interleaving
and message queues), while keeping the overall generation rate under the capacity of the network to
process messages.

If nodes send too many messages, the whole network will lock down due to queues building, and fall
in a downward spiral where queues cause bad routing, which will in turn decrease the capacity of the
network to process messages.

We ran simulations in some settings, until we reached data generation rates which were adequate in
most cases. Figure 7 contains our λ parameter for some of the settings.

8.3 Topologies
8.3.1 Graph generation

To generate topologies for our experiments, we use Unit Disk Graphs (UDGs), which are generated by
randomly scattering nodes across a simulation area (a square of side AreaSize units). If two nodes are
closer than the communication radiusUDGRad (arbitrarily set to 20) to each other, they can communicate.
Each graph is determined by the number of nodes n and the desired average degree µ(δ), and we keep a
library of graphs corresponding to each setting so that all experiments on a specific setting are always ran
against the same set of topologies.

In order to generate them, we determine the AreaSize using the following formula [10] :

26/40 Verimag Research Report no TR-2013-4

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000 300000

D
e
liv

e
ry

 R
a
te

Time

Size 1
Size 5

Size 40

Figure 8: Example of the effects of LRouting size on the delivery rate

µ(δ) =
UDGrad2 ∗ π ∗ n

AreaSize2

As UDGrad = 20, we get :

AreaSize =

√
400 ∗ π ∗ n

µ(δ)

The sink is positioned in the exact center of the simulation area.
When we need to position attackers, we randomly replace honest nodes by the required number of

attackers. This can lead to graphs where there is no safe path from the sink to some legitimate nodes, which
we chose not to remove, to avoid biases in the generated topologies. Some nodes will have a delivery rate
of 0, but as the network graphs are common, all the algorithms will have the same quantity of disconnected
nodes.

8.4 Setting parameters for the SR3 algorithm
In order to determine a good set of parameters for our algorithm, we run some preliminary experiments.

8.4.1 LRouting size

First, we would like to know which size to use for the LRouting list. This list determines both the peak
delivery rate of the algorithm and the time it takes to refresh its routes with up-to-date information, for
instance after a sinkhole attack.

We are therefore looking at a measure of the delivery rate in a network containing attackers as described
in Section 7.2.1, and we are aiming to both have a good routing once the setup phase is done, and a small
refresh time when attackers reveal themselves.

See for an example Figure 8, which shows the delivery rate of messages over time, for lists of size
1, 5 and 40, on a graph of 200 nodes, with an average degree of 16. This network contains five percent
of blackholes, to see the capacity of the network to rearrange routes in order to avoid attackers, and five
percent of wormholes as described in section 5.3. Each dot represents a bundle of 5000 messages.

Because of the definition of LvSR3 (Section 3.4), increasing the size of LRouting will reduce the proba-
bility of choosing a node not in the list. This can be seen on Figure 8 by looking at the values at which the
curves reach a plateau: the bigger lists shows a better delivery rate after stabilization than the smaller ones,
with less variations in the end.

Verimag Research Report no TR-2013-4 27/40

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

Number of nodes
100 200 400

Degree
8 10 5 5
16 15 10 5
32 20 15 5

Figure 9: Experimentally obtained best LRouting sizes, with a step of 5

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5 10 15 20 25 30 35 40

A
v
e
ra

g
e
 d

e
liv

e
ry

 r
a
te

Size of Lrouting

SR3
Best

Figure 10: Delivery rate depending on LRouting size for 100 nodes and degree 8

The drawback of this stability is an increasing impact of wormholes, since once a node trusts its neigh-
bor, it will take longer to get enough feedback to have recent information in LRouting . This can be seen by
comparing the size 5 and size 40 delivery rates, where the biggest list takes a longer time to recover after
the drop due to the behavior change of wormholes.

We ran ten simulations on different graphs per tuple (list size, number of node, degree), and averaged
the total delivery rate of each run. The results can be seen in Figure 9. We tried different sizes of LRouting ,
from 5 to 40, and we show here the value that yield the highest global average delivery rate.

There is an important fact that does not appear in this table: the average delivery rate is very similar for
a large range of list sizes. See Figure 10 for an illustration of this. The behavior is the same across all the
networks we tried. We choose a LRouting size of 10, which is overall a good compromise for every tested
setting.

8.4.2 LQueue size

We need to determine the size of LQueue, which stores messages until their corresponding ACK returns.
A too small list would cause most ACKs to be forgotten, and useful feedback would be lost, whereas a too
large list would just trade valuable memory for a negligible routing advantage.

To find a good size, we start by setting the LAckRouting size to infinity. This causes all ACKs to follow
the return path perfectly. Then, by putting the algorithm in the range of settings we will later use to evaluate
all the algorithms, we try different sizes. The goal is to avoid loss of data when ACKs come back to their
sender. A few ACKs getting lost are not a problem, as long as most of them still reach their destination.

Our goal is to have less than a percent of ACKs forgotten on return, and we tried LQueue sizes of 1, 3,
5, 7, and 9 elements.

Results of experiments are in Figure 11. For all settings, the results we obtained are similar to those
ones. Every time, the size 3 lists are sufficient to reach our objective of 99% of acknowledgements remem-

28/40 Verimag Research Report no TR-2013-4

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 2 3 4 5 6 7 8 9

R
e
m

e
m

b
e
re

d
 a

c
k
s
 p

ro
p
o
rt

io
n

Size of Mreturn

SR3
99%

Figure 11: Proportion of ACKs remembered, depending on LQueue size for 200 nodes and degree 8

bered.
Also, the mean number of hops can on average be smaller by a few percent when using smaller lists.

This is a side-effect, where the messages following longer routes will be more likely to be forgotten by
their sender. However, we do not want to leverage this effect: when the network is under attack, artificially
forbidding longer routes will be counterproductive.

8.4.3 LAckRouting size

Now that both other parameters are fixed, we want to achieve a good-enough reverse chaining. We exam-
ined the average number of remembered ACKs, as in the previous case, and we tried to keep most ACKs
remembered when they come back, while keeping the memory costs reasonable. We aim for results similar
to the previous ones, although they will be inferior since we use a finite LQueue.

The quantity of remembered acknowledgements is critical for the initial routing, before the nodes learn
shorter routes. At this stage, feedback is critical, and the whole point of the reverse chaining mechanism is
to enable faster feedback to the nodes. Since SR3 at the beginning behaves like a random walk, the length
of routes will be comparatively long, and thus, the amount of memory needed for a single message will
be higher at the beginning of the routing. This is when the adequate size for those lists is critical, and to
explore this parameter, we ran short simulations.

Settings are the same as before, but we run only 50000 messages. Figure 12 is an example of results
we obtained, on exactly the same setting as the previous example (200 nodes, degree 8). Once again, other
settings result in similar results. The remembered ack rate stagnates when the size of LAckRouting goes
above 5 elements, and we chose that size.

9 Results

We compared all the algorithms on networks of degree 8, 16 and 32, and of sizes 50, 100, 150, and so on,
up to 400 nodes. See Figure 13 for some example graphs. These graphs were generated using the method
described in Section 8.

Most of our measurements give the same results for GBR and RGBR. These two algorithms have
the same behavior, except that RGBR randomly selects a new route at each hop, while GBR only has
randomness at the beginning of the simulation. To avoid presenting overlapping points in most of our
illustrations, we only show RGBR’s results when they behave exactly in the same way.

Verimag Research Report no TR-2013-4 29/40

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1 2 3 4 5 6 7 8 9

R
e
m

e
m

b
e
re

d
 a

c
k
s
 p

ro
p
o
rt

io
n

Size of Mack

SR3
99%

Figure 12: Proportion of ACKs remembered, depending on LAckRouting size for 200 nodes and degree 8

Figure 13: Three example graphs of size 400 and respective degrees 8, 16 and 32

30/40 Verimag Research Report no TR-2013-4

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

9.1 In safe networks
We observed the average hop count of the routes generated by the routing algorithms in networks which
do not contain attackers. We found that Random Walk has a hop count far larger than the other algorithms.
For instance, on graphs of degree 8, it reaches 1000 hops per message for networks of 400 nodes, while the
other algorithms are all under an average of 25 hops per message. When the degree gets higher, the average
number of hops of RW reduces a little, for example 450 hops on networks of 400 nodes and degree 16, but
this is still far higher than the other algorithms.

The results with RW removed are shown in Figure 14. As expected, GBR and RGBR return exactly
the same route lengths, which are minimal for the tested graphs, and RW’s route length is at least about ten
times the route lengths of the other algorithms. All the algorithms other than RW are roughly in the same
order of magnitude.

We can see that the relative performances of the algorithms are not really dependant on the sizes of
the network. However, the degree has a big influence on the performances of GBR and variants, since in
networks of equal size, they are always more efficient if the diameter is low, and the diameter goes down
as the degree increases.

On the other hand, SR3 does not seem to be influenced much by the degree when considering average
route lengths, and instead, seems to depend on the number of nodes. In the worst settings, its hop count is
roughly five times the one of PRGBR, and at best, they are similar by a few hops. Compared to the optimal
hop count from GBR and RGBR, SR3 generates the shortest routes when the degree of the graph is small.
It appears to scale well with the number of nodes.

9.2 In networks under attack
Resilience of a routing protocol against attacks can be seen through the delivery rate of messages, and the
standard deviation of the delivery rate between nodes. We executed our algorithm on a variety of networks
containing attackers as described in Section 5, and we observed the results.

9.2.1 Against blackholes

When a fixed percentage of randomly placed blackholes is inserted in a network, the protocols behave
differently depending on the topology of the network, the information they use, and their parameters. We
will first look at networks containing thirty percent of intruders, then at networks with ten percent of
attackers, and finally, the fairness of the routing algorithms in these two scenarios.

Figure 15 shows the delivery rates of our panel of algorithms on networks of two hundred nodes, when
the degree vary. Both GBR, RGBR, PRGBR and PRDGBR are strongly influenced by the degree of the
graph, to the point that a highly connected network (degree 32) can have more than two times the delivery
rate of a graph of degree 8. GFG and SR3 are both a little less influenced by the degree of the graph, and
RW does not vary.

Figure 16 shows the delivery rates of algorithms while the number of nodes that changes. The degree
stays at 8 and there are again 30 percent of attackers. Since the degree stays the same, this means that
the increase in the number of nodes makes a wider and more convoluted network. Consequently, routing
becomes more difficult, and the delivery rates get lower.

Figure 17 shows the results of simulations in the same conditions as before, but with networks of degree
32. To give a comparison point, this is very close to the experimental conditions of [12], and our results for
300 nodes are similar to theirs for the GBR variant, keeping in mind that there are some small variations
between the two settings and modelizations. Overall, the same tendencies as before are seen.

Regarding fairness, we show in Figure 18 the delivery rate and fairness in the case where the network
has 400 nodes. We can see that RW has the smallest overall fairness, as expected, since all nodes lose most
of their messages. On the opposite side of the spectrum, the deterministic algorithms (GFG, GBR) both
have bad fairness, since a node will either deliver all or none of its messages. As seen on the previous
figure, the delivery rates of PRDGBR and SR3 are roughly similar, but SR3 has a three times smaller
fairness value than PRDGBR, meaning that the delivery rates of individual nodes in networks running SR3
are more grouped than for those running PRDGBR.

Verimag Research Report no TR-2013-4 31/40

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250 300 350 400

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
h
o
p
s

Number of nodes

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250 300 350 400

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
h
o
p
s

Number of nodes

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250 300 350 400

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
h
o
p
s

Number of nodes

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Figure 14: Average route length of the algorithms depending on the network size, when the degree is resp.
8, 16 and 32.

32/40 Verimag Research Report no TR-2013-4

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30

A
v
e
ra

g
e
 d

e
liv

e
ry

 r
a
te

Number of nodes

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Figure 15: Delivery rates of the routing algorithms in presence of 30% of attackers, in graphs of size 200,
with varying degrees

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

A
v
e
ra

g
e
 d

e
liv

e
ry

 r
a
te

Number of nodes

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Figure 16: Delivery rates of the routing algorithms in presence of 30% of attackers, in graphs of degree 8,
with varying network sizes

Verimag Research Report no TR-2013-4 33/40

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

A
v
e
ra

g
e
 d

e
liv

e
ry

 r
a
te

Number of nodes

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Figure 17: Delivery rates of the routing algorithms in presence of 30% of attackers, in graphs of degree 32,
with varying network sizes

Algorithm Av. delivery rate Fairness
SR3 0.777 0.060
RW 0.008 0.017
GFG 0.117 0.308
GBR 0.487 0.487

RGBR 0.491 0.307
PRGBR 0.306 0.223

PRDGBR 0.750 0.179

Figure 18: Delivery rates and fairness of algorithms, in presence of 30% of attackers, in graphs of degree
32, with 400 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

A
v
e
ra

g
e
 d

e
liv

e
ry

 r
a
te

Number of nodes

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Figure 19: Delivery rates of the routing algorithms in presence of 10% of attackers, in graphs of degree 32,
with varying network sizes

34/40 Verimag Research Report no TR-2013-4

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

Algorithm Av. delivery rate Fairness
SR3 0.916 0.022
RW 0.056 0.029
GFG 0.525 0.472
GBR 0.835 0.333

RGBR 0.880 0.161
PRGBR 0.759 0.146

PRDGBR 0.974 0.048

Figure 20: Delivery rates and fairness of algorithms, in presence of 10% of attackers, in graphs of degree
32, with 200 nodes

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

GFG

0

10

20

30

40

50

60

70

80

90

100

GBR

0

10

20

30

40

50

60

70

80

90

100

RGBR

0

10

20

30

40

50

60

70

80

90

100

PRGBR

0

10

20

30

40

50

60

70

80

90

100

PRDGBR

0

10

20

30

40

50

60

70

80

90

100

RW

0

10

20

30

40

50

60

70

80

90

100

SR3

Figure 21: Delivery rates classes of the routing algorithms in presence of 30% of attackers, in graphs of
degree 8 and 200 nodes

There are a few cases where SR3 does not have the best average delivery rate. Figure 19 shows the
simulation results on networks with the highest degree and smallest non-zero number of attackers of our
panel. These are the most favorable conditions for the GBR variants. We also remark that only SR3 and
PRDGBR (which duplicates messages at each hop) manages to keep a high delivery rate in large networks,
and the duplication may become a problem when the number of nodes increases.

The advantage of PRDGBR regarding the average delivery rate must however be considered with the
message replication in mind. As PRDGBR makes a copy of each message at each hop, the overall total of
transmissions done is greatly increased, when compared to PRGBR. In the same conditions as before (10
percent of attackers, average degree 32, 400 nodes), the overall number of hops in the simulation is two
times greater for PRDGBR than it is for SR3.

Figure 20 shows the average delivery rate and fairness for the networks of 200 nodes, degree 32, and
10 percent of blackholes, which were pictured in the previous figure. PRDGBR and SR3 both have good
fairness (resp. 0.05 and 0.02) and comparable average delivery rates, meaning that most messages will get
delivered for most of the nodes.

Figure 21 shows the delivery rates classes for 20 networks of degree 8, with 200 nodes, and 30 percent
of blackholes. This is a favorable case for SR3, where most nodes reach 70-90 percent of delivered mes-
sages. On the other hand, the ther algorithms cause a lot of nodes to have a delivery rate of 0 percent, even
when taking into account the nodes which do not have a safe route to the sink, which represent roughly 20

Verimag Research Report no TR-2013-4 35/40

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
v
e
ra

g
e
 d

e
liv

e
ry

 r
a
te

Proportion of intercepted messages

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Figure 22: Delivery rates of the routing algorithms in presence of SF attackers, when their interception
probability varies

percent of all nodes.
Overall, the SR3 routing algorithm has the best average delivery rate against blackholes on most of our

sample graphs, especially on low-degree networks. However, on a few networks with small amounts of
attackers and very high degrees, its delivery rate is a little lower than PRDGBR, but still higher than the
other algorithms when the network size increases. In all these marginal cases where the delivery rate is
similar, the fairness of SR3 is better than all the other algorithms.

9.2.2 Against selective forwarding nodes

Our routing algorithm is designed to detect and avoid nodes which do not deliver messages. However, since
we use a reputation mechanism, we also want to evaluate the effect of low-visibility attackers, which do not
lose every message, but only a fraction. These attackers will still be present in their neighbor’s LRouting ,
and they will thus receive more messages than a plain blackhole.

We chose the same networks as for the experiments regarding black holes, for 160 honest nodes, 40
attackers, and an average degree of 8. However, instead of plain blackholes, we chose selective forwarding
intruders, which randomly lose messages with a probability p, and act like an honest node with a probability
1− p.

Figure 22 shows our results. As expected, SF attackers stopping all messages give the same results as
black holes, and those who do not stop any message give a delivery rate of 100%. Between those extremes,
the results depend on the algorithms. Note that PRDGBR is not really affected by SF nodes which drop
less than 10 percent of the messages. The important conclusion here is that for all the algorithms we tried,
dropping all messages is a more disrupting strategy for an attacker than randomly losing a subset of them.

9.2.3 Against wormholes

We tried all of the algorithms against wormholes, on 20 graphs, which contain 200 nodes, an average
degree of 8, 5 percent of blackholes and 5 percent of wormholes. Figure 23 shows the delivery rates which
resulted. This attack is especially devastating against GBR variants, as wormholes distort the network, and
this distortion amplifies the effect of wormholes once they start dropping messages. Most of the nodes for
these algorithms have a delivery rate around 30 percent. These nodes are those which deliver messages to
wormholes during the first third of the simulation, and keep sending to those after they become blackholes.

After the behavior switch, SR3 nodes quickly start to avoid attacker nodes, as seen in Figure 24 where
the delivery rates in a single simulation run are shown. GFG, due to its use of geographical information,

36/40 Verimag Research Report no TR-2013-4

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

GFG

0

10

20

30

40

50

60

70

80

90

100

GBR

0

10

20

30

40

50

60

70

80

90

100

RGBR

0

10

20

30

40

50

60

70

80

90

100

PRGBR

0

10

20

30

40

50

60

70

80

90

100

PRDGBR

0

10

20

30

40

50

60

70

80

90

100

RW

0

10

20

30

40

50

60

70

80

90

100

SR3

Figure 23: Delivery rates of the routing algorithms in presence of wormholes in 20 different 200-nodes
graph, average degree of 8, five percent of blackholes, and five percent of wormholes.

is not affected by wormholes. For both SR3 and GFG, the average delivery rate in the second part of the
simulation is the same as for the graphs which only include blackholes, but GFG does not keep a high
delivery rate in this case. Overall, only our algorithm resists this attack.

9.2.4 Against Sybil nodes

Figure 25 presents the delivery rates of a network containing 180 honest nodes and 20 Sybil nodes, de-
pending on the number of identities they declare to their neighbors. Sybil nodes declaring a single identity
behave as a simple blackhole.

Overall, this attack does not influence much the tested algorithms. As most of them have a random
neighbor selection at some point during the routing process, adding declared identities increase the proba-
bility for a message to be intercepted. However, this does not compromise the protocols further.

The only exception here is GFG. As Sybil nodes only lie about their identities, and not their positions,
GFG’s routing process is not affected at all.

10 Conclusion

We proposed SR3, a secure and resilient algorithm for convergecast routing in wireless sensor networks.
Using lightweight cryptographic primitives, SR3 achieves data confidentiality and data packet unforgeabil-
ity. Using simulations, we showed the resiliency of SR3 in various attack scenarios, including selective
forwarding, blackhole, wormhole, and Sybil nodes. The comparative study shows that the resiliency ac-
complished by SR3 is drastically better than the one achieved by several routing protocols of the literature,
even those whose targeted metric is resiliency.

The immediate perspective of this work is to study the performance of SR3 in a more dynamic environ-
ment, e.g., networks with mobile nodes or networks where nodes are added or removed on the fly. Another
future work is the effective deployment of SR3 in a WSN testbed platform.

Verimag Research Report no TR-2013-4 37/40

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500000 1e+06 1.5e+06 2e+06

D
e
liv

e
ry

 R
a
te

Time

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Figure 24: Delivery rates of the routing algorithms in one of the graphs from the same setting as before,
over time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

A
v
e
ra

g
e
 d

e
liv

e
ry

 r
a
te

Identities

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Figure 25: Delivery rates of the routing algorithms in graphs of 200 nodes, degree 8, and 10 percent of
Sybil nodes

38/40 Verimag Research Report no TR-2013-4

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

References
[1] J.N. Al-Karaki and A.E. Kamal. Routing techniques in wireless sensor networks: a survey. Wireless

Communications, IEEE, 11(6):6–28, 2004. 2.2

[2] Mathilde Arnaud, Véronique Cortier, and Stéphanie Delaune. Modeling and verifying ad hoc routing
protocols. In Proceedings of the 23rd IEEE Computer Security Foundations Symposium (CSF’10),
pages 59–74, 2010. 2.2

[3] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryp-
tion. In Foundations of Computer Science, 1997. Proceedings., 38th Annual Symposium on, pages
394–403, 1997. 4.5, 4.5.1

[4] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining message authen-
tication code. Journal of Computer and System Sciences, 61(3):362–399, 2000. 4.2.1, 4.2.2, 4.2.4,
4.2.5

[5] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient pro-
tocols. In Proceedings of the 1st ACM conference on Computer and communications security, pages
62–73, 1993. 4.2.2

[6] M. Bellare and P. Rogaway. Introduction to modern cryptography. UCSD CSE, 207:207, 2005. 4.6.1

[7] Bruno Blanchet. A computationally sound mechanized prover for security protocols. IEEE Trans.
Dependable Sec. Comput., 5(4):193–207, 2008. 1.1, 4.3

[8] P. Bose, P. Morin, I. Stojmenović, and J. Urrutia. Routing with guaranteed delivery in ad hoc wireless
networks. Wireless Networks, 7(6):609–616, 2001. 6.2

[9] L. Buttyán and I. Vajda. Towards provable security for ad hoc routing protocols. In Proceedings of
the 2nd ACM workshop on Security of ad hoc and sensor networks, pages 94–105. ACM, 2004. 2.2

[10] A.D. de Mazieux, V. Gauthier, M. Marot, J. Vaudour, and M. Becker. Etat de l’art sur les réseaux de
capteurs. Rapport de recherche INT No 05001 RST, 2006. 8.3.1

[11] T. Eisenbarth and S. Kumar. A survey of lightweight-cryptography implementations. Design & Test
of Computers, IEEE, 24(6):522–533, 2007. 1

[12] O. Erdene-Ochir, A. Kountouris, M. Minier, and F. Valois. Enhancing resiliency against routing
layer attacks in wireless sensor networks: Gradient-based routing in focus. International Journal On
Advances in Networks and Services, 4(1 and 2):38–54, 2011. 1, 2.2, 6.3, 6.3.3, 6.3.4, 7.2.3, 9.2.1

[13] Ochirkhand Erdene-Ochir, Marine Minier, Fabirce Valois, and Apostolos Kountouris. Resiliency of
wireless sensor networks: Definitions and analyses. In Telecommunications (ICT), 2010 IEEE 17th
International Conference on, pages 828–835, 2010. 2.1, 2.2, 3.2

[14] K.R. Gabriel and R.R. Sokal. A new statistical approach to geographic variation analysis. Systematic
Biology, 18(3):259–278, 1969. 6.2

[15] Y.C. Hu, A. Perrig, and D.B. Johnson. Ariadne: A secure on-demand routing protocol for ad hoc
networks. Wireless Networks, 11(1-2):21–38, 2005. 2.2

[16] C. Karlof and D. Wagner. Secure routing in wireless sensor networks: Attacks and countermeasures.
Ad hoc networks, 1(2-3):293–315, 2003. 1, 5, 5.3

[17] Neal Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation, 48(177):203–209, 1987.
1

[18] J.F. Meyer. Defining and evaluating resilience: A performability perspective. In Proceedings of
the International Workshop on Performability Modeling of Computer and Communication Systems
(PMCCS), 2009. 1

Verimag Research Report no TR-2013-4 39/40

Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

[19] Victor S. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology CRYPTO 85
Proceedings, volume 218, pages 417–426, 1986. 1

[20] A. Perrig, R. Canetti, J.D. Tygar, and D. Song. The tesla broadcast authentication protocol. 2005. 2.2

[21] A. Perrig, R. Szewczyk, JD Tygar, V. Wen, and D.E. Culler. Spins: Security protocols for sensor
networks. Wireless networks, 8(5):521–534, 2002. 2.2

[22] Axel York Poschmann. Lightweight cryptography: cryptographic engineering for a pervasive world.
PhD thesis, 2009. 1

[23] C. Schurgers and M.B. Srivastava. Energy efficient routing in wireless sensor networks. In Military
Communications Conference, 2001. MILCOM 2001. Communications for Network-Centric Opera-
tions: Creating the Information Force. IEEE, volume 1, pages 357–361, 2001. 6.3, 6.3.1

[24] J.P.G. Sterbenz, E.K. Cetinkaya, M.A. Hameed, A. Jabbar, S. Qian, and J.P. Rohrer. Evaluation of
network resilience, survivability, and disruption tolerance: analysis, topology generation, simulation,
and experimentation. Telecommunication Systems, pages 1–32, 2011. 2.1

[25] D. Wagner. Resilient aggregation in sensor networks. In Proceedings of the 2nd ACM workshop on
Security of ad hoc and sensor networks, pages 78–87, 2004. 2.1

40/40 Verimag Research Report no TR-2013-4

	Introduction
	Contribution

	Related work
	Resiliency
	Routing in WSNs
	Roadmap

	Presentation of our algorithm
	Assumptions
	Overview
	Reputation Mechanism
	Compute the Reputation
	Acknowledgment Routing

	Cryptographic proof of the packet format
	Idea
	Background
	Pseudorandom Permutations
	Hash functions in the Random Oracle Model

	Cryptoverif
	SR3 modelization
	Find-then-guess security
	Unforgeability
	Nonce confidentiality
	Using these results

	Attacker Models
	Blackholes
	Selective forwarding nodes
	Wormholes
	Sybil Nodes

	Related Routing Algorithms
	Uniform Random Walk (RW)
	Greedy-Face-Greedy (GFG)
	Gradient-based routing and variants
	Deterministic GBR (GBR)
	Randomized GBR (RGBR)
	Probabilistic Randomized GBR (PRGBR)
	Probabilistic Randomized Duplicating GBR (PRDGBR)

	Observed Behaviors and Metrics
	Number of Hops
	Delivery Rate
	Average Delivery Rate
	Fairness regarding the delivery rate
	Delivery Rate Classes

	Simulation Context
	Sinalgo
	Network Modeling
	Topologies
	Graph generation

	Setting parameters for the SR3 algorithm
	Listroute size
	Mapqueue size
	Mapack size

	Results
	In safe networks
	In networks under attack
	Against blackholes
	Against selective forwarding nodes
	Against wormholes
	Against Sybil nodes

	Conclusion

