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Abstract

Dynamic analysis of multi-threaded applications running on parallel architectures is
notoriously a challenging issue. In this work we consider taint analysis as a typi-
cal information flow property. The approach we propose extends properties collected
at runtime on a single parallel execution σ∥ to a set of execution sequences corre-
sponding to plausible serializations of σ∥. Taint values are inferred using a sliding-
window based static analysis, performed on a fragment of an execution trace. We
provide sufficient conditions to reduce some of the false positives produced by the
over-approximation of serializations. Only explicit taint propagation is captured but
special care has been taken to handle lock-based critical sections correctly. A proof-
of-concept implementation has been developed using the CETUS framework, and
some experimental results are given. Finally, the framework could be extended to
perform other types of information flow analysis.

Keywords: multithread,dynamic/static analysis,mutex,lock,taint

Reviewers:

How to cite this report:

@techreport {TR-2012-08,
title = {Offline taint prediction for multi-threaded applications.},
author = {Emmanuel Sifakis, Laurent Mounier},
institution = {{Verimag} Research Report},
number = {TR-2012-08},
year = {2012}

}



Predictive taint analysis Emmanuel Sifakis, Laurent Mounier

1 Introduction

Taint analysis is a very popular dynamic information flow analysis. It consists into marking/taint-
ing and following at runtime their propagation inside a program. Taint analysis is widely used
in several contexts such as vulnerability detection, information policy enforcement, testing and
debugging. A significant effort has been put on optimizing taint analysis for sequential programs.
However, adapting taint analyses to programs executing in parallel is utterly difficult due to non-
deterministic memory accesses.

1.1 Exploiting parallelism

Parallelism is often exposed to programmers through the notion of threads, or light weight pro-
cesses, which are schedulable streams of code. The thread programming model is well established
and widely used even on mono-processor architectures. It provides a clear separation of tasks,
while allowing their efficient interaction and synchronization through shared memory. The exe-
cution of multithreaded programs on multicore platforms is capable of exploiting the underlaying
parallelism. Thus, multithreaded applications running on multicore architectures are in common
use, and there is an increasing need for suitable validation tools. However, validating parallel
code not only inherits all difficulties of sequential code validation, but also amplifies them due to
inter-thread dependencies caused by shared data (data races).

Parallel execution of threads introduces new issues to software validation. In the recent past,
threads were executed sequentially interleaved by the operating system thus, giving the illusion of
a parallel execution. This execution model is simpler to validate because a single thread is executed
at any time. Although data races may occur due to non-deterministic scheduling options, at least
the effects of memory accesses are easily observable. This is not the case in parallel execution of
threads where each thread can observe a different serialization of events. The non-determinism of
memory accesses that occur in parallel is platform dependent and it is described in the platforms
memory consistency model.

We provide in Figure 1 an overview of multithreaded programs and their sequential and parallel
execution. Initially, we define a multithreaded program Pas a set of threads T a, where each thread
specifies a sequence of events to be executed. At the top of the figure we explicit an excerpt of a
program P = {T a, T b, T c}. Next, we give two plausible schedules for the excerpt of program P.
A schedule is a total function mapping events to timestamps at which they are executed. We focus
initially on a sequential schedule Σs which is equivalent to executing P on a mono-processor
architecture. The schedule assigns a unique timestamp to each event. Executing that schedule on
any platform will yield the observation of σos,π which is the same as Σs. Note that π specifies the
execution platform characteristics.

Dually, for the provided parallel schedule Σ∥ of program P we can observe different serializa-
tions of events. As illustrated in the bottom of Figure 1 Σ∥ assigns the same timestamp to different
events. That is, those events were executed simultaneously by different processors or cores. The
order in which parallel memory accesses are serialized depend on the execution platform. Most
execution platforms allow relaxations on the order memory operations are executed, e.g. a read
operation may be executed prior to a preceding write operation to a different memory location.
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Thus, each thread may observe a different serialization of events. Though, its worth noting that
the serialization observed by each thread may vary only within a bounded time slice we designate
as δ. For all events prior to δ all threads consent on their read value.

T c
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Figure 1: Obtaining serializations for a multithreaded program P
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1.2 Information flow

The importance of information is invaluable and a number of security properties such as (i) confi-
dentiality (ii) integrity and (iii) availability must be guaranteed. Nowadays information is stored,
processed and transfered among a multitude of devices. Although encryption algorithms and com-
munication protocols can ensure integrity and confidentiality, of data storage and transfer, they are
not always used properly. Data are often stored un-encrypted and their security relies entirely on
the operating system access control which is insufficient.

Moreover, benign software may unintentionally leak confidential data, or contain vulnerabilities
that could be exploited by malicious software (malware). Malwares come in many flavors, viruses,
worms, trojan horses, spywares etc. and focus in disclosing confidential information, or causing
denial of services (e.g. crash programs) or capture the host computer (zombie computer) in order
to accomplish further malicious tasks. To protect against software vulnerabilities information flow
analysis is mandatory.

Information flow analyses trace how data processed by a program transit inside memory at
execution time. Two popular analyses focusing on preserving security are non-interference and
taint analysis. Non-interference focuses on confidentiality. It ensures that high (confidential) data
do not flow into low (public) data. A program is safe if the same outputs are observed for different
values of high data. Taint analysis on the other hand tracks untrusted data such as user or network
input and checks how they influence vulnerable statements (e.g. return address of functions). Taint
analysis was originally implemented in the Perl language for identifying security risks on web sites
such as SQL injections and buffer overflow attacks. The term taint analysis is now widely used as
a synonym to dynamic information flow tracing (DIFT). Moreover, the type of information traced
is not restricted to untrusted data and thus more general analyses can be implemented.

1.3 Program validation

Testing has become an indispensable part of software development. It is applied to validate if
a program meets its functional and extra-functional requirements for a specific (specially guided)
execution. Testing is applied dynamically, that is by executing a program or fragment of a program
and observe the execution for the tested property. We must note that testing is not exhaustive and
thus it cannot be used for verification. In order to increase the confidence of programs, stress
testing is applied to increase coverage of tested executions. If any functional errors (bugs) are
found during testing they should be resolved through the debugging process.

Debugging of programs consists in finding errors (bugs) and correcting them accordingly. In
order to debug an error it should be reproducible so that it can be replayed as many times necessary
to detect its source. Several tools called debuggers help developers in this process. They allow a
step-by-step execution of the program and inspection of memory at any point.

The non-determinism of concurrent program executions makes information flow tracking, test-
ing and debugging more challenging. Concurrent modifications to shared memory affect the prop-
agation of taintness and observations of the testing. Taint propagation or verdict of tests can be dif-
ferent for repeated executions using the same inputs. The non-deterministic execution is affected
by many factors such as scheduling decisions taken by the operating system or even the serializa-
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tion of events by the execution platform. Reproducing a non-deterministic execution precisely is
nearly impossible. Thus, we can no longer specify precisely the execution that was tested, nor can
we easily reproduce bugs in order to fix them. A partial solution to checking non-deterministic
executions is runtime prediction. The intuition behind it is to infer/predict plausible serializations
based on a concrete execution of the observed application. Thus, upon a single test execution we
predict several neighboring executions which would be hard to enforce.

1.4 Our contribution

In this work we propose a predictive information flow analysis for parallel programs. Our analysis
allows the parallel execution of applications which is the input to our prediction algorithm. The
prediction is applied to bounded portions of code that were executed “simultaneously”. Predic-
tions are inferred by the iterative algorithm we propose. The prediction focuses into capturing
information flows produced by plausible serializations of the parallel execution observed. The
predictions should take into account the characteristics of the execution platform. We use taint
analysis as a representative information flow analysis and consider sequentially consistent plat-
forms. A considerable effort has been done to reduce false predictions. The contributions of this
work are summarized as follows:

• Proposition of a runtime prediction technique for parallel executions.

• Definition of an algorithm for precise predictive taint analysis. The precision of predictions
comes from:

(i) taking into account the underlaying memory model;

(ii) safely un-tainting memory locations;

(iii) respecting semantics of synchronization mechanisms (locks).

• The algorithm we propose avoids the enumeration of all serializations.

• Implementation of a proof of concept tool.

1.5 Organization of the document

We detail our work in the following sections. In section 2 we present a small survey on taint
analysis and focus on its adaptation to parallel executions of multithreaded programs. Next, in
section 3 we present our prediction technique, for identifying plausible serializations of a parallel
execution. In section 4 we implicit the analysis for sequentially consistent memory model, to
which we also add restrictions to respect un-tainting of memory locations and semantic of locks.
Finally, we present some experimental results in section 5 and conclude in section 6.
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2 Information flow analysis for multithreaded programs

Information flow analyses infer the data and control dependencies that can occur in a program. In
software security such information is useful for detecting and preventing the exploit of software
vulnerabilities and confidentiality breaches. In debugging and testing it can be useful for under-
standing how errors occur and what are their sources. Moreover, parallelizing compilers can also
benefit of it since accesses to independent data can be safely parallelized. Tracing information
flow in sequential programs is difficult due to dynamic memory allocations, control flow branch-
ings etc. Adapting information flow analyses to multithreaded programs is even more challenging
due to the non-deterministic execution, caused by the scheduling of threads and the relaxations of
the execution platform.

Both static and dynamic techniques have been proposed to address the information flow tracing
problem. Static approaches usually reason on source code level. A vast majority reposes on type
systems to define languages that guarantee by construction secure information flows, i.e. execu-
tions that do not leak any confidential information. Volpano [VS97] and Sabelfeld [SM06] have
proposed such sequential languages while Barthe [BRRS10] and Smith [SV98] include in their
languages some basic primitives for multithreaded development. A drawback of these approaches
is that they can reject programs that occasionally flow sensitive data. For instance a benign pro-
gram may leak sensitive information only when sending a crash report to its developers. Dynamic
approaches e.g. TaintEraser [ZJS+11] are better adapted since they monitor at runtime the flow of
sensitive data and can interfere in order to prevent the leaking. Dynamic information flow trac-
ing (DIFT) or taint analysis is widely used for detecting software vulnerabilities and avoid their
exploit. As it is applied dynamically it is much more precise than static analyses. We detail taint
analysis and how it propagates in section 2.1.

Hereafter we motivate taint analysis and give an overview of the techniques employed to address
the problem. Further we introduce runtime prediction a method to generalize executions of multi-
threaded programs. We present our algorithm for predictive taint analysis. The implementation of
our algorithm along with a proof of concept experimentation are presented in section 5.

2.1 Taint analysis

Taint analysis is a dynamic information flow tracing technique which consists of tainting (marking)
sensitive or untrusted data and tracing their flow through a program. To perform taint analysis we
need to specify: (i) the taint sources and (ii) a propagation policy of taintness. Often, untrusted
data such as user input and network traffic are used as taint sources. The propagation of taintness
may occur explicitly through copy of value (e.g. assignment) or implicitly through covert channels
(e.g. control flow).

To limit propagation of taintness, a dual process of untainting is used to mark data as safe. This
occurs by assigning an untainted value to data or by sanitizing it i.e. check they respect some rules
and if necessary modify them such that they conform to these rules. We introduce the following
notation for abstracting taint sources and sanitization:

T stands for Taint and is used to abstract all possible taint sources. For instance, user input
obtained through scanf function will be replaced by an assignment of T in the variable

Verimag Research Report no TR-2012-08 5/63



Emmanuel Sifakis, Laurent Mounier Predictive taint analysis

written as in the example:

scanf("%d",val); Ô⇒ val = T;

U stands for Untaint and is used to abstract sanitization functions. Sanitization is often used on
untrusted data in order to ensure they are harmless and thus they can safely be untainted
after its completion. Assuming function clean_search sanitizes a search string for SQL
injections then we can make the following replacement:

clean_search(input); Ô⇒ input = U;

2.1.1 Explicit information flow

Listing 1 presents an excerpt of code where initially variable a gets tainted at instruction 2 (by
reading user input into it). Also variable e gets eventually tainted through the dependency path e
⇒ d ⇒ a ⇒ T . The propagation of taintness in variable d is straight forward since we have an
explicit copy of the tainted value. In the case of variable b the effect of the assignment is subtle
to the taint propagation policy chosen. For instance, it may be assumed that merging tainted data
with untainted absorbs the tainting effect. Most often though it suffices one operand to be tainted
in order to propagate taint. Thus, in most existing taint analyses b would be considered tainted
too. Finally, we note the sanitation of a.

2.1.2 Implicit information flow

Listing 2 presents an implicit information flow. Again variable a gets initially tainted. The tainted
data controls program execution and thus information about it can leak. In this example, an ex-
ternal observer can infer information about the value of a by looking at the printed value of b.
Thus information about a is implicitly propagated to all variables set inside the scope of control
(this includes c). Variable d is not tainted since it is not affected by the value of a. Implicit flows
are very hard to detect since covert channels can be implemented in many ways. Some typical
examples are timing and storage channels.

1 int a,b,c,d,e;

2 a = T; // scanf("%d",a);

3 c = 21;

4 d = a;

5 b = c + a;

6 a = U; // sanitize(a);

7 e = d;

Listing 1: Explicit flow

1 int a,b,c,d;

2 a = T; //scanf("%d",a);

3 if( a >10 ){

4 b = 1;

5 }else{
6 b = 0;

7 c = 2;

8 }

9 d = 10;

10 printf("%d",b);

Listing 2: Implicit flow
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Because implicit flows are based on covert channels they are tedious to track both statically
and dynamically and are often neglected. Implicit information flows are mostly critical for the
non-interference property where confidential data can leak unconsciously. In the context of taint
analysis and vulnerability detection implicit flows affect subtly the exploitation of a vulnerability.
Moreover, implicit propagation of taint introduces too many false positives which degrades the
efficiency of the analysis.

2.1.3 Application of taint analysis

As mentioned earlier taint analysis targets mostly vulnerability detection and prevention. There-
fore, most taint analyses are performed dynamically at runtime. Tainted data are tracked down and
the appropriate checks are performed, when necessary, in order to respect the security property.

Other
stack-frames

Return address

buf
(32 bytes)

Other variables
⋮

Other
stack-frames

Return address

buf
(32 bytes)

Other variables
⋮

Malicious
input

Use for
return

tainted
data

attack
1 int read_input(){
2 char buf[32];
3 gets(buf);
4 return 0;
5 }

Figure 2: Stack smashing by buffer overflow.

A typical example demonstrating how taint analysis is used for vulnerability prevention is stack
smashing caused by a buffer overflow. Figure 2 describes such an attack. On the left of the figure
we present the code of the function which reads user input into a buffer of size 32 bytes. The
programmer assumes the size associated to the buffer is enough to hold the input provided. If a
user enters a longer input then the data will overflow the buffer resulting into writing a new value
to the return address associated to this stack frame (illustrated on the right stack frame). This
vulnerability can be exploited by ensuring that the return address is not overwritten with random
data but with an address to a malicious set of instructions. To prevent that from happening a taint
analysis should check if the return address is tainted prior to jumping to it.

2.2 Tracing taintness

Dynamic analysis techniques are widely used in the context of multithreaded applications for run-
time error detection like deadlocks ([LELS05, CFC12]) and data races ([SBN+97, SI09]. Although
detecting data races could be useful for information-flow analysis, it is not sufficient as such.
Hence, more focused analyses are developed to deal with malware detection ([BKK10, ESKK08])
and enforcement of security policies ([ZJS+11, CM09]).
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Building dynamic analysis tools necessitates integrating some monitoring facilities to the ana-
lyzed application. Monitoring features are added either at source code level or binary level, either
statically or dynamically. Waddington et al. [WRS] present a survey on these techniques. Work-
ing at the binary level allows to analyze programs for which source code is not available such as
malwares or libraries. A major drawback is that high level information is lost making it harder to
reason about the program.

Instrumentation code is often added statically in applications as explicit logging instructions. It
necessitates access to the source code and can be added accordingly by the developers (which is
a tedious and error-prone procedure) or automatically. To automate this process source-to-source
transformations can be applied, for instance using aspect-oriented programming. Apart from the
source level, static instrumentation can also be applied directly at the binary level, e.g., using
binary rewriting functionality of frameworks like Dyninst [BH00]. Hereafter we take a closer
look to dynamic binary instrumentation (DBI) techniques since they are the most widely used.

2.2.1 Dynamic binary instrumentation

In general, DBI frameworks ( [NS07, BH00, LCM+05]) consist of a front-end and a back-end.
The front-end is an API allowing to specify instrumentation code and the points at which it should
be introduced at runtime. The back-end introduces instrumentation at the specified positions and
provides all necessary information to the front-end.

There are two main approaches for controlling the monitored application: emulation and just-
in-time (JIT) instrumentation. The emulation approach consists in executing the application on a
virtual machine while the JIT approach consists in linking the instrumentation framework dynam-
ically with the monitored application and inject instrumentation code at runtime.

Valgrind [NS07] is a representative framework applying the emulation approach. The anal-
ysed program is first translated into an intermediate representation (IR). This IR is architecture
independent, which makes it more comfortable to write generic tools. The modified IR is then
translated into binary code for the execution platform. Translating code to and from the IR is time
consuming. The penalty in execution time is approximately four to five times (with respect to an
un-instrumented execution).

Pin [LCM+05] is a widely used framework which gains momentum in analysing multi-threaded
programs running on multi-core platforms. Pin and the analysed application are loaded together.
Pin is responsible of intercepting the applications instructions and analysing or modifying them as
described by the instrumentation code written in so-called pintools. Integration of Pin is almost
transparent to the executed application.

The pintools use the frameworks front-end to control the application. Instrumentation can be
easily added at various granularity levels from function call level down to processor instructions.
An interface exists for accessing abstract instructions common to all architectures. If needed more
architecture specific analyses can be implemented using specific APIs. In this case the analysis
written is limited to executables of that specific architecture.

Adapting a DBI framework to parallel architectures is not straight forward. Hazelwood et
al. [HLC09] point out the difficulties in implementing a framework that scales well in a paral-
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lel environment and present how they overcame them in the implementation of Pin. As mentioned
in their article, extra care is taken to allow frequently accessed code or data to be updated by
one thread without blocking the others. Despite all this effort in some cases the instrumenter will
inevitably serialise the threads execution or preempt them.

2.2.2 Sequential taint analysis

All taint analyzes are decomposed into three distinct phases:(i) tainting (ii) tracing and (iii) assert-
ing. The first two were presented earlier in section 2.1 and consist in defining what data are tainted
and how taintness propagates. The third phase consists into checking how tainted data are used.
The property to be asserted affects the first two phases too.

Often taint analyzes implemented with DBI [NS05, ZCYH05, CZYH06, QWL+06, ZJS+11,
GLG12] focus on the same properties such as buffer overflows, format string attacks, stack smash-
ing etc. and compare with each other in terms of precision and performance. The major overheads
in these analyzes are caused by instrumentation and updating shadow memory.

Shadow memories are used to store information about taintness. A mapping exists between the
registers and address space of the application to the shadow memory, as illustrated in Figure 3.
For performance and memory usage optimization shadow memories are usually implemented as
bitvectors. Each bit indicates whether the mapped memory is tainted or not. The granularity of the
mapping may vary, but most often a bit corresponds to a byte of address space or register. Because
the lookup and updating of shadow memory occurs practically for each instruction executed by
a processor Nagarajan and Gupta [NG09] propose architectural support for their implementation.
Their proposal focuses on multiprocessors and thus incurs modifications both at the instruction set
and at the cache coherency protocols.

registers

es
p

eb
p ⋮ ea
x

eb
x

address space

0x
00

00

0x
ff

ff

shadow memory

. . .
. . .

tainteduntainted

Figure 3: Shadow memory mapping.

Newsome and Dong proposed TaintCheck [NS05] for detecting exploits on commodity software
and produce signatures for their early detection and avoidance. They used Valgring [NS07] for
instrumentation which penalizes the monitored execution due to its emulation approach. Their
information flow tracing is limited to move (e.g. load, store, push, pop) and arithmetic (e.g. add,
sub, xor) instructions. During arithmetic operations some special registers are updated called
EFLAGS which are not taken into account. For shadow memory they map each byte of memory
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(register or address space) to a four-byte pointer, linked to either a tainted data structure 1 or to
NULL depending on its taint status. Shadow memory is kept in a page-table like structure in order
to reduce its size. The assert phase checks if tainted data are used in jump instructions or passed
as arguments to system calls.

Further to taint propagation TaintCheck keeps a log allowing to trace the flow from the source
that tainted it down to the exploit position. This is necessary for generating the signature of
the attack. Moreover, once an exploit is detected the programs execution may continue under a
constrained environment which allows to learn what is the goal of the attack. This information is
useful for undoing, if possible, the damage done by a malware.

Zhao et al. present DOG [ZCYH05] a program monitoring framework built on top of Dy-
namorio [Bru04] for detecting exploits but also preventing confidentiality leaks. DOG provides
a graphical interface from which one can define the taint sources, and associate to each source a
propagation policy and a set of assertions and actions to perform if an exploit is detected. The
propagation of taint supported is similar to TaintCheck [NS05] apart that they take into account
the EFLAGS and allow for implicit propagation through control. Because implicit propagation
can introduce many false positives DOG allows the user to specify regions in the program where
it can be applied. To optimize taint tracing a bit-vector is used. Each byte corresponds to a bit
with value 1 marking it as tainted and 0 as untainted. Moreover, they do not use a page-table based
strategy as in TaintCheck but instead they devise a mapping where it suffices to add a shadow base
to the address to locate its mapping. The taint checks provided by DOG are somehow typical, i.e.
format string attacks, stack smashing, etc.

Dytan [CLO07] is yet another framework for taint analysis. It is implemented using Pin [LCM+05]
and as DOG it supports both implicit and explicit flow propagation. In addition to a simple XML
configuration the framework also provides an easily extendable interface allowing the rapid devel-
opment of more elaborated taint analyzes. The taint information is also stored in bit-vectors and
the granularity of memory mapped is one byte.

A most recent work TaintEraser [ZJS+11] focuses on confidentiality, it blocks unintended data
exposure to the network or local file system by applications. TaintEraser makes several optimiza-
tions in taint analysis without losing in precision. First, it uses function summaries which resume
the effects of a functions execution and thus there is no need to instrument it at runtime. More-
over, they perform on-demand instrumentation, i.e. they do not instrument the entire program
execution. Finally, to enforce confidentiality of sensitive data it allows to log the leak, block the
action or replace the sensitive data with random ones. The output channels protected are network
connections and files.

All frameworks presented above use DBI to add monitoring. Figure 4 illustrates an overview of
their mode of operation. The DBI framework observes the instructions executed by the processing
unit and updates accordingly the shadow memory and takes action if needed. As presented in the
figure, the execution of multithreaded programs is serialized. This is convenient for monitoring
since the DBI frameworks observe a sequential schedule Σs which allows the shadow memory to
be updated precisely.

Adding instrumentation at runtime incurs two drawbacks. First, it penalizes execution having

1this is similar to the taint object T we defined, its a fixed point for taintness
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Figure 4: DIFT analysis using Dynamic Binary Instrumentation frameworks

to produce the instrumentation dynamically, at least for the first 1 time they get executed. Second,
it is hard to apply any optimizations since high level program structure has been lost. Saxena et
al. [SSP08] try to weaken these problems by proposing a binary rewriting technique for adding
instrumentation. Prior to adding the monitoring code they extract as much high level information
as possible from x86 executables, so that optimizations can be applied.

2.2.3 Optimizing DIFT

A great challenge DBI frameworks are facing is dealing efficiently and correctly with multi-
threaded programs and their parallel execution achieved on the multicore platforms. As illustrated
in Figure 4 existing DIFT analyses based DBI frameworks serialize their execution. Though nec-
essary for tracing information flow precisely it incurs a great penalization of the execution time.
To improve DIFT analyzes several solutions requiring the support of specialized hardware have
been proposed.

Nagarajan et al. [NKWG08] takes advantage of multicore processors to perform DIFT transpar-
ently and efficiently. Their solution reposes on spawning a new thread dedicated to the analysis
and running on a dedicated core in parallel with the main thread (the monitored application).
The monitoring core tracks taintness and sends an interrupt to the main thread when the use of
a tainted value violates the specified security policy. Intense communication between the cores
executing main and monitor thread respectively is required. Initially shared memory was used
for their communication but it added too much overhead to the execution. Thus, they proposed
the usage of a dedicated hardware FIFO 2 buffer. Although this buffer does not exist in current
multicore processors, it has been proposed by several other works [RVS+06, SKSP06]. For their
experimentations they used the Simics full system simulator on which they implemented the hard-
ware FIFO queue. The results they obtained showed a 48% overhead which is much better than
aforementioned frameworks which introduced an overhead of about 300% and more.

The work of Ruwase et al. [RGM+08] reposes on the log-based architecture (LBA [CKS+08])
to implement a parallel dynamic information flow analysis. LBA introduces several hardware
components in the CPU design that allow the extraction of a log trace for a monitored application.
The log can be read by the monitoring thread. The analysis of the log happens in parallel. It is

1instrumented code is stored into code caches for later use
2First In First Out or queue like storage and processing policy

Verimag Research Report no TR-2012-08 11/63



Emmanuel Sifakis, Laurent Mounier Predictive taint analysis

broke into segments each processed by a worker thread running on a dedicated core. The worker
threads create summaries of segments and send them to the monitoring/master thread which up-
dates meta-data and makes the appropriate checks. For the parallelized DIFT they proposed a big
number of worker threads is necessary, but it does not always guarantee a speedup compared to
sequential frameworks.

A most recent work by Ozsoy et al. proposes SIFT [OPAGS11] which takes advantage of
symmetric multithreading (SMT). The implementation of their work though necessitates modifi-
cations which increase the size of the processor core by core by 4.5%. Although it is relatively
small compared to the solution proposed in Raksha [DKK07] which increases chip size by 20%.
Hardware-based DIFT solutions seem very appealing but necessitate non-trivial hardware modi-
fications which make the design of processing units more complex. Thus chip manufacturers are
not willing into adapting them.

2.3 Extending monitored traces

Dynamic information flow analysis performed either at software level, using a DBI framework, or
with support of sophisticated hardware, allow the meticulous analysis of a single execution trace.
That is, the verdict concerns only the specific execution which is often serialized. Such a solution
is very intrusive and hides sources of concurrency bugs such as races caused by non-deterministic
scheduling and effects of weak memory model relaxations.

Although monitoring of applications is useful itself, as long as the performance losses are ac-
ceptable, in some contexts such as debugging or testing, limiting the verdict to a single execution
is too restrictive. To overcome this problem runtime prediction is used to expand the analysis
by inferring executions. The inferred executions capture different interleavings for the executed
application.

Depending on the accuracy of the interleaving computation the prediction may under-
approximate (miss errors) or over-approximate (produce false positives). In the former case, the
initial execution trace is usually captured as a totally ordered sequence of events which is relaxed
pessimistically i.e. allowing only a subset of feasible interleavings. In the latter case, execution
traces are conceived as unordered sets of events and interleavings are computed by enumerating all
possible interleavings and then eliminating some unfeasible paths (e.g. based on happens before
relations).

2.3.1 Runtime prediction for concurrency bugs

Runtime prediction has been widely used in the identification of concurrency bugs such as race
conditions and deadlocks. To perform such analysis the frameworks proposed in the litera-
ture [JNPS09, SFM10, WG12] abstract executions by logging information necessary to discover
interleavings susceptible to cause concurrency bugs. The logs consist of shared memory accesses
and various synchronization primitives such as lock acquisitions and releases, thread creation and
join etc. The frameworks are differentiated by the logged information, the algorithms detecting
interleavings and either they over or under approximate. The algorithms used can be split into enu-
merative and symbolic. In the former case all interleavings are enumerated and then bogus ones
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are filtered, while in the latter case constraints on interleavings are encoded into logic formulas
fed to SMT 1 solvers [DM06].

Several works use enumerative algorithms. Some of them [WS06b, WS06a] over-approximate
since they solely rely on the algorithms inferring the interleavings. To reduce false positives Cal-
Fuzzer [JNPS09] and PENELOPE [SFM10] try to infer a schedule capable to exhibit the con-
currency bug. The inferred schedule is executed and if the bug occurs then it is reported by the
framework, else it is dropped.

In the symbolic category Wang et al. [WG12] provide a detailed survey. Moreover they briefly
present their contribution in the domain. First, they mention a theoretical optimal solution they
proposed, the CTP [WCGY09] (Concurrent Trace Program), which captures all interleavings that
can possibly be inferred from a single trace, without introducing any bogus interleavings. Sub-
sequently they present two abstractions UCG [KW10] (Universal Causality Graph) which over-
approximates and a dual work, TSA [SMWG11] which under-approximates the set of traces com-
puted in TCP.

2.3.2 Runtime prediction applied to information flow

In the context of information flow runtime prediction has not yet been widely used. We present
hereafter two recent analyses: DTAM [GLG12] and Butterfly [GVC+10].

In their work Ganai et al. [GLG12] propose DTAM analysis which identifies a subset of tainted
input sources and shared objects that can affect the execution of a multithreaded program. That
is, the tainted data have an impact on the control-flow of the program or its shared state. The
tainted data get classified according to six relevancy types that describe how they tainted data can
affect the program execution. To infer the information flow dependencies DTAM proposes a serial
variation DTAMserial and two parallel ones DTAMparallel and DTAMhybrid.

DTAMserial monitors the serialized execution of the multithreaded program and keeps track
of taintness as in usual DIFT analyses. In the parallel variations each thread performs thread-
local taint propagation. The information flow between threads is taken into account during the
offline phase. For the offline phase relevant information needs to be logged. Each thread logs
shared memory accesses along with the runtime taint value they have computed. Some basic
synchronization primitives are also kept into the log such as fork/joins and wait/notifies allowing
to infer happens before relations. For their relevancy analysis even conditionals are logged.

The difference between the DTAMparallel and DTAMhybrid is that DTAMparallel does not take
into account happens before relations and thus the results are less accurate. Else, the inter-thread
propagation in both cases is rather coarse. Once a shared memory location is tainted in a thread, it
remains indefinitely and propagates to all other threads. Such an approach drastically over-taints
and it can result into considering everything as tainted.

The main objective of Goodstein et al. [GVC+10] is to provide a lifeguard mechanism for (multi-
threaded) applications running on multi-core architectures. It is a runtime enforcement technique,
which consists in monitoring a running application to raise an alarm (or interrupt the execution)
when an error occurs (e.g., writing to an unallocated memory). The main difficulty is to make

1Satisfiability Modulo Theories
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the lifeguard reasoning about the set of parallel executions. To solve this issue, the authors con-
sidered (monitored) executions produced on specific machine architectures [CKS+08] on which
heartbeats can be sent regularly as synchronization barriers, to each core. This execution model
can be captured by a notion of uncertainty epochs, corresponding to code fragments such that a
strict happens-before execution relation holds between non-adjacent epochs. These assumptions
allow to define a conservative data-flow analysis, based on sliding window principle, taking into
account a superset of the interleaving that could occur in three consecutive epochs. The result of
this analysis is then used to feed the lifeguard monitor. This approach can be used to check various
properties like use-after-free errors or unexpected tainted variable propagation.

2.3.3 Positioning of our work

Our work is inspired from Butterfly analysis [GVC+10] though the objectives are not the same.
Our intention is to provide some verdict to be used in a property oriented test-based validation
technique for multi-core architectures. As such, our solution does not need to be necessarily
conservative: false negatives are not a critical issue. A consequence is that we do not require any
specific architecture (nor heartbeat mechanism) at execution time. Another main distinction is that
we may proceed in a post-mortem approach: we first produce log files which record information
produced at runtime, then this information is analyzed to provide various test verdicts (depending
on the property under test).This makes the analysis more flexible by decoupling the execution
part and the property checking part. From a more technical point of view, we also introduced
some differences in the data-flow analysis itself. In particular we considered a sliding window
of two epochs (instead of three). From our point of view, this makes the algorithms simpler,
without sacrificing efficiency. Finally, a further contribution is that we take into account lock-set
information to reduce the number of false positives.

3 Predictive explicit taint analysis

Hereafter we present our approach to predictive explicit taint analysis of multithreaded programs.
The motivation is to use it for test validation, that is extend the results of a tested parallel execution
to the set of plausible serializations that could have occurred. Since we are in a testing context our
predictions do not need to be sound (taint value can be over or under approximated). For a test to
be representative of a concrete execution the monitoring should be as transparent as possible. As
presented in section 2.2.2 most works force the serialization of multithreaded applications, which
is very intrusive. We do not impose such restrictions to the scheduling, i.e. we allow the parallel
execution of the application, and reason a posteriori about taint propagations.

3.1 Overview of our approach

In our approach, an abstract view of which is presented in Figure 5, we propose an offline sliding
window-based analysis. First, the multithreaded application is executed and a parallel schedule
Σ∥ is captured in the form of log files. A log file is recorded per executed thread containing the
timestamped sequence of events produced by the thread mapped to it (upper part of Figure 5).
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Next, the log files are sliced into so called epochs and the sliding window-based taint analysis is
applied (lower part of Figure 5).
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Figure 5: Overview of our approach

Due to the information flow property we are interested in (taint propagation), the logging of
events is exhaustive. Typically, all memory accesses, affecting both shared and thread-local vari-
ables, in the form of use/def relations and some synchronization events. We remind the T and U
notations introduced in section 2.1 where T is a fixed tainted variable and dually U an untainted
one. For an event e we introduce the following functions:

Def(e) returns the singleton set of variables defined i.e. written by event e

Used(e) returns the set of variables used i.e. read by event e

Computing all interleavings (i.e. all serializations) of logged events is impractical. To avoid the
interleaving explosion problem we propose (i) the slicing of logs into epochs (l) which limits the
number of events to interleave and (ii) a processing algorithm which infers taint propagation with-
out enumerating all serializations. Because the slicing can occur between arbitrary events there
is no guarantee that a happens before relation is established for events belonging to consecutive
epochs. Thus, we extend the bounding of interleavings to events belonging in a window consisting
of two adjacent epochs. Section 3.2 provides more details on slicing.
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The lower part of Figure 5 illustrates a window consisting of two consecutive epochs
(W={l2,l3}) and the considered interleavings of events eAk , eBk , eBm, eCk in it. We note that also
events belonging to the same thread can be interleaved. This allows to reason on taint propagation
under relaxed memory models. Moreover the figure presents how slicing bounds the prediction to
events belonging to adjacent epochs only. For instance, the interleaving between events eBk and eDk
denoted with a dashed line is considered in the preceding window consisting of epochs l1, l2. On
the contrary the interleaving between eCk and eDk is crossed out because it will not be considered
by the analysis since the events do not belong to adjacent epochs. Similarly, the interleaving of
events eAk and eBm with eDk are not taken into account.

We apply our analysis using a sliding window consisting of two adjacent epochs. The window
slides over epochs thus all interleavings of an event with events in its preceding and succeed-
ing epochs are explored. The analysis identifies taint propagations inside the currently analyzed
window W and summarizes their effect in state ST, which acts as a shadow memory.

3.2 Slicing the parallel schedule Σ∥(log files)

The slicing of log files into epochs affects the prediction since it defines which events can be
interleaved. The slicing technique we use is time-based, that is we define a time period τ which
slices the logs as illustrated in Figure 6(a). The time slicing is well adapted for our purpose because
it allows the analysis to consider interleavings of events that were executed simultaneously, or at
least in parallel with respect to the chosen period τ .

Choosing the value of τ is delicate. In principle it should be large enough to capture (i) the
delta between the execution of an event and the assignment of the timestamp and (ii) the effects
of the platform on the ordering of executed instructions (weak memory models). Taking into ac-
count criterion (ii) is meaningful only when the logging of events is at the assembly level and
the timestamping utterly precise. We note that, by setting a large value for τ the analysis may
infer taint propagations caused by different schedules. Dually, choosing a small value will under-
approximate taint propagation, and thus the analysis will not infer taintness for all feasible seri-
alizations under the observed schedule. Finally, if the entire execution log is split into just two
epochs (i.e. one window) then the analysis reasons about all possible executions of the program.

In general, the slicing can be performed arbitrarily. Figure 6(b) illustrates such an arbitrary
slicing delimited by thick loosely dashed lines. Some heuristics that can produce interesting slices
are to use context switches or synchronization barriers as the slicing points. In the case of syn-
chronization barriers for instance, slicing at these points is not sufficient. A dummy epoch should
be introduced such that it forces the analysis not to reason about the interleavings. The dummy
epoch should define empty blocks for the threads concerned by the synchronization.

We introduce hereafter some key notations that we use in the sequel. As mentioned previously
the slicing of log files defines epochs as illustrated in Figure 7. The events of a thread belonging
to an epoch form a block. Each block is uniquely identified by a tuple (l, t) where l is the epoch
it resides in and t is the thread identifier. Events within a block are uniquely identified by a triplet
(l, t, i) where l, t specify the block it belongs to, and i is the identifier of the event. As illustrated
in Figure 7 event eBi = (l,B, i).

We further define the functions Thr(e) and Epoch(e) which return respectively the thread that
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executed event e and the epoch it belongs to. Finally, we introduce a binary reflexive operator↭
which denotes two events can be interleaved based on the window interleaving assumption. More
formally:

ek ↭ em ⇒ ∣Epoch(ek) −Epoch(em)∣ ≤ 1

3.3 Sliding window-based explicit taint propagation

As mentioned earlier what we propose is an offline sliding window-based analysis for predicting
explicit taint propagation. There are two aspects in our analysis:

(i) prediction of explicit taint propagation within a window, and summarization of its effects;

(ii) reasoning correctly about the sliding windows which causes them to overlap.

We introduce hereafter the notations used in our sliding window analysis. Figure 8 illustrates
two consecutive windows W ′ = {lh, lb} and W = {lb, lt} where W is the currently analyzed
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window consisting of epochs labeled lb, lt while W ′ is the preceding window consisting of epochs
labeled lh, lb. The labeling of epochs is relative to the currently analyzed window and is adopted
from [GVC+10]. The upper epoch of the currently analyzed window (W in Figure 8) is called
body (lb) while the lower one tail (lt), finally the epoch preceding body is called head (lh). We
remind that STW ′ summarizes the taint predictions down to the indexed window (W ′).

W
in

do
w
W

′
W

in
do

w
W

STW ′

STW

head lh

body lb

tail lt

A B C

Figure 8: Sliding window based analysis

Prior to abording explicit taint prediction of a window we define explicit tainting and un-tainting
of a variable. Next, we provide a formal definition of taintness on a serialized execution of events.
Finally, we adapt this definition to fit a serialization of events in our window-based taint prediction.

We use the oracle isTainted(x) which asserts if a variable x is tainted or not. It allows us
to define explicit tainting/generation (gen(e)) and respectively un-tainting/killing (kill(e)) of the
variable defined by an event e:

gen(e) = { {Def(e)} if ∃x ∈ Used(e) s.t. isTainted(x)
{∅} if ∄x ∈ Used(e) s.t. isTainted(x)

kill(e) = { {Def(e)} iff ∄x ∈ Used(e) s.t. isTainted(x)
{∅} if ∃x ∈ Used(e) s.t. isTainted(x)

Taint propagation occurs through a series of taintings over a serialization. That is, there is a
tainting source that causes variables to be tainted. Moreover, a tainted variable remains so until
some event un-taints it. We provide hereafter the definition of taintness for a variable x at an event
e of a serialization σ .

Definition 3.1 (Taintness on a serialized execution: taint(σ,x, ek))
Let σ be a valid serialization of the analyzed application, x a variable, and ek an event in σ . We

(recursively) define predicate taint(σ, ek, x), meaning that variable x is tainted at event ek on σ .
Note that event indexes correspond to the position/order of events on the serialization.
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taint(σ, ek, x) ≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x = T ⋁
∃m ≤ k such that: Def(em) = x ∧

∃y ∈ Used(em) . taint(σ, em, y) ∧
∀n .m < n < k⇒Def(en) ≠ x

Intuitively, a variable x is tainted at event ek of σ if it was assigned with a tainted variable at a
preceding event em (or at the event ek itself), and never re-assigned in between. Figure fig:def-taint
illustrates the definition of taint(σ, ek,x). The serialization is not complete, since the occurrence
of events post ek do not affect the taint value of x at event ek. Applying the taint predicate
recursively, tracks back to the initial taint source which is always variable T . We remind that T is
a constantly tainted variable which abstracts all taint sources.

start

e1

σ =

ew: z=T ev: y=z em: x=y ek
ek+1

Def(en)≠ z Def(en)≠ y Def(en)≠ x

Figure 9: Taint definition for a concrete serialization

We adapt the taint definition above to our window-based prediction analysis. Note that, the
definition is applied on a valid serialization σiW of events in W . Since the serialization is bounded
to events belonging to the window W , recursively applying the taint definition may not be able
to reach the constantly tainted variable T . Thus, the taint definition must rely on summarizations
of taint predictions, that is it suffices to reach a variable in STW ′ . We provide the definition of
window-based taintness (taintW(σiW , ek, x)) on a serialization σiW of events in window W .

Definition 3.2 (Taintness on a serialization of a window W )
Let σiW be a valid serialization of the currently analyzed window W , x a variable, and ek an

event in σiW . We (recursively) define predicate taintW(σiW , ek, x), meaning that variable x is
tainted at event ek on σiW .

taintW(σiW , ek, x) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = T ⋁
x ∈ STW ′ ∧ ∄j < ksuch that: Def(ej) = x ⋁
∃j ≤ k such that: Def(ej) = x ∧

∃y ∈ Used(ej) . taint(σiW , ej , y) ∧
∀m.j <m < k⇒Def(em) ≠ x

Figure 10 illustrates the application of definition taintW(σiW , ek, x) on an example. The events
preceding W are abstracted in the dotted path and the predictions of their plausible serializations,
with respect to a given slicing and the application of window-based taint prediction to it down
to W ′, are summarized in STW ′ . Applying the definition for variable x at event ek we obtain
the recursive calls of events pointed by the arrows initiated from ek. The recursion ends in the
summary of the preceding window STW ′ .
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start

STW ′={T , z}

σiW

ev: y=z em: x=y ek

Def(en)≠ z
Def(en)≠ y Def(en)≠ x

Figure 10: Taint definition for a plausible serialization of events in a window W

3.4 Explicit taint prediction in a window

To introduce explicit taint prediction of a window W we consider the simple case where:

(i) events in W can arbitrarily interleave, even those produced by the same thread. That is, any
serialization σiW of events is considered valid (no memory model restrictions). In section 4
we illustrate how to enforce sequential consistency.

(ii) events that kill/un-taint variables are ignored. This assumption simplifies propagation of
taintness and is often used e.g. [GLG12]. This assumption will be raised in the case of
sequentially consistent serializations in section 4.2.

We provide hereafter the definition of relaxed taintness which introduces the ignoring of
killing/un-tainting variables:

Definition 3.3 (Relaxed taintness on a serialization of a window W )
Let σiW be an arbitrary serialization of the currently analyzed window W

(σiW = { (e1, . . . , en) ∣ ∀k <m ⇒ ek ↭ em}), x a variable, and ek an event in σiW . We
(recursively) define predicate taintR(σiW , ek, x), meaning that variable x is tainted at event ek
on σiW .

taintR(σiW , ek, x) ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x = T ⋁ x ∈ STW ′ ⋁
∃j ≤ k such that: Def(ej) = x ∧

∃y ∈ Used(ej) . taintR(σiW , ej , y)

Figure 11 presents the definition of relaxed taintness propagation in a window. As illustrated,
the events killing variables are ignored i.e. the condition of not redefining a variable between its
tainting and its usage to taint some other variable has been removed. For example, the effect of
event ew (which is crossed out) is ignored, thus it does not prevent the taint propagation at event
em.

3.4.1 Enumerative approach

A natural way of predicting taint propagation in a window W is to compute all serializations
σiW by enumerating all permutations of events in it. Given the cardinality (number of events)
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Figure 11: Relaxed taint definition for a plausible serialization of events in a window W

of W denoted as ∣W ∣, there will be ∣W ∣! such serializations, since all interleavings are feasible.
A sequential taint analysis should then be applied on each serialization σiW , with i ∈ [1, ∣W ∣],
using as initial state STW ′ and producing a local state ST iW which predicts relaxed taint prop-
agation for the analyzed serialization. That is, for each variable x in ST iW the predicate
taintR(σiW , last(σiW ), x) holds, and likewise. By last(σiW ) we denote the last event of seri-
alization σiW .

x ∈ ST iW ⇔ taintR(σiW , last(σiW ), x)

We present in Algorithm 1 how each plausible serialization of window W is analyzed. First,
a copy of taint predictions down to the preceding window (STW ′) is made. The copy is updated
locally such that when a variable gets tainted it is added to the state. Dually, when a variable is
untainted no action is taken since these events are ignored.

Algorithm 1 Relaxed taint analysis of a serialization (kills are ignored)
In: σiW , STW ′

1: ST iW ← STW ′

2: for all e ∈ σiW do
3: if Used(e) ∩ ST iW ≠ ∅ then
4: ST iW ← ST iW ∪Def(e)
5: end if
6: end for

Out: ST iW

The analysis of each serialization σiW with Algorithm 1 computes its relaxed taintness into
ST iW which contains the set of variables that can be tainted by σiW , without taking un-taintings
into account. To summarize the predictions of all serializations in W , i.e. to compute STW , it
suffices to take the union of all local predictions. Figure 12 illustrates the enumerative approach.

STW = ⋃
i∈[1,∣W ∣!]

ST iW
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Figure 12: Enumerative prediction of taint propagation

3.4.2 Iterative approach

The enumerative approach presented above has an exponential complexity (∣W ∣! serializations to
process) which makes it impractical. We present here an iterative algorithm with linear complexity
for predicting relaxed taintness propagation. Our algorithm iterates over an arbitrary serialization
of events in a window at most ∣W ∣ times and infers STW . We justify the correctness of our solution
by showing taint prediction is equivalent to solving a boolean equation system (BES). Note that
the transformations we present hereafter are only used to illustrate the correctness of the solution
and never occur in the analysis. In appendix A we provide basic notations and definitions for
boolean equation systems.

Equivalence to boolean equation systems

Taintness is a binary value that characterizes a variable as either tainted (true, ⊺) or un-tainted
(false, �). Thus, taint propagation can be expressed in terms of boolean equations. As mentioned
earlier, taintness is explicitly propagated to a variable if there exists a tainted variable among those
used to define it. By associating to each variable x in the logs a boolean shadow variable denoted
as x , we can transform an event ek into an equivalent boolean equation as follows:

ek ≡ Def(ek) = ⋁
x ∈Used(ek)

x

Figure 13 illustrates how events in a block can be transformed into an equivalent boolean equa-
tion system. The first step transforms each event into an equivalent boolean equation as detailed
above. After this first transformation we might have several boolean equations defining the same
variable. To obtain a boolean equation system for the block we must eliminate all duplicate defi-
nitions. We achieve this by taking the disjunction of all equations defining the same variable. This
merging of boolean equations is valid with respect to taintR. Recall that according to taintR a
variable x is tainted if there exists an event that assigns it a tainted value.

The boolean equation system E we obtain by the above transformation of events consists of
disjunctive boolean equations. Such boolean equation systems are often represented as directed
graphs GE = (V,E), where V = { x ∣ x ∈ E} ∪ {⊺,�} is the set of vertices and E is the set of di-
rected edges, representing dependency between variables. Figure 14(a) illustrates the dependency
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Figure 13: Obtaining boolean equation system.

graph for the BES E obtained from the block in Figure 13.

ST = {T, y, p}

E ≡ ( x = y ∨ z )( y = x ∨ m ∨ k ∨ y )( b = x )( w = b ∨ p )
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Figure 14: Variable dependency graph of disjunctive boolean equation system.

For each variable x defined in the boolean equation system E we show that if there exists
a solution that makes it true then there also exists a serialization σ of logged events such that
taintR(σ, last(σ), x) holds and conversely.

Finding a solution that assigns a variable x of E with true is equivalent to identifying a path in
the dependency graph of the BES that leads from vertex mapped to x to the true vertex. Before
searching for such a solution we must update the dependency graph such that there exists an edge
connecting each variable in the ST with the true vertex. This update introduces the information
about tainted/true variables in the BES. Figure 14(b) illustrates the updated dependency graph
with respect to ST = {T, y, p}. We can now easily identify which variables can reach the true

vertex. For instance b is assigned a true value through the path ( x , y ,⊺).

We argue now why the existence of a path that propagates true value to a variable x implies
the existence of a serialization that propagates taintness. The path in the dependency graph defines
in which order the equations should be applied such that true value reaches the desired equation
defining x . Under the current assumptions (completely relaxed memory model and not taking
untaintings into account) events can be arbitrarily re-ordered. Thus, we can produce a serialization
where the ordering of events matches the order imposed on boolean equations. That is, we group
all events defining a variable and subsequently order these groups such that they match the ordering
of boolean equations. The events defining variables for which the path does not precise an ordering

Verimag Research Report no TR-2012-08 23/63



Emmanuel Sifakis, Laurent Mounier Predictive taint analysis

can be placed arbitrarily.

Figure 15 illustrates a plausible serialization that propagates taintness to b with respect to
taintR. On the left side of the figure we have the set of boolean equations that correspond to
the block on Figure 13. In the middle we re-order the boolean equations such that true value can

reach variable b . Finally, on the right side we exhibit a serialization that taints b under taintR.

ST = {T, y, p}

EW ≡ ( x = y ∨ z )( y = x ∨ m ∨ k ∨ y )( b = x )( w = b ∨ p )

x = y ∨ z

y = x ∨ m ∨ k ∨ y

b = x

w = b ∨ p

Boolean equation
system

y = x ∨ m ∨ k ∨ y

x = y ∨ z

b = x

w = b ∨ p

Re-order to
propagate ⊺ to b

eA4 : y = k, y
eA2 : y = x,m
eA1 : x = y, z
eA3 : b = x
eA5 : w = b, p

Serialization propagating
taintess to b

Figure 15: Equivalence between path in dependency graph and tainting serialization

Although there are many efficient algorithms for solving disjunctive BES our taint analysis is
based on the iterative one. Note that, as explained in the following section, we do not iterate over
the BES itself but directly on the logged events.

Iterative algorithm

As argued above, we can iterate over a block to obtain the predictions of relaxed taintness. This can
be generalized to a window where we iterate on on an arbitrary serialization σitW . We choose this
serialization to be defined as the concatenation of blocks in the window respecting program order.
We concatenate first blocks in lb followed by those in lt. Figure 16 illustrates the serialization of
events that is iterated. The iteration is divided into two phases: (i) horizontal and (ii) vertical.
The horizontal phase makes a pass over events in an epoch by crossing blocks left to right. The
vertical phase iteratively initiates horizontal passes over the body and tail epochs successively.

Algorithm 2 presents the vertical phase, which iterates over the serialization σitW of events in
W . The phases of the algorithm are also illustrated on the left side of Figure 16. The algorithm for
horizontal processing of an epoch is provided in Algorithm 3. The horizontal algorithm applies a
transfer function on each block. Here the transfer function is equivalent to Algorithm 1 where the
serialization processed is the blocks events in program order (i.e. as they appear in the log). We
must note that the transfer function should be monotonic on ST, that is it either adds or removes
elements from it. This is required required to terminate the iteration of vertical algorithm.

We covered so far the aspect of predicting a relaxed form of explicit taint analysis within a win-
dow. We provided an intuitive enumerative method and an equivalent iterative. In subsection 3.5
that follows we abord the sliding window phase of the analysis.
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Figure 16: Iterating over the window

Algorithm 2 Vertical processing V ertical(W , STW ′)
In: W = {lb, lt}, STW ′

1: ST ← STW ′

2: repeat
3: ST ←Horizontal(lb, ST)
4: ST ←Horizontal(lt, ST)
5: until ( ST unmodified )
6: STW ← ST

Out: STW

Algorithm 3 Horizontal processing of epoch Horizontal(l, ST)
In: l, ST

1: for all block bl ∈ l do
2: ST ← Transfer(bl, ST)
3: end for

Out: ST

3.5 Sliding windows - overlapping

As mentioned earlier the slicing of log-files into epochs limits the interleaving of events to be taken
into account. Due to the arbitrary slicing we extend the interleaving of events to adjacent epochs.
The explicit taint prediction analysis is applied on a sliding window consisting of two epochs. As
illustrated in Figure 8 the sliding window allows each event to be interleaved with events in its
preceding and succeeding epochs. In window W ′ events in epoch lb are interleaved with events in
lh, while in window W with events in lt.

The disjoint processing of interleavings for events in an epoch can affect the approximation of
the predictions. That is, they can either over or under approximate explicit taint propagations.
These issues are not observable for the relaxed taintness where no killing/untainting of variables
occurs. We will focus on the effect of sliding window for the case of taint prediction under se-
quential consistency in section 4.3.
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4 Iterative explicit taint propagation under sequential consistency

The iterative prediction is a comfortable and efficient way of predicting taint propagation when any
serialization of events is valid and kills are not taken into account. In this section we present how
to adapt the iterative algorithm such that explicit taint propagation under sequential consistency
is predicted within a window. Briefly, we must filter out taint propagation that is caused by non
sequentially consistent serializations of events. Initially, we maintain the assumption that killing
variables is not affecting taint propagation (i.e. they are ignored). We remind that sequential
consistency enforces (i) program order and (ii) write atomicity. Write atomicity is meaningful
only for parallel executions, thus it does not affect reasoning on serializations as is the case.

4.1 Respecting program order without kills

The taint property we are interested in is relaxed taintness propagation (see Definition 3.3) applied
to sequentially consistent serializations. We remind the precedence binary operator which
defines ordering of events for a single thread (order in which events of a thread were logged).
Furthermore, we introduce a more general binary operator which denotes precedence between
events produced by any thread and respecting the window interleaving assumption. We remind
the more detailed notation of events for a given slicing eti ≡ (l, t, i), where Epoch(eti) = l. The
operators are formalized as follows:

(l, t, i) (l′, t′, j) ≡ ( t = t′ ∧ (l < l′ ∨ (l = l′ ∧ i < j)) ) ∨ ( t ≠ t′ ∧ l′ ≥ l − 1 )

(l, t, i) (l′, t′, j) ≡ t = t′ and (l, t, i) (l′, t′, j)

We provide here the definition of a sequentially consistent serialization consisting of events be-
longing to a window W . Since events are restricted to a window, the events belonging to different
threads can appear in any order. Though, for an event em in the serialization we must ensure that
all events ek in the same thread that precede it (ek em) also precede it in the serialization.

σiW = {(e1, ..., en) ∣ ∀k,m ∈ [1, n] s.t. k <m⇒ ek em

∀m ∈ [1, n] , ek ∈W s.t. ek em ⇒ ek ∈ σiW ∧ k <m}

We provide hereafter an example on which we apply the iterative taint prediction as presented
earlier and sketch the proposed adaptation. Figure 17 illustrates a window consisting of two blocks
(lb,A) and (lb,B) (the tail epoch is empty), which are iterated in order A,B. On the right side
are the summaries obtained by each iteration. We focus on the second iteration where variables
y,w,d are marked as tainted. While the tainting of variables y,w respects program order, that
of variable d does not. The serialization σiW for which taintR(σiW ,d, eB1 ) holds is the following
(eB2 , eA1 , eA2 , eA3 , eB1 ). Executing eB2 before eB1 does not conform with program order and thus
tainting of d should not be included in the taint predictions.

To filter out taint predictions that do not respect program order, we should verify that for each
predicted taint propagation there exists a sequentially consistent serialization of events that jus-
tifies it (note that, still killings/untaintings of variables are ignored). To do so, we keep track of
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eA1 : x=y;
eA2 : y=z;
eA3 : w=y;

eB1 : d=w;
eB2 : z=T;

lb

A B

STW ′={ T , c }

Iteration1: STW={ T , z }
Iteration2: STW={ T , z, y, w, d }
Iteration3: STW={ T , z, y, w, d, x }
Iteration4: STW={ T , z, y, w, d, x }

Figure 17: Example, sequential consistency and iteration

events that taint variables as well as the tainting source (i.e. through which variables taintness is
propagated). This information about generated/tainted variables is stored in what we call the gen
history of the window (GHW ). GHW maps each tainted variable x to a set of markings. A mark-
ing m is a pair (e, V ) where e is the event that taints x (Def(e) = x) and V is the set of variables
that cause it to be tainted (V ⊆ Used(e)). The gen history stores information for the currently
analyzed window only. We define the function GHW (x) which returns the markings associated
to a variable x inside a window W .

GHW (x) = { (e, V ) ∣ Def(e) = x ⋀
∀y ∈ V ∶ y ∈ Used(e) ∧

∃σiW such that taintR(σiW , e, y) }

Vars STW ′ Iteration1 Iteration2 Iteration3

T

c

z (eB2 ,{T})

y (eA2 ,{z})

w (eA3 ,{y})

d (eB1 ,{w})

x (eA1 ,{w})

Table 1: Gen history example

Table 1 illustrates the usage of GHW for the example of Figure 17. During first iteration we
updateGHW (z) with the marking (eB2 ,{T}). The marking encodes the information that variable
z was tainted at event eB2 , and that the variable that caused it to be tainted is T which belongs
to STW ′ . Similarly, each successive iteration adds the markings accordingly. GHW captures all
the necessary information to track the source of tainting inside the window, and infer whether
it respects sequential consistency or not. We point out with a colored background the invalid
markings, i.e. false taint propagations. The filtering of false predictions can occur either online,
the variable is neither added to the ST nor a marking is added to GHW , or offline. Finally,
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we introduce the function Events(GHW (x)) which returns a set containing all events that taint
variable x.

Definition 4.1 ( Events(GHW (x)) )

Returns the set containing all events that taint variable x according to GHW .

Events(GHW (x)) = {ek ∣ ∃m = (ek, V ) ∈ GHW (x)}

We provide in Algorithm 4 the transfer function to be applied on blocks such that GHW is
updated properly and used to filter out online the non sequentially consistent taint propagations.
Of utmost importance is function TaintingV ars which returns the set of variables that can taint
the variable defined by the current event e. If the set of tainting variables tv is not empty, then we
update the GHW accordingly by adding the mapping (Def(e), (e, tv)) (line 4) and also update
the set of taint predictions (at line 5).

Algorithm 4 Transfer function for taint analysis
In: B , ST

1: for all e ∈ B do
2: tv = TaintingV ars(e);
3: if tv ≠ ∅ then
4: GHW ← GHW ∪ {(Def(e) , (e, tv))};
5: ST ← ST ∪Def(e);
6: else
7: // ignore kills, do nothing
8: end if
9: end for

Out: ST

To define function TaintingV ars we need to introduce first the notion of taint dependency
path. We start with a more generic definition, that of a backward dependency path Pb, which is a
sequence of events that form a chain of defined and used variables.

Definition 4.2 (Backward dependency path Pb)

Pb = {(e1, . . . , en) ∣ ∀k ∈ [1, n − 1] . Used(ek) ∩Def(ek+1) ≠ ∅}

A taint dependency path P for a variable x is a backward dependency path limited to a window
W . The path is retrieved in GHW and ends in the initial set of tainted variables STW ′ where we
recall W ′ is the window preceding W .

Definition 4.3 (Taint dependency path P)

P = {(e1, . . . , en) ∣ ∀k ∈ [1, n] ∶ ek ∈W ⋀
∀k ∈ [1, n − 1] ∶ Used(ek) ∩Def(ek+1) ≠ ∅ ∧

Def(e1) = x ∧ Used(en) ∩ STW ′ ≠ ∅ ⋀
∃ y, em, V such that (em, V ) ∈ GHW (y) ∧ em = ek+1 }
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A taint dependency path is the sequence of events that correspond to the recursive invocations
of taintR. Recalling Figure 11 on page 21 the taint dependency path for variable x is P =
(em, ev). Note that, inversing a taint dependency path P produces a partial serialization, enforcing
the ordering of some key events, such that Def(e1) gets tainted, where e1 is the first event in P.
We use the notation σ(P) to represent the partial serialization of events corresponding to a taint
dependency path P. That is, given P = (e1, e2, e3) then σ(P) = (e3, e2, e1). Moreover, we call
TDP (GHW , x) the set of taint dependency paths for variable x with respect to GHW . The set of
paths can be obtained with a recursive exploration of markings for variable x.

Back to the definition of TaintingV ars(e) in Algorithm 4. The function computes the set tv
of variables that taint Def(e) (the variable defined by e). For every variable y ∈ tv there must
exist a taint dependency path P such that: if e is added to it as the first event, the resulting path is
valid. The definition of a valid path can be modified accordingly to capture any restrictions that
must apply to serializations of events (i.e. capture different weak memory models). For now a
path is valid if the events respect sequential consistency. For sequential consistency, the call to
isV alid(P) is equivalent to calling isConsistent(P) which we define here:

Definition 4.4 (Predicate isConsistent(P))

A taint dependency path P is sequentially consistent if the serialization of events it defines,
which is the inverse order of events, is sequentially consistent. Thus predicate isConsistent(P)
is defined as:

∀ek, em ∈ P then (k <m⇒ em ek)

Algorithm 5 presents the computation of tv. For each variable in Used(e) it obtains its taint
dependency paths and extends them by adding event e as the first event (line 12). We use the
following notation e.P to denote the concatenation of paths or of an event e with a path P. The
resulting path is checked for validity. If it is valid then variable y ∈ Used(e) can successfully taint
Def(e) and is added to tv. There is a special case where variable y belongs to STW ′ . In this case
we produce an immediate path consisting uniquely of event e and after checking it for validity we
add y to tv.

To clarify the definition of TaintingV ars(e) we apply it to the example of Figure 17 and the
corresponding illustration of its gen history in table 1. First, we apply TaintingV ars(eB2 ) during
first iteration. Since Used(e) = T which belongs to STW ′ the path to check is P = (eB2 ) which re-
spects sequential consistency. Thus, variable T is added to tv. We apply now TaintingV ars(eB1 )
during the second iteration. There is only one taint dependency path for variable w which is
P = (eA3 , eA2 , eB2 ). We add eB1 as the first element, P = eB1 .P = (eB1 , eA3 , eA2 , eB2 ). The resulting
path P is not sequentially consistent because eB2 does not precede eB1 (eB2 eB1 ).

Note that in this section we make the assumption that kills are ignored. Thus, if there exists
a sequentially consistent path P that generates a variable x, then there also exists a serialization
σiW that generates it. To produce σiW it suffices to extend the partial serialization σ(P) obtained
from P such that all remaining events in W are positioned on σiW respecting program order for
all threads. Based on the assumption the effect of these events is ignored.
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Algorithm 5 TaintingV ars(e), set of variables that produce valid taint propagation
In: e

1: tv ← ∅
2: for all y ∈ Used(e) do
3: if y ∈ STW ′ then
4: P ← e // P is a path consisting of just event e
5: if isV alid(P) then
6: tv ← y ∪ tv
7: continue;
8: end if
9: end if

10: TPy ← TDP (GHW , y)
11: for all P ∈ TPy do
12: P ← e .P // add event e as first event of P
13: if isV alid(P) then
14: tv ← y ∪ tv
15: break;
16: end if
17: end for
18: end for
Out: tv

We illustrate in Figure 18 the composition of a serialization. On the left side we illustrate the
currently analyzed window (for clarity we assume its tail epoch is empty) consisting of two blocks.
The arrows depict the taint dependency path P that taints x. On the right side, we explicit the path
P and the derived partial serialization σ(P). Below it we appose the remaining events denoted as
W ∖P. An arrow initiated from each remaining event indicates its plausible positioning such that
a sequentially consistent σiW is obtained.

eA1 : y=z;
eA2 : y=U ;
eA3 : x=y;
eA4 : x=U ;

eB1 : z=U ;

eB2 : z=T ;

eB3 : z=U ;

STW ′={ T }
Thread A Thread B

y
z

T

P = (eA3 , eA1 , eB2 )

σ(P) = ( eB2 , eA1 , eA3 )

W ∖P = ( eB1 , eB3 , eA2 , eA4 )

Figure 18: Composing a sequentially consistent serialization based on a TDP

4.2 Taking kills into account

In this section we introduce the killing/un-tainting of variables. Taking kills into account makes
taint predictions more accurate and thus reduces false positives. Though, extra care must be taken
since we do not want our analysis to miss any valid taint propagations. The killing of a variable
affects taint prediction in two ways:
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i) it prevents taint propagation between variables;

ii) it excludes variables from the summarization of the window.

Prior to detailing the two cases we give their intuition using the example of Figure 18. In the
first case, kill/untainting of a variable occurs between the tainting point of a variable and its usage
to propagate taintness to another variable. In the example event eA2 must be executed between eA1
and eA3 . With kills taken into account the given path P cannot produce a serialization such that x
is tainted. For the second case we shall focus on variable z which is explicitly tainted at event eB2 .
Note that the succeeding event eB3 untaints z. Thus on all sequentially consistent serializations of
the window variable z will eventually be untainted and thus should not be included in the taint
predictions of the window (i.e. STW ).

We approach the killing/untainting of variables by separating the two cases identified. The
killing of variables that break tainting paths is treated online during the iterative algorithm. Dually,
the killing of variables that excludes them from the summarization of the window is treated offline
i.e. after the iterative algorithm (Algorithm 2)has completed.

4.2.1 Killing a taint dependency path (TDP )

For the killing of tainting paths P we need to verify that there exists a sequentially con-
sistent partial serialization σiP consisting of all events preceding the events in P, such that
taintW(σiP , e1,Def(e1)) (see Definition 3.2) holds, where e1 is the first event in P. Figure 19
illustrates with a light background the events that must be included in σiP . In this abstract example
the path P is designated by the arrows. The check for the existence of a σiP is performed online
during the computation of TaintingV ars (see Algorithm 5) as part of the isV alid(P) predi-
cate. More precisely, predicate isV alid(P) is the conjunction of predicates isConsistent(P)
(see Definition 4.4) and noKill(P) which we define after the presentation of some key examples.

eA1
eA2
eA3
eA4
eA5

eB1
eB2
eB3
eB4
eB5

eC1
eC2
eC3
eC4
eC5

STW ′={ T }
Thread A Thread B Thread C

Figure 19: Events contained in σiP

Figure 20 illustrates two examples. In both examples the solid arrows, labeled by the variable
that propagates taintness, represent the tainting path P that causes variable x to be tainted at
events eA3 and eA4 accordingly. The dashed thick arrows designate where the killing events should
be placed such that they do not break P. In Figure 20(a) event eA2 must be positioned after eB2 such
that it kills variable z only after it has propagated its taintness to variable y. Similarly eB1 must be
placed before eA1 such that it kills z before it gets tainted. In this example the killing events can be
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serialized such that P is capable of tainting x. Dually, in Figure 20(b) the path P does not hold.
As illustrated eA2 must be place after eB1 while inversely eA3 before eB1 . Due to the program order
imposed one of the two events will inevitably break P.

eA1 : z=T ;

eA2 : z=U ;

eA3 : x=y;

eB1 : z=U ;

eB2 : y=z;

STW ′={T}
Thread A Thread B

y

z

T

(a) valid serialization exists

eA1 : z=T ;

eA2 : z=U ;

eA3 : y=U ;

eA4 : x=y;

eB1 : y=z;

STW ′={T}
Thread A Thread B

y

z

T

(b) no valid serialization exists

Figure 20: Inferring a valid serialization for a path P

To verify if there exists a serialization σiP such that the killing events do not break P we perform
some sanity checks on the composition of P with the preceding events. Here are the observations
that allow us to make these checks in a incremental way.

• all events that are not part of P are considered as kills. Figure 21 illustrates an example
where two tainting paths are present, one defined by solid and the other by dashed arrows.
The solid path is considered as invalid because event eA2 is considered a kill of variable z
witch breaks the solid path. Variable x though gets tainted by the dashed path.

eA1 : z=T ;
eA2 : z=w;
eA3 : y=z;

eB1 : w=T ;

STW ′={T}
Thread A Thread B

z

T

Figure 21: Events not belonging to P are considered kills

• events belonging to different threads can be serialized independently

Before giving the definition of predicate noKill(P) we introduce the following notations:

σa⊕σb is a sequentially consistent merge operator. Given two serializations of events σa and σb,
themselves respecting sequential consistency, it produces all plausible sequentially consis-
tent serializations containing events of σa and σb.

σ(eAk , eAm) defines a sub-sequence of events produced by a thread. The events contained are
scoped by eAk and eAm, where eAk eAm. For example, σ(eA1 , eA6 ) = (eA2 , eA3 , eA4 , eA5 )
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taintSource(P) returns the tainting source, i.e. the variable that is reached by P in STW ′ . In
the example of Figure 21 taintSource(P) = T (both for the solid and dashed paths).

Definition 4.5 (Predicate noKill(P))

Under sequential consistency, a taint dependency path P is not broken by a killed variable if
there exists a sequentially consistent serialization of events belonging in P and the events pre-
ceding them such that, between two successive events ei, ei+1 of P there is no event ej such that
Def(ej) = Def(ei).

∀ek ∈ P = (e1, ..., ek, ..., em, ..., en) we distinct the following cases:

• ∃m > k such that em ek ∧ ∄eq such that m > q > k ∧ em eq

– if m = k + 1 then (e.g. Figure 21 eA3 ,eA1 )

∀ej s.t. em ej ek ⇒ Def(ej) ≠ Def(em)

– else (e.g. Figure 20(b) eA4 ,. . . ,eA1 )

∃σ = (. . . , ei, . . . , ej , . . . , ei+1, . . . ) ∈ σ(P)⊕ σ(em, ek) s.t.

∀ei, ei+1 ∈ σ(P), ej ∈ σ(em, ek) ⇒ Def(ej) ≠ Def(ei)

• ∄m > k such that em ek

– if k = n then (e.g. Figure 20(b) eA1 )

∀ej such that ej ek ⇒ Def(ej) ≠ taintSource(P)

– else (we introduce a dummy event) (e.g. Figure 20(b) eB2 )

P ′ = P.ek′ where Def(ek′) = taintSource(P)∧
∀ej ∈W such that Thr(ej) = Thr(ek) ⇒ ek′ ej

Now we can apply the first case where:

∃m > k such that em ek ∧ ∄eq such that em eq

(note that m > k + 1)

To simplify the definition of predicate noKill(P) in the case were m > k + 1 we make use of
the merge operator ⊕ implying that all sequentially consistent serializations consisting of events in
σ(P) and σ(em, ek) are computed. This may be misleading since we stated earlier that we verify
the existence of σiP incrementally. We provide here the checks that verify that:

∃σ = (. . . , ei, . . . , ej , . . . , ei+1, . . . ) ∈ σ(P)⊕ σ(em, ek) s.t.

∀ei, ei+1 ∈ σ(P), ej ∈ σ(em, ek) ⇒ Def(ej) ≠ Def(ei)

Verimag Research Report no TR-2012-08 33/63



Emmanuel Sifakis, Laurent Mounier Predictive taint analysis

Definition 4.6 (Positioning kill events)

Given a taint dependency path P = (e1, . . . , ek, . . . , em, . . . , en) where em ek and m > k + 1.
We want to check that events in σ(em, ek) can be ordered such that they respect sequential con-
sistency and do not kill a variable between the point it is defined and used to propagate taintness.
That is between events ei, ei+1 in σ(P) where k ≤ i <m. To respect program order, for an event ej
(em ej ek) that kills a variable of σ(P) all events preceding should be able to be positioned
before it and dually all succeeding events after it.

Given P = (e1, . . . , ek, . . . , em, . . . , en) where m > k + 1 and em ek:

• ∀ej s.t. em ej ek ⇒ Def(ej) ∩ (⋃i∈[k+1,m]Def(ei)) ≠ ∅

⋁

• ∀ej , i ∈ [k + 1,m] s.t. em ej ek ∧ Def(ej) =Def(ei)

then:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∀ej′ s.t. em ej′ ej ⇒ ∃i′ ∈ [i + 1,m] s.t. Def(ei′) ≠Def(ej′)
⋁

∀ej′ s.t. ej ej′ ek ⇒ ∃i′ ∈ [k + 1, i − 1] s.t. Def(ei′) ≠Def(ej′)

To conclude taking into account kills in taint propagation we remind that the predicate
noKill(P) is used in conjunction with isConsistent(P) in the call of isV alid(P) at Algo-
rithm 5. Thus, the gen history of the current window (GHW ) is precisely updated.

4.2.2 Excluding variables from window summarization

As mentioned earlier the killing of variables such that they are excluded from the summarization
of a window are treated offline. After the iterations of Algorithm 2 have completed we hold STW
which over-approximates the set of tainted variables down to W and GHW which contains the
markings for generated variables. For each marking m in GHW the following is true:

m = (ek, V ) ∈ GHW ⇔ ∃ σiP s.t. taintW(σiP , ek,Def(ek))

We remind that, a variable x is included in the summarization of the window if there exists
a serialization σiW of all events in W such that taintW(σiW , last(σiW ), x) holds. Dually, to
exclude a variable x from the summarization then on all serializations σiW the last assignment to
x should be with an untainted value. Since we do not construct all serializations, but instead use
the iterative algorithm which guarantees us to identify all propagations, we cannot precisely (at
least not cost-effectively) identify variables killed in W . Thus, we under-approximate the killing
of variables by identify the following cases for which we are certain variables are killed in W :

• x is defined and never generated

∃ek ∈W s.t. Def(ek) = x ∧ GHW (x) = ∅
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• all threads that generate x successively kill it

∀ek ∈ Events(GHW (x)) ⇒ ∃em ∈ W s.t. ek em ∧ Def(em) = x ∧
em ∉ Events(GHW (x))

The first case is straight forward. Variable x is defined in W but no marking exists for it in
GHW . Thus, all events in W that define it assign an untainted value. We conclude that on all
serializations σiW x is killed and thus can be removed from STW . Figure 22 illustrates an abstract
example where only the code of events that define x is given explicitly. We assume that there does
not exist any valid tainting path such that variable d is tainted at eC1 . Thus, on all serializations
σiW variable x is lastly assigned an un-tainted value. As illustrated x is removed from STW .

eA1
eA2 : x=U
eA3
eA4

eA5

eB1
eB2

eB3
eB4
eB5

eC1 : x=d

eC2
eC3

STW ′={ T , x }

STW={ T }

Thread A Thread B Thread C

Figure 22: Kill in W when not generated

In the second case variable x is generated. Thus, there exists at least a partial serialization σiP
for which x is tainted at event ek. To ensure that finally x is assigned an untainted value, on all
plausible serializations, it must be killed by an event em of the same thread that succeeds ek i.e.
ek em. Figure 23(a) illustrates an abstract example where all threads that taint x successively kill
it. We can note that program order guarantees that eventually the last assignement to x is always
an untainted value. Hence, x is safely excluded from STW . Dually in Figure 23(b) thread C
generates x at event eC1 and there does not exist any succeeding event in C that kills x. Obviously
for the serialization σiW = (. . . , eC2 , eC3 , eC4 , eC5 ) x ens up tainted.

To conclude removing killed variables from the summarization we provide Algorithm 6 which
updates Algorithm 2 by adding the offline processing that refines the summarization of the cur-
rently analyzed window. We also give in an algorithmic-like form the removing of killed variables
in Algorithm 7.

4.3 Effects of sliding window

We mentioned earlier in section 3.3 that there are two aspects in our sliding window-based anal-
ysis: (i) predicting explicit taint propagations within a window and (ii) reasoning correctly about
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eA1
eA2 : x=y
eA3

eA4 : x=U
eA5

eB1 : x=T
eB2
eB3 : x=U

eB4
eB5

eC1
eC2

eC3

eC4
eC5

STW ′={ T , x, y }

STW={ T , y }

Thread A Thread B Thread C

(a) Kill after generating

eA1
eA2 : x=T
eA3

eA4 : x=U
eA5

eB1 : x=T
eB2
eB3 : x=U

eB4
eB5

eC1
eC2 : x=T

eC3

eC4
eC5

STW ′={ T , x, y }

STW={ T , x, y }

Thread A Thread B Thread C

(b) Generating without killing

Figure 23: All threads generating x must eventually kill it

Algorithm 6 Vertical processing V ertical(W , STW ′)
In: W = {lb, lt}, STW ′

1: ST ← STW ′

2: repeat
3: ST ←Horizontal(lb, ST)
4: ST ←Horizontal(lt, ST)
5: until ( ST unmodified )
6: STW ←WindowKills(ST,GHW )

Out: STW

the overlapping of interleavings caused by sliding windows.We develop here how the sliding of
windows affects our predictions, and what precautions can be taken such that our predictions re-
main an over-approximation of taintness, but also increase the confidence on the soundness of the
predictions.

4.3.1 Killing variables in tail causes under-approximates taint propagation

We focus on the killing of variables within a window. The definition we gave before is correct
when restricted to a window. When sliding windows, it may cause under-approximation of taint
predictions. Figure 24 illustrates such an example. We note that, in window W ′ variable x is
killed since on all serializations σiW ′ it is finally assigned a non-tainted value. Though, the killing
is premature because it eliminates the propagation of taintness to variable z. The propagation is
feasible under our assumptions since eB1 can be executed prior the untainting of x. The arrow
shows the interleaving under which taintness is propagated in W .

The example of Figure 24 shows that kills that occur in the tail epoch of a window may hide
valid taint propagations on the consecutive window. To overcome these issues, we shall only
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Algorithm 7 WindowKills(ST,GHW )
In: ST,GHW

1: STW ← ST
2: for all x ∈ ST do
3: if GHW (x) = ∅ ∧ ∃ek ∈W s.t. Def(ek) = x then
4: STW ← STW ∖ {x}
5: else
6: no kill exists ← false
7: for all ek ∈ Events(GHW (x)) do
8: if ∄em ∈W s.t. Def(em) = x ∧ ek em ∧ em ∉ Events(GHW (x)) then
9: no kill exists ← true

10: break;
11: end if
12: end for
13: if no kill exists = false then
14: STW ← STW ∖ {x}
15: end if
16: end if
17: end for
Out: STW

W ′

W

eA1 : x=y

eA2 : x=U

eB1 : z=x

STW ′′ = {T,x,y}

STW ′ = {T,y}

lh

lb

lt

Thread A Thread B

Figure 24: Delay killing in tail

exclude a variable from the summarization if it is killed in the body of a window.

4.3.2 Incompatible TDP s over-approximate taint propagation

Windows consisting of two epochs allow us to reason only on valid interleavings, based on our
initial assumptions, but has the disadvantage of predicting possibly incompatible propagations.
For two consecutive windows W ′, W the interleavings of events in the common epoch lb with
lhin W ′ and lt in W are computed independently. Thus, it is possible that the serializations that
propagate taintness in W ′ and W are conflicting.

Figure 25 illustrates an example of incompatible TDP s. In the first window W ′ = {lh, lb}
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W ′

W

eA1 : d=T ;

eA2 : q=p;

eA3 : c=d;

eA4 : y=q;

eB1 : x=b;

eB2 : x=d;

eB3 : p=x;

eC1 : b=c;

STW ′′ = { T }

STW ′ = { T,d,c,b,x }

STW = { T,d,c,b,x,p,q,y }

lh

lb

lt

Thread A Thread B Thread C

Figure 25: Propagation through incompatible TDP s

variable x is tainted through P1 = (eB1 , eC1 , eA3 , eA1 ) traced with a solid line. The summary STW ′

correctly contains x as there exists a serialization which taints x. Sliding to the next window
W = {lb, lt} we identify with a dashed line P2 = (eA4 , eA2 , eB3 ) which taints variable y using x.
Taint dependency path P2, although valid in W , is not compatible with the one that generated x
(which is the tainting source for variable y). Namely, the two TDP s cannot be merged and hence
they do not provide a concrete serialization demonstrating how y gets tainted.

Merging TDP s computed in different windows is not always feasible. However, TDP s indi-
cating why a variable is tainted within a window are not unique (although finding a single path is
sufficient in our algorithm). For instance, a closer look at Figure 25 shows a second P3 = (eB2 , eA1 )
(with dash-dotted path) for variable x which is compatible with P2.

The incompatibility of TDP s over-approximates our predictions. To reduce the number of
false positives we can classify the tainted variables into two categories strong and weak. Strongly
tainted variables are those for which taintness propagation occurred through mergeable tainting
paths. Dually, weakly tainted variables are those for which non-mergeable tainting paths may
exist. For the strongly tainted variables a witness execution can be constructed.

We provide hereafter two heuristics that can be used to identify strongly tainted variables:

1. If a tainting path P contains uniquely events from the window’s body and its tainting source
variable is strongly tainted, then it defines a strongly tainted variable as well. Since P
contains only instructions in body epoch it has no conflicts with paths in the succeeding
window.
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2. If a variable x is tainted in two consecutive epochs and (i) there is no kill of this variable
in the common epoch and (ii) the variable that made it tainted in the first epoch is strongly
tainted, then x is strongly tainted.

4.4 Respecting synchronization primitives

Synchronization mechanisms are widely used to impose an ordering between threads execution
and ensure exclusive access to shared resources. We focus on the usage of mutexes for the syn-
chronization of critical sections and take advantage of their semantics to infer more accurate taint
dependency paths in our analysis. That is, we add extra restrictions to the isV alid(P) function.

We remind a mutex is a binary variable with states locked and unlocked. Critical sections are
portions of code that should be executed atomically. To synchronize access to critical sections all
threads need to acquire the necessary mutexes prior to entering their critical section, and release
them once its execution is completed. A thread acquires/locks a mutex m by calling a blocking
function lock(m) and releases/unlocks it by calling unlock(m). A successful call to lock(m)
allows the thread to enter the critical section and prevents other threads from entering their critical
section protected by the same mutex m until it is released (unlock(m)) by the thread that initially
obtained it. A mutex acquisition always has a matching mutex release. As mentioned earlier
in section 3.1 synchronization events are also logged. We define hereafter a protection which
is a triplet (m,el, eu) where m is the mutex used to synchronize threads, el is the logged event
corresponding to the locking of the mutex (lock(m)) while eu is the event corresponding to the
matching release of the mutex (unlock(m)). The locking event always precedes the unlocking
event, thus el eu. Finally, we will use a dot notation in the sequel to refer to the elements of a
protection. Thus, given a protection p = (q, ek, em) then p.m = q, p.el = ek and p.eu = em.

A critical section may be synchronized using several mutexes. Moreover, the set of mutexes
protecting events of a critical section may not be the same for all events. We call context the set of
protections surrounding an event and define the function cont(e) which returns the context for an
arbitrary event e. More precisely:

cont(e) = {p ∣ p.el e ∧ e p.eu}

We provide hereafter a small example to clarify the notion of protection and context we just
introduced. Listing 3 presents an excerpt of a log file with events produced by thread A. On the
right side, we identify the two protections present in Listing 3 namely pa, pb matched to mutexes
ma and mb respectively. We also provide the context for events eA3 and eA5 .

eA1 : lock(ma)
eA2 : lock(mb)
eA3 : x = y;

eA4 : unlock(mb)
eA5 : w = z;

eA6 : unlock(ma)
Listing 3: Critical section

pa = (ma, e
A
1 , e

A
6 )

pb = (mb, e
A
2 , e

A
4 )

cont(eA3 ) = { pa, pb }
cont(eA5 ) = { pa }
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Moreover, we introduce two operators for contexts: ⊓which computes the set of mutexes shared
between two contexts, and 0 which computes the set of mutexes used in same critical sections
and shared between two contexts. Finally, we define the function Mutex(c) which gives the set
of mutexes for context c.

c1⊓ c2 = {m′ ∣ ∃(p ∈ c1 , q ∈ c2) such that p.m = q.m =m′ }

c10 c2 = {m′ ∣ ∃(p ∈ c1 , q ∈ c2) such that p = q ∧ m′ = p.m}
We note that the equality for two protections is defined as a complete match of all elements
of the protection triplet:

p = q ⇒ p.m = q.m ∧ p.el = q.el ∧ p.eu = q.eu

Mutex(c1) = ⋃
p ∈ c1

p.m

4.5 Inferring order from mutexes

By definition of mutual exclusion critical sections protected by the same mutexes never execute
concurrently. Thus, in the produced log files timestamps of synchronization events should be in
accordance with the order they were executed. While the timestamps allow us to infer the exact
ordering, we try to predict different serializations of entire critical sections if possible.

Figure 26 illustrates how the execution of two critical sections can be interleaved. In this in-
stance we can clearly identify that the critical sections were executed in the order A,B. This
ordering implies that only variable y should end up tainted. With the current slicing our analysis
assumes all events are interleavable. Although the analysis should not interleave events belonging
to a critical section (i.e. eA2 , eA3 , eB2 , eB3 ), it can interleave the lock/unlock events resulting into
considering a different synchronization where the ordering of critical sections is B,A. As illus-
trated in the summary STW our analysis predicts both serializations of the critical sections and
thus both x and y are considered tainted.

In the example of Figure 26 the execution of critical sections could be interleaved. This is not
always the case. For critical sections to be interleavable by the analysis they should appear within
two consecutive epochs, i.e. be bounded in a window. If this is not the case then a fixed ordering
between events in the critical section is imposed and it should be respected by the inferred taint
dependency paths. For that reason we introduce the binary operator pa ⋖ pb which checks if events
protected by protection pa precede those protected by pb. The operator is defined as follows:

pa ⋖ pb ⇒ (pa.m = pb.m) ⋀ ( Epoch(pa.el) < Epoch(pb.el) − 1 ⋁
Epoch(pa.el) < Epoch(pb.eu) − 1 )

Figure 27 illustrates the conditions for defining precedence based on the protections. The
darkened areas are events in critical sections protected by the same mutex (let it be m) and the
events surrounding it are the lock and unlock events. Each critical section defines a protection:
pa = (m,eAk , eAm), pb = (m,eBk , eBm), pc = (m,eCk , eCm). We note that the lock release event (eCm)
for critical section in thread C does not appear in the figure, but it definitively exists in a subse-
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STW ′={ T }

STW= { T , x, y }

eA1 : lock(m)
eA2 : y= U;
eA3 : x= T;
eA4 : unlock(m) eB1 : lock(m)

eB2 : x= U;

eB3 : y= T;
eB4 : unlock(m)

lb

lt

A B

tim
e

Figure 26: Interleaving critical sections

quent epoch. The relation pa ⋖ pc obviously holds because the acquisitions of the mutex are not
interleavable. Contrarily though, the acquisitions of the mutex are interleavable between critical
sections of thread A and B. Despite that, the relation pa ⋖ pb also holds because the acquisition
event of thread A (eAk ) cannot interleave with the release of mutex by thread B (eBm) which is
necessary for swapping the execution order of the critical sections.

lh

lb

lt

A B C

eAk

eAm
eBk

eBm
eCk

Figure 27: Ordering critical sections using mutexes

The precedence operator is also used to compare contexts c1 ⋖ c2. For a context to precede
another we need to identify precedence between any two protections belonging to the contexts,
that is:

c1 ⋖ c2 ⇒ ∃ (pa ∈ c1 , pb ∈ c2 ) such that pa ⋖ pb
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4.6 Enforcing explicit mutex ordering in taint dependency paths

When the critical sections cannot be interleaved, then their execution order must be respected
by all inferred taint dependency paths. That for, we enforce the consistency check function
(isConsistent()) by adding an extra restriction that enforces the precedence of events that con-
stitute a taint dependency path based on their contexts:

Definition 4.7 (Predicate isConsistent(P) )

Ensures interleaving assumptions and explicit ordering imposed by critical sections are re-
spected:

∀ek, em ∈ P then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k <m⇒ em ek

⋀
cont(em) ≠ ∅ ∧ cont(ek) ≠ ∅ ⇒ cont(em) ⋖ cont(ek)

4.7 Enforcing implicit mutex ordering in taint dependency paths

As mentioned earlier critical sections can be re-ordered by the analysis when they reside within
the same window. The order in which they are executed is defined by the taint paths containing
events belonging to those critical sections. Once an order is set it should be respected throughout
the path.

Figure 28 illustrates two instances of the same window each depicting a different taint depen-
dency path imposing a different ordering of the critical sections. On Figure 28(a) the tainting path
P1 = ( eAm, eBm, eCm, eAk ) implies the execution order C,B of the critical sections since eCm precedes
eBm. Dually, the tainting path P2 = ( eCk , eBk , eAn , eAk ) in Figure 28(b) implies the execution order
B,C of critical sections.

A B C

STW ′ = { T }

eAk : w=T;

eAm: x=y;
eAn : g=w;

eBk : f=g;
eBm: y=z;

eCk : e=f;
eCm: z=w;

(a) Path defining C,B order

A B C

STW ′ = { T }

eAk : w=T;

eAm: x=y;
eAn : g=w;

eBk : f=g;
eBm: y=z;

eCk : e=f;
eCm: z=w;

(b) Path defining B,C order

Figure 28: Taint paths define implicitly order of critical sections

The examples provided above illustrate how a taint dependency path imposes the ordering of
critical sections by visiting events inside them. Once the execution order is set between two (or
more) critical sections we need to ensure that the path (i) is not bouncing between two critical
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sections, protected by the same mutexes and (ii) the serialization of events respects the order
imposed by the critical sections.

Figure 29(a) illustrates a path bouncing between two critical sections. That is, there exist two
events in the tainting path that belong to the same critical section (eBm, eBk ) and inbetween there
exists an event that belongs to a mutually excluded critical section (eCm). In this example, initially
events eBm, eCm connected with a dotted edge define the order C,B between the critical sections.
Subsequently, events eCm, eBk linked with a dashed edge define the inverse ordering of critical
sections (B,C). Thus the tainting path is no longer valid. To prevent such paths from propagating
taintness we introduce a new path restriction noRe − entry(P):

Definition 4.8 (Predicate noRe − entry(P) )

Ensures implicit ordering of critical sections is respected throughout the path:

∀ek, en ∈ P such that k < n then

(M = cont(ek)0 cont(en) ≠ ∅)⇒ ∄em such that Thr(em) ≠ Thr(ek) ∧ k <m < n ∧
Mutex(cont(em))⋂M ≠ ∅

A B C

STW ′ = { T }

eAk : x=y;

eBk : f=T;

eBm: y=z;
eCk : w=f;

eCm: z=w;

eCn : z=U;

(a) Invalid path, redifing order of critical sections

A B C

STW ′ = { T }

eAk : x=y;

eBk : f=T;

eBm: y=z;
eCk : w=f;

eCm: z=w;

eCn : z=U;

(b) Serializing events respecting order of critical sec-
tions

Figure 29: Implicit precedence of critical sections

The second thing we need to take care of when considering the implicit ordering of critical
sections, is to respect entirely the serialization of all events. Figure 29(b) has slightly modified the
example of Figure 29(a) such that the bouncing between critical sections is avoided, but illustrates
the problem of killing the linking variable (z in our example) on the serialization of the critical
sections. Again the dotted edge connecting events eBm, eCm specifies the ordering of the critical
sections to be C,B. Because the events belonging to different critical sections are explicitly con-
nected (only one linking variable is used) all events on dashed path must be taken into account.
More precisely we have to check there is no event that kills the linking variable.
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To filter out these incorrect paths we add one more check called atomicKill(P). It checks if
there does not exist any kill (i.e. redefinition) of linking variable between two subsequent events
of the path ek, ek+1 that are executed by different threads and protected by a common mutex. The
definition of atomicKill(P) we provide takes into account the case of events protected by sets of
mutexes (contexts). The events that should be checked are those preceding event ek and succeed
ek+1 and for which the set of protections is common for ek and ek+1.

Definition 4.9 (Predicate atomicKill(P) )

Ensures the linking variable between events belonging to separate threads and protected by a
common set of mutexes is not killed by an event belonging in their serialization.

∀ek, ek+1 ∈ P such that (M = cont(ek)⊓ cont(ek+1) ≠ ∅) then:

∄em such that em ek ⋀ (cont(em)0 cont(ek))⋂M ≠ ∅ ⋀ Def(em) =Def(ek+1)

∄em such that ek+1 em ⋀ (cont(em)0 cont(ek+1))⋂M ≠ ∅ ⋀ Def(em) =Def(ek+1)

4.8 Recapitulation

In this section we addressed the problem of taint analysis for multithreaded programs, a represen-
tative information flow analysis widely used in vulnerability detection. We proposed an offline
sliding window-based taint analysis which allows the prediction of taint propagations that could
have occurred under valid serializations of the executed multithreaded program. We give hereafter
an overview of our analysis and the refinements we did on taint prediction.

Online phase:

• Unrestricted multithreaded program execution: the program is executed without im-
posing any scheduling restrictions (i.e. it is not serialized) and memory accesses to
both shared and thread local variables are logged.

Offline phase:

• Slicing of log files into epochs: such that events that were executed within a bounded
time interval belong to the same or adjacent epochs.

• Sliding window-based analysis:

– use a window of two consecutive epochs;

– apply taint prediction on the window and create a summary that contains plausible
taint propagations down to the analyzed window.
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• Taint prediction: we use an iterative algorithm which allows predicting taintness prop-
agation without enumerating all serializations of events in the analyzed window. The
iterative algorithm is based on the equivalence between computing taint propagation
and solving disjunctive boolean equation systems. The serializations inferred by the
predictive algorithm can account for the memory model. We applied it to sequential
consistency and made the following refinements:

– safely untainting variables;

– taking lock synchronizations into account.

Comparison to existing work

Existing works on dynamic information flow tracking of multithreaded programs force them to
execute sequentially. This allows to apply typical dynamic information flow analyses as in the
case of sequential programs. This somehow naive approach penalizes execution time of analyzed
application but also eliminates the effects of weak memory models and simultaneous memory
accesses. Moreover the analysis results are restricted to the serialized execution.

To the best of our knowledge the only works addressing the problem of dynamic information
flow for parallel executions of multithreaded programs are those of Ganai et al. [GLG12] and
Goodstein et al. [GVC+10]. We introduced these works in section 2.3.2. Having fully presented
our work allows a closer comparison.

The work of [GLG12] is closer to ours since (i) it does not need specialized hardware and (ii) has
an offline prediction phase for taint propagation between threads. The goal of their offline predic-
tion phase is slightly different from ours since they try to predict the effect of different operating
system schedules while we target mostly into predicting the effect for plausible serializations of
the executed schedule.

A first point of comparison is on the runtime execution and information logged. In [GLG12]
they perform thread local dynamic information flow at execution time and only log information
on accesses to shared variables. When logging a write to a shared variable they also include the
locally computed taintness such that it can be used for offline propagation. This choice leads
to more concise logs but less precise predictions since not all propagations can be re-calculated
offline.

The second point of comparison is the prediction algorithm. As mentioned above their logs are
less precise thus taint propagations cannot be computed offline. Instead, they simply propagate
taintness if there exists a write of a shared variable with a tainted value and a read of this variable
by different threads. The order in which they were logged does not matter. Finally, they do not
take untainting into account since they assume all interleaving of events to be plausible, at least
in the implementation of DTAMparallel. In the implementation of DTAMhybrid they refine the
propagation by taking into account happens before relations.

Regarding the work of Goodstein et al. [GVC+10] it is based on a specialized architecture
and performs online prediction for usage in the context of lifeguards. The specialized architecture
produces synchronization barriers among the cores. This architectural support is required to switch
between program execution and program analysis. In addition it forms bounded blocks of code
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executed in parallel. This corresponds to the notion of epochs we obtain by slicing offline the logs
obtained by a parallel execution.

Their prediction mechanism is similar to ours 1 in that it uses a sliding window (consisting
of three epochs instead of two in our case) and constructs summaries to capture the effect of
inferred serializations. Their prediction methodology focuses on implementing classic dataflow
analyses (e.g. available expressions) and thus consists into analyzing blocks independently and
propagating necessary information between blocks. Concerning taint analysis, they state it is not
straight forward to implement in their framework and give some elements on how to proceed. They
provide, as we do, a taint prediction for a completely relaxed memory model and for sequential
consistency. They also account for untainting to reduce false positives. Comparing the accuracy
in taint prediction we have the benefit of taking synchronization mechanisms into account which
they do not.

1our work is inspired from [GVC+10]
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5 Implementation and experimentation

In this section we present the tool implemented and experimentations conducted to validate the
theory presented in sections 3 and 4.

5.1 Proof of concept tool

As a proof-of-concept, we implemented a tool chain for our offline taint prediction analysis. The
tool chain, presented in Figure 30, is split into an instrumentation phase (left side of figure) and
execution and analysis (on the right side). First, the source files are instrumented to produce the
log files. Next, the program is executed and log files are generated. The log files are sliced into
arbitrarily sized epochs and taint analysis is performed as described in section 4.

taint
analysis

t3.logt2.logt1.log

Window

results

executesource.c

instrument

source instr.c

Figure 30: Abstract analysis framework

5.1.1 Source code instrumentation

The code instrumentation is implemented using the CETUS framework [DBM+09]. It is a C
source-to-source compiler written in Java which provides some interfaces for analyzing and trans-
forming the parsed C code. The instrumentation process consists in adding explicit logging in-
structions which record time-stamped information on used/defined variables of assignments. Spe-
cial attention is given to keep track of variables passed as arguments into function calls and return
values. Function calls related to mutex locking and un-locking are treated specially. For this proof
of concept implementation not the entire ANSI C language can be instrumented. The limitations
are purely syntactical and do not limit the analysis framework.

Each thread is logged in a dedicated file, so there is no need to synchronize logging instructions
and thus we do not perturb much the applications execution. The time-stamping of log entries is
in micro-seconds, relative to the beginning of the programs execution. The information carried by
a log entry depends on the underlying instruction. In general it contains the set of used variables
(actually their addresses on memory) and the defined variable (if it exists). Hereafter we sketch
the instrumentation of some basic instruction types:

- Assignments: the defined and used variables are clearly stated. In the right hand side of assign-
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ments there should be no function calls. For instance, the instrumentation of the assignment
x=y+z; results into:

x=y+z;

fprintf(LFP,"A:%d #D %p #U %p | %p ", GET TIME(),&x,&y,&z);

At execution time the log entry produced would look like that:

A:45389 #D 0x43564 #U 0x43428 | 0x43642

Type of instruction
(A for assignment)

timestamp

Defined variable Used variables

- Functions: passing arguments by value hides the dependency between the variables affected
by the argument and the variable the function was called with. To overcome this problem we
augment each function by adding a void* argument per variable in the argument list. Moreover
inside the function we add a dummy assignment that will link the variable given as argument with
the variable used inside the functions code during the offline analysis. Here is an example:

void f(int a){
...

void f(int a,void* aPT){
fprintf(LFP,"A:%d #D %p #U %p ", GET TIME(),&a,aPT);

...

The logging of function calls stores the time they were called, the function name and a set of
variables that were passed as arguments. The only function that is time-stamped differently is
pthread mutex lock(..) which timestamps the return of the function. This corresponds
to the time the lock was obtained.

5.1.2 Log processing

Analyzing the log-files is divided into two phases. First, a slicer is used to set explicit epoch
boundaries in the log-files. As mentioned in section 3.2 we use a time-based slicing. Second, the
sliced log files are parsed and analyzed.

The parsing and main skeleton of the analysis are generic. They have been implemented in
Java and are easily extendable. The parsing consists in reading from the log files time-stamped
sets of used and defined variables. We read an epoch at time and feed the sliding window anal-
ysis with it. This implies that the log files do not need to be read entirely in memory to perform
the analysis. The skeleton of the analysis (i.e. the Vertical and Horizontal passes) have been in-
terfaced such that other analyses that can benefit from that structure can be easily implemented.
Notably, one would implement a new analysis by re-defining: (i) what information is held in
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the summary of an epoch (ii) how the analyzed property is propagated and (iii) how it is sum-
marized.Finally, the framework also provides a lock-set analysis which identifies calls to library
functions pthread mutex lock and pthread mutex unlock and encodes them as pro-
tections presented in section 4.4. This step should be performed a priori on the whole log files,
since bounds of critical section may spawn over several windows.

At this time, the taint analyzer implementation makes no distinction between strongly and
weakly tainted variables and can compute three types of taint propagation:

relaxed all interleaving of events in the window are accepted and kills are not taken into account;

sequential only sequentially consistent propagations are taken into account and variables killed
are excluded from the summarization;

synchronized extends sequential propagation such that limitations introduced by locks are taken
into account.

5.1.3 Visualizing taint propagations

Our tool is also capable of producing a representation of taint propagations in analyzed windows.
We provide hereafter the visualization produced, during the analysis of a window with the three
different types of analysis. The analysis has been slightly modified into that we produced all
tainting paths that correspond to event (18,111,5) in block (18,111). Each path is illustrated
with a different color. Figure 31 illustrates the paths under relaxed analysis, Figure 32 under
sequential and Figure 33 under synchronized.
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Figure 31: Tainting paths for (18,111,5) under relaxed analysis
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Figure 32: Tainting paths for (18,111,5) under sequential analysis

Verimag Research Report no TR-2012-08 51/63



Emmanuel Sifakis, Laurent Mounier Predictive taint analysis

Figure 33: Tainting paths for (18,111,5) under synchronization analysis
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5.2 Some experimental results

To validate the framework and the analysis mechanics we initially used some toy examples (trace-
able manually), but rich enough to produce interesting behaviors especially regarding the epoch
size. We illustrate those findings hereafter. Next,we applied the analysis on a bigger handcrafted
example. In both cases, for simplicity the shared variables used are integers. The printing of a
tainted variable is the malicious behavior we want to detect. The experimentations we carried out
demonstrate: (i) the effect of epoch size on the accuracy of the analysis (ii) the reduction of false
positives due to mutex support .

Thread A
1 n=rand();

2 ack(n);

3 X=TAINT;

Thread B
1 n=rand();

2 ack(n);

3 X=0;

Thread C
1 n=rand();

2 ack(n);

3 print(X);

The example above illustrates the code to be executed by distinctive threads. The function ack
called is an Ackermann computation (time consuming) which adds non determinism in the order
in which each thread executes its third instruction. Hereafter is the log produced by a parallel
execution of the above program. During this execution the physical address corresponding to X

was &X=0x8b4 and the printed value was 0 (i.e. X was untainted).

thread A.log

A: 615 #D 0xb77 #U rand

F: 780 #F ack #U 0xb77

A: 858 #D 0x8b4 #U 0x84f

thread B.log

A: 814 #D 0xb6f #U rand

F: 878 #F ack #U 0xb6f

A: 1108 #D 0x8b4 #U

thread C.log

A: 677 #D 0x24f #U rand

F: 840 #F ack #U 0x24f

F: 1752 #F print #U 0x8b4

As we can observe in the log, Thread A taints shared variable X at time 858 (micro-seconds since
the program started). Further in the execution at time 1108 Thread B un-taints X and consequently
Thread C prints it at time 1752.

Figure 34 illustrates analyzing the log using two periodic partitionings. The solid and dashed
horizontal lines denote the limit of epochs. Above each line/epoch we note the set of tainted
variables observed by the analysis when entering that epoch. Using the left partitioning (bigger
epoch size) an error is detected, since instruction print(X) of Thread C can precede the un-
taint instruction of Thread B. On the contrary with partitioning used on right side (small epochs
size) the printing is considered safe as based on the interleaving assumptions it cannot precede the
un-tainting.
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{X}

{∅}

{∅}

Figure 34: Cutting of epochs

The more complex hand-crafted example consists of a shared array of five elements which is
randomly accessed by five threads. Each access is either: (i) an update with a random value (ii) an
explicit taint (iii) an untaint operation followed by a print (iv) an update using another element of
the array (to create longer taint dependency paths).Two variations of the application were tested.
In the first one accesses are not synchronized and thus data races are likely to arise resulting into
printing tainted variables. In the second, all accesses are protected using a mutex per element of
the array. In this case, no errors occur since un-tainting and printing of an element are atomic. All
executions are performed on a machine with 4 cores.

Simply executing the version without synchronization reveals some errors showing that tainted
values can be printed. As expected, applying our analysis allows to find more errors. Table 2
presents how the size of the epoch chosen for the analysis affects the number of errors found. The
second column of the table displays the number of errors observed at execution time per array
element. The last columns display the number of errors detected by our analysis depending on
the epoch size. As we can note, increasing this size increases the number of errors found by the
analysis. Conversely, reducing too much the epoch size leads to false negatives, i.e., real errors
are missed for epochs of size 1 µseconds (the number of errors detected by our analysis is smaller
than the ones detected at runtime).

Node Runtime errors
Epoch size in µ sec

100 50 20 10 1

0 1 8 6 2 2 0

1 2 11 7 4 2 1

2 0 9 3 0 0 0

3 1 5 3 1 1 1

4 0 5 1 0 0 0

Table 2: Errors found vs epoch size

100 50 20 10
locks ignored 25 12 2 0

locks into account 4 0 0 0

Table 3: Using lock information in the analysis
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In the example with mutex synchronization no errors occur at runtime. Table 3 displays the
number of errors detected by our analysis depending on the epoch size. Without taking mutex
into account plenty of errors are found. When mutex synchronization restrictions are applied by
the analysis the number of reported errors reduces but still they correspond to false positives, that
can be eliminated by considering the diagnostics produced by the analysis. On these examples:
(i) executing the instrumented version of the application introduces an overhead of about 50%
(ii) log file analysis takes less than 1 second on a Intel i3 CPU @2.4GHz with 3GB of RAM.
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6 Conclusion and perspectives

In this work we focused on taint analysis, a representative information flow analysis, and proposed
an efficient algorithm for offline prediction of taintness. During the online phase that precedes, the
multithreaded program is executed without any scheduling restrictions (i.e. it is not serialized)
and a log of all memory accesses is produced. Our prediction technique consists into breaking
the logs into epochs which are then processed using a sliding window. Taintness is predicted
locally for every window and summarized. The summary produced is used as input to the next
window. The prediction algorithm uses an iterative method to infer taint propagations without
enumerating and analyzing all plausible serializations of events in the window. We presented in
details how to predict taint propagations under sequential consistency. Moreover, we included
refinements to taint prediction such that untainted variables are correctly excluded from window
summarizations. We further refined taint predictions by taking into account the semantics of locks.
Finally, we implemented a proof of concept tool.

6.1 Perspectives for predictive information flow analysis

Identification of information flows is a central issue in all vulnerability detection tools. Existing
tools either do not deal with multithreaded programs or they force them to execute sequentially.
Our prediction algorithm could be incorporated in such a tool to allow extend the verdicts to a set
of plausible serializations for a given parallel execution. In the context of testing it could be used
in combination with a fuzzer to increase coverage and guide tests towards interesting executions.
Finally, as observed by the experimentations, epoch slicing strongly affects predictions. Heuristics
could be proposed for defining the minimum epoch size, or to indicate interesting events to use as
slicing points.

The tool developed can be considerably improved. First, the current implementation of the
source to source transformation could be extended such that more complex C programs can be
processed. Also a more interactive interface for the analysis of windows would make back tracking
of information flows more comfortable. Notably we could implement the distinction between
strong and weak taintness. This would allow to exhibit a concrete trace, spanning over several
windows, that propagates taintness to variables designated as strong.

Finally, a promising direction would be to use some dynamic binary instrumentation framework
for generating the log files. This would unleash the restrictions on input programs. It would also
allow producing much finer logs, since we would log events at the assembly level and not the
source code level as we do now. At this level of logging it makes sense to consider other memory
consistency models such as TSO.
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A Boolean equation systems

Hereafter we provide some background information on boolean equation systems (BES). The
definitions and notations we introduce are from [Kei05, GK04] and are standard in the literature.

Definition B.1 (Boolean expression [Kei05])

Let X = {x1, x2, . . . , xn} be a set of boolean variables. The set of boolean expressions over X
is denoted by B(X ) and is given by the grammar:

α ∶∶= � ∣ ⊺ ∣ xi ∣ α ∧ α ∣ α ∨ α

where � stands for false, ⊺ stands for true and xi ∈ X

Definition B.2 (Syntax of boolean equation system [Kei05])

A boolean equation system E is of the form σixi = αi where σi ∈ {µ, ν}, xi ∈ X and αi ∈
B(X )

E ≡ (σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

Note that:

• all left hand sides of the equations are different

• all variables in the right hand side are from X

• the σ sign is µ if the equation is a least fixed point or ν if it is a greatest fixed point.

Definition B.3 (Boolean equation system standard form [Kei05])

A boolean equation system E

E ≡ (σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

is in standard form if, for all i ∈ [1, n], the right hand side expression αi is of the form y ○ z or
y where ○ ∈ {∧,∨} and y, z ∈ X ∪ {0,1}

Definition B.4 (Boolean equation system alternation depth [Kei05])

Given a boolean equation system E

E ≡ (σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)
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its alternation depth is the number of variables xi with 1 ≤ i ≤ n such that σi ≠ σi+1
A boolean equation system E is alternation free if its alternation depth is zero. That is, all

equations compute the same fixed point.

Definition B.5 (Variable dependency graph [GK04])

Let E be a disjunctive/conjunctive boolean equation system

E ≡ (σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

the dependency graph of E is a directed graph GE = (V,E, `) where:

• V = {i∣1 ≤ i ≤ n} ∪ {�,⊺} is the set of nodes

• E ⊆ V × V is the set of edges such that, for all equations σixi = αi

– (i, j) ∈ E iff a variable xj occurs in αi

– (i,�) ∈ E iff false occurs in αi

– (i,⊺) ∈ E iff true occurs in αi

– (�,�), (⊺,⊺) ∈ E

• ` ∶ V → {µ, ν} is the node labeling function defined by `(i) = σi for 1 ≤ i ≤ n, `(�) = µ,
and `(⊺) = ν.

Lemma B.1 (Solution of BES implies path existence [GK04])

Let GE = (V,E, `) be the variable dependency graph of a disjunctive (respectively conjunctive)
boolean equation system E . Let xi be any variable in E and let the valuation v be the solution of
E . Then, the following are equivalent:

1. v(xi) = ⊺ (respectively v(xi) = �)

2. ∃j ∈ V with`(j) = ν (respectively `(j) = µ) such that:

(a) j is reachable from i, and

(b) GE contains a cycle of which the lowest index of a node on this cycle is j
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