
A General Stochastic Framework
for Low-Cost Design of

Multimedia SoCs

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2,
Marius Bozga1, Ananda Basu1, Mayur Maheshwari1,
Jerome Milan3, Axel Legay4, Saddek Bensalem1, and

Samarjit Chakraborty5

Verimag Research Report no TR-2012-7

June 28, 2012

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr

A General Stochastic Framework
for Low-Cost Design of Multimedia SoCs

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda
Basu1, Mayur Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and

Samarjit Chakraborty5

June 28, 2012

Abstract

Reliability and flexibility are among the key required features of a framework used
to model a system. Existing approaches to design resource-constrained, soft-real time
systems either provide guarantees for output quality or account for loss in the system,
but not both. We propose two independent solutions where each modeling technique
has both the above mentioned characteristics. We present a probabilistic analytical
framework and a statistical model checking approach to design system-on-chips for
low-cost multimedia systems. We apply the modeling techniques to size the output
buffer in a video decoder. The results shows that, for our stochastic design metric, the
analytical framework upper bounds (and relatively accurate) compare to the statistical
model checking technique. Also, we observed significant reduction in resource usage
(such as output buffer size) with tolerable loss in output quality.

Keywords: Stochastic Real-time Calculus, Multimedia Systems, Statistical Model Checking, BIP

Reviewers: Marius Bozga

Notes: 1 VERIMAG, France, 2 Technical Univeristy of Denmark, 3 Ecole Polytechnique, France,
4 INRIA Rennes, France, 5 Technical University of Munich, Germany.

How to cite this report:

@techreport {TR-2012-7,
title = {A General Stochastic Framework

for Low-Cost Design of Multimedia SoCs},
author = {Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1,

Ananda Basu1, Mayur Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1,
and Samarjit Chakraborty5},

institution = {{Verimag} Research Report},
number = {TR-2012-7},
year = {}

}

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

1 Introduction

An apt choice of a modeling framework is essential to design resource-constrained System-on-Chips
(SoCs) in multimedia systems (such as video/audio players, etc.). Such a modeling framework must
exploit the inherent stochastic nature of the multimedia applications to design low-cost systems.
The uncertainty in such systems is due to high variability present in the input multimedia stream,
in terms of number and complexity of items that arrive per unit time to the system. Consequently,
the variability is exhibited both in arrival and in processing time.

Many of the existing analytical frameworks proposed so far are either incompatible or inflexible
to capture the key characteristics of the system being modeled:

• Worst-case execution time modeling and analysis framework [21] cannot capture behavior
of soft real-time systems, leading to pessimistic designs with exorbitant use of hardware
resources (such as buffer size).

• Average-case execution time analysis framework [39] cannot provide QoS guarantees and are
thus hardly trustworthy.

To address the above limitations, we sought a framework for analyzing multimedia systems that
account for the stochastic nature of the streaming application. We need a model characterizing
input stream and execution of the multimedia stream as stochastic; instead of capturing event
arrivals and executions with worst or average cases.

Recently, stochastic network calculus1 [13] based approaches have been proposed for perfor-
mance analysis of multimedia systems [24, 29]. These approaches, however, used the probabilistic
calculus only partially: the input stream objects of a multimedia stream (e.g., frames) and their ex-
ecution time are assumed to be deterministic. Another study used probabilistic real-time calculus
to analyze hard real-time systems [30]. This later research, however, did not focus on any specific
application domain. Nonetheless, if stochastic network calculus is fully adopted for system-level
design, then design of multimedia embedded platforms can benefit, too. The analysis can provide
probabilistic bounds on the output quality of the system. The worst-case and average-case analysis
of the system are special-case scenarios of the analytical framework.

The two aforementioned key modeling features — flexibility and reliability — for modeling
multimedia systems exist in statistical model checking approaches, too. Statistical model checking
consists in simulating the formal representation of the systems, monitors a finite set of traces,
and then guess an overall correctness by exploiting algorithms from the statistics area. Recent
work showed that component-based frameworks, such as BIP [2], can be coupled with statistical
model checking to verify large heterogeneous embedded systems [4]. Unlike many ad-hoc simu-
lation techniques, BIP provides a formal semantics for the modeling and simulation of stochastic
systems. Such a formal semantics is a prerequisite for using statistical model checking as a sound
performance analysis technique on system models.

In what follows, we list the main contributions of our paper:

• Stochastic characterization: We use stochastic real-time calculus for performance analysis
of multimedia systems. Our model captures the uncertainty of arrivals and executions of
stream objects (and dependencies between them) using probability laws.

• Model comparison: Using a video decoder case-study, we apply both approaches (a ma-
jor contribution is to build a BIP model). Our results show that the probabilistic estimates
obtained from analytical framework upper bounds the estimates from statistical model check-
ing.

• Resource constrained design: Our second goal with the video decoder case-study is to reduce
resource consumption with tolerable loss in video quality. This case study illustrates how
expensive resources (such as the playout buffer) can be reduced if the stochastic behavior

1Stochastic network calculus was originally developed for performance analysis of computer networks

Verimag Research Report no TR-2012-7 1/28

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

of the application is carefully taken into account during performance. We chose some ap-
plication parameter values (quickly) using the analytical framework. Then, we estimate the
buffer sizes (precisely) for a set of parameter values using statitstcial model checking. We
discuss how the strengths of both the approaches can be complementary to each other.

Organization: In Section 2, we present an illustrative example that motivates the design
of low-cost multimedia SoCs. We present the analytical and the statistical modeling checking
approaches in Sections 3 and 4. In each of these two sections, we first present some background and
then the modeling technique. In Section 5, we apply both the approaches—again, independently—
to a case-study, video decoder. The results of the analytical approach are compared with the
statistical model checking approach (for the case study) in Section 6. The results section reports
the buffer size savings, too. The tail end portion of the paper contains the discussion, related
work, and the conclusions.

2 Motivation

In this section, using a concrete example, first we show how we reduce the on-chip memory size
tolerating loss in output quality. Second, we detail how the two frameworks (analytical and
simulation) can be used towards reducing the buffer size. We conclude this section with a problem
statement.

2.1 Illustrative Example

Multimedia SoC: The SoC architecture is a processing element with an input buffer and a playout
buffer (shown in Figure 3). For this example, the processor architecture is executing a video
decoding application. The processing unit decompresses an input stream arriving at the input
buffer. Then the processor writes output sequentially to the playout buffer. Finally, the consumer
reads items at a constant rate from the playout buffer after an initial delay.

We performed experiments using a system-level simulator (described in Section 4). This sim-
ulator models the SoC architecture mapped to the video decoding application shown in Figure 3.
Using this detailed simulator, we conducted a series of simulations: first with actual traces and
then using synthetic traces. Consider that for a specific compressed video stream we are given
amount of bits constituting each stream object (e.g. macroblock) and amount of processor cycles
required to decompress each stream object. We name these traces as actual traces, which we use
to construct synthetic traces.

Roughly speaking, the construction of the synthetic traces is an effort towards discarding events
that contributes to worst-case scenarios. When the SoC is designed using synthetic traces instead
of the actual traces, resource requirements, such as buffer size, significantly reduces. The reduction
in buffer size happens as we replace some events in the actual input trace; those events that lead
to quick increase in buffer fill level are replaced. Now we explain in detail how we construct the
synthetic trace.

First, a lower bound value is chosen for the number of bits constituting a macroblock; second,
the number of bits for each macroblock in the actual trace is compared with the lower bound;
third, for those macroblocks that fall below this lower bound, the number of bits is set to the
lower bound. Similarly, we construct another synthetic trace from the actual trace containing
execution cycles of each macroblock2. Currently, we use trial-and-error approach to select the
lower bound for both the bits and the execution cycles to construct the synthetic trace. But in
future we intend to construct synthetic traces in a systematic manner (we discuss this later in the
paper). The motivation to construct these synthetic traces is presented below.

We noticed this reduction in buffer size in our simulation experiments. We observed amount of
buffer fills in the input buffer and playout buffer as a video is being decompressed. Figure 1 shows

2Alternatively, construction of another type of synthetic traces that optimizes on processor speed can be envi-
sioned. For such an optimization, it would require us to ignore events consuming maximum number of execution
cycles.

2/28 Verimag Research Report no TR-2012-7

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

the buffer fill levels for the playout buffer. For the actual trace, there was no buffer underflow,
that is, the consumer always found an item when it read the playout buffer. Notice that at the
playout buffer, the amount of buffer fill level has substantially reduced for the synthetic trace when
compared to the actual trace. This is simply due to the fact that the number of items arriving at
the playout buffer is smaller for the synthetic trace compared to the actual trace3.

0 2 4 6 8 10 12 14 16

x 10
9

0

100

200

300

400

500

600

Time (nano−second)

B
uf

fe
r

fil
l l

ev
el

 (
K

B
yt

es
)

Actual trace, F = 114.28 MHz
Synthetic trace, F = 123.06 MHZ

Figure 1: Playout buffer fill level. The maximum buffer fill level for the synthetic trace is signifi-
cantly lower than the actual trace.

For the experimental results shown in Figure 1, the initial playout delay has to be chosen for
both the synthetic and the actual trace; initial delay is the delay after which the video starts
displaying. Using this initial delay parameter, we can tune the amount of buffer underflow that
could occur at the playout buffer [24]. Figure 2 shows underflows when the system is run using
the actual trace for various initial delay values.

2.2 Methodology

In the previous sub-section, we illustrated the use of synthetic traces in saving output buffer size.
Note that in Figure 1 the intital delay was almost set the same for both the synthetic and the
actual trace to emphasize the buffer-size savings. Unlike for the actual trace, in our simulation
experiments, we observed buffer underflow for the synthetic trace.

In multimedia literature, however, it has been shown that certain loss is acceptable. For
example, a study showed that a consecutive loss of 2 frames in 30 frames is tolerable [36]. This
loss in quality may be as follows: the playout device displaying frames periodically per unit time
may not have all the macroblocks in a frame ready for display; certain macroblocks have missed

3At the input buffer, the fill-level is large for the synthetic trace because the processor cycles required is larger
for the synthetic trace compared to the actual trace. This requirement in processor cycles is larger because the
lower bound for the synthetic trace is increased. However, for video decoding applications the input buffer holds
the compressed macroblocks and so the increase in terms of bits is not substantial. For video encoding, we would
be reducing the input buffer size instead of the playout buffer size.

Verimag Research Report no TR-2012-7 3/28

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 109

0

50

100

150

200

250

300

350

400

450

500

Time (in nano−second)

U
nd

er
flo

w
 (

in
 m

ac
ro

−
bl

oc
ks

)

Playout delay 10ms
Playout delay 20ms
playout delay 30ms

Figure 2: Playout buffer underflow.

their deadlines (or may have been dropped). This leads us to a key question: is the probability of
loss of certain amount of macroblocks within an acceptable threshold?

In this paper, we obtain probabilistic bounds on the validity of specific QoS properties relating
to loss of stream objects. The analytical model we use characterizes the stochastic nature of
arrivals in that the actual number of items arriving at the input buffer may not obey the bounds
we constructed using synthetic curves. Similarly, our model captures the stochastic nature of
execution time, and also dependencies between the arrival and the execution times. The use of
stochastic network calculus results makes it possible to provide probabilistic bounds (e.g. on the
output) using probabilistic function on the input and the execution. Thus we are able to estimate
probabilistic bounds of properties on the output buffer size, for example, on the amount of buffer
underflow.

We experimented with a state-of-the-art simulation approach [4] to validate and compare results
obtained from the mathematical framework. This simulation approach has similar design goals to
that of our analytical framework; the performance evaluation combined with the statistical model
checking provides a probability that a specific QoS property is met. In the simulation set-up, we
generate synthetic clips, unlike the analytical approach, using pseudo-random generation such that
it closely follows the structure and characteristics of the actual traces. These set of new synthetic
clips are stochastically similar to the synthetic clips used in the analytical approach, so, we are
able to compare the probabilistic bounds obtained from the simulation and the mathematical
framework.

2.3 Problem Statement

In the following sections, we present two approaches, the stochastic framework and the statistical
model checking for estimating the probabilistic bounds on QoS properties. Now, we state the
problem we attempt to solve in this paper.

4/28 Verimag Research Report no TR-2012-7

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

For a video clip of given bit-rate and resolution, we have to find the probability that a specific
QoS property is satisfied. The SoC is designed using the synthetic traces; the buffer size is chosen
based on the requirements for synthetic trace. When the actual traces are run on the SoC,
designed using synthetic traces, buffer underflow occurs. We estimate the probability that this
buffer underflow is within a certain number of macroblocks.

3 Analytical Model

The main purpose of this study is to provide ways to design low-cost systems, especially towards
solutions for reducing the on-chip memory size. In this context, we want to characterize a mulit-
media system in a stochastic setting in this section, that is, the arrival, processing, and the output
of multimedia streams. Towards this, first, we give the background of a deterministic analytical
model of a system running multimedia applications, and, then, extend the model to a probabilistic
setting.

3.1 Background

This subsection presents the real-time calculus framework for the system model we use in our
subsequent sections. Note that this subsection is not intended to be an exhaustive exposition of
real-time calculus for embedded systems. The system model used in this paper is sketched in
Fig. 3. The architecture is composed of memory buffers and processing units. Fig. 3 shows a data
stream x reaching the input buffer while the processed stream y is written to the playout buffer.

s y s t e m - o n - c h i p

processing
element

x(t) y(t) c(t, d)

input buffer playout buffer

Figure 3: Real-time calculus model

For simplicity of exposition, we chose a basic block or unit of the real-time calculus to model
the multimedia SoC. Indeed, analysis using real-time calculus has been shown for a system with
multiple streams to the input buffer [9], multiple processing units in a SoC [27], and multiple tasks
in a processor [25]. This paper focus, however, is to propose performance analysis using stochastic
real-time calculus. Future work can extend this stochastic framework to the above listed settings.

The application mapped to the processing element is a multimedia task. However, there is no
limitation on the number of applications running on the processing element. Consequently, there
are no restrictions on the number of input streams fed to the processing element. Similarly, the
number of architecture units in the system-on-chip can be any number of processing elements and
memory units. Indeed, analysis using real-time calculus has been shown for a complex system
containing shared memory, bus, and network-on-chip communication architectures. The data flow
need not be sequential in that there could be a feedback flow between the architectural components
in the system-on-chip, and there could be splits and joins in the dataflow of the architecture.

The notations of the parameters involved in the description of our model are described in the
following tables, divided as follows:

• Table 1 lists the application and architecture parameters that are given to the system de-
signer.

Verimag Research Report no TR-2012-7 5/28

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

• Table 2 records the functions that are obtained from processor simulations.

• The mathematical functions that are constructed from the known parameters from Table 2
are given in Table 3.

• Similarly, mathematical functions constructed from simulation data from Table 1 are pre-
sented in Table 4.

• Finally, Table 5 and 6 shows the functions and the models used in the real-time calculus
framework.

Notation and name Description

A
p
p

li
ca

ti
on

λ Bitrate (in bits per second) The bit rate of the input video is constant
and is fed to the input buffer. This bit
rate is assumed to be constant.

c Consumption rate (in macroblocks per
second)

The output device reads items constantly
from the playout buffer.

d Initial playout delay (in millisecond) The delay after which the output device
starts playing the video.

A
rc

h
it

ec
tu

re b Input buffer size (in macroblocks†) The stream is fed to the input buffer. This
is a logical buffer and physically it might
be a part of memory.

B Playout buffer size (in macroblocks or
bytes)

The processed stream is written to the
playout buffer after which the consumer
reads from the buffer.

f Processor frequency (in MHz) The effective number of processor cycles
available per unit time. The available pro-
cessor cycles for the multimedia task is
constant.

†The input buffer can hold a given number of macroblocks and it is not given by a size in bytes
because the application case study we use in this paper is video decoding. The compressed stream
arriving at the input buffer consists of macroblocks of variable size whereas the playout buffer holds
decompressed items of constant size.

Table 1: Known applications and architecture parameters.

Notation Name Description
bits(k)† Cumulative bits Number of bits per k consecutive stream objects.
cycles(k)∗ Cumulative cycles Number of cycles consumed by k consecutive stream

objects.

†The number of bits for each and every macroblock is computed with the execution of the application
once and the data flow between the software blocks.
∗The simulation performed to compute the cycles is not a system-level simulation. The processing
element is independently simulated using a software simulation to compute the processor cycles
consumed for each and every macroblock.

Table 2: Parameters from simulation of processor and from application source code.

The core part of the deterministic real-time calculus can be reduced to three inequalities. First,
bounds on the arrival of the data stream are computed from the φl, φu functions, which gives the

6/28 Verimag Research Report no TR-2012-7

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

Notation Name Description
φl(k), φu(k) φ functions Minimum and maximum number of bits constituting any k consec-

utive stream objects.
γl(k), γu(k) γ functions Minimum and maximum number of cycles needed to process any k

consecutive stream objects.

Table 3: Mathematical functions from simulation data.

Notation Name Description
β-cycles(k) Processor cycles over [0, t] Product of time and frequency, β-cycles(k) = tf .
c(t) Consumption function Minimum and maximum number of cycles needed to

process any k consecutive stream objects.

Table 4: Mathematical functions from input parameters.

Notation Name Description
x(t) Input function Number of items arriving in the input buffer over the time interval

[0, t].
y(t) Output function Number of items arriving in the output buffer over the time interval

[0, t].

Table 5: Mathematical functions and inputs of arrival, service and output.

Notation Name Description
αl(∆), αu(∆) Arrival curves Minimum and maximum number of items arriving over the time

interval ∆. For example ∆ is defined as [0, t].
βl(∆), βu(∆) Service curves Minimum and maximum number of items guaranteed to be pro-

cessed over the time interval ∆. For example ∆ is defined as
[0, t].

Table 6: Mathematical model.

minimum and maximum number of bits constituting any k consecutive stream objects respectively.

αl(∆) = φ−1
u (r∆), (1)

αu(∆) = φ−1
l (r∆), (2)

where r is the bit-rate of the input video, and where αl(∆), αu(∆) are the minimum and
maximum number of items arriving over the time interval ∆ respectively. The mathematical
functions φu,l are computed from the parameter bits(k) (obtained from simulating the application
code), which gives the number of bits for first k stream objects, as shown below

φu(k) = max{bits(k +N)− bits(N)} (3)

φl(k) = min{bits(k +N)− bits(N)} (4)

where N can take any value such that k +N does not exceed the stream length.
The number of items arriving at the input buffer over the time interval [0, t] (x(t) is bounded

by the previously introduced αu,l functions:

αl(∆) ≤ x(t+ ∆)− x(t) ≤ αu(∆), (5)

for t,∆ ≥ 0.
The second core inequality is based on the service curve (β), which guarantees the number of

processor cycles dedicated to that particular multimedia task over the time interval ∆. Given the

Verimag Research Report no TR-2012-7 7/28

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

processor frequency (f), we first compute the processor cycles available over time interval [0, t],
that is, β-cycles(t) = tf . Second, given the number of cycles consumed by first k stream objects
(cycles(k)), we compute the minimum number of cycles needed to process any k consecutive
stream objects (γl) in a similar manner as shown in Eq. 4. Third, we compute beta as follows:
βu(∆) = γ−1

l (β-cycles(∆)). Now, we present our second core inequality. Let y(t) be the number
of items arriving in the output buffer over the time interval [0, t]. Then, it can be shown that:

y(t) ≤ (αu ⊗ β)(t), (6)

where ⊗ is the min-plus convolution operator defined as:

(p⊗ q)(t) = inf
0≤s≤t

{p(t− s) + q(s)} . (7)

Finally, if the playout buffer never underflows, we have the last core inequality:

y(t) ≥ c(t, d), ∀t ≥ 0, (8)

where c(t, d) is the items consumed after the initial playout delay (d) by the display device over
the time interval [0, t].

3.2 Stochastic Real-time Calculus Model

In this sub-section, we propose a probabilistic framework for designing multimedia SoCs.
From the inverse φ function, we compute αl(∆) and αu(∆). This leads to the definition of the

stochastic arrival curve. Since by definition, x(t) gives the number of items arriving over the time
interval [0, t], we obtain:

P

(
sup

0≤∆≤t
(x(t+ ∆)− x(t)− αu(∆)) > a

)
≤ f(a), (9)

for all 0 ≤ ∆ ≤ t and for all a ≥ 0.
In the above description, the arrival curve bounds are checked with the actual number of items

arriving at the input buffer over any time interval. The decreasing function f(a) is an upper bound
on the probability.

We define the stochastic service curve as follows. As formulated in the previous subsection,
the output function from the processing element is guaranteed to be smaller than the min-plus
convolution of the arrival and service curves:

y(t) ≤ (αu ⊗ βu)(t), ∀t ≥ 0. (10)

For a stochastic service, the above inequality is restated as follows:

P (y(t)− (αu ⊗ βu)(t) > a) ≤ g(a), ∀t ≥ 0, (11)

where the stochastic bounding function g, ideally obtained from psychovisual models, is related
to the acceptable loss of playback quality. Note that in defining a stochastic service curve we are
also including the definition of the arrival curve. Thus dependencies are handled for both the
arrival and the service curve.

The output from the processing element is bounded by the arrival functions αl and αu. The
results from the stochastic network calculus provides bounds on the output curve [13]. If there is
a stochastic arrival curve as defined in Eq. 9 and a stochastic service curve as defined in Eq. 11,
the output curve is defined as follows:

P (y(t)− (αu � βu)(t) > a) ≤ (f ⊗ g)(a), ∀t ≥ 0. (12)

Write h(a) = (f ⊗ g)(a), and the min-plus deconvolution operator is defined as follows:

(p� q)(t) = sup
u≥0
{p(t+ u)− q(u)} , (13)

8/28 Verimag Research Report no TR-2012-7

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

4 Statistical Model Checking Approach

In this section, we present a second approach for performance evaluation of multimedia SoCs that
is based on statistical tests.

4.1 Background

Statistical Model Checking (SMC) has been proposed as an alternative to classical Model
Checking techniques [6]. It aims to avoid exhaustive state space exploration. The idea is to do
verification on a sub-part of the state space (a sample) and then, using statistics, extrapolate the
result to the whole system with some confidence.

Concretely, given a stochastic system S and a property φ, statistical model checking refers to a
series of simulation-based techniques that can be used to answer two questions : (1) qualitative :
is the probability for S to satisfy φ greater or equal to a certain threshold θ ? and (2) quantitative
: what is the probability for S to satisfy φ ?

The main approaches [38, 32] proposed to answer the qualitative question are based on hy-
pothesis testing. Let p be the probability that S |= φ. To determine whether p ≥ θ, we can test
H : p ≥ θ against K : p < θ.

A statistical-based solution (based on a sample) does not guarantee a correct result but it is
possible to bound the probability of making an error. The strength of a test is determined by
two parameters, α and β, such that the probability of accepting K (respectively, H) when H
(respectively, K) holds is less or equal to α (respectively, β).

Since it is impossible to ensure a low probability for both types of errors simultaneously, a
solution is to use an indifference region [p1, p0] (with θ in [p1, p0]) and to test H0 : p≥ p0 against
H1 : p≤ p1.

Several hypothesis testing algorithms exist in the literature. Younes [38] proposed a logarithmic
based algorithm that given p0, p1, α, and β implements the Sequential Ratio Testing Procedure
(SPRT) (see [34] for details).

In [8, 17] Peyronnet et al. propose an estimation procedure (PESTIMATION) to compute the
probability p for S to satisfy φ.

BIP – Behavior, Interaction, Priority – [3] is a component based framework encompassing
rigorous model based design. It allows building hierarchically structured systems (or composite
components) from atomic components characterized by their behavior and their interface.

Components are composed by layered application of interactions and priorities. Interactions
express synchronization constraints between actions of the composed components while priorities
are used to filter amongst possible interactions and to steer system evolution e.g. to express
scheduling policies.

In BIP, atomic components are finite-state automata extended with variables and ports. Vari-
ables are used to store local data. Ports are action names, and may be associated with variables.
They are used for interaction with other components. States denote control locations at which the
components await for interaction.

A transition is a step, labeled by a port, from a control location to another. It has associated
a guard and an action, that are respectively a Boolean condition and a computation defined on
local variables.

In BIP, data and their transformations are written in C/C++. Composite components are
defined by assembling atomic or composite using connectors. Connectors relate ports from different
sub-components and represent sets of interactions, that are, non-empty sets of ports that have to
be jointly executed. For every such interaction, the connector provides the guard and the data
transfer, that are, respectively, an enabling condition and an exchange of data across the ports
involved in the interaction. Finally, priorities provide a mean to coordinate the execution of
interactions within a BIP system. They are used to specify scheduling or similar arbitration
policies between simultaneously enabled interactions.

To apply Statistical Model Checking on BIP models, it has been augmented by a stochastic
semantics [5]. The new semantics allows definition of stochastic atomic components containing

Verimag Research Report no TR-2012-7 9/28

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

probabilistic variables updated through C-defined probabilistic distributions. The stochastic com-
ponents communicates through interactions that are uniformly selected.

4.2 Stochastic Modeling and Statistical Analysis

The Statistical Model Checking Approach is implemented in the SBIP tool [5]. The latter takes
as input (1) a stochastic BIP system model, (2) a probabilistic bounded LTL property [8] or,
alternatively, an observer component encoding the evaluation of the property, and (3) a series
of confidence parameters needed for the statistical test [38]. Then, it proceeds according to the
following steps:

• Step 1: an executable model is automatically created,

• Step 2: random execution traces of the system are iteratively generated (sampling),

• Step 3: the observer component checks the property on each trace,

• Step 4: then gives a partial verdict for each,

• Step 5: steps 2, 3, and 4 are repeated until the SMC engine is able to conclude over the whole
system. The SMC engine implements the statistical algorithms introduced in the previous
section.

Our tool is guaranteed to terminate its execution, when it has decided an answer for the input
property to be verified on the input model with respect to the input confidence parameters. This
guarantee relies on the mathematical theory of the statistical model checking.

5 Case Study: Video Decoder

We analyze an abstraction of a video decoder SoC (shown in Figure 4) with the analytical and
the statistical model checking approaches (presented in previous sections). In the abstract SoC
model, the input video stored is fed to the input buffer in terms of stream objects such as mac-
roblocks, frames, etc. A pipeline of functional units process the input stream. Processed items are
temporarily stored in the output buffer before their display.

Now, we will state the problem addressed in this paper. We assume that the multimedia SoC
contains a single processing unit and two buffers.

Problem Statement: To estimate the probability that the buffer underflow (U(t)) is less
that two consecutive frames in 30 frames. We are given the following:

• a set of video clips of certain bit-rate (r) and resolution,

• maximum frequency of the processing unit of the multimedia SoC (f),

• consumption rate of the output device (c),

• start-up values for the initial delay (d), input buffer size (b), and playout buffer size (B).

In this section, first we apply the stochastic real-time calculus model, and then the BIP and
statistical model checking approach to evaluate the QoS constraints of the video decoder SoC.

5.1 Analytical Model of the Multimedia SoC

In this subsection, first, we give an overview of our analytical approach for this case study. Second,
we present formulation for evaluating the QoS constraints.

We can estimate the maximum size of the output buffer using our stochastic analytical frame-
work. Previous work that estimate the output buffer size using deterministic real-time calculus
(presented in Section 3.1) proceed as follows [21]. For all given video clips, Maxiaguine et al.

10/28 Verimag Research Report no TR-2012-7

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

Video Decoding Unit
Stored
Coded
Video

Bit-stream
Parser

Decoder Core
Functional Units

Reference
Buffer

Display
Buffer

Video
Display

Figure 4: Display buffer in a generic video decoder of a SoC. The functional units of the decoder
can include variable length decoding, motion compensation, etc.

construct upper bounds on the number of items that arrive to the input buffer and that execute
in the processor. These two bounds together yield another upper bound on the number of items
that arrive to the display buffer. Thus, given a rate at which items are consumed from the output
buffer, Maxiaguine et al. estimate the maximum buffer size required.

We, too, compute deterministic upper bounds on arrival, execution, and output, however,
only for a sub-set of given video clips; the remaining video clips can violate the deterministic
bounds. For example, the number of items arriving to the output buffer over a time interval, for a
certain clip, can be larger than the deterministic output bound. Now, we explain how to quantify
this deviation from the deterministic bound in a stochastic setting (as we are using probabilistic
network calculus).

Assume that the stream objects arrival and execution are stochastic—an apt characterization
of multimedia streams. So, what is the probability that the number of stream objects that arrive
to the output buffer over a time interval is larger than the deterministic output bound?

First, we estimate the maximum probability of violating the deterministic bounds for the
arrival and execution; then, using these two bounds, we estimate it for the output (related to
the definitions presented in Section 3.2). Using this stochastic bound on the output, given the
constant consumption rate, we can compute the probabilistic distribution of the buffer size.

The deterministic analysis imposes hard constraints on the arrival, execution, and output
of stream objects leading to over estimation of output buffer size. In contrast, our probabilistic
analysis relaxes these constraints. Thus, the designer can choose a buffer size and the corresponding
video quality. Following this, we explain how the video quality is related to the buffer size.

We specify tolerable loss in video quality as: less than two consecutive frame loss within 30
frames, less than 17 aggregate frame loss within 100 frames, etc [36]. Previous work models the loss
of stream objects as buffer underflows, which occurs whenever the display device finds insufficient
items to read from the output buffer [29]. Raman et al. show that the amount of buffer underflow
can be controlled using an application parameter, namely, the initial playout delay, the delay after
which the video starts to display.

We, too, tune the initial delay parameter to restrict the maximum buffer underflow, albeit, in
a stochastic setting. We obtain probability values for a QoS property to hold for a range of initial
delays. The buffer size corresponding to each such delay can be estimated. Therefore, the system

Verimag Research Report no TR-2012-7 11/28

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

designer can choose an initial delay based on his resource and quality constraints.
In what follows, we formulate the probability distribution of the output buffer size using the

stochastic real-time calculus model presented in Subsection 3.2.
In practice, the designer is typically given a set of input clips to design the SoC with given

display constraints. So, in our problem setting, the designer can construct an upper and lower
bound using synthetic traces (which are obtained from actual traces) and use the actual traces to
construct the bounding functions. Now, we explain the construction of these synthetic traces.

Let the given set of input video clips be partitioned into two sets, SA and SB , based on the
designer’s requirement that all clips in SB must be processed with no loss in video quality. The
deterministic upper bound on the arrival and the output, introduced in the previous section, are
constructed using clips in SB . Now, we discuss how to synthetically generate clips in case we do
not have a set SB .

The information we have about the clips in set SA are the number of bits and number of cycles
corresponding to each macroblock. For certain macroblocks, we modify the number of bits and
cycles, assuming we are given lower bounds4 on these parameters. Any number of bits lower than
the actual bound in the input traces are replaced with a value of the lower bound. Thus we obtain
synthetic traces forming clips in set SB . Now we explain how we estimate stochastic bounds using
the actual clips (i.e. clips from set SA) and synthetic traces (or if available clips from set SB).

The upper and lower bounds on the arrival given from the formula in the previous subsection
are calculated for the synthetic traces. That is, from the modified inverse φ function, we compute
αl(∆) and αu(∆). This leads to the definition of the stochastic arrival curve.

Assume the output arrival curve is an arrival process to the playout buffer. The probability
distribution at the playout buffer can be computed using the bounding function h.

P (U(t) > a) ≤ h(a− (α∗ � ct))(0), ∀a, t ≥ 0. (14)

In the above equation α∗ is the output arrival function given by (αu� βu)(t) which is denoted
in Eq.12.

In the results sections, we will show how to specify the QoS property by using Eq. 14. To
validate and compare probabilistic bounds obtained from the analytical framework, we used a
rigorous simulation framework, BIP [3], introduced in Section 4.1.

5.2 Stochastic BIP Model of the Multimedia SoC

We constructed a model of the video decoding unit shown in Figure 4 using BIP framework. This
model captures the stochastic behavior of the system in the following way. A stream object’s ar-
rival time to the input buffer, and decoding time in the processing unit follow defined probability
distributions. The distributions are constructed from a set of video clips5. Thus, the stream ob-
ject’s arrival to the output buffer is probabilistic, which can lead to probabilistic buffer underflows.
Next, we explain how to estimate the probability of certain amount of buffer underflow.

Figure 5 shows the stochastic BIP model of the SoC running the video decoding application.
The functional units of the SoC are modeled as atomic components respectively, Generator, Pro-
cessor, and Player. These functional components communicate explicitly through buffers, namely,
Input Buffer and Playout Buffer, represented in BIP as atomic components as well. The lines rep-
resent connectors, namely write-push, pop-read are used to transfer macroblocks objects between a
functional component and a buffer component. The tick connector synchronizes all the functional
components, and is used to model explicitly the progress of the absolute (global) time. Now we
describe the behavior of each of the functional components with more details.

Generator: This component models the generation of a stream of macroblocks. The stream is
generated probabilistically and stored in the input buffer. The number of bits (the size) of every

4In the discussion section, we present a technique to generate synthetic traces without this lower bound
5Note that we construct distributions from those clips we used in the analytical framework that were allowed to

violate the deterministic upper bounds.

12/28 Verimag Research Report no TR-2012-7

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

tick tick tick

push pushpopwrite write readpopread

Processor (Frequency)Generator (BitRate) Playout BufferInput Buffer Player (Rate, Delay)

Figure 5: Stochastic BIP model of the SoC running a video decoding application.

macroblock determines the arrival time of the macroblock to the input buffer. This number of bits
is specific for each macroblock type (w.r.t frame types) and follows a specific distribution, shown
in Figure 6 and based on [14, 15]. Moreover, the choice of frames type follows a Group of Pictures
Pattern (GOP): IBBPBBPBBPBB6.

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

Frame Size (Kbits)

Fr
eq

ue
nc

y

I frames
B frames
P frames

Figure 6: Frequency distributions of I,B, and P frames in the video. I frames are larger in size but
smaller in number than the B and P frames.

A second version of this component was designed to generate video-specific stream sequence.
Figure 7 shows the accuracy of the stochastic generator against the sequence of the actual movie.

Processor: This component models the decoding of macroblocks, sequentially after reading
them from the input buffer. The detailed behavior of the component is shown in Figure 8. The
component has two states, IDLE and PROCESS and three ports read, write, and tick. In the IDLE
state, the process is either waiting to read from the input buffer or waiting to write to the playout
buffer. When there is a macroblock available, the process transits to the PROCESS state and
remains there for the time required to process/decode the macroblock.

Player: The Player component models the consumption of the stream of decoded macroblocks.
After an initial playout delay, the Player starts reading the macroblocks from the playout buffer

6The first GOP is IPBBPBBPBB. It is different from the consecutive GOPs.

Verimag Research Report no TR-2012-7 13/28

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

Frame index

F
ra

m
e

si
ze

 (
K

bi
ts

)

Actual sequence

Probabilistic sequece

Figure 7: Frame Size : Actual sequence Vs. Probabilistic sequence

IDLE
tick

read

token

write

period := INF;

period := token.cycles / Frequency;

tick

[period = 0]

period := period − delta;

read

period := INF;
PROCESS

write

token

period delta

tick

Figure 8: Processor model as a BIP component. The processor unit executes a macro-block at a
pre-specified speed. The execution cycles corresponding to each macro-block is randomly selected
from a distribution or taken from a file in a sequential manner.

at a constant rate. A buffer underflow occurs whenever the requested number of macroblocks is
not available in the buffer (Figure 10). In this case, the request is postponed for the next iteration
and the underflow is accumulated. For example, if the current buffer underflow is 2, then, at the
next request, the Player seeks 3 macroblocks. If the buffer is still empty, the underflow became
3. Else, if the playout buffer has (at least) 3 items, then all three items are read at once and the
buffer underflow is reset to 0, etc.

We applied statistical model checking to evaluate QoS properties on the BIP model of the
multimedia SoC presented above. As explained earlier, this model is fully stochastic. We focus
on a qualitative QoS property related to the playout buffer, that is, the buffer underflow within a
second never exceeds two consecutive frames.

14/28 Verimag Research Report no TR-2012-7

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

In order to evaluate this property on the traces of the model, we use the additional Observer
component shown in Figure 9. This component runs in parallel with the systems and reacts to
events (interactions) relevant to the satisfaction of the property. The component has three states:
OK, PARTIAL, and FAIL. The FAIL state denotes the failure of the property, namely, the underflow
of two consecutive frames within a second. If there is a loss of a single frame the observer moves
from state OK to PARTIAL. Later, if there is an additional frame loss the Observer reaches the
FAIL state. If no loss happens within that second, the component moves back to the OK state.

In the next section, we present the analysis results for both the analytical and the SMC
approaches.

[lost = true]
lost1frame frames ++;

read

[lost = true]
lost2frames

read

lost

success

read

if (frames = 30)
frames ++;

{ lost := false;
 frames := 0;}

PARTIALOK FAIL

[frames = 30 v lost = false]

lost:= false;
if (frames = 30)
 frames := 0;

Figure 9: Observer model as a BIP component. The observer models the QoS property to be
verified. The variable frame counts the number of frames to check if two consecutive loss occurs
within a second (i.e. within 30 frames). The read port of the Observer is synchronized with the
read port of the Player. A variable lost is associated with the read port records a frame loss.

6 Results

This section sketches QoS probabilities estimated from the two analysis approaches presented in
previous sections. We also tabulate the buffer size savings obtained using synthetic traces.

We implemented the analytical framework described in Subsection 5.1 in MATLAB. The ex-
periments were conducted for a low-bit rate and low resolution clips (352 ∗ 240) obtained from an
open source [33]. The bit-rate of the input video is 1.5 Mbits per second and the frame output rate
is 30fps. We used an MPEG2 implementation optimized for speed [19]. The MPEG2 source was
annotated to get the number of bits corresponding to each compressed macroblock. The execution
cycles for each macroblock is obtained from the software simulator SimpleScalar. Recapitulate that
the number of bits and execution cycles per macroblock are inputs to the analytical framework.
We chose the video files cact.m2v, mobile.m2v, and tennis.m2v for our experiments.

To construct the synthetic clips we set the lower bound for bits (e.g to 60) and the lower
bound for execution cycles (e.g to 9000). Then from the actual trace containing the number of
bits and execution cycles per macroblocks, synthetic traces are obtained; any value below the lower
bound is modified to the lower bound. Figures 13, 15, and 17 show the probability that the buffer
underflow is greater than two consecutive frames over any time interval (this refers to Equation
14 in Subsection 5.1). Figures 13, 15, and 17 also show the probability estimates from the BIP
framework. Following are the observations:

• Increase in playout delay decreases the amount of buffer underflow, so, probability that the
buffer underflow is more than two consecutive frames decreases.

Verimag Research Report no TR-2012-7 15/28

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

0 2 4 6 8 10 12 14 16

x 10
9

0

100

200

300

400

500

600

700

800

Time (second)

N
um

be
r

of
 m

ac
ro

−
bl

oc
k

Buffer fill level
Buffer underflow

Figure 10: Playout Buffer fill level and underflow

• The estimates from stochastic real-time calculus upper bound the statistical model checking
results as the analytical framework captures the worst-case behavior.

• The delay values at which the statistical model checking starts to state that the property is
true is not same for the analytical framework. The analysis using the stochastic real-time
calculus should be used to determine a small set or range of delay values. Later, to precisely
verify the property detailed simulation should be carried out.

• For each probability estimation, the number of traces statistical model checking simulated
ranged from 44 to 1345. For each trace, the method took around 6 to 8 seconds to verify the
property. The probability of error for the probabilistic estimates from the statistical model
checking is bounded by 0.01.

Figures 14, 16, and 18 plots the results of the buffer sizes for various playout delay values,
and corresponding probabilistic bounds. These results correspond to simulation and statistical
model checking. We observe that buffer size reduces substantially even for a small decrease of
probabilistic value. For instance, there could be a buffer size reduction of 40% for a increase in
the value of the probabilistic bound from 0 to 0.2 (Figures 16). In fact the buffer savings can be
larger if we compare the buffer size required for no underflow and the memory required for the
QoS property to be always true.

Finally, we note that the property we specified using stochastic real-time calculus computes
the probability estimates for buffer underflow greater than two consecutive frames over any time
interval. The statistical model checking on the other hand reports probability estimates for buffer
underflow over two consecutive frames within 30 frames. The analytical framework is not flexible
enough to express the exact property. In the following section, we discuss this specific problem
and other modeling issues.

16/28 Verimag Research Report no TR-2012-7

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

0 100 200 300 400 500 600 700 800 900
0

2000

4000

6000

8000

10000

12000

14000

Number of Bits

N
um

be
r

*

Figure 11: Probabilistic distribution function for the bits in the actual trace for cact.m2v. The red
line shows how the synthetic trace is constructed; any value lower than the number of bits corre-
sponding to the red line is modified for the synthetic trace; the new bits are the bits corresponding
to the point given by the red line.

0.5 1 1.5 2 2.5 3

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

Number of cycles

N
um

be
r

Figure 12: Probabilistic distribution function for the cycles in the actual trace for mobile.m2v.
For the construction of synthetic trace, the points towards the left of the red line are modified to
the number of cycles corresponding to the red line.

6.1 Comparison with no buffer underflow

In this subsection, we compare the playout delay and QoS trade-off for two scenarios: (1) buffer

Verimag Research Report no TR-2012-7 17/28

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Playout Delay (in milliseconds)

(
1

−
 P

(U
<

66
0)

)

Stochastic Real−time Calculus
Statitsical Model Checking

Figure 13: Probabilistic bounds for cact.m2v Probability that the property is true for

two analysis approaches. The estimates from the stochastic real-time calculus

upper bounds the statistical model checking technique.

18/28 Verimag Research Report no TR-2012-7

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

0,230.160.10.050
380

400

420

440

460

480

500

520

540

560

580

(1 − P{U < 660})

B
u
ff

er
 f

il
l

le
v
el

 (
in

 K
B

y
te

s)

140170 135 130 120

Playout Delay (in milliseconds)

Figure 14: Playout buffer fill level for cact.m2v.

underflow with two consecutive frames, and (2) no buffer underflow. Figure 19 plots the prob-
ability values for different playout delay values for the above mentioned two scenarios. Observe
in Figure 19 that the curve corresponding to the scenario with no buffer underflow is far right to
the curve showing the buffer underflow with two consecutive frames. Thus the playout delay to
guarantee no buffer underflow will be larger than with any finite underflow. Consequently, the
buffer size required for no buffer underflow will be significantly large.

7 Discussion

The results in the previous section confirms our hypothesis that, for tolerable loss in video playout,
output buffer size could be significantly reduced compared to the buffer size required for playing
lossless video. In this section, first we speculate the combined strengths of both the approaches
when used together in a system design flow. Then, we focus on requirements for our hypothesis
to be used in practice: extraction of synthetic clips from benchmark video clips and modeling loss
of macroblocks as deadline misses (instead of dropping stream objects).

7.1 Combined Design Flow

We now identify the benefits of the two techniques when used independently in a design-flow and
speculate their combined strengths.

Analysis using stochastic real-time calculus followed by detailed simulation is a natural order
for these techniques in a SoC design-flow; quick analysis is needed for estimating the applica-
tion/architecture parameters at the beginning of the first stage of the design process, whereas
at the end detailed simulations are required for verifying properties. The drawbacks, however,

Verimag Research Report no TR-2012-7 19/28

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Playout Delay (in milliseconds)

P
1−

(U
<

66
0)

Statistical Model Checking

Stochastic Real−time Calculus

Figure 15: Probabilistic bounds for mobile.m2v

when the analytical framework and simulation are applied independently are: (1) the stochastic
real-time calculus is not flexible enough to specify all verification properties, and (2) in using just
the statistical model checking approach, the iterative process can be time-consuming for deciding
parameters (in the QoS property).

On the other hand, a combined framework will not only remove the drawbacks mentioned
above but will increase the expressivity of the stochastic real-time calculus (state-space notation)
and the performance analysis using algebraic approach comes for free to the BIP framework. Now
we explain about this combined designed flow in detail.

This paper juxtaposed the analytical framework with model-checking technique for comparing
the two approaches. There is another motivation in this effort — which is not the central point
of this paper: we wanted to consider the possibility of joining (stochastic network calculus based)
analysis with (BIP simulation based) model checking (along the lines of Christel Baier et al., [1]).
Towards this combination goal, we now identify the individual highlights of the two techniques
and speculate their combined strengths.

The different levels of abstraction at which the mathematical framework and the model checking
set-up models the SoC naturally positions the use of the techniques at two different points in the
design cycle 7.

Typically, at the early design-cycle phase, system designers require back-of-the-envelope calcu-
lations for determining certain architecture parameters. At this point we recommend the stochastic
network calculus based analysis approach primarily due to two reasons: (1) the modeling effort can
be minimal if some off-the-shelf tools are used (for example the real-time calculus tool box [35]),
and (2) the analysis is fast and relatively accurate to the detailed simulation technique.

Suppose we are at that phase of the design cycle where the system design is developed and
there is a software simulator of the system model. Irrespective of whether the simulator is abstract
or detailed, the statistical model checking approach is applicable. Following are the two primary
benefits: (1) the model checking approach is not tied to any standard model, so, it can use as
input traces from any simulation model; (2) the technique can be quite fast even if the property
has to be verified for a large system; an abstract model could be built and the model checking
could verify the abstract model.

7Even though the BIP based approach is best-suited in the later stages of a design-cycle, the simulation framework
is capable to model any level of abstraction, that is, from system specification to code generation

20/28 Verimag Research Report no TR-2012-7

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

0,20.160.10.040
900

1000

1100

1200

1300

1400

1500

1600

(1 − P{U < 660})

B
u
ff

er
 f

il
l

le
v
el

 (
in

 K
B

y
te

s)

450 390 330 300 290

Playout Delay (in milliseconds)

Figure 16: Playout buffer fill level for mobile.m2v.

Having said that, let us look at the drawbacks of using the two approaches individually for
the same design objective, say, verify a system property. The stochastic network calculus based
analysis approach does not provide flexibility of specifying any property. For example, consider
that we want to verify if the sum of the input buffer and the playout buffer at any time instance
during video decoding is within a certain limit. The calculus approach cannot handle this property
as we are not modeling concurrency. On the other hand consider that we want to verify the same
property for a range of values for an application parameter (e.g. initial playout delay). The
simulation based statistical model checking approach could be computationally expensive for such
experiments.

Now consider that the design-flow is such that certain parameters are decided using the math-
ematical framework and thereafter using detailed simulation we verify several properties for a
concrete set of architecture and application parameters (chosen during the analysis approach).
This approach that we are contemplating is a natural order and widely known to the design com-
munity. We envision more tight coupling of the analysis approach with the simulation model: can
we specify stochastic arrival and service curve using the BIP framework? Such an effort would
bring the state-space notation to the stochastic real-time calculus and the performance analysis
using algebraic techniques comes for free for the BIP framework (refer [23]). The statistical model
checking can be applied either on the abstract model or a detailed model of the BIP.

7.2 Inputs to the Model

The primary motivation to generate synthetic clips is that a system designer would use the syn-
thetic clips instead of actual video clips when deciding architecture parameters such as buffer size.
The question is then how to generate synthetic clips from given actual video clips.

Verimag Research Report no TR-2012-7 21/28

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Playout Delay (in milliseconds)

 (
1−

 P
(U

 <
 6

60
))

Stochastic
Real−time Calculus

Statistical
Model Checking

Figure 17: Probabilistic bounds for tennis.m2v

Currently, we choose at which point in frequency distribution of the input data (bits and cycles)
we need to cut and reshape frequency distribution to generate the synthetic data. We choose this
cut-off point based on two objectives: (1) to get significant reduction in playout buffer size, and
(2) the loss in video is tolerable when the actual video clip is running in the SoC, which is designed
using synthetic clips.

The approach we use to generate synthetic data can be time-inefficient as it involves iteration
in making a choice to cut the distribution and analyze using our framework to check if our objec-
tives are met. Instead of this trial and error technique, we are currently researching on a more
sound technique to generate synthetic clips (for example, Yanhong et al., [20] use error percent-
age and eliminate some tail data from the distribution). To further this thought, notice in the
analytical framework the need for synthetic clips arises when we compute the stochastic bounding
functions. What if we use standard tail distribution functions that could characterize multimedia
data accurately?

Assuming that these tail distributions could be found (refer Jelenkovic et al., [12]), then the task
of generating synthetic clips reduces to a litmus test: does the synthetic clip generated conforms
to the stochastic bounding function? In other words, without performing the iterative analysis
— choosing a cut-off point first for synthetic clip generation, second checking if the video loss is
tolerable, and then choosing a different cut-off point — we just check if a set of synthetic clips
generated conforms to the stochastic bounding function.

7.3 QoS Specification

In our model, when we say video loss, we precisely mean that the macroblocks missed their
deadlines; we do not model video loss as drop in macroblocks or frames, as studied in [7], where
the authors present an analytical framework to study the trade-off between buffer size and video
quality required for a multimedia decoder in the context of frame drops. In correspondence to
display of the video, as video loss is interpreted as deadline miss, the display device awaits until
all macroblocks are ready for display. If there were no deadline miss, for example, a frame would

22/28 Verimag Research Report no TR-2012-7

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

0 0,07 0,09 0.12 0.22
1100

1150

1200

1250

1300

1350

1400

1450

1500

1550

1600

(1 − P{U < 660})

B
u

ff
er

 f
il

l
le

v
el

 (
in

 K
B

y
te

s)

170 160 140

Playout Delay (in milliseconds)
250 150

Figure 18: Playout buffer fill level for tennis.m2v.

be displayed at the right time.
The QoS property we verified using our set-up required to check if there is a loss of two

consecutive frames within 1 second. This should be read in the context of our model as the
display of two consecutive frames being delayed within 1 second.

8 Related Work

In this section, we present the state-of-the-art in characterizing the stochastic behavior of multime-
dia applications and compare it with our approach. We will focus mainly on analytical approaches
(refer previous work for survey on simulation based approaches [4, 18]). Figure 20 classifies exist-
ing work in the following manner: (a) modeling for general and multimedia specific systems, and
(b) the kind of analysis that an analytical framework provides (e.g., worst-case or average-case).

A domain-agnostic approach is to statistically analyze the execution variance of soft-real time
applications (Kumar et al., [16]). Using profiling, components of the applications that lead to
variable execution times are first identified. Then programmers can identify components that affect
real-time behavior of the application in the context of other components. Thus, the programmers
need not resort to ad-hoc methods for tuning applications for expected real-time behavior.

Our approach differs from the domain agnostic techniques in the following way: our model
tightly couples the application and architecture; in what follows, we also discuss how both the
stochastic real-time calculus and statistical model checking are an excellent fit for streaming appli-
cations. On the other hand, domain-specific techniques in a probabilistic setting perform analysis
at task granularity (Yaldiz et al., [37] and Iqbal et al., [11]). In stochastic real-time calculus, our
model captures input, execution, and output streams of the SoC. The granularity of the stream
object can be at any level: bits, macroblock, frame, and group of pictures.

Iqbal and others [11] proposed scheduling techniques for soft-real time systems. The task
execution times are stochastic and the solution for scheduling is based on an online Monte Carlo

Verimag Research Report no TR-2012-7 23/28

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

0 20 40 60 80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Playout Delay (in milliseconds)

P
ro

ba
bi

lit
y

V
al

ue
s

{1 − P(U<660)}

{1 − P(U<0)}

Figure 19: QoS and playout delay trade-off for video file Cact.m2v for two scenarios: (1) The
buffer underflow is less than two consecutive frames, and (2) no buffer underflow.

method on a joint space model of all tasks. The objective of this technique is similar to ours:
reducing memory and computational requirements. The complexity of this technique, however,
as the authors report, does not scale well for task graphs of huge size. Yaldiz and others [37]
use stochastic modeling of the applications to obtain policies for energy savings and for providing
probabilities for satisfying timing constraints. Their model considers set of concurrent tasks and
takes into account data dependence, precedence relations and timing constraints.

Our methodology differs from the above two discussed approaches in the following way: (1)
there is a tight characterization of inputs for streaming applications using arrival curves in the
stochastic real-time calculus and randomly generated clips (based on distributions) in statistical
model checking, and (2) we provide probabilistic guarantees instead of average-case analysis in the
analytical framework.

Liu and others [20] introduced a new concept called approximate variability characterization
curves (or Approximate VCCs), to characterize the average-case behavior of multimedia workloads
in a parameterized fashion. The crucial difference in comparison to our work is that Approximate
VCCs belongs to a family of average-case analysis; instead of probabilistic guarantees on buffer
size they bound the error due to their analysis. Also, the framework remains in a deterministic
setting after the alteration of workload curves. So, it is not elegantly able to capture stochastic
nature of arrivals and stochastic nature of execution times.

Our framework is a complete stochastic framework and could fully exploit the probabilistic
nature inherent in the MPEG streams towards designing low-cost designs. Our models differ from
Liu et al’s in the following way:

• They conclude that Approximate VCCs cannot support a class of arrival streams.

• The tail distribution of the workload curves do not exploit the inherent property of MPEG

24/28 Verimag Research Report no TR-2012-7

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

Domain agnostic (Kumar et.al.,)Domain specific

 Analytical Simulation

Probabilistic

Deterministic
(Bamakhrama et.al.,)

Average-case analysis
(Yaldiz et.al., Iqbal et.al.,)

Guarantees
Stochastic Real-Time Calculus

Abstract

Full system

Model Checking

Probabilistic
Statistical Model Checking

Figure 20: Our model in the context of existing techniques. Stochastic real-time calculus provides
upper and lower bounds (which are guarantees) on the probabilistic estimates. Statistical model
checking verifies the QoS property on an abstract system using detailed simulation.

streams, namely, the sub-exponential property. Using this property allows us to capture a
class of streams both at the arrival and at the service.

• Unlike Approximate VCCs, we use stochastic network calculus to observe the backlog at the
playout buffer.

• The QoS is handled differently in Approximate VCCs in that the streams are dropped.

To conclude this section, we now list the limitations of our framework, and discuss how we can
overcome these limitations:

1. In modeling the SoC architecture, we assumed that the processor never stalls; the playout
buffer is large enough that the buffer never gets full, so, the processor can always write
to the buffer; similarly, there is always an item in the input buffer that the processor can
consume for processing. In a deterministic setting, however, when modeling using real-time
calculus, the memory contention has been addressed [22, 31]. We believe that modeling
memory contention in a probabilistic setting is possible too.

2. In the current presentation of this work, we did not address how multiple streams can be
handled as inputs and outputs to the SoC. For example, there can be multiple videos, which
are being played in parallel, and which share the processing and memory resources. Alter-
natively, there could be multiple tasks concurrently running in the processor which may not
share the buffer memory. Along the same lines, we only presented a single processor archi-
tecture in this work; there could be many processors connected in pipeline. It is important,
however, to note that the limitations listed above are natural extensions to the framework
presented in this paper. Towards this, existing research which has addressed the scenarios
listed above (in a deterministic setting) will be of interest to the reader [28, 26, 10].

Verimag Research Report no TR-2012-7 25/28

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

9 Conclusions and Future Work

The stochastic real-time calculus and the statitsical model checking techniques were presented as
frameworks for performance analysis of multimedia systems. The case-study analyzed the trade-off
in quality over buffer size savings using the above mentioned approaches. Both the approaches
estimated the probability that a certain QoS property is true; the analytical framework upper
bounded the estimates from the statistical model checking.

Future extensions to this work are as follows: (a) modeling communication architectures such as
bus, network-on-chip, and others; (b) modeling for variable bit-rate video and variable consumption
rate; (c) integrating real-time calculus and BIP framework.

References

[1] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-Pieter Katoen. Performance
evaluation and model checking join forces. Communications of the ACM, 53(9):76–85, September
2010. 7.1

[2] A. Basu, M. Bozga, and J. Sifakis. Modeling Heterogeneous Real-time Systems in BIP. In Software
Engineering and Formal Methods SEFM’06 Proceedings, pages 3–12. IEEE Computer Society Press,
2006. 1

[3] Ananda Basu, Bensalem Bensalem, Marius Bozga, Jacques Combaz, Mohamad Jaber, Thanh-Hung
Nguyen, and Joseph Sifakis. Rigorous Component-Based System Design Using the BIP Framework.
IEEE Software, 28(3):41–48, May 2011. 4.1, 5.1

[4] Ananda Basu, Saddek Bensalem, Marius Bozga, Benôıt Caillaud, Benôıt Delahaye, and Axel Legay.
Statistical Abstraction and Model-Checking of Large Heterogeneous Systems. In Proc. of the Inter-
national Joint Conference on Formal Techniques for Distributed Systems (FMOODS/FORTE), pages
32–46, June 2010. 1, 2.2, 8

[5] Saddek Bensalem, Marius Bozga, Benôıt Delahaye, Cyrille Jégourel, Axel Legay, and Ayoub Nouri.
Statistical Model Checking QoS Properties of Systems with SBIP. In ISoLA (1), pages 327–341,
2012. 4.1, 4.2

[6] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT Press, 2001. 4.1

[7] D. Gangadharan, L.T.X. Phan, S. Chakraborty, R. Zimmermann, and I. Lee. Video Quality Driven
Buffer Sizing via Frame Drops. In Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2011 IEEE 17th International Conference on, volume 1, pages 319–328. IEEE, 2011. 7.3

[8] T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate Probabilistic Model Check-
ing. In Proc. of the Verification, Model Checking and Abstract Interpretation (VMCAI), pages 73–84,
January 2004. 4.1, 4.2

[9] Kai Huang and Lothar Thiele. Performance analysis of multimedia applications using correlated
streams. In Proceedings of the conference on Design, automation and test in Europe, DATE ’07,
pages 912–917, San Jose, CA, USA, 2007. EDA Consortium. 3.1

[10] Kai Huang and Lothar Thiele. Performance analysis of multimedia applications using correlated
streams. In Proceedings of the ACM/IEEE Design Automation and Test in Europe (DATE), pages
912–917, 2007. 2

[11] N. Iqbal and J. Henkel. SETS: Stochastic execution time scheduling for multicore systems by joint
state space and Monte Carlo. In Proc. of the IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 123–130, November 2010. 8

[12] Predrag R. Jelenkovic, Aurel A. Lazar, and Nemo Semret. The Effect of Multiple Time Scales and
Subexponentiality in MPEG Video Streams on Queueing Behavior. IEEE Journal on Selected Areas
in Communications, 15(6):1052–1071, August 1997. 7.2

[13] Yuming Jiang and Yong Liu. Stochastic Network Calculus. Springer, 2008. 1, 3.2

[14] M. Krunz, R. Sass, and H. Hughes. Statistical characteristics and multiplexing of MPEG streams. In
Proc. of the Conference on Computer Communications (INFOCOM), pages 455–462, April 1995. 5.2

26/28 Verimag Research Report no TR-2012-7

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

[15] Marwan Krunz and Satish K. Tripathi. On the characterization of VBR MPEG streams. In Proc. of
the International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS),
pages 192–202, June 1997. 5.2

[16] Tushar Kumar, Romain Cledat, Jaswanth Sreeram, and Santosh Pande. Statistically Analyzing
Execution Variance for Soft Real-Time Applications. In José Nelson Amaral, editor, Languages and
Compilers for Parallel Computing, pages 124–140. Springer-Verlag, 2008. 8

[17] S. Laplante, R. Lassaigne, F. Magniez, S. Peyronnet, and M. de Rougemont. Probabilistic abstraction
for model checking: An approach based on property testing. ACM Transactions on Computational
Logic, 8(4):30–39, August 2007. 4.1

[18] Axel Legay, Benôıt Delahaye, and Saddek Bensalem. Statistical model checking: an overview. In
Proc. of the International Conference on Runtime Verification (RV), pages 122–135, November 2010.
8

[19] libmpeg2. A free MPEG2 video stream decoder.
http://libmpeg2.sourceforge.net, 2006. 6

[20] Yanhong Liu, Samarjit Chakraborty, and Wei Tsang Ooi. Approximate VCCs: a new characterization
of multimedia workloads for system-level MpSoC design. In Proc. of the ACM/IEEE Annual Design
Automation Conference (DAC), pages 248–253, June 2005. 7.2, 8

[21] Alexander Maxiaguine, Simon Künzli, Samarjit Chakraborty, and Lothar Thiele. Rate analysis for
streaming applications with on-chip buffer constraints. In Proc. of the Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 131–136, January 2004. 1, 5.1

[22] Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, Marco Caccamo, and Lothar Thiele. Worst
case delay analysis for memory interference in multicore systems. In Proceedings of the ACM/IEEE
Design Automation and Test in Europe (DATE), pages 741–746, 2010. 1

[23] Linh T. X. Phan, Samarjit Chakraborty, and P. S. Thiagarajan. A Multi-mode Real-Time Calculus.
In Proc. of the Real-Time Systems Symposium (RTSS), pages 59–69, November-December 2008. 7.1

[24] Balaji Raman. Application-specific workload shaping in resource-constrained media players. PhD
thesis, School of Computing, National University of Singapore, July 2010. 1, 2.1

[25] Balaji Raman and Samarjit Chakraborty. Application-specific Workload Shaping in Multimedia-
enabled Personal Mobile Devices. ACM Transactions on Embedded Computing Systems, 7(2):10,
Feburary 2008. 3.1

[26] Balaji Raman and Samarjit Chakraborty. Application-specific workload shaping in multimedia-
enabled personal mobile devices. ACM Transactions on Embedded Computing Systems (TECS),
7(2), 2008. 2

[27] Balaji Raman, Samarjit Chakraborty, Wei Tsang Ooi, and Santanu Dutta. Reducing data-memory
footprint of multimedia applications by delay redistribution. In Proceedings of the 44th annual Design
Automation Conference, DAC ’07, pages 738–743, New York, NY, USA, 2007. ACM. 3.1

[28] Balaji Raman, Samarjit Chakraborty, Wei Tsang Ooi, and Santanu Dutta. Reducing Data-Memory
Footprint of Multimedia Applications by Delay Redistribution. In Proc. of the ACM/EDAC/IEEE
Design Automation Conference (DAC), pages 738–743, 2007. 2

[29] Balaji Raman, Guillaume Quintin, Wei Tsang Ooi, Deepak Gangadharan, Jerome Milan, and Samarjit
Chakraborty. On buffering with stochastic guarantees in resource-constrained media players. In
Proc. of the IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), pages 169–178, September 2011. 1, 5.1

[30] Luca Santinelli and Liliana Cucu-Grosjean. Toward probabilistic real-time calculus. ACM SIGBED
Review, 8(1):54–61, March 2011. 1

[31] Andreas Schranzhofer, Rodolfo Pellizzoni, Jian-Jia Chen, Lothar Thiele, and Marco Caccamo.
Worst-case response time analysis of resource access models in multi-core systems. In Proc. of the
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 332–337, 2010. 1

[32] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical Model Checking of Black-Box Proba-
bilistic Systems. In Proc. of International Conference on Computer Aided Verification (CAV), pages
202–215, July 2004. 4.1

[33] Tektronix. MPEG Elementary Streams.
ftp://ftp.tek.com/tv/test/streams/Element/index.html, 1996. 6

Verimag Research Report no TR-2012-7 27/28

Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur
Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5

[34] A. Wald. Sequential Tests of Statistical Hypotheses. Annals of Mathematical Statistics, 16(2)(2):117–
186, June 1945. 4.1

[35] Ernesto Wandeler and Lothar Thiele. Real-Time Calculus (RTC) Toolbox.
http://www.mpa.ethz.ch/Rtctoolbox, 2006. 7.1

[36] Duminda Wijesekera and Jaideep Srivastava. Quality of Service (QoS) Metrics for Continuous Media.
Multimedia Tools and Applications, 3(2):127–166, July 1996. 2.2, 5.1

[37] Soner Yaldiz, Alper Demir, and Serdar Tasiran. Stochastic Modeling and Optimization for Energy
Management in Multicore Systems: A Video Decoding Case Study. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 27(7):1264–1277, July 2008. 8

[38] Hakan Lorens Samir Younes. Verification and Planning for Stochastic Precess with Asynchronous
Events. PhD thesis, School of Computer Science, Carnegie Mellon University, January 2005. 4.1, 4.2

[39] Nicholas H. Zamora, Xiaoping Hu, and Radu Marculescu. System-level performance/power analysis
for platform-based design of multimedia applications. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 12(1):1–29, January 2007. 1

28/28 Verimag Research Report no TR-2012-7

	Introduction
	Motivation
	Illustrative Example
	Methodology
	Problem Statement

	Analytical Model
	Background
	Stochastic Real-time Calculus Model

	Statistical Model Checking Approach
	Background
	Stochastic Modeling and Statistical Analysis

	Case Study: Video Decoder
	Analytical Model of the Multimedia SoC
	Stochastic BIP Model of the Multimedia SoC

	Results
	Comparison with no buffer underflow

	Discussion
	Combined Design Flow
	Inputs to the Model
	QoS Specification

	Related Work
	Conclusions and Future Work

