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Abstract

A tabu random walk on a graph is a partially self-avoiding random
walk to nearest neighbors with finite memory. The walker is endowed
with a finite word, called tabu list, whose letters are vertices he has
already visited. The policy to insert or remove occurrences of vertices
in the tabu list is called update rule. First, we enunciate a necessary
and sufficient condition on the update rule that ensures, on all simple,
finite and connected graphs, the finiteness of mean hitting times of
each vertex. Then, we describe, on large classes of graph, the update
rules having the smallest mean hitting times. Finally, we compare
mean hitting times for three particular collections update rules.

1 Introduction

A tabu random walk on a graph is a partially self-avoiding random walk to
nearest neighbors with finite memory. The walker is endowed with a finite
word, called tabu list, whose letters are vertices he has already visited, sorted
in chronological order. The tabu list evolves with time and the policy to
insert or remove occurrences of vertices in the tabu list is the only parameter
of the tabu random walk, called update rule. The walker never revisits a
vertex with at least one occurrence in the tabu list, unless all neighbors of
the current vertex have at least one occurrence in the tabu list.

We postpone the precise definition of tabu random walks and the state-
ments of our results to Section 2. Here follows an informal description.
The successive ordered pairs formed by the vertex currently visited by the
walker and its current tabu list is a Markov chain. At each step, the next
vertex visited follows the uniform law on the set formed by the neighbors
of the current vertex without occurrence in the tabu list. Otherwise, the
next vertex visited follows the uniform law on the neighborhood of the cur-
rent vertex. Afterwards, the next tabu list is formed by concatenating the
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current vertex and the current tabu list, then by possibly removing a letter
of the concatenated word. The position of the letter removed is a random
variable whose law, conditionally on the current vertex and the current tabu
list, is given by the update rule. In particular, the length of the tabu list is
bounded by an integer that depends on the update rule, called length of the
update rule.

As an example, we will describe a collection of update rules denoted by
(FIFOm)m>0. For every nonnegative integer m, the update rule FIFOm
the following update rule of length m: the new tabu list is the concatenation
of the current vertex and the current tabu list, except if the current tabu list
has length m. In the latter case, moreover, the last letter of the concatenated
word is removed in order to keep the length of the new tabu list equal to m.
The update rule FIFO0 is the only update rule of zero length. It yields a
simple random walk, because the tabu list is always the empty word. The
update rule FIFO1 yields a non-backtracking random walk: the next vertex
is uniform on the neighborhood of the current vertex, minus the previous
vertex if the current vertex has degree at least two. Thus, the walker does
not backtrack, unless it visits a vertex of degree one.

We focus on mean hitting times associated to tabu random walks. The
hitting time of each vertex is the random number of steps needed by the
walker to reach it. More specifically, we examine mean hitting times for a
walker that starts almost surely at a given vertex with empty tabu list.

As an application, in a probabilistic routing protocol, the hitting time
is the number of steps needed by a routed message before being delivered
to its destination. Consequently, it might be relevant to compare mean hit-
ting times associated for distinct routing protocols. Actually, tabu random
walks have been introduced in the article [1] in order to improve the rout-
ing protocol by simple random walk by reducing mean hitting times. Being
non-deterministic, the latter protocol can be used to deliver messages in
a environment that faces failures or intruders [4]. Besides, it requires few
memories and computing time, therefore is well suited for networks with
limited resources, for example wireless sensors networks. Adding a small
tabu list to the message, namely considering a tabu random walk with tabu
lists of small length, generate a non-deterministic routing protocol that still
needs few memories and computing time.

To begin with, we give a necessary and sufficient condition on the up-
date rule that ensures the finiteness of associated mean hitting times on all
graphs. This guarantees that the routing protocol by tabu random walk de-
livers every messages in almost surely finite time, provided that the update
rule satisfies the latter condition. This assertion is stated in Theorem 5.
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Next, we compare hitting times for distinct update rules. For each pos-
itive integer m, we introduce the class of m-free graphs, which includes all
(m+ 1)-regular graphs. Theorem 7 claims that on every m-free graph, the
FIFOm update rule has the smallest mean hitting times among all update
rules of length less than or equal to m. We infer that, on every graph, the
mean hitting times for the non-backtracking random walk are always smaller
than those associated to each update rule of length zero or one.

Then, we study hitting times on particular graphs. First, Proposition 10
expresses the mean hitting times on the cliques for each update rule. As a
consequence, consider the update rules such that, if the length of the current
tabu list is strictly less than the length of the update rule, then the next
tabu list is the concatenation of the current vertex and the current tabu list.
Thus, the larger the length of the tabu list, the smaller the mean hitting
times. Second, we exhibit graphs on which mean hitting times increase
when the length of the update rule increases, for three collections of update
rules: (FIFOm)m>0, (LRUm)m>0 and (RANDm)m>0, defined in Section 3.
We consider three infinite collections of graphs: paddles, lines and flowers,
whose definitions are postponed at Section 4. All these graphs own 0 and 1
as vertices. We express the mean hitting time of the vertex 0 for a walker
that starts at vertex 1 with empty tabu list:

• On paddles, for (LRUm)m>0 and (RANDm)m>0, in Proposition 13.

• On lines, for (FIFOm)m>0 and (LRUm)m>0, in Proposition 14.

• On flowers for (FIFOm)m>0, (LRUm)m>0 and (RANDm)m>0, in
Proposition 15.

Besides, Proposition 16 states that for every update rule distinct from
FIFO1, of length at most one, there exist a flower graph and two vertices
x and y such that the mean hitting time to y, when the walker starts at x
with empty tabu list, is larger than that associated to the simple random
walk.

The paper is organized as follows. The formal definition of a tabu random
walk is postponed in Section 2 and examples of update rules are described
in Section 3. Our results are precisely stated in Section 4. The remainder
sections contain the proofs of our results: Section 5 for Theorem 5, Section 6
for Theorem 7, Section 7 for Proposition 16, Section 8 for Proposition 10,
Section 9 for Proposition 13, Section 10 for Proposition 14 and Section 11
for Proposition 15.
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2 Tabu random walks

We restrict ourselves to simple graphs: every edge is a subset formed by two
distinct vertices. In particular, edges are undirected and there are no self-
loops nor parallel edges. Besides, we assume that the vertex set is finite and
neither empty nor reduced to a singleton. A walk of length ` from a vertex
x to a vertex y is a finite sequence (xn)`n=0 of vertices such that x0 = x,
x` = y and for each integer n in {0, . . . , ` − 1}, {xn, xn+1} is an edge. In
this note, every graph is connected: for every two distinct vertices x and y,
there exists a walk from x to y.

We introduce some notations that keep easier the definition of a tabu
random walk and the mathematical statement of our results.

The vertex set of every graph G is denoted by V. For each vertex x of
G, Vx is the neighborhood of x: Vx = {y ∈ V : {x, y} is an edge of G}.
The degree of a vertex is its number of neighbors. A vertex with a unique
neighbor, or equivalently of degree one, is called pendant. A vertex with
at least two neighbors, or equivalently of degree at least two, is called non-
pendant.

For every discrete set U , and every positive integer m, Um is the set of
words of length m with alphabet U :

Um =
{
t = t1 · · · tm : ∀k ∈ {1, . . . ,m}, tk ∈ U

}
.

The set U0 of words of zero length is the singleton formed by the empty
word ε. With a slight abuse, the same notation ε holds to designate the
empty word for all discrete sets U . Generally, U will be either a vertex set
V or {0, 1}. The word in {0, 1}m with each letter equals 0 is denoted by 0m.
Moreover, we set 00 = ε. For every nonnegative integer m, the set of words
of length less than or equal to m will be denoted by U (m).

For each word t in U (m), let |t| denote the length of t and let L(t) denote
the set formed by its letters. For example, |0m| = m and L(0m) = {0}.
Generally, the length |t| of the word t and the cardinality |L(t)| of the
associated set L(t) are distinct.

The concatenation of two words t and s is denoted by t · s. For every
nonempty word t and every integer k in {1, . . . , |t|}, t[k] denotes the word
of length |t| − 1 obtained by removing the k-th letter of t: if |t| = 1, then
t[1] = ε; if |t| > 2, then for all integers j in {1, . . . , |t| − 1},

(t[k])j =

{
tj if j < k,

tj+1 if j > k.
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Besides, we set t[0] = t.
Now, we define tabu random walks. For every nonnegative integer n,

let Xn denote the position of the walker at step n and let Tn represent its
memory: a finite word whose letters are some vertices already visited by
the walker. The word Tn is called tabu list and the successive ordered pairs
(Xn, Tn)n>0 formed by the position of the walker and its current tabu list is
a Markov chain called tabu chain, defined below. The tabu random walk is
the trajectory (Xn)n>0 of the walker.

As already mentioned, the policy to insert or remove occurrences of
vertices in the tabu list is the only parameter of the tabu random walk,
called update rule. In particular, each update rule determines the maximal
length of the successive tabu lists, called length of the update rule.

For every nonnegative integer n, the next tabu list Tn+1 is obtained
by concatenation of Xn and Tn, then by possibly removing a letter of the
concatenated word Xn·Tn. If the removed letter of Xn·Tn is not the first one,
then we say that the current vertex is inserted in the tabu list. Formally,
there exists a random integer Cn+1 such that Tn+1 = (Xn ·Tn)[Cn+1]: Cn+1

is either 0, in which case Tn+1 = Xn · Tn, or the position of the removed
letter. Conditionally on (Xn, Tn), the law of the random variable Cn+1 is
determined by the update rule. We say that a tabu list is full if its length
equals the length of the update rule. The random integer Cn+1 must fulfill
the following requirements:

• If the current tabu list Tn is not full, then all letters of Tn different
from the current vertex Xn are kept, and one of the three disjoint cases
occurs:

– The current vertex is not inserted and all its occurrences in the
tabu list are kept: Cn+1 = 1 and Tn+1 = Tn.

– The current vertex is inserted and all its occurrences in the tabu
list are kept: Cn+1 = 0 and Tn+1 = Xn · Tn.

– The current vertex is inserted and one of its occurrences in the
tabu list is removed: Cn+1 belongs to {i ∈ {2, . . . , |Tn| + 1} :

T i−1n = Xn} and Tn+1 = Xn · T 1
n · · ·T

Cn+1−2
n · TCn+1

n · · ·T |Tn|n .

• If the current tabu list Tn is full, then in order to ensure |Tn+1| 6 m,
the current vertex Xn cannot be inserted in the tabu list without
removing another letter of Tn. Thus, Cn+1 6= 0 almost surely.

We infer that the occurrences of vertices in the tabu list are sorted in chrono-
logical order of their insertions.
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If R is a transition kernel from a measurable set (A,A) to a measurable
set (B,B), then for each element a of A, he probability law U 7→ R(a,U) on
(B,B) is denoted by Ra. Here is the formal definition of an update rule.

Definition 1. Let m be a nonnegative integer. An update rule of length m
is a probability kernel R from {0, 1}(m) to {0, . . . ,m+ 1} which satisfies the
following conditions. Let k be an integer in {0, . . . ,m} and let b be a word
in {0, 1}k.

1. If k 6 m− 1 and b 6= 0k, then the support of the probability law Rb is
included in the set {0, 1} ∪ {i ∈ {2, . . . , |b|+ 1} : bi−1 = 1}.

2. If k = m, then Rb({0}) = 0.

The word b with alphabet {0, 1} in the definition above will stand for
the successive words formed by replacing each letter in Xn ·Tn by 1 if it is an
occurrence of Xn, 0 otherwise. Formally, for every vertex x and every word
t in V(m), we introduce the word ψ(x, t) in {0, 1}|t| given for every integer j
in {1, . . . , |t|} by

(ψ(x, t))j =

{
1 if tj = x,

0 if tj 6= x.

Hence, ψ(Xn, Tn) = 0|Tn| if and only if the current vertex does not belong
to L(Tn).

On every graph with vertex set V, the states space of each tabu chain
associated to an update rule of length m is V×V(m), where V(m) is the set of
words with alphabet V and length less than or equal to m. At each step, the
walker avoids, if possible, to revisit the vertices in its tabu list. For every
nonnegative integer n, conditionally on (Xn, Tn), the law of (Xn+1, Tn+1)
is defined as follows. The next vertex visited Xn+1 is uniform on the set
VXn \ L(Tn) formed by the neighbors of the current vertex Xn that does
not have any occurrence in the current tabu list Tn. Otherwise, the next
vertex visited is uniform on the set VXn of neighbors of the current vertex.
The next tabu list Tn+1 is (Xn ·Tn)[Cn+1], where Cn+1 is a random integer,
independent of the past process (Xk, Tk)

n−1
k=0 conditionally on (Xn, Tn), that

follows the probability law Rψ(Xn,Tn).
To sum up, we introduce the transition kernel Q given for every subset

U of V and every subset W of V(m) by:

Q(x,t)(U ×W) =

{ |U∩(Vx\L(t))|
|Vx\L(t)| ×R

ψ(x,t)(φ−1x,t(W)) if Vx 6⊂ L(t),
|U|
|Vx| ×R

ψ(x,t)(φ−1x,t(W)) if Vx ⊂ L(t),
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where, for every vertex x and for every word t in V(m), φu,t is the function
from {0, . . . , |t|+ 1} to V |t| ∪ V |t|−1 defined by φu,t(c) = (u · t)[c],

Now, we can state the formal definition of a tabu chain and a tabu
random walk.

Definition 2. A tabu chain associated to an update rule R of length m,
on a graph with vertex set V, is an homogeneous Markov chain (Xn, Tn)n>0

with states space V × V(m) and transition kernel Q. The stochastic process
(Xn)n>0 is called tabu random walk.

Since we will often consider tabu chains on the same graph associated to
the same update rule, but with different starting distributions, we introduce
the following notations. For every element u of every set U , the Dirac
measure on U concentrated at u is denoted by δu. The walker will always
start at a given vertex and, most often, with empty tabu list. Therefore,
for each update rule of length m on a graph with vertex set V, and each
ordered pair (x, t) of V × V(m), P(x,t) will denote the probability law of the
tabu chain started at (x, t), namely such that (X0, T0) follows the law δ(x,ε).
The related expectation will be denoted by E(x,t).

3 Examples of update rules

In this section, we describe some particular update rules, associated tabu
chains and related tabu random walks.

We start with some general observations. For all update rules, the se-
quence (|Tn|)n>0 formed by the successive sizes of the tabu lists is almost
surely nondecreasing. Hence, when the tabu list becomes full, it remains
full for all later steps. Besides, for all positive integers n:

• While the tabu list is not full, the number of distinct vertices that
have an occurrence in it is non decreasing: |L(Tn)| > |L(Tn−1)| almost
surely on the event {|Tn−1| < m}, where m is the length of the update
rule.

• Each vertex that has an occurrence in the tabu list must have been
already visited by the walker: L(Tn) ⊂ {Xk, k ∈ {0, . . . , n− 1}}.

• The occurrences of vertices in the tabu list are sorted in chronological
order; in particular, the last position in the tabu list is hold by the
oldest visited vertex:

T |Tn|n = argmax {k ∈ {0, . . . , n− 1} : Xk ∈ L(Tn)} .
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The following update rules yield simple random walks. An update rule
R is said trivial if Rε = δ1, namely if the current vertex is never inserted in
the tabu list. For example, the unique update rule of zero length is trivial.
If T0 = ε and if the update rule is trivial, then every tabu list is always
the empty word and every tabu random walk is a simple random walk: at
each step, the next vertex visited is chosen uniformly at random among the
neighbor of the current vertex.

Let m be a positive integer. We introduce four non trivial update rules
R of length m and we describe associated tabu chains. Let k be an integer
in {0, . . . ,m+ 1} and let b be a word in {0, 1}k.

The FIXm update rule is given by:

Rb =

{
δ0 if 0 6 k 6 m− 1,

δ1 if k = m.

the current vertex is inserted while the current tabu list has length less that
m; the tabu list is left unchanged otherwise. Therefore, for every integer n
greater than or equal to m, the tabu list Tn is Xm−1 · · ·X0. Thus, the first
m vertices visited by the walker are kept forever in the tabu list.

The FIFOm update rule is given by:

Rb =

{
δ0 if 0 6 k 6 m− 1,

δm+1 if k = m.

The current vertex is inserted and, if the current tabu list has length m, then
its last letter is removed. Hence, for every integer n greater than or equal
to m, the tabu list Tn is Xn−1 · · ·Xn−m. Consequently, the tabu random
walk (Xn)n>0 is a Markov chain of order m + 1 on V. The update rule
FIFO1 yields a non-backtracking random walk: for every positive integer
n, Tn = Xn−1 and the next vertex Xn+1 is uniform on VXn \ {Xn−1} if Xn

is non-pendant, Xn+1 = Xn−1 if Xn is pendant. Therefore, (Xn)n>0 is a
random walk that does not backtrack, unless the walker visits a pendant
vertex. The acronym FIFO stands for “First In First Out”.

The LRUm update rule is given by:

Rb =


δ0 if 0 6 k 6 m− 1 and b = 0k,

δm+1 if k = m and b = 0m,

δ1+max{i : bi=1} if b 6= 0k.

The current vertex is inserted and every other occurrence of this vertex
is removed. If the current tabu list has length m without any occurrence
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of the current vertex, then its last letter is removed. Therefore, for every
nonnegative integer n, all letters of Tn are distinct and formed by the last
|L(Tn)| visited states by the tabu random walk (Xn)n>0, counted without
multiplicity. The acronym LRU stands for “Least Recently Used”.

The RANDm update rule is given by:

Rb =


δ0 if 0 6 k 6 m− 1 and b = 0k,

uniform({1, . . . ,m+ 1}) if k = m and b = 0m,

δ1 if b 6= 0k.

If the current vertex has an occurrence in the tabu list, then the tabu list
is unchanged. If the current vertex does not have any occurrence in the
current tabu list and if the tabu list has length m, then the new tabu list is
formed by inserting the current vertex and removing one of the m+1 letters,
uniformly at random. Therefore, for every positive integer n, all letters of
Tn are distinct elements of {Xk : k ∈ {0, . . . , n− 1}}.

To keep the notations easier, we consider that FIX0, FIFO0, LRU0

and RAND0 refer to the trivial update rule of zero length. We remark that
when m equals 1 or 2, then the update rules FIFOm and LRUm coincide
and are both distinct from FIXm and RANDm. However, for every integer
m greater than or equal to 3, the update rules FIXm, FIFOm, LRUm and
RANDm are distinct.

4 Statement of results

In this section, we state the results we have obtained. We start with some
notations. Consider an update rule of length m and an associated tabu
chain (Xn, Tn)n>0 on a graph with vertex set V. For every vertex y and
every word s in V(m), the hitting time H(y,s) of (y, s) is the first instant n
when the tabu chain reaches (y, s):

H(y,s) = inf{n > 0 : (Xn, Tn) = (y, s)} .

The hitting time Hy of y is the first instant when the tabu random walk
(Xn)n>0 reaches y:

Hy = inf{n > 0 : Xn = y} .

In particular, Hy = infs∈V(m) H(y,s). Likewise, the first return times are
defined by

H+
(y,s) = inf{n > 1 : (Xn, Tn) = (y, s)}
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and
H+
y = inf{n > 1 : Xn = y} .

Similarly, H+
y = infs∈V(m) H+

(y,s).

Definition 3. A tabu random walk terminates if for every two vertices x
and y, the mean hitting time E(x,ε)Hy is finite.

Introduce the following condition:

Definition 4. An update rule R of length m satisfies Condition (C) if and
only if:

• For all integers k in {0, . . . ,m−1}, the probability R0k({0}) is positive.

• The probability R0m({m+ 1}) is positive.

In words, at each step:

• The current vertex is possibly inserted in the tabu list when it is not
already in.

• If the tabu list is full, without any occurrence of the current vertex,
then its last letter is possibly removed.

The trivial update rule of zero length satisfies Condition (C). For every
positive integer m, the update rules FIFOm, LRUm and RANDm fulfill
Condition (C), whereas the update rule FIXm does not.

Our first result states that Condition (C) is necessary and sufficient to
ensure that all tabu random walks terminate, whatever the graph might be.

Theorem 5. All tabu random walks associated to a given update rule ter-
minate if and only if that update rule either is trivial or satisfies (C).

The remainders results compare hitting times for distinct update rules.
We emphasize the dependence on an update rule R by writing every associ-
ated tabu chain as (Xn(R), Tn(R))n>0.

Before introducing our second result, we define the class of m-free graphs.

Definition 6. Let m be a positive integer m. A graph is m-free if there does
not exit any walk x0, . . . , xk of positive length k such that:

• The vertex xk is non-pendant.

• For all integers j in {0, . . . , k− 1}, the vertices xj and xk are distinct.
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• All non-pendant neighbors of xk belong to {x0, . . . , xk−1}.

• The integer k + 2d is less than or equal to m, where d is the number
of pendant neighbors of xk.

We illustrate the definition above:

• Let m be a positive integer and G an m-free graph. Then, for every
integer k in {1, . . . ,m}, G is k-free.

• Every graph is 1-free.

• A graph is 2-free if and only if it does not possess any vertex x such
that Vx = {y, z} and {x, z} ⊂ Vy. Otherwise, the walk x0 = y, x1 = z,
x2 = x, with k = 2 and d = 0 implies that the graph is not m-free. In
words: a graph is 2-free if and only if it does not contain any triangle
with one vertex of degree exactly two. This condition is necessary and
sufficient.

• Every (m + 1)-regular graph, namely with every vertices of degree
m+ 1, is m-free. Indeed, for every walk (xi)

k
i=0, the set {x0, . . . , xk−1}

has cardinality less than or equal to k, while xk has m + 1 neighbors
of degree m+ 1. Whence, the non-pendant neighbors of xk cannot all
belong to {x0, . . . , xk−1}.

• A cycle is a walk from a vertex to itself. Every graph of girth greater
than or equal to m + 2, that is to say with all cycles having at least
m+ 2 edges, is m-free. Assume that (xi)

k
i=0 is a walk that contradicts

the m-freeness. Since the girth is strictly greater than two, all vertices
are non-pendant. Let xj denote a neighbor of xk distinct from xk−1.
Then (xk, xj , xj+1, . . . , xk−1, xk) is a cycle of length strictly less than
m+ 2.

The previous definition has been motivated by the following fact. Let
m be an integer m greater than or equal to 2 and consider a m-free graph.
Then, in every tabu random walk associated to the update rule FIFOm, the
walker will never visit any vertex having an occurrence in its current tabu
list if the vertex currently visited is non-pendant: for every nonnegative
integer n, VXn(FIFOm) is not included in L(Tn(FIFOm)).

Our second results asserts that, for every positive integer m and for every
m-free graph, the update rule FIFOm yields minimal mean hitting times
among all update rules of length less than or equal to m.
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Theorem 7. Let m be a positive integer and let R be an update rule of
length k less than or equal to m. Consider a m-free graph. Then, for all
vertices x and y,

E(x,ε)H
+
y (FIFOm) 6 E(x,ε)H

+
y (R) .

Besides, the update rules R and FIFOk yield the same transition kernel if
and only if:

• For every integer j in {0, . . . , k − 1}, R0j = δ0.

• R0k = δk+1.

Being m-free is not a necessary condition to have, for all two vertices x
and y, E(x,ε)H

+
y (FIFOm) 6 E(x,ε)H

+
y (R). Indeed, consider the clique with

vertex set {0, 1, 2} and edge set {{0, 1}, {0, 2}, {1, 2}}. The walk (0, 1, 2)
ensures that the graph is not 2-free. Yet, for every two vertices x and y and
for every update rule R: E(x,ε)Hy(R) > 3/2, while E(x,ε)Hy(FIFO2) = 3/2.

The first corollary of Theorem 7 is a direct application of its second
assertion.

Corollary 8. Let m be a positive integer. On every m-free graph, for every
integer k in {0, . . . ,m}, LRUk and FIFOk yield the same transition kernel.

The second corollary claims that the non-backtracking random walk is
the fastest among all update rules of length zero or one.

Corollary 9. For every update rule R of length zero or one, and for every
ordered pair (x, y) of vertices of every graph,

E(x,ε)H
+
y (FIFO1) 6 E(x,ε)H

+
y (R) .

The proof results from the fact that every graph is 1-free,
From now on, we focus on expression of mean hitting times on four

particular collections of graphs: the cliques (Kr)r>2, the paddles (Gr)r>3,
the lines (Lr)>2 and the flowers (F`)`>1. Their definitions are postponed
before each related result. The graphs K6, G6, L4 and F3 are drawn on
Figure 4.

For all integers r greater than or equal to 2, the clique Kr is the complete
graph with vertex set {0, . . . , r − 1}: each vertex is neighbor to all other
vertices. In a first place, we express, for every integer r greater than or
equal to 2 and for every update rule R, the mean hitting time E(1,ε)H0(R)
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(a) (b) (c)

(d)

Figure 1: Figure (a) represents the graph K6, Figure (b) represents the
graph G6, Figure (c) represents the graph L4 and Figure (d) represents the
graph F3.
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on Kr. For every nonnegative integer k, every nonnegative real number x
and every real number p in [0, 1], we set

gk(p, x) =
r − 1− k + (r − 2− k)px

1 + (r − 2− k)p
.

Proposition 10. Consider an update rule R of length m and an integer
r greater than or equal to 2. On the clique Kr, the mean hitting time

E(1,ε)H0(R) is the last term of the finite sequence (uk)
min{m,r−1}
k=0 defined

by u0 = max{r− 1−m, 1} and for all integers k in {1, . . . ,min{m, r− 1}},
uk = gk

(
R0min{m,r−1}−k

({0}), uk−1
)

.

Proposition 10 induces the two following corollaries. Let r be an integer
greater than or equal to 2. Consider the clique Kr. We will restrict ourselves
to update rules of length less than or equal to r − 2.

On one hand, consider the set of update rules with length less than or
equal to r − 2 and such that, if the tabu list is not full and if the current
vertex does not have any occurrence in the tabu list, then this latter is
always inserted. That is, we consider update rule R of length m such that
for every integer k in {0, . . . ,m − 1}, R0k({0}) = 1. Corollary 11 implies
that the mean hitting time of the vertex 0, starting at vertex 1 with empty
tabu list, increases with the length of the tabu list. In particular, for the
collection of update rules (FIFOm)m>0, (LRUm)m>0 and (RANDm)m>0,
the larger the length of the update rule, the smaller the mean hitting times.

Corollary 11. Let (`,m, r) a triple of integers such that 0 6 ` < m 6 r−2.
Let S be an update rule of length ` and let R be an update rule of length m
such that for all integers k in {0, . . . , ` − 1}, S0k({0}) 6 R0k({0}). On the
clique Kr,

E(1,ε)H0(R) < E(1,ε)H0(S) .

On the other hand, Corollary 12 claims that, generally, having a larger
length does not imply having smaller mean hitting times. Informally, if
R is an update rule of length two with R0({0}) small enough, then the
mean hitting time E(1,ε)H0(FIFO1) is smaller than the mean hitting time
E(1,ε)H0(R). Indeed, if the current vertex has small probability to be in-
serted, then every tabu random walk associated to R is a simple random
walk during a large number of steps.

Corollary 12. Let (`,m, r) a triple of integers such that 1 6 ` < m 6 r−2.
There exist an update rule R with length m and an update rule S with length

14



` such that for all integers k in {0, . . . , `− 2}, S0k({0}) = R0k({0}) and, on
the clique Kr,

E(1,ε)H0(S) < E(1,ε)H0(R) .

Henceforth, we restrict ourselves to the three collections of update rules
(FIFOm)m>0, (LRUm)m>0 and (RANDm)m>0. We deal with tabu random
walks on paddles (Gr)r>3, lines (Lr)>2 and flowers (F`)`>1. All these graphs
own 0 and 1 as vertices, and we study the mean hitting time E(1,ε)H0 of the
vertex 0 for a walker that starts at vertex 1 with empty tabu list.

We begin with paddle graphs. For every integer r greater than or equal
to 3, the paddle Gr is the graph with vertex set {0, . . . , r − 1} such that
the vertices 2, . . . , r − 1 form a clique with r − 1 elements and the vertex
1 has 0 and 2 as neighbors. As an example, the graph G6 is drawn in
Figure 4. Proposition 13 deals with tabu random walks on paddle graphs
for the collections of update rules (LRUm)m>0 and (RANDm)m>0. A walker
on the paddle Gr that starts at the vertex 1 and does not hit the vertex 0
at its first move, must stay on the set of vertices {3, . . . , r−1} until its tabu
list is full. Thus, the length of the update rule may raise the mean hitting
time E(1,ε)H0.

Proposition 13. Let m and m′ denote two integers:

• If 3 6 m < m′, then on Gm+2,

E(1,ε)H0(LRUm) < E(1,ε)H0(LRUm′)

and
E(1,ε)H0(RANDm) < E(1,ε)H0(RANDm′) .

• If 1 6 m 6 2 < m′, then on G4,

E(1,ε)H0(LRUm) < E(1,ε)H0(LRUm′) .

• If 1 6 m 6 2 < m′ and (m,m′) 6= (1, 3), then on G5,

E(1,ε)H0(RANDm) < E(1,ε)H0(RANDm′) .

• For every integer r greater than or equal to 3,

E(1,ε)H0(LRUm) 6 E(1,ε)H0(RANDm)

on Gr, with strict inequality if and only if 1 6 m 6 r − 2.
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Afterwards, we handle the case of line graphs. For every integer r greater
than or equal to 2, the line Lr is the graph with vertex set {0, . . . , r − 1}
and edge set {{i, i+ 1}, i ∈ {0, . . . r − 2}}. As an example, the graph L4 is
drawn in Figure 4. Proposition 14 deals with tabu random walks on lines
for the collections of update rules (FIFOm)m>0 and (LRUm)m>0. On lines,
the length of the update rule raises the mean hitting time E(1,ε)H0. Indeed,
assume that m is a positive integer and consider a walker on the line Lr
with update rule FIFOm or LRUm that starts at the vertex 1 and does
not hit the vertex 0 at its first move. First, the walker must go to the end
of the line, the vertex r − 1, without backtracking. Then, its tabu list is
almost surely (r − 2) · · · (r − m − 1). Thus, the walker performs a simple
random walk, until it reaches a vertex with a neighbor not included in the
tabu list. The duration of the simple random walk behavior increases with
the length of the update rule. Next, the walker goes to the vertex 0 without
backtracking.

Proposition 14. Let m, m′ and r denote three integers. Consider a tabu
random walk on Lr:

• If 1 6 m < m′, (m,m′) 6= (1, 2) and r > m+ 2, then

E(1,ε)H0(LRUm) < E(1,ε)H0(LRUm′) .

• If m > 1 and r > 4, then

E(1,ε)H0(FIFO2m−1) = E(1,ε)H0(FIFO2m) < E(1,ε)H0(FIFO2m+1) .

• If m > 3 and r > 4, then

E(1,ε)H0(FIFOm) < E(1,ε)H0(LRUm) .

• If r > 2, then

lim
m→+∞

E(1,ε)H0(FIFOm) = E(1,ε)H0(LRUr) .

Finally, we deal with the flower graphs. For all positive integers `, the
flower F` is the graph with vertex set {0, . . . , 2` + 1} as follows. Initially,
the vertices 0 and 1 are isolated and for each integer k in {1, . . . , `}, the
vertices 2k and 2k + 1 are neighbor. Then, each vertex is linked to the
vertex 1, except the vertex 1 itself. As an example, the graph F3 is drawn
in Figure 4. Proposition 15 deals with tabu random walks on paddles for
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RAND0, FIFO1, RAND1 and RAND2. We recall that RAND0, FIFO0

and LRU0 yield the same tabu chain. Likewise, FIFO1 and LRU1 yield the
same tabu chain. We aim to show that the larger the length of the update
rule, the larger the mean hitting time E(1,ε)H0. Without loss of symmetry,
we may assume that a walker on F` that starts at the vertex 1 and does not
hit the vertex 0 at its first move, moves to vertex 2. Now, the mean return
time to the vertex 1 increases when the length of the update rule increases.
After having returned to the vertex 1, the walker either hits 0 or finds itself
in a similar situation, namely at vertex 2 and forced to return to the vertex
1.

Proposition 15. The following inequalities hold:

• On the graph F5,

E(1,ε)H0(RAND0) < E(1,ε)H0(RAND1) < E(1,ε)H0(RAND2) .

• On the graph F6,

E(1,ε)H0(RAND1) < E(1,ε)H0(RAND2) .

• On the graph F4,

E(1,ε)H0(FIFO1) < E(1,ε)H0(FIFO2) .

• On the graph F7,

E(1,ε)H0(FIFO0) < E(1,ε)H0(FIFO2) .

Proposition 16 completes Corollary 9. It states that FIFO1 is the only
update rule of length one such that, on all graphs, all hitting times are
smaller than those associated to the simple random walk.

Proposition 16. If R is an update rule of length one distinct from FIFO1,
then there exists a positive integer ` such that on the graph F`,

E(1,ε)H0(FIFO0) < E(1,ε)H0(R) .

The three following tables sum up the results for mean hitting times
obtained for the three collections of update rules (FIFOm)m>0, (LRUm)m>0

and (RANDm)m>0.
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The first table deals with the collection of update rules (FIFOm)m>0.
On the graph written at k-th row and m-th column, E(1,ε)H0(FIFOm) <
E(1,ε)H0(FIFOk). The symbol “×” means that for all graphs G and all
vertices x and y of G, E(1,ε)H0(FIFOm) > E(1,ε)H0(FIFOk):

0 1 2 3 4 m > 5

0 × K3 K3 K3 K3 K3

1 × × K3 K3 K3 K3

2 F7 F4 × K4 K4 K4

3 L4 L4 L4 × K5 K5

4 L4 L4 L4 L5 × K6

k > 5 L4 L4 L4 L5 L6


Lm+2 if m < k,

× if m = k,

Kk+2 if m > k.

This table treats the collection of update rules (LRUm)m>0:

0 1 2 3 4 m > 5

0 × K3 K3 K3 K3 K3

1 × × K3 K3 K3 K3

2 F7 F4 × K4 K4 K4

3 L4 G4 G4 × K5 K5

4 L4 G4 G4 G5 × K6

k > 5 L4 G4 G4 G5 G6


Gm+2 if m < k,

× if m = k,

Kk+2 if m > k.

This table treats the collection of update rules (RANDm)m>0:

0 1 2 3 4 m > 5

0 × K3 K3 K3 K3 K3

1 F5 × K3 K3 K3 K3

2 F5 F6 × K4 K4 K4

3 L4 L4 G5 × K5 K5

4 L4 G5 G5 G5 × K6

k > 5 L4 G5 G5 G5 G6


Gm+2 if m < k,

× if m = k,

Kk+2 if m > k.
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The rest of the technical report is organized as follows. Theorem 5 is
proved in Section 5 and Proposition 7 in Section 6, Proposition 10, Corollary
11 and Corollary 12 are proved in Section 8. Section 9 is devoted to the proof
of Proposition 13 and Section 10 to the proof of Proposition 14. Finally,
Section 11 deals with proofs of Proposition 15 and Proposition 16.

5 Proof of Theorem 5

First of all, we prove that Condition (C) is necessary. We proceed by estab-
lishing the contrapositive. Let R be an update rule of length m that does
not fulfill Condition (C). Consider the graph with vertex set {0, . . . ,m+ 2}
and edge set

{0, 1} ∪ {{i, j} : 1 6 i < j 6 m+ 2} .

In words, the vertices 1, . . . ,m + 2 form a clique and the vertex 0 has the
vertex 1 as unique neighbor. Let (Xn, Tn)n>0 denote the associated tabu
chain on this graph that starts at (1, ε). We claim that the tabu random
walk (Xn)n>0 does not terminate. Indeed, we will show that the probability
P(1,ε)(H0 = +∞) is positive, which implies E(1,ε)H0 = +∞.

Here is the idea of the proof: since the update rule is not trivial, with
P(1,ε)-positive probability, the walker does not hit the vertex 0 at its first
step and the vertex 1 is inserted in the tabu list. Assume that this latter
event is realized. Then, the walker needs to return to the vertex 1 before
hitting the vertex 0. Since all neighbors of the vertex 1 distinct form 0 have
degree m+1, the removal of the vertex 1 is needed in order to hit the vertex
0. Nevertheless, we will show that the vertex 1 stays forever in the tabu list.

First, assume that the set {k ∈ {0, . . . ,m− 1} : R0k = δ1} is nonempty
and let j denote its minimum. As the update rule is not trivial, j 6= 0. We
set Aj = {(Xj , Tj) = (j + 1, j · · · 2 · 1)}. The event Aj has P(1,ε)-positive
probability. Indeed:

• If j = 1, then

P(1,ε)(Aj) =
Rε({0})
m+ 2

.

• If j > 2, then

P(1,ε)(Aj) >
Rε({0})
m+ 2

×
j−1∏
i=1

R0i({0})
m− i+ 1

.
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By minimality of j, for every integer i in {0, . . . , j − 1}, the probability
R0i({0}) is positive. Whence, P(1,ε)(Aj) is positive.

Now, since R0j = δ1, the tabu list remains P(1,ε)-almost surely constant
on the event Aj : for all integers n > j, P(1,ε)(Tn = (j + 1, j · · · 1) | Aj) = 1.

Thus, P(1,ε)(H
+
1 = +∞) > 0 and we infer that P(1,ε)(H0 = +∞) > 0.

Second, we suppose that R0m({m + 1}) = 0. Let Am denote the event
{(Xm, Tm) = (m + 1,m · · · 1)}. As already shown, P(1,ε)(Am) > 0. Yet,

P(1,ε)(∀n > m, Tmn = 1 | Am) = 1. Thus, P(1,ε)(H
+
1 = +∞) > 0 and

P(1,ε)(H0 = +∞) > 0.
Now, we prove that Condition (C) is sufficient. If the update rule is

trivial, then every associated tabu random walk is a simple random walks.
A simple random walk on a finite and connected graph is positive recurrent,
hence terminates. Whence, we consider a non trivial update rule R of length
m which satisfies Condition (C). Let G be a graph with vertex set V and
let Q denote the associated transition kernel. We will show that all tabu
random walks on G terminate.

As stated for example in the book [2, p. 16], an essential communicat-
ing class of Q is a subset C of V × V(m) such that, for every ordered pair
((x, t), (y, s)) of elements of C:

• The probability P(x,t)(H(y,s) < +∞) is positive.

• The probability P(y,s)(H(x,t) < +∞) is positive.

• If (z, u) is an element of V×V(m) such that the probability P(x,t)(H(z,u) <
+∞) is positive, then (z, u) belongs to C.

In particular, a tabu chain cannot leave an essential communicating class.
Besides, since V ×V(m) is finite, the set C is finite and the restriction of the
transition kernel Q to the finite set C is positive recurrent. Consequently, if
(x, t) and (y, s) belong to C, then the mean hitting time E(x,t)H(y,s) is finite.

Moreover, each tabu chain eventually reaches an essential communicating
class in mean finite time. Hence, in order to show that all tabu random walks
terminate, it is enough to show that for every essential communicating class
C, every element (x, t) of C and every vertex y of G, the mean hitting time
E(x,t)Hy is finite. Yet, E(x,t)Hy 6 infs∈V(m) E(x,t)H(y,s) and E(x,t)H(y,s) is
finite if (y, s) belongs to C. Consequently, it suffices to show that the set
V(C) formed by the first coordinates of all elements of C is the vertex set V.
Formally, V(C) = V, where

V(C) = {z ∈ V : ∃u ∈ V(m), (z, u) ∈ C} .
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Since (x, t) belongs to C, we already know that x belongs to V(C). The
graph G being connected, the proof is complete if we show that the neigh-
borhood Vx of x is included in V(C). We will proceed by contradiction: let
W denote the set Vx \ V(C) of neighbors of x that do not belong to V(C)
and assume that W is nonempty.

If either Vx is included in L(t) or W is not included in L(t), then
Q(x,t)(W × V(m)) > 0 and we reach a contradiction. Necessarily, Vx is
not included in L(t) while W is. Hence, there exists an ordered pair (z, u)
in C such that z is a neighbor of x and z does not belong to L(t).

As already remarked at the beginning of Section 3, the sequence (|Tn|)n>0

formed by the successive sizes of the tabu lists is almost surely nondecreasing.
The ordered pair (z, u) belongs to the essential communicating class C, the

size of the tabu list is constant. Assume that u is not full. Since R0|t|({0}) >
0 and φ(z, u) = 0|u|, we obtain P(z,u)(|T1| = |u|+ 1)) > 0. Whence, we have
reached a contradiction and the tabu list u must be full: |u| = m. Yet,
R0m({m + 1}) > 0 and we infer that P(z,u) (T1 = (z · u)[m+ 1]). Thus, the
last element of the tabu list is infinitely removed from the tabu list. Yet,
the tabu random walk never visits the setW and, consequently, occurrences
of vertices in the set W are never inserted in the tabu list. We infer that,
eventually, the tabu list does not contain any occurrences of vertices in W.
It contradicts the assumption that W is included in L(t) and so V(C) = V.
We conclude that every tabu random walk associated to R on G terminates.

6 Proof of Theorem 7

Let m be a positive integer and let G be a m-free graph. For all integers j,
we set j+ = max{j, 0}. For each integer ` greater than or equal to m+1, and
for each integer i in {2, . . . , `}, we say that a walk (xn)`n=0 retracts at step
i if xi belongs to {x(i−2)+ , . . . , x(i−m−1)+} whereas Vxi−1 is not included in
{x(i−2)+ , . . . , x(i−m−1)+}. We remark that a walk cannot retract at step i if
xi−1 is pendant, because, necessarily, xi = xi−2 = x(i−2)+ , Vxi−1 = {x(i−2)+}
and consequently Vxi−1 is included in {x(i−2)+ , . . . , x(i−m−1)+}.

Fix a vertex y of G and consider a tabu random walk (Xn)n>0 on G

associated to FIFOm update rule. We will show that the walk (Xn)
H+

y

n=0

does not retract. On the event {H+
y > 2}, for every integer i in the set

{2, . . . ,H+
y }, the vertex Xi belongs to L(Ti−1) if and only if VXi−1 is included

in L(Ti−1). Yet, for every nonnegative integer i,

L(Ti−1) = {X(i−2)+ , . . . , X(i−m−1)+} .
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Hence, (Xn)
H+

y

n=0 retracts at step i if and only if VXi−1 is included in L(Ti−1).

The proof is by contradiction: we denote by i the first retract of (Xn)
H+

y

n=0.
We set x = Xi−1 and we denote by Vx,1 the set of pendant neighbors of x.
As remarked above, x is non-pendant and Vx\Vx,1 is nonempty. Necessarily,
this last set is included in L(Ti−1). Let j be the last visit before step i− 1
of non-pendant neighbors of x:

j = min{k > 2 : X(i−k)+ ∈ Vx \ Vx,1} .

Hence, j is even and, if j > 4, then for all integers r in {1, . . . , j/2 − 1},
X(i−2r+1)+ = Xi−1 and X(i−2r)+ belongs to Vx,1. Thus, Vx \ Vx,1 is included

in L(T(i−j+1)+). By minimality of i, the walk (Xn)
(i−j+1)+

n=(i−j−m)+
does not

retract. Hence, all the vertices it visits are distinct, except if there exists
an integer k in {(i − j −m)+, . . . , (i − j − 1)+} such that Xk = Xk+2 and
Xk+1 is pendant. Consider the increasing sequence J of integers formed
from {(i− j −m)+, . . . , (i− j + 1)+} by removing all such integers k. The
sequence (Xm)m∈J is a walk that contradicts the m-freeness of G.

Now, consider an update rule R of length k, where the integer k be-
longs to {0, . . . ,m} and fix two vertices x and y of G. We will show that
E(x,ε)H

+
y (R) 6 E(x,ε)H

+
y (FIFOm), due to possible retracts of the tabu

chain (Xn(R), Tn(R))n>0.
We associate to each walk w from x to y a walk w̃ from x to y without

any retract. The walk w̃ is the last term of the sequence of walks (wr)sr=0,
inductively defined as follows. First, set w0 = w. Suppose that wr = (xrn)`rn=0

has been defined for some nonnegative integer r. Let I the set of integers i
in {0, . . . , `r− 1} such that wr has a retract at step i; besides, if x = y, then
we require that xri 6= x. If I is empty, then w̃ = wr and r = s. Otherwise,
let i = max I and j = min{k > 2 : xri = xr(i−k)+}. We remark that i > j

and we define wr+1 by removing all steps of wr from i− j + 1 to i:

xr+1
n =

{
xrn if n 6 i− j,
xrn+j if n > i− j.

The resulting walk w̃ does not retract.

We denote by (X̃n)
H̃+

y

n=0 the random walk from x to y of length H̃+
y ,

obtained by erasing all retracts of the random walk (Xn(R))
H+

y (R)
n=0 by fol-

lowing the procedure defined in the previous paragraph. By construction,

H̃+
y 6 H+

y . We will show by induction that (X̃n)
H̃+

y

n=0 follows the same
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law than the first H+
y (FIFOm) steps of the walk (Xn(FIFOm))

H+
y (FIFOm)

n=0

starting from x with empty tabu list. Therefore, we will derive the equality

E(x,ε)H̃
+
y (R) = E(x,ε)H

+
y (FIFOm) ,

which implies E(x,ε)H
+
y (R) 6 E(x,ε)H

+
y (FIFOm).

First, both walks start at x with empty tabu list. Second, assume that n
is a nonnegative integer such that H̃+

y > n and that (X̃k)
n
k=0 has the same

law that (Xk(FIFOm))nk=0. By construction, X̃n+1 follows the uniform law

on V
X̃n
\ {X̃(n−1)+ , . . . , ˜X(n−m)+} and Xn+1(FIFOm) follows the uniform

law on VXn \ {X(n−1)+ , . . . , X(n−m)+}.
Finally, R and FIFOk yield the same transition kernel if and only if

R0j = δ0 for every integer j in {0, . . . , k − 1} and R0k = δk+1. Indeed,
on every m-free graph, the current vertex never has any occurrence in the
current tabu list. Hence, the transition kernel of the tabu chain is given by
the probability laws R0j , where j runs through {0, . . . , k}.

Reciprocally, consider the clique with vertex set {0, . . . ,m + 2}. This
graph is (m+ 2)-regular, thus m-free. First, assume that the set

{j ∈ {0, . . . , k − 1} : R0j ({0}) < 1}

is nonempty and let i denote its minimum. We remark that

P(0,ε)(Ti+1(R) = (i− 1) · · · 0, ∀n ∈ {0, . . . , i+ 1}, Xn(R) = n) > 0 .

Hence

P(0,ε)(Xi+2(R) = i, ∀n ∈ {0, . . . , i+ 1}, Xn(R) = n) > 0 ,

whereas

P(0,ε)(Xi+2(FIFOk) = i, ∀n ∈ {0, . . . , i+ 1}, Xn(FIFOk) = n) = 0 .

Second, assume that R0k({k + 1}) < 1} and let j be an integer in

{1, . . . , k} such that R0k({j}) > 0. Hence

P(0,ε)(Xk+2(R) = k + 1− j, ∀n ∈ {0, . . . , k + 1}, Xn(R) = n) > 0 ,

whereas

P(0,ε)(Xk+2(FIFOk) = k+1−j, ∀n ∈ {0, . . . , k+1}, Xn(FIFOk) = n) = 0.

We have shown that, in both cases, the tabu random walk associated to
R that starts at x with empty tabu list does not follow the same law than
that associated to FIFOk.
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7 Proof of Proposition 16

Assume that R is an update rule of length one distinct from FIFO1 and
consider an associated tabu random walk on the flower F` that starts at
the vertex 1 with empty tabu list. Let a = Rε({1}) and b = R0({1}). The
vectors

h =



E(1,ε)H0(1, r)

E(2,ε)H0(1, r)

E(2,1)H0(1, r)

E(3,2)H0(1, r)

E(1,2)H0(1, r)

E(4,2)H0(1, r)

 and v =



1
1
1
1
1
1


satisfy h = Ah+ v, where A is the (6× 6)-matrix given by

A =



0 2a`
2`+1

2(1−a)`
2`+1 0 0 0

a
2

a
2 0 1−a

2
1−a
2 0

0 0 b 1− b 0 0
0 0 0 0 1 0

0 0 (2`−1)(1−b)
2`

b
2` 0 2b(`−1)

2`

0 0 0 1−b
2

1
2

b
2


.

hence,

E(1,ε)H0(R) =
g(a, b, `)

(2− b)(1− b)(2a2`+ 2a`− 4`+ a− 2)
,

where g(a, b, `) is the following polynomial in (a, b, `):

8a2b2`2 + 8ab2`2 − 16b2`2 − 32a2b`2 − 32ab`2 + 64b`2+

+24a2`2 + 24a`2 − 48`2 + 2ab2`− 8b2`+ 10a2b`− 4ab`+

+12b`− 12a2`+ 8a`− 8`+ ab2 − 2b2 − 3ab+ 6b+ 2a− 4 .

therefore,

E(1,ε)H0(R) ∼`→+∞
4`(3− b)

2− b
,

while E(1,ε)H0(FIFO0) = 6`+ 1. Since 0 < b < 1, if ` is great enough, then
E(1,ε)H0(R) > E(1,ε)H0(FIFO0) on F`.
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8 Mean hitting times on cliques

Proposition 10, Corollary 11 and Corollary 12 are proved in this section.
We begin with Proposition 10.

Proof of Proposition 10. Let r be a integer greater than or equal to 2. Con-
sider an update rule R of length m and an associated tabu chain (Xn, Tn)n>0

on the clique formed by the r vertices {0, . . . , r − 1}. Set H0 = E(1,ε)H0,
Hm+1 = 0 and for every integer k in {1, . . . ,m}, Hk = E(k+1,k···1)H0. Hence,
for every nonnegative integer k in {0, . . . ,min{m, r − 2}},

Hk = 1 +
r − 2− k
r − 1− k

(
(1−R0k({0}))Hk +R0k({0})Hk+1

)
.

Thus, for every integer k in {0, . . . ,min{m, r− 2}− 1}, the hitting time Hk

equals gk(R
0k({0}), Hk+1). First, assume that m 6 r − 2. Consequently,

Hm = r−1−m and E(1,ε)H0 = (g0 ◦ · · · ◦gm−1)(r−1−m). Second, assume
that m > r − 2. Thus, Hr−2 = 1 and E(1,ε)H0 = (g0 ◦ · · · ◦ gr−2)(1).

Proof of Corollary 11. For all integers k in {0, . . . ,min{m, r − 2} − 1} and
for all real numbers x, the function p 7→ gk(p, x) decreases.

Proof of Corollary 12. According to Proposition 10, the inequality of mean
hitting times E(1,ε)H0(S) < E(1,ε)H0(R) holds if and only if

g`−1(S
0`−1

({0}), r − `− 1) < g`−1(R
0`−1

({0}), E(`+1,`···1)H0(R)) .

Yet,

g`−1(1, r − `− 1) = 1 +
(r − `− 1)2

r − `
and

g`−1(0, E(`+1,`···1)(R)) = r − ` .

By continuity of the function p 7→ g`−1(p, x), if (S0`−1
({0}), R0`−1

({0})) is
close enough to (1, 0), then the result follows.

9 Mean hitting times on paddles

Proposition 13 is devoted to the expressions of the mean hitting times
E(1,ε)H0(LRUm) and E(1,ε)H0(RANDm) on the paddle Gr, where r is an
integer greater than or equal to 3 and m is a nonnegative integer. To obtain
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such expressions is not an easy task, and we divide the proof of Proposi-
tion 13 in several lemmas.

The first lemma deals with the case m = 0, corresponding to the simple
random walk on the paddle Gr.

Lemma 17. For every integer r > 3,

E(1,ε)H0(LRU0) = E(1,ε)H0(RAND0) =

{
2 if r = 3,

r2 − 5r + 9 if r > 4.

Proof. A direct application of potential theory, see for example the book [3,
p. 55], yields

E(1,ε)H0 =

r−1∑
x=0

v(x) deg(x) ,

where v is an harmonic function on {0, . . . , r−1}\{0, 1} such that v(0) = 0
and

∑
x∈V1(v(1) − v(x)) = 1. Since for all integers x in {1, . . . , r − 1},

v(x) = 1, the result follows.

If m is greater than or equal to r − 1, then the mean hitting times
E(1,ε)H0(LRUm) and E(1,ε)H0(RANDm) share the following expression.

Lemma 18. For all integers r and m such that r > 3 and m > r − 1,

E(1,ε)H0(LRUm) = E(1,ε)H0(RANDm) =
r2 − 3r + 4

2
.

Proof. A tabu random walk on the paddle Gr starting at the vertex 1, that
does not hit the vertex 0 at its first move, has the same law for both update
rules LRUm or RANDm and follows almost surely the three successive steps:

1. The walker loads in its tabu list one occurrence of each vertex in
{1, . . . , r− 1}, having the letter 1 at (r− 1)-th position and the letter
2 at (r − 2)-th position.

2. The walker performs a simple random walk starting at the vertex 2 if
r = 3 or at an uniformly random vertex in {3, . . . , r−1} if r ≥ 4, until
he returns to the vertex 1.

3. The walker goes almost surely to the vertex 0.
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By symmetry, the first step reads:

E(1,ε)H0 =
1

2

(
r − 1 + E(r−1,(r−2)···1)H0)

)
.

If r = 3, then E(2,1)H0 = 1 + E(1,2·1)H0 = 2 and E(1,ε) = 2. If r > 4, then
starting from an uniformly random vertex x in {3, . . . , r − 1} with tabu set
{1, . . . , r − 1} \ {x}, the hitting time of the vertex 2 follows the geometric
law of parameter 1/(r − 3):

E(r−1,(r−2)···1)H0 = r − 3 + E(2,(r−1)···1)H0 .

Then,

E(2,(r−1)···1)H0 = 1 +
1

r − 2
E(1,(r−1)···1)H0 +

r − 3

r − 2
E(r−1,(r−1)···1)H0 .

Since V1 \ {r − 1, . . . , 1} = {0}, we get E(1,(r−1)···1)H0 = 1. Furthermore,
E(r−1,(r−2)···1)H0 = E(r−1,(r−1)···1)H0. Consequently E(2,(r−1)···1)H0 = r2 −
5r + 8, E(r−1,(r−2)···1)H0 = r2 − 4r + 5 and E(1,ε)H0 = (r2 − 3r + 4)/2.

We assume that r > 3 and 1 6 m 6 r − 2. A tabu random walk on
Gr starting at the vertex 1, that does not hit the vertex 0 at its first move,
goes almost surely to the vertex 2. Next, if m > 2, the walker stays on the
vertices in {3, . . . , r − 1}, until its tabu list is full. By symmetry,

E(1,ε)H0 =
1

2

(
m+ 1 + E(m+1,m···1)H0

)
.

Afterwards, the behavior of the walker differs according to its update rule.
First we deal with LRUm. We distinguish between the three cases 1 6

m 6 r − 4, m = r − 3 and m = r − 2.

Lemma 19. For all integers r and m such that r is greater than or equal
to 5 and 1 6 m 6 r − 4,

E(1,ε)H0(LRUm) =
1

2

(
r2 − 4r −mr + 2m+ 8

)
.

Proof. Starting from m + 1 with tabu list m · · · 1, the vertices 1 and 2 are
almost surely removed from the tabu list in two steps:

E(m+1,m···1)H0(LRUm) = 2 + E(m+3,(m+2)···3)H0(LRUm) .

Then, the hitting time of the vertex 2 follows the geometric law of parameter
1/(r −m− 3):

E(m+3,(m+2)···3)H0(LRUm) = r −m− 3 + E(2,(m+2)···3)H0(LRUm) .
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Next, the walker goes to the vertex 0 in two steps with probability 1/(r −
m − 2) and to a vertex in {3, . . . , r − 1} otherwise. In the latter case, the
walker must removes the vertex 2 from its tabu list before being able to
return to 2 again: the mean hitting time E(2,(m+2)···3)H0(LRUm) equals

2

r −m− 2
+
r −m− 3

r −m− 2

(
m+ 1 + E(m+3,(m+2)···3)H0(LRUm)

)
.

We infer that:

E(2,(m+2)···3)H0(LRUm) =2 + (r −m− 3)(r − 2) ,

E(m+3,(m+2)···3)H0(LRUm) =2 + (r −m− 3)(r − 1) ,

E(m+1,m···1)H0(LRUm) =4 + (r −m− 3)(r − 1) ,

E(1,ε)H0(LRUm) =
1

2

(
r2 − 4r −mr + 2m+ 8

)
.

Lemma 20. For all integers r greater than or equal to 4,

E(1,ε)H0(LRUr−3) =
r2 − 10

2(r − 3)
.

Proof. Starting from r− 2 with tabu list (r− 3) · · · 1, the vertex 1 is almost
surely removed from the tabu list in one step:

E(r−2,(r−3)···1)H0(LRUr−3) = 1 + E(r−1,(r−2)···2)H0(LRUr−3) .

Each neighbor of r − 1 has an occurrence in the tabu list, thus

E(r−1,(r−2)···2)H0(LRUr−3) =1 +
1

r − 3
E(2,(r−1)···3)H0(LRUr−3)+

+
r − 4

r − 3
E(r−1,(r−1)···3)H0(LRUr−3) .

Since E(2,(r−1)···3)H0(LRUr−3) = 2 and E(r−1,(r−1)···3)H0(LRUr−3) = 1 +
E(2,(r−1)···3)H0(LRUr−3) = 3, we derive:

E(r−1,(r−2)···2)H0(LRUr−3) =
4r − 13

r − 3
,

E(r−2,(r−3)···1)H0(LRUr−3) =
5r − 16

r − 3
,

E(1,ε)H0(LRUr−3) =
r2 − 10

2(r − 3)
.
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Finally, we consider the update rule LRUr−2.

Lemma 21. For all integers r greater than or equal to 3,

E(1,ε)H0(LRUr−2) = r − 1 .

Proof. On the graph G3, E(1,ε)(LRUr−2) = 2. From now on, assume that
r > 4. Hence, the mean hitting time E(r−1,(r−2)···1)H0(LRUr−2) equals

1 +
1

r − 3
E(2,(r−1)···2)H0(LRUr−2) +

r − 4

r − 3
E(r−1,(r−1)···2)H0(LRUr−2) .

Starting at r − 1 with tabu list (r − 1) · · · 2, the walker performs a simple
random walk on the subgraph induced by {2, . . . , r− 1} until he reaches the
vertex 2. Consequently,

E(r−1,(r−1)···2)H0(LRUr−2) = r − 3 + E(2,(r−1)···2)H0(LRUr−2) .

It follows E(2,(r−1)···2)H0(LRUr−2) = 2 and E(r−1,(r−2)···1)H0(LRUr−2) =
r − 1. Thus,

E(1,ε)H0(LRUr−2) =
1

2
(r − 1 + r − 1) = r − 1 .

Second, we deal with the RANDm update rule. In a first time, we
assume that m = 1.

Lemma 22. For all integers r greater than or equal to 3,

E(1,ε)H0(RAND1) =

{
7
3 if r = 3,
8r3−61r2+184r−195

6(2r−5) if r > 4.

Proof. If r = 3, then E(1,ε)H0(RAND1) = 7/3. From now on, assume that
r > 4. The vectors

h =



E(2,1)H0(RAND1)

E(3,1)H0(RAND1)

E(3,2)H0(RAND1)

E(4,3)H0(RAND1)

E(2,3)H0(RAND1)

E(1,3)H0(RAND1)

 and v =



1
1
2

r − 4
1 + 1

2(r−3)
1
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satisfy h = Ah+ v, where A is the (6× 6)-matrix given by

A =



0 1
2

1
2 0 0 0

1
2(r−3)

r−4
2(r−3) 0 r−4

2(r−3)
1

2(r−3) 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 r−4

2(r−3)
r−4

2(r−3) 0 1
2(r−3)

1
4 0 0 0 1

4 0


.

We get

h =
1

3(2r − 5)



8r3 − 61r2 + 172r − 165
8r3 − 61r2 + 163r − 135
8r3 − 61r2 + 169r − 165
8r3 − 61r2 + 157r − 135
8r3 − 67r2 + 196r − 195
8r3 − 32r2 + 98r − 105

 ,

which yields

E(1,ε)H0(RAND1) =
8r3 − 61r2 + 184r − 195

6(2r − 5)
.

Lemma 23. For all integers r and m such that r is greater than or equal
to 6 and 2 6 m 6 r − 4, the mean hitting time E(1,ε)H0(RANDm) equals

f(m, r)

2(m+ 1)(2m+ 1)(2r −m− 4)
,

where f(m, r) is the following polynomial in m and r:

4m2r3 + 8mr3 + 4r3 − 6m3r2 − 36m2r2 − 54mr2 − 26r2 + 2m4r + 34m3r+

+ 120m2r + 146mr + 66r − 6m4 − 51m3 − 134m2 − 140m− 59 .

Proof. The vectors

h =



E(m+1,m···1)H0(RANDm)

E(m+2,(m+1)···3·1)H0(RANDm)

E(m+2,(m+1)···2)H0(RANDm)

E(m+3,(m+2)···3)H0(RANDm)

E(2,(m+1)···3·1)H0(RANDm)

E(2,(m+2)···3)H0(RANDm)

E(1,(m+2)···3)H0(RANDm)


and v =



1
1

m+ 1
r −m− 3

1
1 + 1

r−m−2
m
m+1

1
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satisfy h = v +Ah, where A is the (7× 7)-matrix

m−1
m+1

1
m+1

1
m+1 0 0 0 0

0 r−m−3
r−m−2

m
m+1 0 r−m−3

r−m−2
1

m+1
1

r−m−2
m
m+1

1
r−m−2

1
m+1 0

0 0 0 1 0 0 0
0 0 0 0 0 1 0

m−1
m+1

1
m+1

1
m+1 0 0 0 0

0 0 r−m−3
r−m−2

m
m+1

r−m−3
r−m−2

1
m+1 0 0 1

r−m−2
1

m+1

0 0 0 0 1
2

m
m+1

1
2

1
m+1 0


.

Hence,

h1 =
1

(m+ 1)(2m+ 1)(2r −m− 4)

(
4m2r3 + 8mr3 + 4r3 − 6m3r2−

− 36m2r2 − 54mr2 − 26r2 + 2m4r + 30m3r + 110m2r + 138mr+

+ 64r − 4m4 − 38m3 − 110m2 − 123m− 55
)
,

h2 =
1

(m+ 1)(2m+ 1)(2r −m− 4)

(
4m2r3 + 8mr3 + 4r3 − 6m3r2−

− 36m2r2 − 54mr2 − 26r2 + 2m4r + 28m3r + 103m2r + 131mr+

+ 62r − 2m4 − 27m3 − 87m2 − 104m− 50
)
,

h3 =
1

(m+ 1)(2m+ 1)(2r −m− 4)

(
4m2r3 + 8mr3 + 4r3 − 6m3r2−

− 36m2r2 − 54mr2 − 26r2 + 2m4r + 28m3r + 107m2r + 137mr+

+ 64r − 4m4 − 36m3 − 109m2 − 125m− 56
)
,

h4 =
1

(m+ 1)(2m+ 1)(2r −m− 4)

(
4m2r3 + 8mr3 + 4r3 − 6m3r2−

− 36m2r2 − 54mr2 − 26r2 + 2m4r + 24m3r + 97m2r + 129mr+

+ 62r − 2m4 − 23m3 − 85m2 − 108m− 52
)
,

h5 =
1

(m+ 1)(2m+ 1)(2r −m− 4)

(
4m2r3 + 8mr3 + 4r3 − 6m3r2−

− 36m2r2 − 54mr2 − 26r2 + 2m4r + 30m3r + 110m2r + 138mr+

+ 64r − 4m4 − 38m3 − 110m2 − 123m− 55
)
,
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h6 =
1

(m+ 1)(2m+ 1)(2r −m− 4)

(
4m2r3 + 8mr3 + 4r3 − 6m3r2−

− 40m2r2 − 60mr2 − 28r2 + 2m4r + 30m3r + 126m2r + 162mr+

+ 72r − 4m4 − 40m3 − 131m2 − 151m− 64
)
,

h7 =
1

(2m+ 1)(2r −m− 4)

(
2mr3 + 2r3 − 3m2r2 − 15mr2 − 14r2+

+ m3r + 14m2r + 45mr + 38r − 2m3 − 19m2 − 48m− 36
)
,

Since

E(1,ε)H0(RANDm) =
m+ 1 +H1

2
,

the result follows.

Then, we treat the case r > 5 and m = r − 3.

Lemma 24. For all integers r greater than or equal to 5,

E(1,ε)H0(RANDr−3) =
20r3 − 104r2 + 177r − 100

4(3r2 − 10r + 6)
.

Proof. The vectors

h =



E(r−2,(r−3)···1)H0(RANDr−3)

E(r−2,(r−2)···2)H0(RANDr−3)

E(r−1,(r−2)···3·1)H0(RANDr−3)

E(r−1,(r−2)···2)H0(RANDr−3)

E(r−1,(r−1)···3)H0(RANDr−3)

E(2,(r−2)···3·1)H0(RANDr−3)

E(2,(r−2)···2)H0(RANDr−3)

E(2,(r−1)···3)H0(RANDr−3)

E(1,(r−1)···3)H0(RANDr−3)


and v =



1
1
1
1
1
1
3
2

1 + r−3
r−2

1


satisfy h = v +Ah, where A is the (9× 9)-matrix

r−4
r−2 0 1

r−2
1
r−2 0 0 0 0 0

0 0 0 1 0 0 0 0 0
0 0 0 0 0 r−3

r−2 0 1
r−2 0

0 (r−4)2
(r−3)(r−2) 0 r−4

(r−3)(r−2)
r−4

(r−3)(r−2) 0 1
r−2

1
(r−3)(r−2) 0

0 0 0 0 0 0 0 1 0
r−4
r−2 0 1

r−2
1
r−2 0 0 0 0 0

0 0 0 1
2 0 0 0 0 0

0 0 0 0 0 0 0 0 1
r−2

0 0 0 0 0 r−3
2(r−2) 0 1

2(r−2) 0


.
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Hence,

h =
1

3r2 − 10r + 6



14r3−72r2+125r−76
2

4r3 − 13r2 + 5r + 8
7r3 − 40r2 + 84r − 66
(r − 2)(4r2 − 8r − 1)

25r2−89r+72
2

14r3−72r2+125r−76
2

4r3−7r2−15r+20
2

19r2−69r+60
2

7r3−37r2+74r−60
2


and we derive:

E(1,ε)H0(RANDr−3) =
20r3 − 104r2 + 177r − 100

4(3r2 − 10r + 6)
.

Finally, we treat the case r > 4 and m = r − 2.

Lemma 25. For all integers r greater than or equal to 4,

E(1,ε)H0(RANDr−2) =

{
4 if r = 4,
(r−1)(8r2−28r+27)

4(r−2)r if r > 5.

Proof. If r = 4, then the mean hitting time E(1,ε)H0(RAND2) equls 4. From
now on, we assume that r > 5. We remark that E(2,(r−1)···2) = 2 and

E(r−1,(r−1)···2)H0(RANDr−2) = r − 3 + E(2,(r−1)···2)H0(RANDr−2) ,

hence E(r−1,(r−1)···2)H0(RANDr−2) = r − 1. The vectors

h =



E(r−1,(r−2)···1)H0(RANDr−2)

E(r−1,(r−1)···3·1)H0(RANDr−2)

E(r−2,(r−2)···1)H0(RANDr−2)

E(2,(r−2)···1)H0(RANDr−2)

E(2,(r−1)···3·1)H0(RANDr−2)

E(1,(r−1)···3·1)H0(RANDr−2)

 and v =



1 + 2
(r−3)(r−1) + r−4

r−3
1
1
1

1 + 1
r−1 + r−3

r−2
3
2
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satisfy h = v +Ah, where A is the (6× 6)-matrix

r−4
(r−3)(r−1)

r−4
(r−3)(r−1)

(r−4)2
(r−3)(r−1)

1
r−1

1
(r−3)(r−1) 0

0 0 0 0 1 0
1 0 0 0 0 0
1 0 0 0 0 0
r−3

(r−2)(r−1)
r−3

(r−2)(r−1)
(r−3)(r−4)
(r−2)(r−1) 0 0 1

(r−2)(r−1)
0 0 0 0 1

2 0


.

Consequently,

h =



3(r−1)(2r2−8r+9)
2(r−2)r

3r3−17r2+37r−27
(r−2)r

6r3−28r2+47r−27
2(r−2)r

6r3−28r2+47r−27
2(r−2)r

3(r3−6r2+13r−9)
(r−2)r

3(r3−5r2+11r−9)
2(r−2)r


and we infer that

E(1,ε)H0(RANDr−2) =
(r − 1)(8r2 − 28r + 27)

4(r − 2)r
.

10 Mean hitting times on lines

If the length m of the update rule is zero, then every tabu random walk is a
simple random walk. Direct application of potential theory, see for example
the book [3, p. 55], yields the equality E(1,ε)H0 = 2r − 3.

Now, we assume that m is a positive integer. A tabu random walk
(Xn)n>0 with LRUm or FIFOm update rule that starts at the vertex 1
and does not hit the vertex 0 at first move follows almost surely the three
successive steps.

1. The walker hits the vertex r − 1 without backtracking.

2. The walker performs a simple random walk starting at r − 1, until he
hits a vertex whose neighborhood is not included in the current tabu
set.

3. The walker goes to the vertex 0 without backtracking.
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Fix a positive integer m. Let s = max{r−m, 1} and H = inf{n > 0 : Xn 6
minL(Tn)}. The random variable H is a stopping time for the natural
filtration associated to the tabu random walk and the stochastic process
(minL(Tn))Hn=0 is P(r−1,(r−2)···s)-almost surely non decreasing. Thus, H is
P(r−1,(r−2)···s)-almost surely finite and

E(1,ε)H0 =
1

2
+

1

2

(
r − 2 + E(r−1,(r−2)···s)(H +XH)

)
.

First, we treat the LRUm update rule. We remark that

P(r−1,(r−2)···s) (∀n ∈ {0, . . . ,H}, minL(Tn)(LRUm) = s) = 1 .

Thus, P(r−1,(r−2)···s)(XH(LRUm) = s) = 1, E(r−1,(r−2)···s)H(LRUm) = (r −
1− s)2 and

E(1,ε)H0(LRUm) =
1

2

(
r − 1 + (r − 1− s)2 + s

)
.

Second, we deal with the FIFOm update rule. We remark that

P(r−1,(r−2)···s) (∀n ∈ {0, . . . ,H}, minL(Tn)(FIFOm) = s+ n) .

Hence, if m > 2, then E(r−1,(r−2)···s)H(FIFOm) < E(r−1,(r−2)···s)H(LRUm),
which yields

E(1,ε)H0(FIFOm) < E(1,ε)H0(LRUm) .

As far as we know, there is no convenient expression for the mean hitting
time E(r−1,(r−2)···s)H(FIFOm). However, we will prove that for every posi-
tive integer k,

E(1,ε)H0(FIFO2k−1) = E(1,ε)H0(FIFO2k) < E(1,ε)H0(FIFO2k+1) .

Indeed, assume that

(X0(FIFOm), T0(FIFOm)) = (r − 1, (r − 2) · · · s)

and

(X0(FIFOm+1), T0(FIFOm+1)) = (r − 1, (r − 2) · · ·max{s− 1, 1}) .

To keep the notations easier, we set H(m) = H(FIFOm). The hitting
time H(m) is stochastically dominated by the hitting time H(m + 1) and
the random variable XH(m)(FIFOm) is stochastically dominated by the
random variable XH(m+1)(FIFOm+1). More precisely, the almost surely
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finite sequences (Xn(FIFOm+1))
H(m)
n=0 and (Xn(FIFOm))

H(m)
n=0 follow the

same law and without loss of generality, we may suppose that

(Xn(FIFOm+1))
H(m)
n=0 = (Xn(FIFOm))

H(m)
n=0 .

If m is odd, then H(m+ 1) = H(m) and

XH(m)(FIFOm+1) = XH(m)(FIFOm) .

In contrary, assume that m is even. The event A defined by

A = {r − 2 +H(m) > m}

has positive probability. On the event Ac, H(m+ 1) = H(m) and

XH(m)(FIFOm+1) = XH(m)(FIFOm) ,

whereas on the event A,

XH(m)(FIFOm+1) = minL(Tn(FIFOm+1)) + 1

and H(m + 1) = H(m) + max{r − 1 − H(m), Y }, where Y follows the
geometric law with parameter 1/2.

We summarize our results. On one hand,

E(1,ε)H0(LRUm) =


2r − 3 if m = 0,
1
2

(
m2 − 3m+ 2r

)
if 1 6 m < r − 1,

1
2

(
r2 − 3r + 4

)
if m > r − 1.

On the other hand, for every positive integer k,

E(1,ε)H0(FIFO2k−1) = E(1,ε)H0(FIFO2k) < E(1,ε)H0(FIFO2k+1) .

Besides, E(1,ε)H0(FIFOm) < E(1,ε)H0(LRUm) if m > 3 and

lim
m→+∞

E(1,ε)H0(FIFOm) = E(1,ε)H0(LRUr) .

11 Mean hitting times on flowers

If the length m of the update rule is zero, then every tabu random walk is a
simple random walk. Direct application of potential theory, see for example
the book [3, p. 55], yields the equality

E(1,ε)H0 =

r−1∑
x=0

v(x) deg(x) ,
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where v is an harmonic function on {0, . . . , 2`+1}\{0, 1} such that v(0) = 0
and

∑
x∈V1(v(1) − v(x)) = 1. Since for all integers x in {2, . . . , 2` + 1},

v(x) = 1, we get

E(1,ε)H0(FIFO0) = E(1,ε)H0(LRU0) = E(1,ε)H0(RAND0) = 6`+ 1 .

Consider the update rule RAND1. By symmetry,

E(1,ε)H0(RAND1) =1 +
2`

2`+ 1
E(2,1)H0(RAND1) ,

E(2,1)H0(RAND1) =1 +
1

2

(
E2,1 + E(3,2)H0(RAND1)

)
,

E(3,2)H0(RAND1) =1 + E(1,2)H0(RAND1) ,

E(1,2)H0(RAND1) =1 +
2(`− 1)

4`

(
E(4,2)H0(RAND1)+E(2,1)H0(RAND1)

)
+

1

4`

(
E(2,1)H0(RAND1) + E(3,2)H0(RAND1)

)
E(4,2)H0(RAND1) =1 +

1

4

(
E(4,2)H0(RAND1) + E(3,2)H0(RAND1)

)
+

1

2
E(1,2)H0(RAND1) .

Hence,

E(1,ε)H0(RAND1) =
40`2 + 8`+ 3

3(2`+ 1)
.

When ` = 5, we infer that E(1,ε)H0(RAND1) ≈ 31.61, while a previous
expression yields E(1,ε)H0(RAND0) = 31. Thus, the mean hitting time
E(1,ε)H0(RAND1) is strictly greater than E(1,ε)H0(RAND0).

Likewise,

E(1,ε) = 1 +
2`

2`+ 1

(
1 + E(3,2·1)

)
,

and the vectors

h =



E(3,2·1)
E(3,3·2)
E(1,2·1)
E(1,3·2)
E(4,3·2)
E(4,2·1)
E(5,4·2)
E(1,4·2)
E(6,4·2)
E(2,2·1)


and v =



1
1
1
1
1
1
1
1
1
1
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satisfy h = Ah+ v, where A is the 10× 10-matrix given by

A =



1
6

1
6

1
3

1
6 0 0 0 0 0 1

6
0 0 0 1 0 0 0 0 0 0
1
2` 0 0 0 0 2(`−1)

2` 0 0 0 0

0 0 0 0 2(`−1)
3(2`−1)

4(`−1)
3(2`−1) 0 0 0 0

0 0 0 1
6

1
6 0 1

3
1
3 0 0

1
3 0 0 0 0 1

3
1
3 0 0 0

0 0 0 1
3 0 0 0 2

3 0 0
2

3(2`−1) 0 0 0 0 4`−6
3(2`−1)

2
3(2`−1) 0 2(`−2)

3(2`−1) 0

0 0 0 0 0 0 1
3

1
2

1
6 0

1 0 0 0 0 0 0 0 0 0


Thus,

h =
1

5(308`2 − 137`+ 12)



11144`3 − 11150`2 + 4287`− 621
2(5572`3 − 6541`2 + 2079`− 195)
11144`3 − 13838`2 + 6471`− 1032

(7`− 2)(1592`2 − 1634`+ 225)
11144`3 − 12158`2 + 3207`− 144

(22288`3 − 19612`2 + 5850`− 621)/2
2(5572`3 − 6541`2 + 1809`− 90)
11144`3 − 14622`2 + 4033`− 135
11144`3 − 12158`2 + 3045`− 81
11144`3 − 9610`2 + 3602`− 561


.

Consequently,

E(1,ε)H0(RAND2) =
22288`4 − 16140`3 + 7374`2 − 1687`+ 60

5(2`+ 1)(308`2 − 137`+ 12)
,

which implies E(1,ε)H0(RAND2) ≈ 31.28 > 31 on the flower F5. We infer
that E(1,ε)H0(RAND2) is strictly greater than E(1,ε)H0(RAND0) on F5.
Similarly, on the flower F6, E(1,ε)H0(RAND2) ≈ 38.4 whereas a previous
expression yields E(1,ε)H0(RAND1) ≈ 38.23. Thus E(1,ε)H0(RAND2) is
strictly greater than E(1,ε)H0(RAND2) on F6.

Now, for all positive integers `, on the flower F`,

E(1,ε)H0(FIFO1) = 1 +
2`

2`+ 1

(
2 + E(1,2)

)
and

E(1,2) = 1 +
2`− 1

2`

(
2 + E(1,2)

)
.
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Thus

E(1,ε)H0(FIFO1) =
12`2 + 2`+ 1

2`+ 1
.

Likewise,

E(1,ε)H0(FIFO2) = 1 +
2`

2`+ 1

(
5

2
+ E(1,3·2)

)
and

E(1,3·2)H0(FIFO2) = 1 +
2`− 2

2`− 1

(
5

2
+ E(1,3·2)H0(FIFO2)

)
.

Therefore,

E(1,ε)H0(FIFO2) =
14`2 − 5`+ 1

2`+ 1
.

Consequently, on the flower F7, E(1,ε)H0(FIFO2) ≈ 43.47 > 43, thus
E(1,ε)H0(FIFO2) > E(1,ε)H0(FIFO0). Besides, on F4, E(1,ε)H0(FIFO2) ≈
22.78 > 22.33 ≈ E(1,ε)H0(FIFO2).
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