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Abstract

Modern systems-on-chips need sophisticated power-management policies to control their power
consumption and temperature. These power-management policies are usually implemented
partly in software, with hardware support. They need to be validated early, hence power and
temperature-aware simulation techniques at the system-level need to be developed. Existing
approaches for system-level power and thermal analysis usually either completely abstract the
functionality (allowing only simple scenarios to be simulated), or run the functional simulation
independently from the non-functional one.

The approach presented in this paper allows a coupled simulation of a SystemC/TLM model,
possibly including the actual embedded software, with a power and temperature solver such
as ATMI or the commercial tool ACEplorer. Power and temperature analysis is done based on
the stimuli sent by the SystemC/TLM platform, which in turn can take decisions based on the
non-functional simulation.
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1 Introduction
Today’s highly integrated electronic chips have millions of transistors and consume lot of power (couple of
tens of Watts). This introduces several problems: most obvious are battery life for portable devices as well
as heating of devices integrating these chips. In addition, even for devices that are continuously plugged to
power supply, power consumption has an impact on operating costs and chip reliability.

Reducing power consumption and heating problems requires that these issues be taken into account
throughout the design of the chip. This means estimating power and thermal behavior very early, but also
designing a “power-aware” embedded software, that can react upon given power/temperature conditions
(switching blocks off or degrading quality of service).

Early power and temperature estimation is tackled using standalone power/thermal model simulations.
With such simulations, stimuli are produced through manually written high-level scenarios that depict
activations, power-state changes, etc. For each component in the model, the stimuli describe for a given
use-case the evolution of a set of parameters, including the electrical state (voltage, frequency) and the
activity (kind of computation being performed, or traffic for components like buses and memories), which
influences the current intensity.

Writing a power-aware embedded software requires more. Hand-written scenarios are too abstract:
they can validate design choices, but not the actual software implementation. RTL simulators, on the
other hand, are far too slow to execute non-trivial embedded software, even without power/temperature
instrumentation. Also, they are not available in the early phases of the design flow. A TLM simulation is
therefore needed; it has enough detail to execute the actual embedded software, but is still fast enough to
run non-trivial applications. The TLM model must be augmented with non-functional aspects to show the
developer the effect of running the embedded software from the power/thermal point of view. The result of
TLM simulations can hardly be as precise as RTL or gate-level simulation, but they are the only option for
early system-level modeling, and an improvement compared to handwritten scenarios.

TLM models can be instrumented to produce the stimuli traces described above, which can be imported
in the power/thermal simulator to perform an offline analysis. A VCD (Value Change Dump) or other
standard description may be used for that purpose. However, with this technique, it is not possible to test
power management strategies, because there is no feedback loop between the functional behavior of the
TLM simulation and power/thermal estimation.

In this work, we address this particular point: we propose a cosimulation method to integrate a TLM
simulation with a power/thermal simulation done in parallel. Figure 1 is an architectural view of the
cosimulation. The simulations act on each other: the TLM simulation (a1) provides functional stimuli
(and possibly threshold temperatures) for the power simulation (a2); the thermal solver uses the non-
functional model (actual consumption in different mode of operations for each component) to provide
power values for the thermal simulation (a3) based on a thermal model (floorplan, thermal conductivity);
the latter influences the functional behavior through temperature feedback, or interrupt notifications if
threshold temperatures are reached. The exchange between (a2) and (a3) describes a possible temperature-
dependent power analysis computation.

Computation

Power

b

a2

a3
a1

Temperature

Functional+Time

TLM

Temperature
[+ Thresholds reached ? + date]

+ Temperature thresholds

(Watts or Amperes)
Power values

+ Temperature thresholds

(e.g. RUN, IDLE, OFF, ...)
Functional stimuli

Figure 1: a1, a2, a3: one step of the co-simulation principle, b: temperature/power consumption feedback
effect

The contributions of this paper are:
• We describe an interface to let a timed functional model of an SoC communicate with an external

power/temperature (i.e., non-functional) solver. This is a cross-language interface, that might be used
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locally or over the network. It is generic in two senses: it allows connecting to multiple non-functional
solvers without changing the functional model, and it allows several strategies for coupled simulation,
leaving room for optimizations and performance/precision trade-off. We consider SystemC functional
models, but any discrete-event simulator with a notion of simulated time could be used instead.

• We present and compare techniques using this interface to run a coupled simulation, allowing the
functional model to access power and temperature values computed by the solver to take decisions in the
functional simulation. These techniques were implemented both with a simple temperature solver and an
industrial power and temperature analysis tool. The implementation of the interface on the functional side
is available as a library that can run on any SystemC implementation.

2 Related Work
The significant contribution of static power in today’s SoCs consumption, and its dependency on tempera-
ture, makes it no longer possible to rely on simple power simulators without power/temperature feedback
loop. Instruction-based TLM power simulators [1], or state-based ones [2], are fed by functional stimuli
to estimate power consumption, independently from SoC temperature. We target thermal aware power
analysis, like it is done in tools featuring power/temperature feedback [3].

Thermal simulations rely on the well established duality of heat transfer and electrical phenomena.
This led to modeling thermal properties by means of RC-circuits, and using numerical solvers to com-
pute temperature evolution. In the context of TLM, this means that there is a need for mixing discrete
simulations with continuous ones. The problem then falls in the domain of modeling and simulation of
heterogeneous systems. Tools encompassing heterogeneous modeling have been proposed. Ptolemy [4],
for instance allows to describe distinct models of computation, and to organize them into a hierarchy to
model heterogeneity [5]. In Ptolemy, the embedded model of computation must synchronize its clock
with the upper-level one, based on the time-stamp of the exchanged data. The authors in [6] propose het-
erogeneous modeling of synchronous reactive programs together with differential equations for modeling
physical phenomena. VulcaNoCs [7] allows for modeling the functional behavior of Networks-on-Chips
with cycle accurate SystemC-TLM, and relies on the Electrical Linear Network model of computation
provided by SystemC-AMS [8] to implement the RC-Circuit modeling the thermal behavior. VulcaNoCs
targets proactive thermal management. Therefore, there is no feedback of temperature in the functional
model for the validation of reactive power/thermal management.

Contrary to VulcaNoCs, we use external, domain specific, tools for thermal simulation (e.g., HotSpot [9],
ATMI [10], Aceplorer [3], etc.) and we need to feedback power/temperature in the functional model. Pow-
er/temperature modeling tools can provide more features and be less error prone than user written solvers
based on general purpose tools. When using external tools, the traditional approach is to dump the power
traces in a file (e.g. using VCD file), and to perform the analysis offline. Therefore, the result of power
and temperature analysis cannot be used by the functional simulation. For that purpose, we propose the
cosimulation of SystemC/TLM with external power/thermal simulators.

Cosimulation of SystemC and external tools (e.g., Simulink) has been proposed in [11, 12, 13]. We
could use the proposed API in [12], but the type of the exchange between simulators in our approach is
richer than simple signals. We also distinguish our work in the possible optimizations when synchronizing
simulators. Indeed, their optimizations are guided by data exchange periodicity (e.g., sampling periods
which are application-dependent), and may rely on the heavy mechanism of rollback in SystemC. Our im-
provements are better; in particular because of the type of the exchanges wich enable temporal decoupling
of simulators, and even their parallelization. From the implementation point of view, we do not patch the
SystemC scheduler as they do.

3 SystemC and TLM
Transaction Level Modeling (TLM) is an approach to virtual prototyping of Systems-On-a-Chip (SoCs).
In TLM, hardware components and interconnects are modeled by means of modules that communicate
through transactions. The reference implementation of TLM is provided as SystemC specific libraries and
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BUS

VGA

MEMSENS

CPU

p() v()
1 vga : : v ( ) {
2 whi le ( 1 ) {
3 s e t _ p w r ( " a c t i v i t y " , " w a i t " ) ;
4 / / w a i t f o r t h e n e x t r e f r e s h
5 w a i t ( 8 , sc_ms ) ;
6 / / l oad image and w a i t
7 / / t h e t i m e i t t a k e s
8 load_img ( ) ;
9 s e t _ p w r ( " a c t i v i t y " , " l o a d " ) ;

10 w a i t ( 3 , sc_ms ) ;
11 }
12 }

(a) (b)

Figure 2: Example TLM model and SystemC code of the threads

(2) CPU activity

(3) CPU volt-freq

(5) VGA activity

(6) BUS traffic

(7) MEM traffic

(1) process p

(4) process v

wait(6, SC_MS)

compute

wait

wait(8, SC_MS)

load

compute

wait(6, SC_MS)

idle

wait(2, SC_MS)

6 8 11

30 Mb/s

20 Mb/s 1 Mb/s

1 Mb/s 60 Mb/s

40 Mb/s

5 V - 50 MHz 3 V - 20 MHz 5 V - 50 MHz

wait(3, SC_MS)

Simulated time0

Figure 3: Power Parameter Trace of the Example in Section 3

templates. SystemC which is a C++ library, including a simulation engine, has become the reference in the
industry as well as an IEEE standard [14].

Figure 2-(a) is an example model of a simple SoC made of a CPU, a VGA controller, a memory MEM,
and a temperature sensor SENS. The sensor may be configured to send interrupts to the CPU (through the
signal connecting the components) when the temperature reaches some threshold values. The behavior of
the system consists in displaying images. The CPU writes images to the memory, and configures the VGA
with the address of the image to be displayed.

The behavior of the simulation is defined by the execution of the threads as managed by the SystemC
scheduler. The simulation produces a set of simulation instants t0 = 0, t1, t2, . . .; at each instant, some of
the threads execute part of their behavior (the code between two wait(...) statements) atomically and suspend
themselves by calling wait(...), which schedules them to be woken up later in the simulation (either at a
particular time, or when a particular event is triggered). We use the term simulation intervals to refer to
the successive adjacent intervals [t0, t1], [t1, t2], . . .. Of course, since SystemC is a simulation language,
the simulated time is different from the wall-clock time. It should be noted that computations occur only
at simulation instants: the simulation intervals only correspond to the increment of simulated time in the
scheduler.

Modeling an action that takes time (say, load_img(), taking 3 ms) is not directly possible in SystemC,
which can express only instantaneous computations. The duration can be modeled with a wait(time) state-
ment. One has to choose at which simulation instant the action should be executed. A common practice
is to run the functional behavior first, followed by the wait statement (e.g. load_img(); wait(3, SC_MS);). If the
duration of the action depends on the actual computation being performed, we would let load_img compute a
duration t, and the following wait can be performed as wait(t). A particular case of this is TLM-2’s temporal
decoupling [14], where t is computed by maintaining a local clock, which is reset to 0 upon calling wait. In
this paper, we follow these guidelines to model tasks that take time; i.e., “run the functional behavior first,
and call wait afterwards to model its duration”.
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4 Power Instrumentation of TL-Models
Power instrumentation is out of the scope of the paper, this section gives an insight of the kind of informa-
tion we rely on during the cosimulation, and how it is obtained.

Because the same functional platform may be used with several power models, we do not back-annotate
SystemC code directly with numerical values, but instead apply the separation of concerns principle [15]
and keep the numerical values in a separate model. We extend SystemC modules with a set of power
parameters that might be of several types (voltage, frequency, circuit activity, etc.). The value of each
parameter is set by the functional model at appropriate points in time. For example, the calls to set_pwr
at lines 3 and 9 set the parameter activity to the corresponding mode, and allow producing line (5) in the
execution trace of Figure 3.

Power instrumentation benefits from the guideline in which the functional behavior is simulated first
in zero-time, then the wait statement declares its duration. During the simulation instant t and before the
simulation jumps to the next instant, we are able to set power parameters, and compute the time ∆t for
which these states hold.

Instrumented SystemC/TLM models generate a trace of power parameters; that is, simulation intervals
associated with components’ power parameters. Fig. 3 depicts the power trace of the individual components
of the platform in Fig. 2. Traces (2) and (3) in Fig. 3 depict the activity and electrical parameters of the CPU
as set by the behavior of the process p() of the CPU. Trace (5) depicts the activity parameter of the VGA as
set by the process v(). The execution of p() and v() generate transactions. The observed transactions on each
of the BUS and MEM are quantified to computed average traffic frequencies resulting in traces (6) and (7)
of Fig. 3.

From such traces, a power simulator can compute power traces that associate each component with its
static and dynamic power consumption. Static and dynamic power consumption are functions of power
states. Notice that static power computation may depend on system temperature.

5 SystemC and Power/Temperature Solver Cosimulation Interface
This section presents an approach where an external solver can be used, but without the drawback of offline
analysis. We co-simulate the functional behavior with the power and temperature solver, which allows a
bidirectional interaction between the functional behavior and the non-functional aspects: the functionality
can for example change depending on the temperature of the system, and the temperature still depends on
power consumption hence on the functionality.

SystemC

P/T Solver
Simulated time

wait

Figure 4: Simulated time in both simulators

Figure 4 illustrates the relationship between simulated time on the functional (SystemC) and non-
functional (Power/Temperature) simulators. On the SystemC side, all computations are done at well-
defined simulation instants. On the non-functional side, the behavior within simulation intervals is con-
tinuous. In most cases, this continuity is simulated using iterations over time internally, possibly with a
variable step (as shown on the figure). We consider the simulation intervals as “black boxes” and do not
want to rely on internal implementation details of the solver. Note that this relationship between simulated
times does not necessarily force the order in which the simulations will be executed (see Section 6 for
details).

Figure 5 illustrates the global view of the cosimulation architecture. On the left part is the SystemC
functional model instrumented with power parameters. On the right-hand side of the figure is the tem-
perature solver. The SystemC component SYNCHRO is added between the platform itself and the pow-
er/temperature solver to deal with data exchange and synchronization between simulators. The SYNCHRO
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Figure 5: Architectural View of the Cosimulation

component implements several synchronization strategies; they are discussed in Section 6. The next section
describes the type of exchanges that happen between the simulators.

5.1 Description and Implementation of the Interface

The discrete simulator (e.g., SystemC) produces the trace that is exploited by the continuous simulators
(e.g., temperature solver). At some point in the cosimulation, the SystemC model sends a request describing
the evolution of power parameters during an interval of simulated time (one, or possibly several simulation
intervals). The non-functional solver will reply with a response that describes the result of simulation on
the requested time interval.

The information contained in a request is similar to the one contained in execution traces used in offline
analysis, but describe only the evolution of parameters during the time interval [ti, tj ] (one, or several
simulation intervals); it is comparable to the information available in VCD files. The implementation of the
co-simulation interface uses Thrift [16], an efficient, cross-language and cross-platform remote procedure
call protocol. Figure 6 describes the type definition of the SystemC requests and the solver responses.

5.1.1 The request

A request is a struct composed of three main fields: (i) until_date is the time horizon to which the solver
should advance in order to synchronize with the SystemC simulation; (ii) value_changes is a list of com-
ponents’ power states time-stamped with the date at which they changed their value; (iii) halt_conditions
is a list of threshold values on which the simulation should be interrupted (e.g. temperature goes over a
threshold, and the functional simulation should react immediately with an emergency stop). The solver
should stop when one of these thresholds is crossed, and indicate the date at which it happened (i.e., zero-
crossings).

5.1.2 The response

Based on the request it receives, the solver computes the components’ power consumption and temperature
over interval [ti, tj ] and construct a response. The response (see Fig. 6) is a struct composed of the
following fields: (i) halt_date is the simulated time reached by the solver; (ii) changed_values is a list of
power and temperature values time-stamped with the dates at which they were reached; (iii) halt_causes
is a list of conditions causing the termination of the solver computation. The computed values at time
tj (a response) are sent back to the SystemC functional model. If the simulation stopped because of a
halt_condition, the response mentions which condition was triggered.

The component SYNCHRO decides when the non-functional simulation should be performed, and is in
charge of constructing the request, and dispatching non-functional values to the appropriate components
(e.g., informing the SENS component of the new temperature value).
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1 /∗ R e q u e s t s i m u l a t i o n up t o u n t i l _ d a t e . ∗ /
2 s t r u c t p o w e r _ s i m u _ r e q u e s t {
3 1 : r e q u i r e d double u n t i l _ d a t e ,
4 2 : r e q u i r e d l i s t < va lue_change > v a l u e _ c h a n g e s ,
5 3 : r e q u i r e d l i s t < h a l t _ c o n d i t i o n > h a l t _ c o n d i t i o n s
6 }
7
8 /∗ Response from t h e power s i m u l a t o r ∗ /
9 s t r u c t power_s imu_response {

10 1 : r e q u i r e d double h a l t _ d a t e ,
11 2 : r e q u i r e d l i s t < va lue_change > c ha n g e d _v a l u e s ,
12 3 : r e q u i r e d l i s t < h a l t _ c o n d i t i o n > h a l t _ c a u s e s
13 }
14
15 s e r v i c e c o s i m _ s e r v i c e {
16 power_s imu_response s i m u l a t e ( 1 : p o w e r _ s i m u _ r e q u e s t rq ) ;
17 }

Figure 6: Excerpt from the Thrift Specification of the Cosimulation interface

6 Cosimulation Strategies
Section 5 described the interface between the functional and non-functional solvers and the data-exchange
between them, but left apart the question of synchronization: when should non-functional simulations be
triggered, and on which time intervals. We now describe the various possible strategies.

6.1 Simulate Intervals One by One (Lockstep)
A possible cosimulation strategy is to synchronize simulators at the end of each simulation instant (lockstep
strategy, Figure 7). Suppose the current simulation instant is ti. All eligible processes at instant ti execute
(Fig 7.(1)). Before the SystemC scheduler jumps to instant ti+1, the SYNCHRO component suspends the
SystemC model, constructs a request according to power states and halt conditions. The time horizon
of the requested simulation is set to the next SystemC instant ti+1 (7.(2)).

SystemC

P/T Solver Simulated time

(1)

end of instant ti instant ti+1

(2)
non-functional simu (3)

(4)

...

Figure 7: lockstep cosimulation strategy. For clarity, simulated instants are represented with a non-null
width.

Upon receiving the request, the solver computes components’ temperature according to the received
power states (7.(3)). The temperature is computed until the time horizon ti+1 if no halt condition was
encountered. The SYNCHRO component receives the response of the solver, updates registers of the tem-
perature sensors, and resumes the SystemC execution (7.(4)). The updated temperature is valid for the
SystemC instant ti+1. Components executing at this instant will access the right temperature. “Suspend-
ing” and “resuming” the simulation is performed by sending the request and waiting for the response. Since
SystemC simulation is sequential, waiting for the response effectively suspends the simulation.

6.1.1 Interrupt Triggered by Non-Functional Solver

In case the solver encounters a halt condition at time ti+δt (where ti+δt < ti+1), it stops the non-functional
simulation at that time (See Fig 8). The response of the solver (8.(4)) gives component temperatures at
ti + δt and the halt_conditions encountered. The SYNCHRO component receiving the solver response
programs the temperature sensor to trigger an interrupt at ti + δt (using a timed event notification in
SystemC). The consequence of such an interrupt, is to create a new SystemC instant to which the scheduler
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will jump instead of resuming the simulation at ti+1. This is possible without any backtrack in SystemC:
indeed, the simulator was suspended at the end of simulation instant ti and before jumping to the instant
ti+1, and can still notify an event at time ti + δt.

SystemC

P/T Solver Simulated time

(1)

end of
instant ti

expected
next instant

(2)
(3)

halt_condition
reached

(4)
δt

created
instant

process IT

Figure 8: lockstep cosimulation strategy with interrupt

6.2 Optimization in the Absence of Non-Functional Interrupts
The benefit of the lockstep synchronization lies in the fact that the non-functional simulator runs between
simulation instants, hence it is possible to interrupt the non-functional simulation on halt_conditions. These
interrupts may change the future of the simulation without questioning its past (i.e., no backtrack). How-
ever, the lockstep strategy requires a round-trip between simulators for each simulation instant, which may
result in non-negligible simulation overhead.

6.2.1 Functional Ahead Strategy

In the absence of non-functional interrupts, we can perform better, avoiding switching simulators at each
SystemC instant (functional ahead strategy, see Figure 9). Synchronization is performed only when it is
required. The SystemC simulation may run multiple instants ahead of the solver, until a non-functional
value is required (e.g. there is a read access on a temperature solver, (9.(1)), and a single request is made
for the set of time intervals corresponding to the instants executed (9.(2)). The non-functional simulator
then simulates the trace (9.(3)). Note that in this case, the power parameters may change while the request
is processed (this is the reason why a request contains a set of value changes with the associated simulation
time, and not only a set of values). The response (9.(4)) contains the values that were required on the
SystemC side.

SystemC

Simulated timeP/T Solver

Functional (1)

SystemC reads
temperature

(2)
Non-functional (3)

(4)

...

Figure 9: functional ahead strategy, in the absence of interrupt

6.2.2 Running both Simulations in Parallel

An improvement over the functional ahead strategy is to run the simulators in parallel. When the functional
simulation does not need any non-functional values, the execution follows a simple producer-consumer
scheme (the functional simulation produces requests that are consumed by the non-functional simulator).
When the functional simulation requires a non-functional value, a synchronization is triggered: the func-
tional simulator is blocked until it receives the last response, which contains the required values.
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6.3 Dynamic Selection of Strategy
We propose a technique to select and change strategies at runtime, according to observations of the func-
tional configuration. We may for instance exchange, at runtime, lockstep and functional ahead strategy
during simulation. For the sake of cosimulation speed, functional ahead strategy is preferred, but the
lockstep must be used to raise interrupts correctly.

The decision on which strategy to use starting from instant t relies on the information we have on
interrupts. If we expect an interrupt for the next simulation interval then the lockstep strategy must be used,
in order to prevent SystemC from advancing at a time greater than the occurrence date of the interrupt.
Otherwise, select the functional ahead strategy. At the end of each simulation instant, the SYNCHRO
component checks a sensor’s register to update the strategy.

7 Implementation
We provide an implementation of the SYNCHRO component, as part of a synchronization library for Sys-
temC/thermal solver cosimulation. The SYNCHRO component provides the above mentioned synchro-
nization strategies. When to synchronize with the solver is up to the strategy being used; but this always
happens at the end of a simulation instant.

In order to execute code at the end of simulation instants, we add a wrapper method for the sc_start()
method of SystemC. The wrapper method performs instant-by-instant simulation: it calls sc_start(next_t) in a
loop with next_t being the date of the nearest event. next_t is returned by the SystemC API.

The SYNCHRO component uses the thrift interface to call the thermal solver (e.g., ATMI [10], HotSpot [9]
and Aceplorer [3]) locally or remotely over the network.

8 Experimental Results

8.1 Validation of Power/Thermal Management Policies
Figure 10 illustrates power/thermal plotting of the example of section 3. The CPU implements a power/ther-
mal management policy, sensitive to temperature sensor interrupts. Interrupts notify two situations: i) the
system is heating up (e.g., instants 0.78s and 1.33s in Figure 10); the CPU, then, scales down its voltage
and frequency; and this impacts power consumption (see Figure 10); ii) the temperature is cooling down to
a normal value (e.g., instant 1.17s in Figure 10). The CPU, then, scales up its voltage and frequency.

We use ATMI as a thermal solver, extended with a module to translate power states (those in Figure 3)
into power values. Since the power management is sensitive to sensor interrupts, we use the lockstep
strategy to synchronize simulators.

We compared the performances of different simulation strategies on a video decoding TL-Model, where
the embedded software polls the sensor temperature to decide on the power configuration (no interrupts).
Table 1 shows execution time for the 3 strategies described above with different simulation time step, using
ATMI as a temperature solver. We can see that the functional ahead strategy performs similarly or better
than lockstep. The benefit of parallel depends on the granularity, and the parallel version can actually per-
form worse than the sequential ones. Figure 2 is a summary of simulation speeds. We distinguish the time
taken by the SystemC part (SC), the ATMI part, and the connection between them (between parentheses
is the number of exchanges between the simulators). We can see that the overhead of connection is small,
and even with thermal simulation, coarse-grain simulations remain much faster than low-level ones.

Table 3 summarizes the results of several cosimulations varying the length of simulation intervals of the
TL-Model and the ATMI integration step. For example, with an average simulation interval length of the
TL-Model of 200 µs (column 1), and a time-step of 100 µs for ATMI integration (row 1), parallelization
performs worst taking 5% longer than the time taken by the lockstep strategy. With a finer time-step of
ATMI (i.e, 50 µs), parallelization performs better (about 20%). The results show that the outcome of the
parallelization is not always positive, and this is not a matter of implementation (of the strategy). At a
first glance, parallel cosimulation would reach its optimal (i.e.; about 50% compared to lockstep), when
both SystemC and the thermal solver take the same amount of time simulating a time interval δt. In
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Figure 10: Power and thermal simulation for the case study of section 3

strategy
lockstep functional ahead parallel

ATMI Step

1000 µs 0:59 0:59 1:17
100 µs 1:45 1:48 1:07

10 µs 11:30 10:57 9:53

Table 1: Timings for different strategies (minutes:seconds)
Time SystemC/TLM ATMI Connection

1-inst. 1028s 48.8% 41.2% 11% (15.7E+6)
100-inst. 185s 5.2% 94.5% 0.03% (0.15E+6)
Coarse-grain 139s 5% 95% ≈ 0% (128)

Table 2: Execution times and contributions of the simulator parts, for simulating 0.5s of the system

depth performance analysis is in progress; it would allow to choose the optimal synchronization strategy
depending on the TL-Model and the solver being used.

TL-Model Simulation Interval Length
0.2 ms 1 ms 20 ms 200 ms

ATMI Step

100 µs -5% -11% -13% -10%
50 µs +20% +17% +8% +13%
10 µs -16% +9% +16% +11%

1 µs -12% +8% +1% -5%

Table 3: Percentage of gain/loss of the Parallel Strategy Compared to the Lockstep one

We also performed experiments using Aceplorer as a power/temperature solver, which was modified to
allow cosimulation through the Thrift interface. The SystemC/TLM platform models the video subsystem
of an SoC. While the platform itself is relatively simple, it was written using STMicroelectronics’s state-
of-the-art development kits (several hundred thousands lines of code in total). Simulating 16 seconds of
simulated time takes 1 hour 36 minutes, most of which is due to the thermal simulation: less than 2 minutes
are needed if thermal modeling is deactivated. The case study was briefly presented in [17].

Simulation results are provided in Figures 11 and 12. One can see the effect of the power manage-
ment/quality of service policy: when the temperature reaches a certain threshold, the video decoder is
re-programmed to decode only one image out of 3. As a result, the temperature decreases, and the power
management reactivates the normal behavior.
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Figure 11: Floor-plan of the SoC model (Aceplorer screenshot)

Figure 12: Evolution of power and temperature of the video decoder component (Aceplorer screenshot)
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9 Conclusion
We present an approach for power/thermal simulation for functional TLM models. The cosimulation
principles make it possible to take advantage of existing, domain specific tools and enable feedback of
non-functional properties in the functional model. The approach features a cross-language cosimulation
interface that enables local or remote execution of the solver in a transparent way.

The type of the exchange as defined by the cosimulation interface imposes separation of concerns when
modeling power. The cosimulation framework is thus generic: the same functional model may be analyzed
according to distinct power/thermal models, describing distinct physical and architectural parameters of
the chip, possibly modeled with distinct domain-specific tools. The cosimulation interface is independent
from the simulators synchronization, and was though in order to operate with multiple synchronization
strategies. We presented these strategies and show some comparison results for local executions. Remote
execution performance were not showed because of lack of space.

Future work will consider two directions: i) performance analysis: comprises the comparison of dis-
tinct power/thermal simulators, and an in-depth analysis of the cosimulation strategies both in local and
remote executions. ii) Extensions with other non-functional properties: we want to extend the model-
ing with the behavior of battery level indicators, in order to validate power-saving strategies early, or to
simulate the battery discharge profile and lifetime.
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