
Self-Stabilizing (f,g)-Alliances with
Safe Convergence

Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,
Lawrence L. Larmore, and Yvan Rivierre

Verimag Research Report no TR-2012-19

July 15, 2013

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Self-Stabilizing (f,g)-Alliances with Safe Convergence

Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,
Lawrence L. Larmore, and Yvan Rivierre

July 15, 2013

Abstract

Given two functions f and g mapping nodes to non-negative integers, we give a silent self-
stabilizing algorithm that computes a minimal (f, g)-alliance in an asynchronous network with
unique node IDs, assuming that every node p has a degree at least g(p) and satisfies f(p) ≥
g(p). Our algorithm is safely converging in the sense that starting from any configuration, it
first converges to a (not necessarily minimal) (f, g)-alliance in at most four rounds, and then
continues to converge to a minimal one in at most 5n+4 additional rounds, where n is the size
of the network. Our algorithm is written in the shared memory model. It is proven assuming
an unfair (distributed) daemon. Its memory requirement is O(log n) bits per process, and it
takes O(∆3n) steps to stabilize, where ∆ is the degree of the network.

Keywords: Distributed Systems, Self-Stabilization, Safe Convergence, (f, g)-Alliance, Unfair Daemon

How to cite this report:

@techreport {TR-2012-19,
title = {Self-Stabilizing (f,g)-Alliances with Safe Convergence},
author = {Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,

Lawrence L. Larmore, and Yvan Rivierre},
institution = {{Verimag} Research Report},
number = {TR-2012-19},
year = {2012}

}

Self-Stabilizing (f,g)-Alliances
Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,

Lawrence L. Larmore, and Yvan Rivierre

1 Introduction
Self-stabilization [1] is a versatile technique to withstand any transient fault in a distributed system. In-
formally, a distributed algorithm is self-stabilizing if, after transient faults hit the system and place it in
some arbitrary configuration, the system recovers without external (e.g., human) intervention in finite time.
Thus, self-stabilization makes no hypothesis on the nature or extent of transient faults that could hit the
system, and recovers from the effects of those faults in a unified manner. However, self-stabilization has
some drawbacks; perhaps the main one is temporary loss of safety, i.e., after the occurrence of transient
faults, there is a finite period of time — called the stabilization phase — before the system returns to a
legitimate configuration. During this phase, there is no guarantee of safety. Several approaches have been
introduced to offer more stringent guarantees during the stabilization phase, e.g., fault-containment [2],
superstabilization [3], time-adaptivity [4], and safe convergence [5].

We consider here the notion of safe convergence. The main idea behind this concept is the following:
For a large class of problems, it is often hard to design self-stabilizing algorithms that guarantee small
stabilization time, even after few transient faults [6]. Large stabilization time is usually due to strong
specifications that a legitimate configuration must satisfy. The goal of a safely converging self-stabilizing
algorithm is to first quickly converge (O(1) rounds is usually expected) to a feasible legitimate configu-
ration, where a minimum quality of service is guaranteed. Once such a feasible legitimate configuration
is reached, the system continues to converge to an optimal legitimate configuration, where more stringent
conditions are required. Safe convergence is especially interesting for self-stabilizing algorithms that com-
pute optimized data structures, e.g., minimal dominating sets [5], approximation of the minimum weakly
connected dominating set [7], and approximately minimum connected dominating set [8].

We consider the (f, g)-alliance problem. LetG = (V,E) be an undirected graph and f , g two functions
mapping nodes to non-negative integers. For every node p ∈ V , Np (resp. δp) denotes the set of neighbors
(resp. the degree) of p in G. A subset of nodes A ⊆ V is an (f, g)-alliance of G if and only if

(∀p ∈ V \A, |Np ∩A| ≥ f(p)) ∧ (∀p ∈ A, |Np ∩A| ≥ g(p))

Moreover, A is minimal if and only if no proper subset of A is an (f, g)-alliance of G. The (f, g)-alliance
problem is a generalization of several problems that are of interest in distributed computing. Consider any
subset S of nodes:

1. S is a (minimal) dominating set if and only if S is a (minimal) (1, 0)-alliance;

2. more generally, S is a (minimal) k-dominating set1 if and only if S is a (minimal) (k, 0)-alliance;

3. S is a (minimal) k-tuple dominating set if and only if S is a (minimal) (k, k − 1)-alliance;

4. S is a (minimal) global defensive alliance if and only if S is a (minimal) (f, 0)-alliance, such that
∀p ∈ V , f(p) = dδp/2e;

5. S is a (minimal) global offensive alliance if and only if S is a (minimal) (1, g)-alliance, such that
∀p ∈ V , g(p) = dδp/2e.

Note that (f, g)-alliances also have applications in the field of population protocols [9], or server allocation
in computer networks [10].

1.1 Our Contribution
We give a silent self-stabilizing algorithm,MA(f, g), that computes a minimal (f, g)-alliance in an asyn-
chronous network with unique node IDs, where f and g are integer-valued functions on nodes, such that
f(p) ≥ g(p) and δp ≥ g(p) for all p.2

Given two functions f, g mapping nodes to non-negative integers, we say f ≥ g if and only if ∀p ∈
V, f(p) ≥ g(p). We remark that the class of minimal (f, g)-alliances with f ≥ g generalizes the classes

1In the literature, k-dominating set had multiple definitions. Here, we consider the definition that S is a k-dominating set if and
only if every node that is not in S has at least k neighbors in S.

2We assume that δp ≥ g(p) to ensure that an (f, g)-alliance always exists.

Verimag Research Report no TR-2012-19 1/21

Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,
Lawrence L. Larmore, and Yvan Rivierre Self-Stabilizing (f,g)-Alliances

of minimal dominating sets, k-dominating sets, k-tuple dominating sets, and global defensive alliance
problems. However, minimal global offensive alliances do not belong to this class.

Our algorithmMA(f, g) is safely converging in the sense that starting from any configuration, it first
converges to a (not necessarily minimal) (f, g)-alliance in at most four rounds, and then continues to
converge to a minimal one in at most 5n + 4 additional rounds, where n is the size of the network. Our
algorithm is written in the shared memory model, and is proven assuming an unfair (distributed) daemon,
the weakest daemon of this model. MA(f, g) uses O(log n) bits per process, and stabilizes to a terminal
(legitimate) configuration in O(∆3n) steps, where ∆ is the degree of the network. Finally,MA(f, g) does
not need any knowledge of any bound on global parameters of the network (such as its size or its diameter).

1.2 Related Work

The (f, g)-alliance problem is introduced in [11]. In the same paper, the authors give several distributed
algorithms for that problem and its variants, but none of them is self-stabilizing. To the best of our knowl-
edge, this has been the only publication on (f, g)-alliances up to now. However, there have been results
on particular instances of (minimal) (f, g)-alliances, e.g., [5, 12, 13, 14]. All of these consider arbitrary
identified networks; however a safely converging solution is given only in [5]. Srimani and Xu [12] give
a self-stabilizing algorithm to compute a minimal global defensive alliance in O(n3) steps; however, they
assume a central daemon. Turau [13] gives a self-stabilizing algorithm to compute a minimal dominating
set in 9n steps, assuming an unfair (distributed) daemon. Wang et al [14] give a self-stabilizing algorithm
to compute a minimal k-dominating set in O(n2) steps, assuming a central daemon. A safely converg-
ing self-stabilizing algorithm is given in [5] for computing a minimal dominating set. The algorithm first
computes a (not necessarily minimal) dominating set in O(1) rounds and then safely stabilizes to a min-
imal dominating set in O(D) rounds, where D is the diameter of the network. However, they assume a
synchronous daemon.

1.3 Roadmap

In the next section we describe our model of computation and give some basic definitions. We define our
algorithm MA(f, g) in Section 3. In Section 4, we show the correctness of MA(f, g) and analyze its
complexity. We write concluding remarks and perspectives in Section 5.

2 Preliminaries

2.1 Distributed Systems

We consider distributed systems of n processes with unique IDs. By an abuse of notation, we identify
a process with its ID whenever convenient. Each process p can directly communicate with a subset Np
of other processes, called its neighbors. We assume that if q ∈ Np, then p ∈ Nq . For every process p,
δp = |Np| is the degree of p. We assume that δp ≥ g(p) for every process p. Let ∆ = maxp∈V δp be the
degree of the network. The topology of the system is a simple undirected graph G = (V,E), where V is
the set of processes and E is a set of edges representing (direct) communication relations.

2.2 Computational Model

We assume the shared memory model of computation introduced by Dijkstra [1], where each process
communicates with its neighbors using a finite set of locally shared variables, henceforth called simply
variables. Each process can read its own variables and those of its neighbors, but can write only to its
own variables. Each process operates according to its (local) program. We define a (distributed) algorithm
to be a collection of n programs, each operating on a single process. The program of each process is a
finite ordered set of actions, where the ordering defines priority. This priority is the order of appearance
of actions in the text of the program. A process p is not enabled to execute any action if it is enabled to

2/21 Verimag Research Report no TR-2012-19

Self-Stabilizing (f,g)-Alliances
Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,

Lawrence L. Larmore, and Yvan Rivierre

execute an action of higher priority. Let A be a distributed algorithm, consisting of a local program A(p)
for each process p. Each action in A(p) is of the following form:

〈label〉 :: 〈guard〉 → 〈statement〉

Labels are only used to identify actions. The guard of an action in A(p) is a Boolean expression involving
the variables of p and its neighbors. The statement of an action in A(p) updates some variables of p. The
state of a process in A is defined by the values of its variables in A. A configuration of A is an instance of
the states of processes in A. CA is the set of all possible configurations of A. (When there is no ambiguity,
we omit the subscript A.) An action can be executed only if its guard evaluates to true; in this case, the
action is said to be enabled. A process is said to be enabled if at least one of its actions is enabled. We
denote by Enabled(γ) the subset of processes that are enabled in configuration γ. When the configuration
is γ and Enabled(γ) 6= ∅, a daemon3 (scheduler) selects a non-empty set X ⊆ Enabled(γ); then every
process of X atomically executes its highest priority enabled action, leading to a new configuration γ′,
and so on. The transition from γ to γ′ is called a step (of A). The possible steps induce a binary relation
over configurations of A, denoted by 7→. An execution of A is a maximal sequence of its configurations
e = γ0γ1 . . . γi . . . such that γi−1 7→ γi for all i > 0. The term “maximal” means that the execution is
either infinite, or ends at a terminal configuration in which no action ofA is enabled at any process. As we
saw previously, each step from a configuration to another is driven by a daemon. In this paper we assume
the daemon is unfair; i.e., the daemon might never permit an enabled process to execute unless it is the
only enabled process.

We say that a process p is neutralized in the step γi 7→ γi+1 if p is enabled in γi and not enabled in
γi+1, but does not execute any action between these two configurations. Neutralization of a process can be
caused by the following situation: at least one neighbor of p changes its state between γi and γi+1, and this
change makes the guards of all actions of p false.

To evaluate time complexity, we use the notion of round. The first round of an execution e, noted e′,
is the minimal prefix of e in which every process that is enabled in the initial configuration either executes
an action or becomes neutralized. Let e′′ be the suffix of e starting from the last configuration of e′. The
second round of e is the first round of e′′, and so forth.

2.3 Self-Stabilization, Silence, and Safe Convergence
Let A be a distributed algorithm. Let P be a predicate over C. A is self-stabilizing w.r.t. P if and only if
there exists a non-empty subset SP of C such that:

1. ∀γ ∈ SP , P (γ) (Correction);

2. for each possible step γ 7→ γ′ of A, γ ∈ SP ⇒ γ′ ∈ SP (Closure);

3. each execution of A (starting from an arbitrary configuration) contains a configuration of SP (Con-
vergence).

The configurations of SP are said to be legitimate, and other configurations are called illegitimate.
A is silent if all its executions are finite [15]. To show that A is silent and self-stabilizing w.r.t. P , it is

sufficient to show that

1. all executions of A are finite and

2. all terminal configurations of A satisfy P .

Let P1 and P2 be two predicates over C such that ∀γ ∈ C, P2(γ) ⇒ P1(γ). A is safely converging
self-stabilizing w.r.t. (P1, P2) if and only if the following three properties hold:

1. A is self-stabilizing w.r.t. P1;

2. A is self-stabilizing w.r.t. P2; and
3The daemon realizes the asynchrony of the system.

Verimag Research Report no TR-2012-19 3/21

Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,
Lawrence L. Larmore, and Yvan Rivierre Self-Stabilizing (f,g)-Alliances

3. every execution of A starting from a configuration of SP1
eventually reaches a configuration of

SP2 , where SP1 and SP2 are respectively the sets of legitimate configurations for P1 and P2 (Safe
Convergence).

The configurations of SP1 are said to be feasible legitimate. The configurations of SP2 are said to be
optimal legitimate.

Assume that A is safely converging self-stabilizing w.r.t. (P1, P2). The first convergence time is the
maximum time to reach a feasible legitimate configuration, starting from any configuration. The second
convergence time is the maximum time to reach an optimal legitimate configuration, starting from any
feasible legitimate configuration. The stabilization time is the sum of the first and second convergence
times.

2.4 Minimality and 1-Minimality of (f, g)-alliances
We recall that an (f, g)-alliance A of a graph G is minimal if and only if no proper subset of A is an (f, g)-
alliance. Then, A is 1-minimal if and only if ∀p ∈ A, A \ {p} is not an (f, g)-alliance. Surprisingly, a
1-minimal (f, g)-alliance is not necessarily a minimal (f, g)-alliance, [11]. However, we have the following
property:

Property 1 [11] Given two functions f and g mapping nodes to non-negative integers, we have:

1. Every minimal (f, g)-alliance is a 1-minimal (f, g)-alliance, and

2. if f ≥ g, every 1-minimal (f, g)-alliance is a minimal (f, g)-alliance.

3 The Algorithm
The formal code of MA(f, g) is given in Algorithm 1. Given the input functions f and g, MA(f, g)
computes a single output for each process p: the Boolean p.inA. In any configuration γ, we define the set
Aγ = {p ∈ V, p.inA}. (We omit the subscript γ when it is clear from the context.) And, if γ is terminal,
then Aγ is a 1-minimal (f, g)-alliance, and consequently, if f ≥ g, Aγ is a minimal (f, g)-alliance.

During an execution, a process may need to leave or join A. Then, the basic idea of safe convergence is
that it should be more difficult for a process to leave A than to join it. Indeed, this permits quick recovery
to a configuration in which A is an (f, g)-alliance, but not necessarily a minimal one.

3.1 Leaving A

Action Leave allows a process to leave A. To obtain 1-minimality, we allow a process p to leave A if

Requirement 1: p will have enough neighbors in A (i.e., at least f(p)) once it has left, and

Requirement 2: each q ∈ Np will still have enough neighbors in A (i.e., at least g(q) or f(q), depending
on whether q is in A) once p has been deleted from A.

Ensuring Requirement 1. To maintain Requirement 1, we implement our algorithm in such a way that
deletion from A is locally sequential, i.e., during a step, at most one process can leave A in the neighbor-
hood of each process p (including p itself). Using this locally sequential mechanism, if a process p wants
to leaveA, it must first verify that NbA(p) = |{q ∈ Np, q.inA}| is greater or equal to f(p) before leavingA.
Hence, if p actually leaves A, it is the only one in its neighborhood allowed to do that and, consequently,
Requirement 1 still holds once p has left A.

The locally sequential mechanism is implemented using a neighbor pointer p.choice at each process
p, which takes value in Np ∪ {⊥}: p.choice = ⊥ means that p authorizes no neighbor to leave A; while
p.choice = q ∈ Np means that p authorizes its neighbor q to leave A. The value of p.choice is maintained
using Action Vote, which will be detailed later.

4/21 Verimag Research Report no TR-2012-19

Self-Stabilizing (f,g)-Alliances
Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,

Lawrence L. Larmore, and Yvan Rivierre

Algorithm 1MA(f, g), code for each process p
Variables:
p.inA : Boolean
p.busy : Boolean
p.choice ∈ Np ∪ {⊥}
p.nbA ∈ [0..δp]

Macros:
NbA(p) = |{q ∈ Np, q.inA}|
Cand(p) = {q ∈ Np, q.inA ∧ ¬q.busy}
MinCand(p) = min(Cand(p) ∪ {∞})
ChosenCand(p) = if Cand(p) 6= ∅ ∧ HasExtra(p) ∧ (IamCand(p)⇒ MinCand(p) < p)

then MinCand(p)
else ⊥

Choice(p) = if p.choice = ⊥
then ChosenCand(p)
else ⊥

Predicates:
IsMissing(p) ≡ ∃q ∈ Np, (¬q.inA ∧ q.nbA < f(q)) ∨ (q.inA ∧ q.nbA < g(q))
IsExtra(p) ≡ ∀q ∈ Np, (¬q.inA⇒ q.nbA > f(q)) ∧ (q.inA⇒ q.nbA > g(q))
HasExtra(p) ≡ (¬p.inA⇒ NbA(p) > f(p)) ∧ (p.inA⇒ NbA(p) > g(p))
IsBusy(p) ≡ NbA(p) < f(p) ∨ ¬IsExtra(p)
IamCand(p) ≡ p.inA ∧ ¬IsBusy(p)
MustJoin(p) ≡ ¬p.inA ∧ (NbA(p) < f(p) ∨ IsMissing(p)) ∧ (∀q ∈ Np, q.choice 6= p)
CanLeave(p) ≡ p.inA ∧ NbA(p) ≥ f(p) ∧ (∀q ∈ Np, q.choice = p) ∧ p.choice = ⊥

Actions:
Join :: MustJoin(p) → p.inA← true

p.choice← ⊥
p.nbA← NbA(p)

Vote :: p.choice 6= ChosenCand(p) → p.choice← Choice(p)
p.nbA← NbA(p)
p.busy← IsBusy(p)

Count :: p.nbA 6= NbA(p) → p.nbA← NbA(p)

Flag :: p.busy 6= IsBusy(p) → p.busy← IsBusy(p)

Leave :: CanLeave(p) → p.inA← false

Verimag Research Report no TR-2012-19 5/21

Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,
Lawrence L. Larmore, and Yvan Rivierre Self-Stabilizing (f,g)-Alliances

Hence, to leave A, a process p should not authorize any neighbor to leave A (p.choice = ⊥) and should
be authorized to leave by all of its neighbors (∀q ∈ Np, q.choice = p). For example, consider the (1, 0)-
alliance in Figure 1. Only Process 2 is able to leave A. Now, Process 2 can actually leave A because it has
enough neighbors in A (i.e., 2 neighbors, while f(2) = 1). So, if it leaves A, then it will still have two
neighbors in A: Requirement 1 will be not violated.

⊥

⊥ 2

4

3 7

1

5

6

Figure 1: Neighbor pointers in a (1, 0)-alliance. Numbers indicate IDs; the set of gray nodes represents A.
Arrows designate the neighbor pointed by the node. “⊥” inside a node indicates that the node designates
no neighbor.

Ensuring Requirement 2. This requirement is also maintained by the fact that a process p must have an
authorization from each of its neighbors q before leaving A. A neighbor q can give such an authorization
to p only if q still has enough neighbors in A without p. For a process q to authorize a neighbor q′ to leave
A, q′ must currently be in A, i.e., q′.inA = true, and q must have more neighbors than necessary in A, i.e.,
the predicate HasExtra(q) should be true, meaning that Nq ∩ A has more than g(q), respectively f(q),
members if q is inA, respectively not inA. For example, consider the (1, 0)-alliance in Figure 1. Processes
4 and 5 can designate Process 2 because they belong to A and g(4) = g(5) = 0. Moreover, Processes 3
and 6 can designate Process 2 because they do not belong to A and f(3) = f(6) = 1: if Process 2 leaves
A, Process 3 (resp. Process 6) still has one neighbor in A, which is Process 7 (resp. Process 5).

Busy Processes. It is possible that a neighbor q′ of q cannot leave A — in this case q′ is said to be busy —
because one of these two conditions is true:

(i) NbA(q′) < f(q′): in this case, q′ does not have enough neighbors in A to be allowed to leave it.

(ii) ¬IsExtra(q′): in this case, at least one neighbor of q′ needs q′ to stay in A.

If q chooses such a neighbor q′, this may lead to a deadlock. We use the Boolean variable q′.busy to inform
q that one of the two aforementioned conditions holds for q′. Action Flag maintains q′.busy. So, to
prevent deadlock, q must not choose any neighbor q′ for which q′.busy = true.

q′ evaluates Condition (i) by reading the variables inA of all its neighbors. On the other hand, Condition
(ii) requires that q′ knows for each of its neighbors, both their status (inA) and the number of their own
neighbors that are in A. This latter information is obtained using an additional variable, nbA, where each
process maintains, using Action Count, the number of its neighbors that are in A.

Consider the (2, 0)-alliance in Figure 2. Process 5 is busy because of Condition (i): it has only one
neighbor in A, while f(5) = 2. Process 2 is busy because of Condition (ii): its neighbor 1 is not in A,
f(1) = 2, and has only 2 neighbors inA, so it cannot authorize any of its neighbors to leave. Consequently,
Process 1 cannot designate any neighbor (all its neighbors in A are busy); while Process 3 should not
designate Process 2.

Action Vote. Hence, the value of p.choice is chosen, using Action Vote, as follows:

1. p.choice is set to⊥ if the condition Cand(p) 6= ∅∧HasExtra(p)∧(IamCand(p)⇒ MinCand(p) < p)
in Macro ChosenCand(p) is false, i.e., if one of the following conditions holds:

6/21 Verimag Research Report no TR-2012-19

Self-Stabilizing (f,g)-Alliances
Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,

Lawrence L. Larmore, and Yvan Rivierre

⊥

⊥

⊥

4

8
3 2 1

5

Busy

nbA=1

nbA=2nbA=2nbA=4

nbA=3

nbA=2

nbA=2

7

6
nbA=2

Busy

Figure 2: Busy processes in a (2, 0)-alliance. Busy processes are indicated; Value of nbA is also given.

• Cand(p) = ∅, which means that no neighbor of p can leave A.

• HasExtra(p) = false, which means that p cannot authorize any neighbor to leave A.

• IamCand(p) ∧ p < MinCand(p), which means that p is also candidate to leave A and has
higher priority to leave A than any other candidate in its neighborhood. (Remember that to be
allowed to leave A, p should, in particular, satisfy p.choice = ⊥.)
The aforementioned priorities are based on process IDs, i.e., for every two process u and v, u
has higher priority than v if and only if the ID of u is smaller than the ID of v.

2. Otherwise, p uses p.choice to designate a neighbor that is in A and not busy in order to authorize
it to leave A. If p has several possible candidates among its neighbors, it selects the one of highest
priority (i.e., of smallest ID). For example, if we consider the (2, 0)-alliance in Figure 2, then we can
see that Process 3 designates Process 4 because it is its smallest neighbor that is both in A and not
busy.

⊥ ⊥⊥

4 63 2 1 5

⊥ ⊥⊥

4 63 2 1 5

(a)

(b)

⊥ ⊥⊥

4 63 2 1 5
(c)

Figure 3: Requirement 2 violation in a (1, 0)-alliance. We only show values that are useful in the reasoning.

There is one last problem: A process q may change its pointer while simultaneously one of its neighbors
q′ leaves A, and consequently Requirement 2 may be violated. Indeed, q chooses new candidate assuming
that q′ remains inA. This may happens only if the previous value of q.choice was q′. To avoid this situation,
we do not allow q to directly change q.choice from one neighbor to another. Each time q wants to change
its pointer, if q.choice ∈ Nq , q first resets q.choice to ⊥, see Choice(q).

Figures 3 and 4 illustrates this last issue in the case of a (1, 0)-alliance. In the step from Configuration
(a) to Configuration (b) of Figure 3, Process 2 directly changes its pointer from 3 to 1. Now, simulta-
neously, 3 leaves A. So, Process 2 authorizes Process 1 to leave A, while it should not do. Now, after
that, Process 1 is authorized to leave A and does it in Step from Configuration (b) to Configuration (c):

Verimag Research Report no TR-2012-19 7/21

Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,
Lawrence L. Larmore, and Yvan Rivierre Self-Stabilizing (f,g)-Alliances

⊥ ⊥⊥

4 63 2 1 5

⊥⊥ ⊥⊥

4 63 2 1 5

(a)

(b)

Figure 4: The reset of the neighbor pointer is applied to the example of Figure 3 ((1, 0)-alliance).

Requirement 2 is violated. Figure 4 illustrates how we solve the problem. In Configuration (b), Process 3
has left, but the pointer of Process 2 is equal to ⊥. So, Process 1 cannot leave yet and by the way, Process
2 will not authorize it to leave.

3.2 Joining A

Action Join allows a process to join A. A process p not in A must join A if:

(1) p has not enough neighbors in A (NbA(p) < f(p)), or

(2) a neighbor of p needs p to join A (IsMissing(p)).

Moreover, to prevent p from cycling in and out ofA, we require that every neighbor of p stops designat-
ing it (with their choice pointer) before p can join A (again). Note that all neighbors of p stop designating
p immediately after it leaves A, see Action Vote. (Actually, this introduces a delay of only one round.)

A process evaluates condition (1) by reading the variables inA of all its neighbors. To evaluate condition
(2), it needs to know for each neighbor q, both its status w.r.t. A (q.inA) and the number of its neighbors
that are in A (q.nbA).

4 Correctness
Recall that in any configuration γ, we define the set Aγ = {p ∈ V, p.inA}. (We omit the subscript γ when
it is clear from the context.) In the next subsection, we define some predicates. Subsection 4.2 is dedicated
to the proof of self-stabilization ofMA(f, g) assuming an unfair daemon. We study the safe convergence
ofMA(f, g) in Subsection 4.3.

4.1 Predicates
First, throughout the section, we will use the notion of a closed predicate: Let P be a predicate over
configuration ofMA(f, g). P is closed if and only if ∀γ, γ′ ∈ C, P (γ) ∧ γ 7→ γ′ ⇒ P (γ′).

Let now define some predicates. First, for every process p,

Fga(p)
def
= (¬p.inA⇒ NbA(p) ≥ f(p)) ∧ (p.inA⇒ NbA(p) ≥ g(p))

When a process p satisfies Fga(p), this means that it is locally correct, i.e., it has enough neighbors in
A according to its status. Then, by definition we have:

Remark 1 A is an (f, g)-alliance if and only if ∀p ∈ V , Fga(p).

For every process p,

NbAOk(p)
def
= (¬p.inA⇒ p.nbA ≥ f(p)) ∧ (p.inA⇒ p.nbA ≥ g(p))

8/21 Verimag Research Report no TR-2012-19

Self-Stabilizing (f,g)-Alliances
Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,

Lawrence L. Larmore, and Yvan Rivierre

This predicate is always used in conjunction with Fga(p). When both predicates are true at p, this means
that p is locally correct and the variable p.nbA gives this information to the neighbors of p.

For every process p,

ChoiceOk(p)
def
= (p.choice 6= ⊥ ∧ p.choice.inA)⇒ HasExtra(p)

Once ChoiceOk(p) holds at p, no neighbor of p can make p locally incorrect by leaving A.
The following predicates are defined over configurations ofMA(f, g):

SP1−Minimal
def
= A is a 1-minimal (f, g)-alliance

SPMinimal
def
= A is a minimal (f, g)-alliance

4.2 Self-stabilization ofMA(f, g)

Partial Correctness. We now show that in any terminal configuration γ, the specification ofMA(f, g) is
achieved. To see this, we first show that A is an (f, g)-alliance in γ (Lemma 2), then we show that A is
1-minimal in γ, so if f ≥ g, A is also a minimal (f, g)-alliance (Lemma 3). To show these two results,
we use two intermediate claims: Lemma 1 and Corollary 1. The former states that every process of A is
busy in γ, meaning that either p has not enough neighbors in A to leave A, or at least one neighbor of p
requires that p stays in A, i.e., A is 1-minimal. The latter is a simple corollary of Lemma 1 and states that
no process authorizes a neighbor to leave A in γ.

In any terminal configuration, Action Count is disabled at every process, so:

Remark 2 In any terminal configuration ofMA(f, g), for every process p, p.nbA=NbA(p)=|{q∈Np, q.inA}|.

Lemma 1 In any terminal configuration ofMA(f, g), for every process p, p.inA⇒ p.busy.

Proof. By contradiction. Let γ be a terminal configuration ofMA(f, g) and assume that there is at least
one process p such that p.inA = true and p.busy = false in γ. Then, for each such process p, we have
IsBusy(p) = false in γ, because Action Flag is disabled at every process.

Let

pmin = min{p ∈ V, p.inA = true ∧ p.busy = false} in γ (1)

Since ¬IsBusy(pmin) in γ, we also have:

IsExtra(pmin)
∀q ∈ Npmin

, (¬q.inA⇒ q.nbA > f(q)) ∧ (q.inA⇒ q.nbA > g(q))
∀q ∈ Npmin

, (¬q.inA⇒ NbA(q) > f(q)) ∧ (q.inA⇒ NbA(q) > g(q)) by Remark 2
∀q ∈ Npmin

, HasExtra(q) (2)

Then, because pmin.inA = true ∧ pmin.busy = false in γ we have:

∀q ∈ Npmin , pmin ∈ Cand(q) (3)
∀q ∈ Npmin , Cand(q) 6= ∅ (4)

By (1) and (3), in γ we have:

∀q ∈ Npmin , MinCand(q) = pmin (5)

By (1) and (5), in γ we have:

∀q ∈ Npmin , (IamCand(q)⇒ MinCand(q) < q) (6)

By (2), (4), (5), (6) and the fact that Action Vote is disabled, in γ we have:

∀q ∈ Npmin
, ChosenCand(q) = pmin

∀q ∈ Npmin
, q.choice = pmin (7)

Verimag Research Report no TR-2012-19 9/21

Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,
Lawrence L. Larmore, and Yvan Rivierre Self-Stabilizing (f,g)-Alliances

By definition, IamCand(pmin) holds in γ. Moreover, by (1), MinCand(pmin) > pmin in γ. So, MinCand(pmin)
< pmin is false in γ. Hence, in γ we have (IamCand(pmin)⇒ MinCand(pmin) < pmin) = false, and con-
sequently:

ChosenCand(pmin) = ⊥
pmin.choice = ⊥ (Action Vote is disabled) (8)

Finally, because ¬IsBusy(pmin) holds in γ, we have NbA(pmin) ≥ f(pmin) in γ. So, by (7), (8), and the
fact that pmin.inA = true in γ, we can conclude that CanLeave(pmin) holds in γ, that is, pmin is enabled in
γ, contradiction. �

By Lemma 1, for every process p, Cand(p) = ∅ in any terminal configuration γ. Thus ChosenCand(p) =
⊥ in γ, and from the negation of the guard of Action Vote, we have:

Corollary 1 In any terminal configuration ofMA(f, g), for every process p, p.choice = ⊥.

Lemma 2 In any terminal configuration ofMA(f, g), A is an (f, g)-alliance.

Proof. Let γ be a terminal configuration. By Remark 1, we merely need show that every process p satisfies
Fga(p) in γ. Consider the following two cases:

p /∈ A in γ: First, by definition, p.inA = false in γ. Then, γ being terminal, ¬MustJoin(p) holds in
γ. ¬MustJoin(p) = ¬(¬p.inA ∧ (NbA(p) < f(p) ∨ IsMissing(p)) ∧ (∀q ∈ Np, q.choice 6=
p)) = p.inA ∨ (NbA(p) ≥ f(p) ∧ ¬IsMissing(p)) ∨ (∃q ∈ Np, q.choice = p). By p.inA = false
and Corollary 1, ¬MustJoin(p) in γ implies that NbA(p) ≥ f(p) ∧ ¬IsMissing(p) in γ. So,
¬p.inA ∧ NbA(p) ≥ f(p) holds in γ, which implies that Fga(p) holds in γ.

p ∈ A in γ: First, by definition, p.inA = true in γ. We need to show that Fga(p) = true in γ. Assume
Fga(p) = false. Then, NbA(p) < g(p). As δp ≥ g(p), ∃q ∈ Np, ¬q.inA in γ. By Remark
2, p.nbA < g(p) in γ. So, as p ∈ Nq , IsMissing(q) holds in γ. Now, as q.inA = false and
IsMissing(q) = true in γ, by Corollary 1, we can conclude that MustJoin(q) holds in γ, that is, q
is enabled in γ, contradiction.

�

Lemma 3 In any terminal configuration of MA(f, g), A is a 1-minimal (f, g)-alliance, and if f ≥ g,
then A is a minimal (f, g)-alliance.

Proof. Let γ be a terminal configuration. We already know that in γ, A defines an (f, g)-alliance. More-
over, by Property 1, if A is 1-minimal and f ≥ g, then A is a minimal (f, g)-alliance. Thus, we only need
to show the 1-minimality of A.

Assume that A is not 1-minimal. Then there is a process p ∈ A such that A−{p} is an (f, g)-alliance.
So:

1. |A ∩Np| ≥ f(p),

2. ∀q ∈ Np, q ∈ A⇒ |A ∩Nq − {p}| ≥ g(q), and

3. ∀q ∈ Np, q /∈ A⇒ |A ∩Nq − {p}| ≥ f(q).

By 1, in γ we have:

NbA(p) ≥ f(p) (a)

By 2, in γ we have:

∀q ∈ Np, q.inA⇒ NbA(q)− 1 ≥ g(q)
∀q ∈ Np, q.inA⇒ NbA(q) > g(q)
∀q ∈ Np, q.inA⇒ q.nbA > g(q) by Remark 2 (b)

10/21 Verimag Research Report no TR-2012-19

Self-Stabilizing (f,g)-Alliances
Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,

Lawrence L. Larmore, and Yvan Rivierre

By 3, in γ we have:

∀q ∈ Np,¬q.inA⇒ NbA(q)− 1 ≥ f(q)
∀q ∈ Np,¬q.inA⇒ NbA(q) > f(q)
∀q ∈ Np,¬q.inA⇒ q.nbA > f(q) by Remark 2 (c)

By (b) and (c), IsExtra(p) holds in γ. So, by (a), NbA(p) ≥ f(p) ∧ IsExtra(p) holds in γ, that is,
¬IsBusy(p) holds in γ. Now, Flag is disabled at p in γ , so p.busy = false in γ. As we assumed that
p.inA = true in γ (p ∈ A), this contradicts Lemma 1. �

Termination. We now show that, if f ≥ g, the unfair daemon cannot preventMA(f, g) from terminating,
starting from any configuration. The proof consists in showing that the number of steps to reach a terminal
configuration, starting from any arbitrary configuration, is bounded, no matter the choices of daemon are.

Let J be the maximum number of times any process executes Action Join in any execution. Lemma
4, below, states that the number of steps to reach a terminal configuration ofMA(f, g) depends on J , as
well as on both global parameters of the network, its degree ∆, and its size n.

Lemma 4 Starting from any configuration, MA(f, g) reaches a terminal configuration in O(J∆3n)
steps.

Proof. Consider any process p in any execution e ofMA(f, g). Let J(p), L(p), C(p), F (p), and V (p)
be the number of times p executes Actions Join, Leave, Count, Flag and Vote in e, respectively. By
definition, J(p) ≤ J .

After executing Leave, p should execute Join before executing Leave again. So:

L(p) ≤ 1 + J(p) ≤ 1 + J

In the following, we use the number of times p modifies the value of its variable p.nbA. This number
is denoted by]nbA(p). p.nbA is modified because either p.nbA 6= NbA(p) in the initial configuration, or
p.nbA 6= NbA(p) becomes true after a neighbor of p joins or leaves A. So:

]nbA(p) ≤ 1 +
∑
q∈Np

(J(q) + L(q)) ≤ 1 + ∆(2J + 1)

By definition, p executes Action Count at most]nbA(p) times. So:

C(p) ≤]nbA(p) ≤ 1 + ∆(2J + 1)

In the following, we use the number of times p modifies the value of its variable p.busy. This number is
denoted by]busy(p). p.busy is modified because either p.busy 6= IsBusy(p) holds in the initial configura-
tion, or p.busy 6= IsBusy(p) becomes true after a neighbor q of p joins or leaves A, or modifies its counter
q.nbA. So:

]busy(p) ≤ 1 +
∑
q∈Np

(J(q) + L(q) +]nbA(q)) ≤ 1 + (2 + 2J)∆ + (1 + 2J)∆2

By definition, p executes Action Flag at most]busy(p) times. So:

F (p) ≤]busy(p) ≤ 1 + (2 + 2J)∆ + (1 + 2J)∆2

Action Vote is enabled when p wants to change its pointer p.choice. That is, either (1) p does not
want to authorize any neighbor to leave A (in this case, its pointer is reset to ⊥), or (2) p has a new favorite
candidate. In the latter case, p may be required to reset its pointer to ⊥ first, because we impose a strict
alternation in p.choice between values of Np and ⊥. Hence, p may require up to two executions of Action
Vote to fix the value of p.choice.

As for other actions, Vote can be initially enabled. Moreover, either case (1) or (2) occurs for p every
time either (i): the variables inA of p or its neighbors are modified, or (ii): the variable busy or nbA of one
or more of its neighbors is modified. Therefore

Verimag Research Report no TR-2012-19 11/21

Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,
Lawrence L. Larmore, and Yvan Rivierre Self-Stabilizing (f,g)-Alliances

V (p) ≤ 2(1 +
∑
r∈Np∪{p}(J(r) + L(r)) +

∑
q∈Np

(]busy(q) +]nbA(q)))

V (p) ≤ 4 + 4J + ∆(6 + 4J) + ∆2(6 + 8J) + ∆3(2 + 4J)

So, the maximum number of steps beforeMA(f, g) reaches a terminal configuration is:

n(J(p)+L(p)+C(p)+F (p)+V (p)) ≤ n[7+6J+∆(9+8J)+∆2(7+10J)+∆3(2+4J)] = O(J.∆3.n)

�

To complete the proof of convergence ofMA(f, g), we now show, in Lemma 11, that J is bounded by
1 if f ≥ g. This lemma uses six technical results, given in Lemmas 5 through 10.

Lemma 5 Let p be a process. ∀q, q′ ∈ Np ∪ {p}, if q′ 6= q, then q and q′ cannot leave A in the same step.

Proof. By contradiction. Assume, that there are two processes q, q′ ∈ Np ∪{p} such that q′ 6= q, and both
q and q′ leave the alliance in some step γ 7→ γ′. Consider the two following cases:

q = p ∨ q′ = p: Without loss of generality, assume that q′ = p. From the guard of Action Leave at p,
p.choice = ⊥. Now, p ∈ Nq , so from the guard of Action Leave at q, p.choice = q 6= ⊥, a
contradiction.

q 6= p ∧ q′ 6= p: By definition, p ∈ Nq and p ∈ Nq′ . So, from the guard of Action Leave at q, we have
p.choice = q; and from the guard of Action Leave at q′, p.choice = q′, a contradiction.

�

Corollary 2 If a process p leaves A in the step γ 7→ γ′, then Fga(p) holds in γ′.

Proof. Assume that process p leaves A in γ 7→ γ′. From the guard of Action Leave, we have NbA(p) ≥
f(p). By Lemma 5, no neighbor of p leaves A in γ 7→ γ′. So, p.inA = false and NbA(p) ≥ f(p) in γ′, and
we are done. �

Lemma 6 If a process p executes Leave or p.choice is assigned the ID of some neighboring process in
γ 7→ γ′, then NbAOk(p) holds in γ′.

Proof. Let X be the value of NbA(p) in γ.
If p executes Leave in γ 7→ γ′, then from the guard of Leave, we know that X ≥ f(p). Moreover,

as Action Count is disabled at p (otherwise, Leave is not executed because Count has higher priority),
p.nbA = X in γ. So, p.inA = false and p.nbA = X ≥ f(p) in γ′, i.e., NbAOk(p) holds in γ′.

If p executes p.choice← q ∈ Np in γ 7→ γ′, then HasExtra(p) holds in γ, p does not change the value
of p.inA in γ 7→ γ′, and p.nbA← X in γ 7→ γ′. Consequently, NbAOk(p) holds in γ′. �

Lemma 7 For every process p, ChoiceOk(p) is closed.

Proof. By contradiction. Assume that there is a process p such that ChoiceOk(p) is not closed: There
exists a step γi 7→ γi+1 where ChoiceOk(p) holds in γi, but not in γi+1. That is: p.choice 6= ⊥ ∧
p.choice.inA ∧ ¬HasExtra(p) holds in γi+1.

Assume that the value of p.inA changes between γi and γi+1. Then, p executes Join or Leave in
γi 7→ γi+1. In the former case, p.choice = ⊥ in γi+1, and consequently, ChoiceOk(p) still holds in γi+1,
contradiction. In the latter case, from the guard of Leave, we can deduce that p.choice = ⊥ in γi and, as
Action Leave does not modify the variable choice, p.choice = ⊥ still holds in γi+1, contradiction. So,
the value of p.inA does not change during γi 7→ γi+1. Consider the following two cases:

A) p.choice = ⊥ in γi: p.choice 6= ⊥ in γi+1. So, p executes Action Vote in γi 7→ γi+1. Conse-
quently, the guard of Action Vote holds at p in γi. In particular, ChosenCand(p) 6= ⊥ in γi, and so
HasExtra(p) also holds in γi. As the value of p.inA does not change during γi 7→ γi+1, a neighbor
of p should leave A during γi 7→ γi+1, so that HasExtra(p) becomes false. Since p.choice = ⊥ in
γi, no neighbor of p can execute Action Leave in γi 7→ γi+1, contradiction.

12/21 Verimag Research Report no TR-2012-19

Self-Stabilizing (f,g)-Alliances
Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,

Lawrence L. Larmore, and Yvan Rivierre

B) p.choice 6= ⊥ in γi: If p executes Vote in γi 7→ γi+1, then p.choice = ⊥ in γi+1 and ChoiceOk(p)
still holds in γi+1, contradiction. So, the value of p.choice is the same in γi and γi+1. Let q be this
value. Recall that q ∈ Np, and consider the following two subcases:

¬q.inA in γi: q.inA holds in γi+1. So, q executes Action Join in γi 7→ γi+1. Now, as p.choice = q
in γi, Action Join is disabled at q in γi, contradiction.

q.inA in γi: Since ChoiceOk(p) holds in γi, we have HasExtra(p) = true in γi. Now, HasExtra(p)
is false in γi+1. Moreover, we already know that the value of p.inA does not change dur-
ing γi 7→ γi+1. So, by Lemma 5, exactly one neighbor of p executes Action Leave in
γi 7→ γi+1. As p.choice = q in γi, the neighbor that leavesA in γi 7→ γi+1 is necessarily q. So,
q.inA = false in γi+1, and since p.choice = q still holds in γi+1, we have p.choice.inA = false
in γi+1. Consequently, ChoiceOk(p) still holds in γi+1, contradiction.

�

Lemma 8 For every process p, ChoiceOk(p) holds forever after p executes any action.

Proof. Let p be a process that executes any action in γ 7→ γ′. By Lemma 7, we only need to show that
ChoiceOk(p) is true in either γ or γ′.

Consider the following three cases:
A) p executes Join: Then, p.choice = ⊥ in γ′, and consequently ChoiceOk(p) is true in γ′.
B) p executes Vote: Then, p.choice = ⊥ in either γ or γ′, and ChoiceOk(p) is true in γ or γ′.
C) p executes any other action: As in the previous cases, if p.choice = ⊥ in γ, we conclude that
ChoiceOk(p) is true in γ. Suppose p.choice 6= ⊥ in γ. Since Join and Vote have higher priority than
any other action, we deduce that their respective guards are false in γ. In particular, from the negation of
the guard of Action Vote, we can deduce that p.choice = ChosenCand(p) 6= ⊥ in γ. So, HasExtra(p)
holds in γ, and thus ChoiceOk(p) holds in γ. �

Lemma 9 If f ≥ g, ChoiceOk(p) ∧ Fga(p) is closed for every process p.

Proof. Let p be a process. Let γ 7→ γ′ be any step such that ChoiceOk(p)∧Fga(p) holds in γ. By Lemma
7, we have: (*) ChoiceOk(p) holds in γ′.

Hence, we only need to show that Fga(p) still holds in γ′. Let X be the value of NbA(p) in γ. Let Y be
the value of NbA(p) in γ′. By Lemma 5, Y ≥ X − 1. Consider the following two cases:

• A) The value of p.inA is the same in γ and γ′.

If p.choice = ⊥ in γ, then no neighbor of p can leave A in γ 7→ γ′. Consequently, Y ≥ X , which
also implies that Fga(p) still holds in γ′.

Otherwise, p.choice 6= ⊥ in γ. There are two cases.

p.choice.inA in γ: By (*), p.inA ⇒ X > g(p) and ¬p.inA ⇒ X > f(p) in γ. So, as the value of
p.inA is the same in γ and γ′, and Y ≥ X − 1, we have p.inA ⇒ Y ≥ g(p) and ¬p.inA ⇒
Y ≥ f(p) in γ′, which implies that Fga(p) still holds in γ′.

¬p.choice.inA in γ: There is no neighbor q of p such that q.inA and p.choice = q in γ. So, no
neighbor of p leaves A in γ 7→ γ′. Consequently, Y ≥ X and, as the value of p.inA is the same
in γ and γ′, Fga(p) still holds in γ′.

• B) p changes the value of p.inA in γ 7→ γ′. Consider the following two cases:

p executes Leave in γ 7→ γ′: First, p.inA = false in γ′. So, Fga(p) holds in γ′ only if Y ≥ f(p).
Then, from the guard of Action Leave, we have (1) X ≥ f(p) and (2) p.choice = ⊥ in γ. By
(2), no neighbor of p leaves A in γ 7→ γ′. So, Y ≥ X ≥ f(p), which implies that Fga(p) still
holds in γ′.

p executes Join in γ 7→ γ′: First, p.inA = true in γ′. So, Fga(p) holds in γ′ only if Y ≥ g(p).
(Recall that f(p) ≥ g(p).) Consider the following two cases:

Verimag Research Report no TR-2012-19 13/21

Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,
Lawrence L. Larmore, and Yvan Rivierre Self-Stabilizing (f,g)-Alliances

X > Y : Then Y = X − 1. Let q be the neighbor of p that leaves A in γ 7→ γ′. q.inA =
true ∧ p.choice = q in γ. So, by (*), p.inA = false in γ implies that X > f(p). So,
Y ≥ f(p) ≥ g(p), which implies that Fga(p) still holds in γ′.

X ≤ Y : Then, Y ≥ X ≥ f(p) ≥ g(p), which implies that Fga(p) still holds in γ′.

�

Lemma 10 Assuming f ≥ g, we have: for every process p, ChoiceOk(p) ∧ Fga(p) ∧ NbAOk(p) is closed.

Proof. Let p be a process. Let γ 7→ γ′ be any step such that ChoiceOk(p) ∧ Fga(p) ∧ NbAOk(p) holds in
γ. By Lemma 9, ChoiceOk(p) ∧ Fga(p) is true in γ′. So, we only need to show that NbAOk(p) still holds
in γ′.

Assume the contrary. Let X be the value of NbA(p) in γ and consider the following two cases:

• p does not change the value of p.inA in γ 7→ γ′. Assume that p.inA is true in γ. Then, pmust modify
p.nbA in γ 7→ γ′ to violate NbAOk(p) in γ′. From the algorithm, p executes p.nbA ← X in γ 7→ γ′.
Then, X ≥ g(p) since Fga(p) in γ. Thus, p.inA = true and p.nbA ≥ g(p) in γ′, i.e., NbAOk(p) still
holds in γ′, contradiction.

Assume that p.inA is false in γ. By similar reasoning, we obtain a contradiction in this case as well.

• p changes the value of p.inA in γ 7→ γ′. There are two cases:

p leaves A in γ 7→ γ′: Then, NbAOk(p) still holds in γ′ by Lemma 6, contradiction.

p joins A in γ 7→ γ′: Then, X ≥ f(p) because p.inA = false and Fga(p) holds in γ. Then,
p.nbA ← X in γ 7→ γ′. So, p.inA = true and p.nbA ≥ f(p) ≥ g(p) in γ′, i.e., NbAOk(p)
still holds in γ′, contradiction.

�

Lemma 11 If f ≥ g, then in any execution ofMA(f, g), J ≤ 1, that is, every process joins the (f, g)-
alliance at most once.

(Figure 5 illustrates the following proof.)
Proof. By contradiction. Assume that some process p executes Action Join at least two times. Note that
p must execute Action Leave between two executions of Action Join. Thus, there exist 0 ≤ i < j < k
such that p joins A in γi 7→ γi+1, leaves A in γj 7→ γj+1, and joins it again in γk 7→ γk+1.

From the guard of Action Join, q.choice 6= p in γi for all q ∈ Np. From the guard of Action Leave,
q.choice = p in γj for all q ∈ Np. Thus:

(1) Every neighbor q of p executes q.choice← p using Action Vote before γj .

Let q be any neighbor of p. Let γl 7→ γl+1 be a step at which q executes q.choice← p, using Action Vote,
for i < l < j. Such a step exists by (1). By Lemma 8, ChoiceOk(q) is true in γl+1. Moreover, by (1) and
the code of Action Vote, we can deduce that (a) q.choice = ⊥ and (b) p.inA = true in γl. By (a), p.inA
is still true in γl+1. Now, q.choice = p in γl+1. So, ChoiceOk(q) in γl+1 implies that HasExtra(q) holds
in γl+1, which in turns implies that Fga(q) holds in γl+1. Finally, NbAOk(q) in γl+1 by Lemma 6. So, by
Lemma 10, ChoiceOk(q) ∧ Fga(q) ∧ NbAOk(q) is true forever from γl+1. Hence:

(2) Every neighbor q of p satisfies ChoiceOk(q) ∧ Fga(q) ∧ NbAOk(q) forever from γj .

As p leaves A in γj 7→ γj+1, by Corollary 2 and Lemmas 8 and 9, we have:

(3) ChoiceOk(p) ∧ Fga(p) holds forever from γj+1.

As p joins A in γk 7→ γk+1, (a) ¬p.inA ∧ NbA(p) < f(p) or (b) IsMissing(p) holds in γk. Now, (a)
contradicts (3) and (b) contradicts (2). �

From Lemmas 4 and 11, we deduce the following corollary:

14/21 Verimag Research Report no TR-2012-19

Self-Stabilizing (f,g)-Alliances
Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,

Lawrence L. Larmore, and Yvan Rivierre

jl kj + 1l + 1i+ 1i ≤ ≤ ≤

p joins q votes p leaves p joins

0 ≤

Figure 5: Execution ofMA(f, g)

Terminal

SPMinimal

Fga(p) ∧ ChoiceOk(p)
∀p ∈ V, NbAOk(p)∧

∀p ∈ V, ChoiceOk(p)

true

∧ChoiceOk(p)

1 round

1 round

3 rounds

5n rounds

3 rounds

= ∀p ∈ V, Fga(p)
SPflc

Figure 6: Safe Convergence ofMA(f, g)

Corollary 3 Starting from any configuration, if f ≥ g, MA(f, g) reaches a terminal configuration in
O(n×∆3) steps.

By Lemma 3 and Corollary 3, we have:

Theorem 1 If f ≥ g,MA(f, g) is silent and self-stabilizing w.r.t. SPMinimal, and its stabilization time
is O(∆3n) steps.

4.3 Complexity Analysis and Safe Convergence in Rounds
We define a feasible legitimate configuration to be any configuration γ that satisfies

SPflc
def
= ∀p ∈ V, ChoiceOk(p) ∧ Fga(p)

In any feasible legitimate configuration, A is an (f, g)-alliance, by Remark 1. Then, from Lemma 9, we
already know that the set of feasible legitimate configurations is closed if f ≥ g:

Corollary 4 If f ≥ g, then SPflc is closed.

To establish safe convergence ofMA(f, g), we show that it gradually converges to more and more spe-
cific closed predicates, until reaching a terminal configuration. The gradual convergence to those specific
closed predicates is shown in Figure 6.

Lemma 12 For every process p, after at most one round, ChoiceOk(p) is true forever.

Proof. To show this lemma, it is sufficient to show that ChoiceOk(p) becomes true during the first round,
by Lemma 7. If p is continuously enabled from the initial configuration, then p executes at least one action
during the first round and by Lemma 8, we are done.

Verimag Research Report no TR-2012-19 15/21

Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,
Lawrence L. Larmore, and Yvan Rivierre Self-Stabilizing (f,g)-Alliances

Otherwise, the first round contains a configuration γ in which every action is disabled at p. In particular,
from the negation of the guard of Action Vote, we have p.choice = ChosenCand(p) in γ. Two cases are
then possible in γ:

p.choice = ⊥: In this case, by definition, ChoiceOk(p) holds in γ.

p.choice 6= ⊥: Then, as p.choice = ChosenCand(p), we have p.choice = MinCand(p) in γ. Thus,
HasExtra(p) holds in γ, which implies that ChoiceOk(p) holds in γ.

�

Lemma 13 Assume f ≥ g. Let γ0 . . . γi . . . be an execution ofMA(f, g). ∀i ≥ 0, if ChoiceOk(p) for all
p ∈ V in γi, then ∃j ≥ i such that γj is within at most three rounds from γi and ∀p ∈ V, ChoiceOk(p) ∧
Fga(p) holds in γj .

Proof. Let γt0 be a configuration where ∀p ∈ V, ChoiceOk(p). Consider any execution (starting in γt0)
e = γt0 . . . γt1 . . . γt2 . . . γt3 . . ., where γt1 , γt2 , and γt3 are the last configurations of the first, second, and
third rounds of e, respectively. By Lemma 7, it is sufficient to show that there is some t ∈ [t0..t3] such that
∀p ∈ V, Fga(p) in γt. Suppose no such a configuration exists. By Lemmas 7 and 9, this means that there
exists a process v such that:

(1) ∀t ∈ [t0..t3], ¬Fga(v) in γt.

We now derive a contradiction using the following six claims.

(2) ∀t ∈ [t1..t3], v.choice = ⊥ in γt.

Proof of Claim 2: First, by (1), ∀t ∈ [t0..t3], ¬HasExtra(v) in γt. So, from the definition ChosenCand(v),
we can deduce that ∀t ∈ [t0..t3], if v.choice = ⊥ in γt, then ∀t′ ∈ [t..t3], v.choice = ⊥ in γt′ . Hence,
to show the claim, it is sufficient to show that ∃t ∈ [t0..t1] such that v.choice = ⊥ in γt. Suppose the
contrary. Then, ∀t ∈ [t0..t1], v.choice 6= ⊥ ∧ ¬HasExtra(v) in γt, that is, the guard of Vote is true at v
in γt. So, v executes (at least) one of the two first actions in the first round to set v.choice to ⊥, and we are
done.

(3) ∀t ∈ [t1..t3], ¬v.inA⇒ (∀q ∈ Nv, q.choice 6= v) in γt.

Proof of Claim 3: Let γt 7→ γt+1 such that t ∈ [t0..t3 − 1]. Assume that ¬v.inA⇒ (∀q ∈ Nv, q.choice 6=
v) holds in γt.

If v.inA = true in γt, then v.inA = true in γt+1 by (1) and Corollary 2, in particular, this implies that
¬v.inA ⇒ (∀q ∈ Nv, q.choice 6= v) still holds in γt+1. Otherwise, ¬v.inA ∧ (∀q ∈ Nv, q.choice 6= v)
holds in γt and, from the definition of ChosenCand(q), no neighbor of v can execute Vote to designate v
with its pointer during γt 7→ γt+1. Hence, ¬v.inA⇒ (∀q ∈ Nv, q.choice 6= v) still holds in γt+1.

Consequently, ∀t ∈ [t0..t3], if ¬v.inA ⇒ (∀q ∈ Nv, q.choice 6= v) holds in γt, then ∀t′ ∈ [t..t3],
¬v.inA ⇒ (∀q ∈ Nv, q.choice 6= v) still holds in γt′ . Hence, to show this claim, it is sufficient to show
that ∃t ∈ [t0..t1] such that ¬v.inA ⇒ (∀q ∈ Nv, q.choice 6= v) in γt. Assume the contrary: ∀t ∈ [t0..t1],
¬v.inA∧ (∃q ∈ Nv, q.choice = v) holds in γt. Then, ∀q ∈ Nv , if q.choice 6= v in γt with t ∈ [t0..t1], then
∀t′ ∈ [t..t1], q.choice 6= v in γt′ . So, v has a neighbor q such that ∀t ∈ [t0..t1], q.choice = v in γt. Now,
in this case, ∀t ∈ [t0..t1], the guard of Vote is true at q in γt. So, q executes (at least) one of the two first
actions in the first round to set q.choice to ⊥, contradiction.

(4) ∀t ∈ [t2..t3], v.nbA ≤ NbA(v) in γt.

Proof of Claim 4: First, by (2), no neighbor of v can leave the alliance during the second and third rounds,
that is, NbA(p) is monotonically nondecreasing during [t1..t3]. So, ∀t ∈ [t1..t3], if v.nbA ≤ NbA(v) in
γt, then ∀t′ ∈ [t..t3], v.nbA ≤ NbA(v) in γt′ . Hence, to show this claim, it is sufficient to show that
∃t ∈ [t1..t2] such that v.nbA ≤ NbA(v) in γt. Assume the contrary, namely that v.nbA > NbA(v) in γt,
∀t ∈ [t1..t2]. Then, ∀t ∈ [t1..t2], the guard of Count is true at v. Consequently, v executes one of the
three first actions, in particular v.nbA← NbA(v), during the second round, and, as NbA(p) is monotonically
nondecreasing during [t1..t3], we obtain a contradiction.

16/21 Verimag Research Report no TR-2012-19

Self-Stabilizing (f,g)-Alliances
Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,

Lawrence L. Larmore, and Yvan Rivierre

(5) ∀t ∈ [t2..t3], v.inA in γt.

Proof of Claim 5: First, ∀t ∈ [t0..t3], if v.inA = true in γt, then ∀t′ ∈ [t..t3], v.inA = true in γt′ by (1)
and Corollary 2. Hence, to show this claim, it is sufficient to show that ∃t ∈ [t0..t2] such that v.inA = true
in γt. Assume the contrary: ∀t ∈ [t0..t2], v.inA = false in γt. Then, by (1) ∀t ∈ [t0..t2], NbA(v) < f(v)
in γt. Now, by (3), ∀t ∈ [t1..t3], ∀q ∈ Nv, q.choice 6= v in γt. So, the guard of the highest priority action
of v, Join, is true in particular in every configuration γt where t ∈ [t1..t2]. So, v joins the alliance in the
second round, contradiction.

(6) ∀t ∈ [t2..t3], ∀q ∈ Nv,¬q.inA⇒ (∀r ∈ Nq, r.choice 6= q) in γt.

Proof of Claim 6: Let q be a neighbor of v. Let γt 7→ γt+1 such that t ∈ [t1..t3 − 1]. Assume that
¬q.inA⇒ (∀r ∈ Nq, r.choice 6= q) holds in γt.

If q.inA = true in γt, then by (2), the guard of Leave is disabled at q, so q.inA = true in γt+1,
and consequently, ¬q.inA ⇒ (∀r ∈ Nq, r.choice 6= q) still holds in γt+1. Otherwise, ¬q.inA ∧ (∀r ∈
Nq, r.choice 6= q) holds in γt and, from the definition of ChosenCand(r), no neighbor r of q can execute
Vote to designate q with its pointer during γt 7→ γt+1. Hence, ¬q.inA ⇒ (∀r ∈ Nq, r.choice 6= q) still
holds in γt+1.

Consequently, ∀t ∈ [t1..t3], ∀q ∈ Nv , if ¬q.inA ⇒ (∀r ∈ Nq, r.choice 6= q) holds in γt, then
∀t′ ∈ [t..t3], ¬q.inA⇒ (∀r ∈ Nq, r.choice 6= q) holds in γt′ . Hence, to show this claim, it is sufficient to
show that ∀q ∈ Nv , ∃t ∈ [t1..t2] such that ¬q.inA⇒ (∀r ∈ Nq, r.choice 6= q) in γt. Assume the contrary:
let q be a neighbor of v such that ∀t ∈ [t1..t2], ¬q.inA ∧ (∃r ∈ Nq, r.choice = q) holds in γt. First,
∀r ∈ Nq , if r.choice 6= q in γt with t ∈ [t1..t2], then ∀t′ ∈ [t..t2], r.choice 6= q. So, there is a neighbor r
of q that ∀t ∈ [t1..t2], r.choice = q. Then, from the definition of ChosenCand(r), ∀t ∈ [t1..t2], the guard
of Vote is true at r in γt. So, r executes (at least) one of the two first actions in the second round to set
r.choice to ⊥, a contradiction.

(7) ∀q ∈ Nv, q.inA in γt3 .

Proof of Claim 7: Let q be a neighbor of v. By (2), ∀t ∈ [t2..t3], CanLeave(q) = false. So, ∀t ∈ [t2..t3],
if q.inA in γt, then ∀t′ ∈ [t..t3], q.inA in γt′ . Hence, to show this claim, it is sufficient to show that
∃t ∈ [t2..t3] such that q.inA in γt. Assume the contrary: ∀t ∈ [t2..t3], ¬q.inA. By (1) and (4), ∀t ∈ [t2..t3],
IsMissing(q) holds in γt. Then, using (6), we deduce that the guard of the highest priority action of
q, Join, is true in every configuration γt with t ∈ [t2..t3]. So, q joins the alliance in the third round,
contradiction.

By (5), (7), and the fact that δv ≥ g(v), Fga(v) holds in γt3 , a contradiction. �

By Remark 1, Lemmas 9, 12, and 13, we have the following:

Corollary 5 If f ≥ g,MA(f, g) is self-stabilizing w.r.t. SPflc, and the first convergence time ofMA(f, g)
is at most four rounds.

Lemma 14 If f ≥ g, then from any configuration where ∀p ∈ V, ChoiceOk(p) ∧ Fga(p) ∧ NbAOk(p),
Action Join is forever disabled at every process.

Proof. Let γ by any configuration where ∀p ∈ V, ChoiceOk(p)∧Fga(p)∧NbAOk(p). Then, Fga(p) implies
that ¬p.inA ⇒ NbA(p) ≥ f(p) in γ. Moreover, (∀q ∈ Np, Fga(q) ∧ NbAOk(q)) implies ¬IsMissing(p)
in γ. So, Action Join is disabled at every process p in γ. By Lemma 10, we are done. �

Lemma 15 Let γ be any configuration where ∀p ∈ V, ChoiceOk(p) ∧ Fga(p). If f ≥ g, a configuration
where ∀p ∈ V, ChoiceOk(p) ∧ Fga(p) ∧ NbAOk(p) is forever true is reached in at most one round from γ.

Proof. By Lemmas 9 and 10, it is sufficient to show that ∀p ∈ V , there is a configuration in the first round
starting from γ where NbAOk(p) holds. Let p be a process. Consider the following two cases:

• The value of p.inA changes during the first round from γ. If p leaves A, then by Lemma 6, we are
done. Otherwise, p executes Join in some step γ′ 7→ γ′′ of the round. So, NbA(p) ≥ f(p) in γ′

(Lemma 9) and consequently, p.nbA ≥ f(p) in γ′′. As f(p) ≥ g(p) and p.inA = true in γ′′, we are
done.

Verimag Research Report no TR-2012-19 17/21

Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,
Lawrence L. Larmore, and Yvan Rivierre Self-Stabilizing (f,g)-Alliances

• The value of p.inA does not change during the first round from γ. Assume that NbAOk(p) = false
in all the configurations of the first round from γ. Then, as Fga(p) is always true (Lemma 9), the
guard of Action Count is always true during this round, and consequently p executes at least one
of its three first actions in the round, in particular, p.nbA← NbA(p). Again, as Fga(p) is always true
during the round (Lemma 9), we obtain a contradiction, and thus we are done.

�

Lemma 16 If f ≥ g, then from any configuration where (∀p ∈ V, ChoiceOk(p) ∧ Fga(p) ∧ NbAOk(p)),
and A is not a 1-minimal (f, g)-alliance, at least one process permanently leaves A every five rounds.

Proof. By contradiction. Let γt0 be a configuration where ∀p ∈ V, ChoiceOk(p) ∧ Fga(p) ∧ NbAOk(p).
Consider any execution (starting in γt0) e = γt0 . . . γt1 . . . γt2 . . . γt3 . . . γt4 . . . γt5 . . ., where γt1 , γt2 ,
γt3 , γt4 , γt5 respectively are the last configurations of the first, second, third, fourth, fifth round of e. By
Lemma 14, it is sufficient to show that ∃t ∈ [t0..t5 − 1] such that some process leaves the alliance during
γt 7→ γt+1. Assume that no such a configuration exists.

Let S = {p ∈ V, p.inA ∧ NbA(p) ≥ f(p) ∧ (∀q ∈ Np, HasExtra(q))}. As A is not a 1-minimal
(f, g)-alliance during the five first rounds after γt0 , S 6= ∅. Moreover, as no process leaves (by hypothesis)
or joins (by Lemma 14) the alliance during the five first rounds from γt0 , S is constant during these rounds.
Let pmin = min(S).

We derive a contradiction, using the following six claims:

(1) ∀t ∈ [t1..t5], ∀p ∈ V, p.nbA = NbA(p) in γt.

Proof of Claim 1: First, by hypothesis, ∀p ∈ V , the value of NbA(p) is constant during the five first rounds.
So, to show the claim, it is sufficient to prove that ∀p ∈ V , ∃t ∈ [t0..t1], p.nbA = NbA(p) in γt. Assume the
contrary: there is a process p such that ∀t ∈ [t0..t1], p.nbA 6= NbA(p) in γt. Then, ∀t ∈ [t0..t1], the guard
of Count is true at p. As Action Join is disabled forever at p (by Lemma 14), p executes the second or
third actions, in particular p.nbA← NbA(p), during the first round, and we obtain a contradiction.

(2) ∀t ∈ [t1..t5], IsBusy(pmin) = false in γt.

Proof of Claim 2: From (1) and the definition of pmin.

(3) ∀t ∈ [t2..t5], pmin.choice = ⊥ in γt.

Proof of Claim 3: By (2) and the definition of pmin, ∀t ∈ [t1..t5], IamCand(pmin) is true but MinCand(pmin)
< pmin is false in γt. So, ∀t ∈ [t1..t5], ChosenCand(pmin) = ⊥ in γt. Hence to show the claim, it
is sufficient to prove that ∃t ∈ [t1..t2], pmin.choice = ⊥ in γt. Assume the contrary: ∀t ∈ [t1..t2],
pmin.choice 6= ⊥ in γt and consequently the guard of Action Vote is true in γt. Now, ∀t ∈ [t1..t2], Join
is disabled at pmin in γt by Lemma 14. So, pmin executes Action Vote during the second round, and we
are done.

(4) ∀t ∈ [t2..t5], ¬pmin.busy in γt.

Proof of Claim 4: By (2), if ∃t ∈ [t1..t5] such that ¬pmin.busy in γt, then ∀t′ ∈ [t..t5], ¬pmin.busy in γt′ .
Hence to show the claim, it is sufficient to prove that ∃t ∈ [t1..t2] such that ¬pmin.busy in γt. Assume the
contrary: ∀t ∈ [t1..t2], pmin.busy = true in γt. ∀t ∈ [t1..t2], Join and Count are disabled at pmin in γt
(Lemma 14 and (1)). By (2), ∀t ∈ [t1..t2], the guard of Action Flag is true at pmin in γt. Consequently,
pmin executes Vote or Flag during the second round, and we are done.

(5) ∀t ∈ [t3..t5], ∀q ∈ Npmin , q.choice ∈ {⊥, pmin} in γt.

Proof of Claim 5: By (4) and the definition of pmin, ∀t ∈ [t2..t5], ∀q ∈ Npmin
, ChosenCand(q) = pmin in

γt. Hence, to show the claim, it is sufficient to prove that ∀q ∈ Npmin
, ∃t ∈ [t2..t3] such that q.choice ∈

{⊥, pmin} in γt. Assume the contrary: let q be a neighbor of pmin, and assume that ∀t ∈ [t2..t3], q.choice /∈
{⊥, pmin} in γt. Then, the guard of Action Vote is true at q in γt. Now, ∀t ∈ [t2..t3], Join is disabled at
q in γt, by Lemma 14. So, q executes Action Vote during the second round, and we are done.

18/21 Verimag Research Report no TR-2012-19

Self-Stabilizing (f,g)-Alliances
Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,

Lawrence L. Larmore, and Yvan Rivierre

(6) ∀t ∈ [t4..t5], ∀q ∈ Npmin
, q.choice = pmin in γt.

Proof of Claim 6: By (4) and the definition of pmin, ∀t ∈ [t3..t5], ∀q ∈ Npmin , ChosenCand(q) = pmin in
γt. Hence to show the claim, it is sufficient to prove that ∀q ∈ Npmin

, ∃t ∈ [t3..t4], q.choice = pmin in
γt. Assume the contrary: Let q be a neighbor of pmin. Assume that ∀t ∈ [t3..t4], q.choice 6= pmin in γt.
Then, ∀t ∈ [t3..t4], q.choice = ⊥ in γt by (5) and consequently the guard of Action Vote is true at q in
γt. Now, ∀t ∈ [t3..t4], Join is disabled at q in γt, by Lemma 14. So, q executes Action Vote during the
third round and we are done.

From γt0 , Action Join is disabled at pmin forever. By (3), (4), and the definition of pmin, ∀t ∈ [t4..t5]
Action Vote is disabled at pmin. By (1), ∀t ∈ [t4..t5] Action Count is disabled at pmin. By (2) and (4),
∀t ∈ [t4..t5] Action Flag is disabled at pmin. By (3), (6), and the definition of pmin, ∀t ∈ [t4..t5], Leave
is enabled at pmin. So, pmin leaves the alliance during the fifth round, contradiction. �

Theorem 2 If f ≥ g,MA(f, g) is silent and self-stabilizing w.r.t. SP1−Minimal and its stabilization time
is at most 5n+ 8 rounds.

Proof. By Lemmas 12 through 16, starting from any configuration, the system reaches a configuration γ
from which A is a 1-minimal (f, g)-alliance and Actions Join and Leave are disabled forever at every
process, in 5n+ 5 rounds. So, it remains to show that the system reaches a terminal configuration after at
most three rounds from γ.

The following three claims establish the proof:

(1) After one round from γ, ∀p ∈ V , p.nbA = NbA(p) forever.

Proof of Claim 1: From γ, for every process p, Join is disabled forever and NbA(p) is constant. So, if
necessary, p fixes the value of p.nbA to NbA(p) within the next round by Vote or Count.

(2) After two rounds from γ, ∀p ∈ V , (p.inA⇒ p.busy) ∧ p.busy = IsBusy(p) forever.

Proof of Claim 2: When the second round from γ begins, for every process p, values of p.inA and p.nbA
are constant, moreover Join and Count are disabled forever at p (by hypothesis and claim (1)). So, if
necessary, p fixes the value of p.busy to IsBusy(p) within the next round by Vote or Flag. Hence, after
two rounds from γ, ∀p ∈ V , p.busy = IsBusy(p) holds forever.

Finally, assume that there is a process p such that p.inA ∧ ¬p.busy after two rounds from γ. Then,
p.inA ∧ NbA(p) ≥ f(p) ∧ IsExtra(p). Now, by (1), this means that p.inA ∧ NbA(p) ≥ f(p) ∧ (∀q ∈
Np, (¬q.inA ⇒ NbA(q) > f(q)) ∧ (q.inA ⇒ NbA(q) > g(q))), which contradicts the fact that A is a
1-minimal (f, g)-alliance. Hence, after two rounds from γ, ∀p ∈ V , (p.inA⇒ p.busy) holds forever.

(3) After three rounds from γ, ∀p ∈ V , p.choice = ⊥ forever.

Proof of Claim 3: When the third round from γ begins, for every process p, Cand(p) = ∅ forever by Claim
(2), which implies that ChosenCand(p) = ⊥ forever. Remember also that Join is disabled forever for
every process. So, if necessary, p fixes the value of p.choice to ⊥ within the next round by Vote.

From the three previous claims, we can deduce that after at most three rounds from γ (that is, at most
5n+8 rounds from the initial configuration), the system reaches a terminal configuration where SPMinimal

holds, by Lemma 3. �

By Property 1, Corollary 5, and Theorem 2, we have:

Corollary 6 If f ≥ g,MA(f, g) is silent and safely converging self-stabilizing w.r.t. (SPflc, SPMinimal),
its first convergence time is at most four rounds, its second convergence time is at most 5n+ 4 rounds, and
its stabilization time is at most 5n+ 8 rounds.

Verimag Research Report no TR-2012-19 19/21

Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,
Lawrence L. Larmore, and Yvan Rivierre Self-Stabilizing (f,g)-Alliances

5 Conclusion and Perspectives

We have given a silent self-stabilizing algorithm, MA(f, g), that computes a minimal (f, g)-alliance in
an asynchronous network with unique node IDs, assuming that f ≥ g and every process p has a degree
at least g(p). MA(f, g) is also safely converging: It first converges to a (not necessarily minimal) (f, g)-
alliance in at most four rounds and then continues to converge to a minimal one in at most 5n+4 additional
rounds. We have verified correctness and time complexity ofMA(f, g), assuming the weakest scheduling
assumption: the distributed unfair daemon. Its memory requirement is O(log n) bits per process and its
stabilization time in steps is O(∆3n).

The immediate extension of our work is to try to reduce the stabilization time to O(D) rounds. It
would be interesting to study the (f, g)-alliance problem without the constraint that f ≥ g. We conjecture
thatMA(f, g) is still self-stabilizing in that case. However, we already know that it does not guarantee
a good safe convergence property in the case f < g: Indeed, in that case, any process can join A several
times, giving us a round complexity of Ω(n) for convergence to a feasible legitimate configuration. We
believe that when f < g, it is impossible to guarantee O(1) round convergence to a feasible legitimate
configuration, where a (not necessarily minimal) (f, g)-alliance is defined.

Our work is a step toward generalization of safe convergence to a wide class of problems.

References

[1] Edsger W. Dijkstra. Self-Stabilizing Systems in Spite of Distributed Control. Commun. ACM, 17:643–
644, 1974. 1, 2.2

[2] Sukumar Ghosh, Arobinda Gupta, Ted Herman, and Sriram V. Pemmaraju. Fault-containing self-
stabilizing algorithms. In Proceedings of the Fifteenth Annual ACM Symposium on Principles of
Distributed Computing, Philadelphia, Pennsylvania, USA, May 23-26, 1996, pages 45–54. ACM,
1996. 1

[3] Shlomi Dolev and Ted Herman. Superstabilizing protocols for dynamic distributed systems. Chicago
J. Theor. Comput. Sci., 1997, 1997. 1

[4] Shay Kutten and Boaz Patt-Shamir. Time-adaptive self stabilization. In James E. Burns and Hagit
Attiya, editors, Proceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed
Computing, Santa Barbara, California, USA, August 21-24, 1997, pages 149–158. ACM, 1997. 1

[5] Hirotsugu Kakugawa and Toshimitsu Masuzawa. A self-stabilizing minimal dominating set algorithm
with safe convergence. In IPDPS, 2006. 1, 1.2

[6] Christophe Genolini and Sébastien Tixeuil. A lower bound on dynamic k-stabilization in asyn-
chronous systems. In 21st Symposium on Reliable Distributed Systems (SRDS 2002), 13-16 October
2002, Osaka, Japan, pages 212–. IEEE Computer Society, 2002. 1

[7] Sayaka Kamei and Hirotsugu Kakugawa. A self-stabilizing approximation algorithm for the minimum
weakly connected dominating set with safe convergence. In Proceedings of the First International
Workshop on Reliability, Availability, and Security (WRAS), pages 57–67, Paris, France, September
2007. 1

[8] Sayaka Kamei and Hirotsugu Kakugawa. A self-stabilizing 6-approximation for the minimum con-
nected dominating set with safe convergence in unit disk graphs. Theoretical Computer Science,
428:80–90, 2012. 1

[9] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational power of popu-
lation protocols. Distributed Computing, 20(4):279–304, 2007. 1

20/21 Verimag Research Report no TR-2012-19

Self-Stabilizing (f,g)-Alliances
Fabienne Carrier, Ajoy K. Datta, Stéphane Devismes,

Lawrence L. Larmore, and Yvan Rivierre

[10] Anupam Gupta, Bruce M. Maggs, Florian Oprea, and Michael K. Reiter. Quorum placement in net-
works to minimize access delays. In Marcos Kawazoe Aguilera and James Aspnes, editors, Proceed-
ings of the Twenty-Fourth Annual ACM Symposium on Principles of Distributed Computing, PODC
2005, Las Vegas, NV, USA, July 17-20, 2005, pages 87–96. ACM, 2005. 1

[11] Mitre Costa Dourado, Lucia Draque Penso, Dieter Rautenbach, and Jayme Luiz Szwarcfiter. The
south zone: Distributed algorithms for alliances. In SSS, pages 178–192, 2011. 1.2, 2.4, 1

[12] Pradip K. Srimani and Zhenyu Xu. Distributed protocols for defensive and offensive alliances in
network graphs using self-stabilization. In ICCTA, pages 27–31, 2007. 1.2

[13] Volker Turau. Linear self-stabilizing algorithms for the independent and dominating set problems
using an unfair distributed scheduler. Inf. Process. Lett., 103(3):88–93, 2007. 1.2

[14] Guangyuan Wang, Hua Wang, Xiaohui Tao, and Ji Zhang. A self-stabilizing algorithm for finding a
minimal k-dominating set in general networks. In Yang Xiang, Mukaddim Pathan, Xiaohui Tao, and
Hua Wang, editors, Data and Knowledge Engineering, Lecture Notes in Computer Science, pages
74–85. Springer Berlin Heidelberg, 2012. 1.2

[15] Shlomi Dolev, Mohamed G. Gouda, and Marco Schneider. Memory Requirements for Silent Stabi-
lization. In PODC, pages 27–34, 1996. 2.3

Verimag Research Report no TR-2012-19 21/21

	Introduction
	Our Contribution
	Related Work
	Roadmap

	Preliminaries
	Distributed Systems
	Computational Model
	Self-Stabilization, Silence, and Safe Convergence
	Minimality and 1-Minimality of (f,g)-alliances

	The Algorithm
	Leaving A
	Joining A

	Correctness
	Predicates
	Self-stabilization of MA(f,g)
	Complexity Analysis and Safe Convergence in Rounds

	Conclusion and Perspectives

