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Abstract: We present a semi-symbolic algorithm for synthesizing efficient controllers in a stochastic
environment, implemented as an add-on to the probabilistic model checker PRISM. The user specifies
the environment and the controllable actions using a Markov Decision Process (MDP), modeled in the
PRISM language. Controller efficiency is defined with respect to a user-specified assignment of costs
and rewards to the controllable actions. An optimally efficient strategy minimizes the ratio between the
encountered costs and rewards. At the core of the implementation is the first semi-symbolic algorithm
based on a recently developed strategy improvement algorithm for MDPs with ratio objectives. We show
the effectiveness of our implementation using a set of benchmarks.

1 Introduction
Efficiency is a central point in controller design because, in many settings, the controller needs to make a
trade-off between competing quantities. For instance, consider a production line in which the speed, i.e.,
the number of produced units, can be adjusted. A controller that produces as many units as possible seems
preferable. However, running the line in a faster mode increases the power consumption and the probability
to fail, resulting in higher repair costs. Therefore, it is natural to ask for an “efficient” controller, i.e., a
controller that minimizes the power and repair costs per produced unit.

In this paper, we present an algorithm that can not only analyze how efficient a controller is but can
also automatically construct the “most efficient” controller for a given environment, where efficiency is
defined as the ratio between a given cost model and a given reward model [1]. This choice is inspired by
the idea that an efficient system has to balance between the time or effort it uses versus the intended task.
For instance, consider an automatic gear-shifting unit (ACTS) that optimizes its behavior for a given driver
profile. The goal of the ACTS is to optimize the fuel consumption per kilometer (l/km), a commonly used
unit to quantify efficiency. In order to be most efficient, the system has to maximize the speed (given in
km/h) while minimizing the fuel consumption (measured in liters per hour, i.e., l/h) for the given driver
profile. If we take the ratio between the fuel consumption (the “costs”) and the speed (the “reward”), we
obtain l/km, the desired measure. Objectives of this nature have also been shown to be appropriate in
other contexts, such as the ratio between energy consumption and latency and the ratio between detected
collisions and failed transmissions as a measure of efficiency in MAC protocols [2].

We also present an implementation of the algorithm, which allows the user to specify a probabilistic
model of the system to control, together with an assignment of costs and rewards to each possible action
that the controller can choose. The output is a controller that optimizes the expected ratio between the
accumulated costs and rewards.

Our implementation is semi-symbolic: it combines both symbolic (Binary Decision Diagram-based)
and explicit-state techniques. It takes the form of an add-on to PRISM [3], a probabilistic model checker
that supports verification of Markov chains, Markov decision processes (MDPs) and probabilistic timed
automata. PRISM provides model checking of a variety of quantitative properties, including some reward-
based measures, but has no support for ratio objectives, which require rather different techniques. Ratio-
based measures are a useful class of properties that are not expressible with multi-objective MDP model
checking [4]. As a side-effect, PRISM can now also handle MDPs with the classical average objective.

Contributions. We provide the first semi-symbolic algorithm and implementation to find optimal
strategies for MDPs with ratio objectives (Ratio-MDPs) [1]. Our approach avoids the need for unichain
MDPs, which was a major bottleneck in the direct symbolic implementation of [1]. Our implementation is
fully integrated into the PRISM model checker, providing easy-to-use tool support for the ratio optimization
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criterion. We also added human-readable output of strategies to PRISM. Our work is related to the work
of Wimmer et al. [5], which performs semi-symbolic computation for MDPs with average objectives (a
special case of the ratio objectives). We show that our implementation can also outperform theirs.

2 Encoding and Algorithm
In this section, we first recall the symbolic encoding of Markov Decision Processes (MDPs) [6] used in
PRISM [3], then we give a formal definition of the ratio objectives. Finally, we present the new semi-
symbolic policy iteration algorithm, which is based on our recently-developed explicit version [1].

Encoding MDPs and Strategies. To encode MDPs symbolically, we use Multi-Terminal Binary Deci-
sion Diagrams (MTBDDs) [7], which are efficient data structures, generalizing Binary Decision Diagrams
(BDDs) [8], to represent functions from finite domains to finite ranges. We encode a Ratio-MDP using a
tuple (S,A, T ) and two MTBDDs R,W for the cost/reward function, respectively. The BDD S : V → B
represents the set of reachable states using a set of state variables V , the BDD A : V × A → B encodes
for each state the available actions using a set of action variables A, the MTBDD T : V ×A× V → [0, 1]
encodes the probability of moving from state s to state s′ under the condition that a particular action a
is chosen. If action a is not available in state s, then the corresponding value in T is 0. The two MTB-
DDs R,W : V × A → [0, d] assign costs (or rewards) to each state-action pair. Strategies of MDPs1 are
also encoded symbolically using a BDD Σ : V ×A→ B that describes for every state, if an action is taken
or not.

Ratio Objectives. The ratio objective expresses the ratio between the accumulated costs and the accu-
mulated rewards. Formally, it is defined as

lim
l→∞

lim inf
n→∞

∑n
i=l costs(ρi)

1 +
∑n
i=l rewards(ρi)

for a given MDP trace ρ (i.e., an infinite sequence of state-action pairs ρi). We aim for efficient controllers
that minimize the costs per obtained reward, i.e., optimal strategies that minimize the expected ratio value.

Overview. The algorithm proceeds as follows: first, it partitions the Ratio-MDP into end-components2 [9],
then it computes an optimal strategy for each end-component, and finally merges these strategies. For the
first and the last step, we use algorithms developed for MDPs with average objectives (Average-MDP), a
well-studied objective that can be seen as a special case of the ratio objective. We have implemented sym-
bolic versions of these algorithms. The computation of the optimal strategy in an end-component is based
on a sequence of reductions of the Ratio-MDP together with a strategy to an Average-MDP (see below).
To solve the induced Average-MDPs, we leverage the work of Wimmer et al. [5]. We have reimplemented
their semi-symbolic (symblicit) algorithm for Average-MDPs. Once we have computed a strategy for the
entire Ratio-MDP, we transform it into a PRISM-like format to make it readable by the user.

Strategies for End-Components. Given an end-component, we first perform two simple checks on its
structure to see if the value of this end-component is 0 or ∞. If both checks fail, then we proceed with
Algorithm 1, which we will explain in more detail next.

The algorithm first picks any strategy τ that has a finite and strictly positive value (Line 1). We observed
that the choice of this strategy has a strong influence on the performance of our algorithm and are currently
developing heuristics to optimise this phase. Then, in Line 1 we enter a loop that produces in every iteration
a new strategy that has the same or a better ratio value (λ) than the previous strategy. We exit the loop if
the same strategy is produced, i.e., there is no strategy with a better ratio value for this MDP.

In the loop, we first compute the ratio value λ that can be obtained by a strategy generated from the
strategy τ (Line 1). This computation is done semi-symbolically. First, we compute the Markov chain
C induced by strategy τ . For C, we symbolically compute a bisimulation relation [5], which allows us
to construct an equivalent smaller Markov chain C ′. Then, we compute all recurrence classes (i.e., the
strongly connected components) of C ′. For each recurrence class, we build an explicit-state representation

1We have shown in [1] that we only need to consider pure, memoryless strategies (i.e. those which which pick a single action in
each MDP state).

2An end-component can be thought of as the analogue of a strongly connected component for MDPs.
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Input: MDP mdp consisting of a single end-component
Output: strategy τ and optimal ratio value λ of mdp
τ = initial(mdp) ;1

τold = ⊥;2

while τ 6= τold do3

λ = lambda(mdp, τ );4

g, b = gainAndBias(mdp, τ , λ);5

while g ≥ 0 and τold 6= τ do6

τold = τ ;7

τ = next(mdp, τ , λ, g, b);8

g, b = gainAndBias(mdp, τ , λ);9

end10

end11

return unichain(mdp, τ ), λ12

Algorithm 1: Optimisation for a single end-component

of the sub-model and calculate the steady-state distribution using the SOR-method [10], which in turn is
used to calculate the ratio value of the recurrence class. We set λ to the value of the best recurrence class.
This value is not necessarily the value of τ but we can construct a strategy that has value λ. Furthermore,
λ is at least as good as the actual value of τ .

In the rest of the algorithm, we perform computation on an MDP with average objective induced by the
reward function R− λ ×W (which we compute symbolically). For this induced MDP, we compute gain
(g) and bias (b) vectors, two measures used by the strategy improvement algorithm for Average-MDPs [6].
The computation of gain and bias is similar to the computation of the ratio value, i.e., we calculate gain
and bias explicitly on an equivalent smaller Markov Chain [5]. We know that a state has a gain smaller
than zero in the induced MDP if and only if its ratio value is smaller (i.e., better) than the ratio value from
which the induced MDP was calculated [1]. In Line 1, the algorithm computes the gain and bias vectors
for the current strategy τ . Since the ratio value of strategy τ is at most as good as λ, the gain of all states at
this point is greater than or equal to zero.

We now enter the inner loop (Line 1), which runs while the strategy keeps changing and all entries of
the gain vector are greater than or equal to zero. Equivalently, the loop runs until there is a recurrence
class of the current strategy that has a value smaller than λ or until there is no better strategy anymore.
In the inner loop, we try to improve the strategy (Line 1) and calculate the new strategy’s gain and bias
(Line 1). Note that the choice of the next strategy and the way of computing the value λ differs from
our description in [1]. The reason is that, to prove the correctness of the algorithm, we were computing
(unichain) strategy. Forcing the algorithm to use a unichain strategy was a major bottleneck in our initial
implementation, because it increased the number of bisimulation classes significantly. A new correctness
proof is found in the appendix; the key to which is that it is always possible to build a unichain strategy
with the calculated ratio value, but it is never necessary to do so.

3 Interaction
In this section, we give a simple example showing how to use our implementation to construct efficient
controllers. (For larger and more elaborate examples showing the potential and performance of our add-on,
we refer the reader to Section 4.) In the top part of Figure 1, we show the behavior of a simple production
line modeled with an MDP. At the bottom, we show the corresponding PRISM encoding, the input to our
tool.

The production line can either be in state working (depicted in Figure 1 by a circle labeled with 0) or
in state broken (circle labeled with 1). If the line is working, the controller can choose between the three
modes of operation: slow, medium, fast (indicated by the three outgoing edges from State 0). The number
of items produced per time step and the corresponding maintenance cost, e.g., resulting from the amount
of energy consumed depends on the mode of operation: in mode slow, the line produces one item per time
step and the maintenance costs amount to two units per time step (indicated by the edge-label slow: 1,2).
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slow:1,2

medium:2,4

fast:3,7
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repair:0.5
0.99 0.01

mdp
module simpleRatio
state : [0..1] init 0; //0-RUNNING,1-BROKEN
[slow] state=0 -> 0.9 : (state’ = 0) +

0.1 : (state’ = 1);
[medium] state=0 -> 0.85 : (state’ = 0) +

0.15 : (state’ = 1);
[fast] state=0 -> 0.8 : (state’ = 0) +

0.2 : (state’ = 1);
[repair] state=1 -> 0.99 : (state’ = 0) +

0.01 : (state’ = 1);
endmodule
rewards "cost"
[slow] true : 2;
[medium] true : 4;
[fast] true : 7;
[repair] true : 5;
endrewards
rewards "reward"
[slow] true : 1;
[medium] true : 2;
[fast] true : 3;
[repair] true : 0;
endrewards

Figure 1: MDP and PRISM encoding of a simple production line
*************************************************************
End-component-0 value : 2.378787878787879

*************************************************************
Action slow.a=0, medium.a=1, fast.a=0, repair.a=0, state = 0,
Action slow.a=0, medium.a=0, fast.a=0, repair.a=1, state = 1,

Figure 2: Output of PRISM Add-On

In mode medium, the line produces two items and has costs of four and in mode fast, three items are
produced and costs amount to seven. The probability of the line breaking down also depends on the mode
of operation: the line is more likely to break down if it is operated in a faster mode. E.g., in mode slow,
the probability of breaking down is 0.1, while in mode fast it is 0.2. If the line is broken, it can be repaired
resulting in maintenance costs of five units.

We aim for a controller that produces the items as efficiently as possible, i.e., it minimizes the average
maintenance costs per produced item. To obtain the most efficient controller, we call our implementation
with the PRISM model shown in Figure 1. Our tool responds immediately with the result shown in Figure 2.
It states that an optimal strategy chooses action medium in state 0, and action repair in state 1. In general,
we output for each actions an expression describing the states in which this action is taken. The expression
corresponds to the guard of the action in the PRISM model.

4 Experimental results
Table 1 shows the results of our implementation on various benchmarks. The implementation can be
downloaded from http://www-verimag.imag.fr/˜vonessen/ratio.html. The first col-
umn shows the name of the example; column #States denotes the number of states the model has;
#Blocks the maximum number of blocks of the partitions we construct while analyzing the model; Time
the total time needed; RAM the amount of memory used (including all memory used by PRISM and its Java
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Table 1: Experimental results table
Name #States #Blocks Time in sec RAM in MB

pump3 386 271 0.9 112
pump4 1560 945 5.6 150
pump5 5904 3089 20.5 236
pump6 21394 9448 96.8 326

rabin3 27766 722 5.2 199
rabin4 668836 12165 104.6 537

zeroconf 89586 29427 2948.7 608

acts 1734 1734 1.6 159

phil6 917424 303 1.2 181
phil7 9043420 303 1.9 262
phil8 89144512 342 2.6 295
phil9 878732012 342 3.3 287
phil10 8662001936 389 4.3 303

power1 8904 72 0.415 89.9
power2 8904 n/a n/a 85

virtual machine). Below, we briefly describe the examples and discuss the results.

Experiments. Examples pump3-6 model the water-pump system described in [1]. We optimize the
ratio between maintenance costs and amount of water produced by several pumps running in parallel.
Example zeroconf is based on a model of the ZeroConf protocol [11]. We modify it to measure the best-
case efficiency of the protocol, finding the expected time it takes to successfully acquire an IP address.
We choose a model with two probes sent, two abstract clients and no reset. This model shows the limit
of our technique when bisimulation produces many blocks. In experiments phil6-10, we use Lehmann’s
formulation of the dining philosophers problem [12]. Here we measure the amount of time a philosopher
spends. This model is effectively a mean-payoff because we have a cost of one for each step. We use this
experiment to compare our implementation to [5]. We are several orders of magnitude faster. We attribute
the increase in speed to good initial strategy. In rabin3 and rabin4, we measure the efficiency of Rabin’s
mutual exclusion protocol [13]. We minimize the time of a process waiting for its entry into the critical
section per entry into the critical section. Note that only the ratio objective allows us to measure exactly
this property, because we grant a reward every time a process enters the section and a cost for every time
a process has to wait for its entry. We also modeled an automatic clutch and transmission system (acts).
Each state consists of a driver/traffic state (waiting in front of a traffic light, breaking because of a slower
car, free lane), current gear (1-4) and current motor speed (100 - 500 RPM). We modeled the change of
driver state probabilistically, and assumed that the driver wants to reach a given speed (50 km/h). Given
this driver and traffic profile, the transmission rates and the fuel consumption based on motor speed, we
synthesized the best points to shift up or down. In power1-2, we used the example from [14, 15], which
the authors use to analyze dynamic power management strategies. Our implementation allows solution of
optimization problems that are not possible with either [14] or the multi-objective techniques in [15]. For
example, in power1 we ask the question “What is the best average power consumption per served request”.
In power2, we ask for the best-case power-consumption per battery lifetime, i.e., we ask for how many
hours a battery can last.

Observations. The amount of time needed by the algorithms strongly depends on the amount of blocks
it constructs. We observed that a higher number of blocks increases the time necessary to construct the
partition. Each refinement step takes longer the more blocks we have. Analogously, the more blocks we
have, the bigger the matrices we need to analyze are. We observed an almost monotone increase in the
number of blocks while policy iteration runs. Accordingly, it is beneficial to select an initial strategy with
as few blocks as possible.

In the original policy iteration algorithm of [1], we constructed unichain strategies from multichain
strategies several times throughout the algorithm. As it turns out, unichain strategies increase the amount of
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blocks dramatically. We therefore successfully modified our algorithm to avoid them. These first measures
drastically improved performance. When testing our algorithm on various other examples, we sometimes
ran out of memory during the decomposition into end-components. Future work will include improving
the efficiency of this phase, as well as that of the lumping process.

The symbolic encoding as well as lumping are crucial to handle models of a size that the explicit
implementation described in [1] could not handle (storing a model of the size of phil10 was not feasible on
our testing machine).
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Appendix
This appendix provides a proof of correctness of Algorithm 1, omitted from the main paper due to space
limitations.

Lemma 1. Let λ be some rational or irrational number, letM be an MDP and let d be a strategy. Further,
letC0, Ci, . . . be the recurrence classes ofM under d, let πCi be the steady state distribution of recurrence
class Ci and let gCi be the gain of class Ci inMλ under strategy d, i.e. gCi = πCi × (cd − λ× rd). Then
gCi
≥ 0 ⇐⇒ πCi

×cd
πCi
×rd ≥ 0.

Proof. gCi
≥ 0 ⇐⇒ πCi

× (cd − λ× rd) ≥ 0 ⇐⇒ πCi
× cd − λ× πCi

× rd ≥ 0 ⇐⇒ πCi
× cd ≥

λ× πCi
× rd ⇐⇒

πCi
×cd

πCi
×rd ≥ 0

Lemma 2. Let M be an MDP and d be a strategy. Then d and its value λ are optimal if and only
if improveUsingGain and improveUsingBias can find no strategy with a recurrence class with
gain smaller than 0 [1].

Theorem 1. Let d0, d1, . . . be the sequence of strategies of the algorithm. Further, let λi be the best
ratio value of all recurrence classes of di, let gi be the gain of di and let bi be the bias of di. Then
(λi, gi, bi) > (λi+1, gi+1, bi+1) for all i and the last strategy is optimal.

Proof. We first prove that (λi, gi, bi) > (λi+1, gi+1, bi+1) for all i. From the algorithm, we have that
di+1 is a result of improveUsingGain or of improveUsingBias, and that di+1 is not equal to di.
If gi+1 ≥ 0, then the best ratio value of all recurrence classes of di+1 is equal to λi. According to [6],
gi > gi+1 or bi > bi+1. Otherwise there is a recurrence class with gain smaller than zero. According to
Lemma 1, the best ratio value a recurrence class is smaller than λi.

The last strategy is such that neither improveUsingGain nor improveUsingBias can improve
the strategy. From Lemma 2 shows that it is optimal.
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