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Abstract

Verifying an integer program against safety requirements requires, in general, the com-
putation of an invariant of the program, needed to prove the unreachability of one
or several error states. Traditionally, such invariants are computed by handling finite
representations of potentially infinite sets of states, such as abstract domains, boolean
combination of predicates, etc. In this paper, we introducea method of proving safety
properties, that tracksrelationsinstead of sets of states. As relations store, in general,
more information about the system’s behavior than reachability sets, they prove to be a
useful tool in designingmodularverification techniques, in which each function of the
program is analysed separately, and its computed summary isplugged in at every call
site.

The key to computing accurate relations describing the behavior of a program is
inferring the transitive closures of the relations labeling the control loops of the pro-
gram. We describe an efficient algorithm for computing the transitive closures of
difference bounds, octagonaland finite monoid affine relations. On the theoretical
side, this framework provides a common solution to the acceleration problem, for all
these classes of relations. In practice, according to our experiments, the new method
performs up to four orders of magnitude better than existingacceleration algorithms,
making it a promising approach for the verification of integer programs. The transitive
closure algorithm has been implemented and integrated in a tool for the interprocedural
analysis of integer programs.

Keywords: Reachability analysis, Integer programs, Procedure summaries, Transitive
closures, Periodic relations

1. Introduction

Integer programs (also known as counter automata, counter systems, or counter
machines) are an infinite-state extension of the model of finite-stateboolean programs,
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a model which is extensively used in the area of software verification [? 36]. The
interest for integer programs comes from the fact that they can encode various classes
of systems with unbounded (or very large) data domains, suchas hardware circuits,
cache memories, or software systems with variables of non-primitive types, such as
integer arrays, pointers and/or recursive data structures. This comes with no surprise
since, in theory, any Turing-complete class of systems can be simulated by integer
programs with two variables and increment, decrement and zero test, as shown by
Minsky [44]. The reduction used in his proof is however too complex to be used in
practice. For practical purposes, a number of recent works have revealed cost-effective
reductions of verification problems, for several classes ofcomplex systems, to decision
problems, phrased in terms on integer programs. Examples ofsuch systems that can be
effectively verified by means of integer programs, include:specifications of hardware
components [53], programs with singly-linked lists [10, 26, 13, 16], trees [33], and
integer arrays [34, 32, 12]. Hence the growing interest for analysis tools working on
integer programs.

Given an integer program, a set of initial states, and a set oferror states, thesafety
problemasks whether the program has a computation starting in a state from the initial
set, which leads to a configuration from the error set. To answer this question, one
typically proceeds by evaluating the set of states reachable from the initial set, and
checking the emptiness of the intersection with the set of error states. This method
however lacks modularity, which is one of the keys to scalability (i.e., applicability
of such algorithms to large systems). Since larger programsare usually organized in
many small functions, a modular verification approach aims at running one analysis per
function (in isolation), and combining the results in a finalverification condition. In
order to achieve this goal, one solution is to handlerelationsbetween states, instead of
setsof states In this way, each function can be represented by therelation between the
input and output valuations of its parameters. The outcome of a function at a certain
call site is thus the image of the set of states at that call site, via the function’s summary
relation. A relational domain seems to be therefore the key ingredient to a modular
verification method.

For the purposes of program verification, we consider a domain of relations which
are definable in Presburger arithmetic. In general, composing two relations reduces to
a quantifier elimination problem, in the underlying theory,and can be solved typically
in time polynomial in the sizes of the relations. Computing transitive closures, on
the other hand, is a much harder problem, and in general, the formula defining the
transitive closure of a linear relation falls outside the known decidable fragments of
arithmetic. To this end, it is important to know for which classes of arithmetic relations
it is possible to compute the transitive closure precisely and fast. To the best of our
knowledge, the three main classes of integer relations for which transitive closures can
be computed effectively and precisely are: (1) difference bounds constraints [19, 15],
(2) octagons [43, 11], and (3) finite monoid affine transformations [9, 25]. For these
three classes, the transitive closures can be moreover defined in Presburger arithmetic1.

1However, these classes are not closed under transitive closures themselves. As we will show, defining
the transitive closure of a relation belonging to one of these classes typically requires a combination of linear
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The contributions of this paper are two-fold. First, we givea semi-algorithmic
method for computing the summary relation of an integer program. The algorithm
builds the relation incrementally, by eliminating controlstates and composing incom-
ing with outgoing relations. The main difficulty here is the elimination of states with
several self-loops, for the following reason. Eliminatinga state with several self-loops
requires computing the transitive closure of a disjunctiverelation. Or, if we where
able to define the transitive closure of any disjunction of difference bounds relations
in a decidable logic (such as Presburger arithmetic), we could solve the reachability
problem of any 2-counter machine, a problem which is known tobe undecidable [44].
We address this issue by first computing the transitive closures of the self-loops indi-
vidually, and then exploring all interleavings between them, until no new relations are
produced. Obviously, this exploration might not end, in which case we can either use
an abstraction (overapproximation) domain to ensure termination, or stop the algorithm
at a certain depth, and yield an underapproximation of the exact transitive closure. The
first approach can be used to produce correctness certificates, whereas the second is
used to find errors in programs.

The main part of this paper is dedicated to presenting a general framework for
computing transitive closures of certain relations, called periodic. We define a notion
of periodicity on classes of relations that can be naturallyrepresented as matrices. In
general, a sequence of integers is said to beperiodic if the elements of the sequence
situated at equal distance one from another differ by the same quantity. This definition
is generalized to matrices of integers, entry-wise. A relation R is said to be periodic,
if it can be mapped into an integer matrixMR, such that the sequence{MRk}∞k=0 of
the matrix representations of the powers ofR, is periodic. For periodic relations, the
sequence of powers can be finitely represented, once the period and the rates of the
sequence are known. We study the three classes of arithmeticrelations mentioned in
the previous and show that they are periodic. This provides concise proofs to the fact
that the transitive closures for these classes can be effectively computed, and that they
are Presburger definable, as initially proved in [19, 11, 9].Finally, we give EXPTIME
upper bounds for the complexity of computing transitive closures of relations belonging
to these classes.

Roadmap.

1.1. Related Work

Since the result of Minsky [44], proving Turing-completeness of 2-counter ma-
chines with increment, decrement and zero test, research onthe verification of integer
programs has been pursued in two orthogonal directions. Thefirst one is defining
subclasses of systems for which various decision problems are found to be decidable.
Examples include Reversal-bounded Counter Machines, [38], Petri Nets and Vector
Addition Systems, [51], or Flat Counter Automata, [41]. Often, decidability of vari-
ous problems is proved by defining the set of reachable configurations in a decidable

arithmetic and modulo constraints.
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logic, such as Presburger arithmetic [48]. Such definitionsare typically precise, i.e. no
information is lost by the use of over-approximation.

A closely related line of work consists in attempts to apply Model Checking [18,
50] techniques to the verification of infinite-state systems. Such techniques consider the
problem of accelerating transition relations by successive under-approximations. The
methods based on acceleration are not guaranteed to terminate, in general. However,
for certain restricted classes of systems, one can prove termination of such verification
methods. These classes are typically equivalent, from a semantical point of view, with
flat systems, in which the control loops are executed in a certainpartial order [6].

For systems with integer variables, the acceleration of affine relations has been
considered primarily in the works of Annichini et. al [4], Boigelot [9], and Finkel and
Leroux [25]. Finite monoid affine relations have been first studied by Weber and Seidl
[? ] and Boigelot [9], who shows that the finite monoid property is decidable, and
that the transitive closure is definable in Presburger arithmetic, in this case. On what
concerns non-deterministic transition relations, difference bounds constraints appear in
the context of the verification of systems modeled using timed automata [1].

The transitive closure of a difference bounds constraint isshown to be Presburger
definable first by Comon and Jurski [19]. Their proof was subsequently simplified and
extended to parametric difference bounds constraints in our previous work [15]. Sub-
sequently, we showed that octagonal relations can be accelerated, and that the transitive
closure is also Presburger definable [11] in this case. The proofs of ultimate periodic-
ity from this paper are based on some of our previous results [15, 11]. For difference
bounds constraints, the proof from [15] was simplified usinga result from tropical
semiring theory [52].

Another, orthogonal, direction of work is concerned with finding sound (but not
necessarily complete) answers to the decision problems mentioned above, in a cost-
effective way. Such approaches, based on the theory of Abstract Interpretation [21], use
abstract domains (such as e.g., polyhedra [22], octagons [43], etc.) and compute fixed
points of the transfer functions, which are overapproximations of the sets of reachable
configurations. The drawback of the methods based solely on Abstract Interpretation is
the inability to deal with false positives i.e., errors caused by the use of a too coarse ab-
stract domain. Typically, in these cases, ruling out spurious counterexamples requires
a fair amount of human experience.

The method of Predicate Abstraction [31] combines ideas from Abstract Interpre-
tation and Model Checking in order to compute program invariants in a goal-driven
fashion, namely by applying refinement techniques (such as Craig Interpolation [? ]) to
rule out spurious counterexamples. This technique is also known as Counter Example-
based Abstraction Refinement (CEGAR) [17]. On one hand, cutting edge CEGAR
tools, such as e.g. ARMC [47], BLAST [36] or CPA [8], appear tobe quite effective in
finding bugs and certifying correctness of real-life systems (device drivers, web servers,
operating system kernels). On the other hand, goal-driven search is not easily amenable
to cope with modular verification, since the reason for spuriously reaching an error state
might reside in the over-approximation of the behavior of a function call. Since the er-
ror location is typically not part of that function, it is usually hard to trace the relation
between the cause and effect, in order to refine the abstraction in the right way. A
method that attempts to apply predicate abstraction to programs composed of (possi-
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bly recursive) functions is the method ofnested interpolants[35]. This method lacks
however modularity, as it represents the entire programs bya nested word automata [3]
i.e., computation models which are equivalent to the visible pushdown automata [2].

Our work focuses on modular program verification, by attempting to compute func-
tion summaries, without regard to the calling context. On one side, unlike the tech-
niques based on Abstract Intepretation, we aim at computingprecise summary rela-
tions, that should not require refinement. On the other side,our method, although
modular, is computationally more expensive than the error-driven search of predicate
abstraction, mostly due to the lack of abstraction (and refinement) in our method. A
future combination of these two (apparently antithetical)approaches to program veri-
fication seems to be the key to a wider application of program verification in real-life
software development. The idea of using relations as a domain of program analysis
has been also exploited in [46], although with the goal of proving program termination,
rather than safety, which is the purpose of the present paper.

2. Motivating Example

We start with an example of an integer program for which we prove safety (unreach-
ability of the error state) by computing the relation between the values of its variables
at the initial and final control locations. For simplicity reasons, we consider that a
program is represented by acontrol flow graph, whose vertices are control locations,
and whose edges are labeled with conjunctions of (in)equalities between linear terms.
Intuitivelly, given an edge of the control flow graph, which is labeled with a statement,
an unprimed variable name represents the value of the variable at the source location,
while a primed variable name tracks the value of the variableat the destination loca-
tion. Consider, for instance, the program in Figure 1a and the control flow graph of the
fun function, in Figure 1b and 1c.

The function defined in Figure 1a takes two integer parameters and returns an in-
teger result. The goal of the analysis is to prove that the assertion at line 9 holds,
whenever the control reaches it. A non-modular method will typically iterate the loop
at lines 8 and 9 and analyse the behavior of thefun function for each different valua-
tion of the formal parametersx andm. Our method instead will first infer the transfer
relation for the function, and then will use this relation inproving all assertions correct
at once.

This method is similar to the classical conversion of finite automata into regular
expressions. We proceed by eliminating the control states from the control flow graph
of thefun function (Figure 1b), and recording the result of these eliminations on the
remaining edges. We start by first eliminating the states without self-loops. Each
elimination requires composing all incoming with all outgoing edge relations – the
edges labeled by inconsistent relations are not added. First, we eliminatel3 andl4, in
Figure 2a, followed byl5 andl6, in Figure 2b. Next, we eliminatel2, which causesl1 to
have two self-loops, labeled by the relationsR1 ⇔ x < n∧x < m∧x′ = x+1∧y′ =
y+1 (the left loop in Figure 2c) andR2 ⇔ x < n∧x ≥ m∧x′ = x+1∧ y′ = y− 1
(the right loop in Figure 2c).

At this point, we need to eliminate a control location (l1) with two self-loops. This
step requires the computation of the transitive closure of the disjunctive relation corre-
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int fun(int x, int m) {
l0: int y = x, n = 2*m-x;
l1 : while (x < n) {
l2 : if (x < m) {
l3 : x ++;
l4 : y ++;

} else {
l5 : x ++;
l6 : y --;

}
}

l7 : return y;
}

void main() {
l8: for (int i = 0; i < 100; i ++)
l9: assert(fun(i,100-i) == i);
}

l0

l1

l2

l7

l3

l4

l5

l6

y’=x

n’=2m-x

x < n

x >= n

x < m

x’=x+1

y’=y+1

x >= m

x’=x+1

y’=y-1

(b)

l8 l9 l′9 err
i’=0

r’=fun(i,100-i)

r=i,i<100,

i’=i+1
r!=i

(a) (c)

Figure 1: Example of an integer program and its control flow graph

sponding to iterating these loops in any possible order. In general, this computation is
not bound to yield a result that can be expressed in linear arithmetic (or, for that matter,
in any decidable subfragment of first-order arithmetic). Hence, our method consists of
a semi-algorithm.

We first compute transitive closures of the conjunctive relationsR+
1 andR+

2 (Fig-
ure 2e). Then we systematically explore all possible interleavings ofR+

1 andR+
2 , by

building a tree (breadth-first) whose edges are labeled withthe transitive closures ofR+
1

andR+
2 , and each node corresponds to the composition of the transitive closures on the

path from the root (labeled with the identity relationI) to the node. Before expanding
the tree, the algorithm checks whether the new relation is either (i) inconsistent or (ii)
included in the union of the relations labeling the existingnodes. If this test succeeds,
the algorithm backtracks, otherwise it adds the new node to the tree. If the transitive
closure(R1 ∨ R2)

+ is equivalent to a finite number of interleavings, this construction
will terminate, otherwise not. For this example, in Figure 2d, the tree construction ends
after three iterations, with the result(R1 ∨ R2)

+ = R+
1 ∨ R+

2 ∨ R+
1 ◦ R

+
2 , see Figure

2e. This is because the compositionR+
2 ◦ R

+
1 is inconsistent. Next, the locationl1

is split into l′1 andl′′1 (this time, both locations have no self-loops), and there are four
edges betweenl′1 andl′′1 , labelled withI, R+

1 , R+
2 andR+

1 ◦ R
+
2 , see Figure 2f. We

further eliminate the locationsl′1 andl′′1 , see Figure 2g. Finally we eliminate variables
not appearing in the signature of the function and obtain thetransfer relation of the
fun function: (x ≥ m ∧ y′ = x) ∨ (x < m ∧ y′ = x) ≡ (y′ = x).

This relation is now used to check the validity of the assertion at line 9, in Figure
1a. Since the call tofun on line 9 can be replaced by the summary relation computed
above, we can represent themain function by a control flow graph, and apply the
state elimination method in order to establish that the error state (corresponding to a
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l0

l1

l2

l7

l5

l6

y’=x

n’=2m-x

x < n

x >= n

x < m
x’=x+1
y’=y+1

x >= m

x’=x+1

y’=y-1

l0

l1

l2

l7
y’=x

n’=2m-x

x < n

x >= n

x < m
x’=x+1
y’=y+1

x >= m
x’=x+1
y’=y-1

(a) (b)
l0

l1

l7
y’=x

n’=2m-x

x >= n

x < n
x < m
x’=x+1
y’=y+1

x < n
x >= m
x’=x+1
y’=y-1

I

R
+
1 R

+
2

R
+
1 ◦R

+
2

R
+
1

R
+
2

R
+
2

(c) (d)

R+
1 ≡ m′ = m ∧ n′ = n ∧ x′ > x ∧ x′−x = y′−y ∧ x′ ≤ m ∧ x′ ≤ n

R+
2 ≡ m′ = m ∧ n′ = n ∧ x ≥ m ∧ x′ > x ∧ x′−x = y−y′ ∧ x′ ≤ n

R+
1 ◦ R+

2 ≡ m′ = m ∧ n′ = n ∧ x′ ≤ n ∧ x′ ≤ 2n+y−x−y′ ∧ x′−x ≥ y′−y+2∧
x′−x ≥ y−y′ + 2 ∧ x′+x ≤ y−y′+2m ∧ x′+x ≥ y−y′+2m ∧ 2|(x′−x+y′+y)

(e)

l0 l′1 l′′1
l7

y’=x

n’=2m-x x >= n

I

R
+
1

R
+
2

R
+
1 ◦R

+
2

l0 l7

x ≥ m ∧ y′ = x′ = x ∧ m′ = m

x < m ∧ y′ = x∧

x′ = n′ = 2m − x ∧ m′ = m

(f) (g)

l8 l9 l′9 err
i’=0

r’=i

r=i,i<100,

i’=i+1
r!=i

l8 l9
i’=0 i<100

i’=i+1

(h) (i)

Figure 2: Deciding Safety by Elimination of Control Locations

violation of the assertion) is unreachable. First, we substitute the the call arguments and
return values to the transfer function, see Figure 2h. Then we eliminate control state

l′9. Since the composition of the transitionsl9
r′=i
−−−→ l′9 andl′9

r 6=i
−−→ err is unsatisfiable,

the error state is unreachable (Figure 2i). We can now conclude that the program is
safe with respect to the assertion at line 9.

3. Preliminary Definitions

We denote byZ, N andN+ the sets of integers, positive (including zero) and
strictly positive integers, respectively. We denote byZ∞ andZ−∞ the setsZ ∪ {∞}
andZ ∪ {−∞}, respectivelly. In the rest of this paper we will fix the set ofvari-
ablesx = {x1, x2, . . . , xN}, for someN > 0. The set ofprimedvariables isx′ =
{x′

1, x
′
2, . . . , x

′
N}. These variables are assumed to be ranging overZ, unless otherwise
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specified. For a setS ∈ Z of integers, we denote bymaxS the largest integerm ∈ S,
if one exists. BysupS we denote the smallest valuem ∈ Z∞ such thats ≤ m, for all
s ∈ S.

A linear termt over a set of variables inx is a linear combination of the forma0 +∑n
i=1 aixi, wherea0, a1, . . . , an ∈ Z. An atomic propositionis a predicate of the form

eithert ≤ 0, or t ≡c 0, wheret is a linear term,c ∈ N+ is a strictly positive integer,
and≡c is the equivalence relation moduloc. Presburger arithmeticis the first-order
logic over propositionst ≤ 0; Presburger arithmetic has quantifier elimination and is
decidable [48]. For simplicity we consider only formulas inPresburger arithmetic in
this paper.

For a first-order logical formulaϕ, let FV (ϕ) denote the set of its free variables.
By writing ϕ(x) we imply thatFV (ϕ) ⊆ x. For a formulaϕ(x), we denote by
ϕ[t1/x1, . . . , tN/xN ] the formula obtained fromϕ by syntactically replacing each free
occurrence ofx1, . . . , xN with the termst1, . . . , tN , respectively. We denote by−→y =
〈y1, . . . , yk〉 an ordered sequence of variables. We denote by|−→y | = k the length of−→y .
By −→y = −→z , where|−→y | = |−→z | = k, we denote the formula

∧k
i=1 yk = zk. If x is a set

of variables, we write−→y ⊆ x if all elements of−→y are inx.
A valuationof x is a functionν : x −→ Z. The set of all such valuations is denoted

by Z
x. If −→y = 〈y1, . . . , yk〉 is an ordered sequence of variables, we denote byν(−→y )

the sequence of integers〈ν(y1), . . . , ν(yk)〉. If ν ∈ Zx, we denote byν |= ϕ the
fact that the formula obtained fromϕ by replacing each occurrence ofxi with ν(xi) is
valid. Similarly, an arithmetic formulaR(x,x′) defining a relationR ⊆ Z

N × Z
N is

evaluated with respect to two valuationsν1 andν2. The satisfaction relation is denoted
(ν1, ν2) |= R. By |= ϕ we denote the fact thatϕ is valid i.e., logically equivalent to
true. We say that an arithmetic formulaϕ(x) is consistentif there exists a valuation
ν such thatν |= ϕ. We use the symbols⇒,⇔ to denote logical implication and
equivalence, respectively. The consistency of a formulaϕ is usually denoted by writing
ϕ 6⇔ false.

The composition of two relationsR1, R2 ∈ ZN × ZN is denoted byR1 ◦ R2 =
{(u,v) ∈ Z

N ×Z
N | ∃t ∈ Z

N . (u, t) ∈ R1 and(t,v) ∈ R2}. Let ǫN be the identity
relation{(u,u) | u ∈ Z

N}. For any relationR ∈ Z
N × Z

N , we defineR0 = ǫN
andRi = Ri−1 ◦ R, for anyi > 0. With these notations,R+ =

⋃∞
i=1 R

i denotes the
transitive closureof R, andR∗ = R+ ∪ ǫ denotes thereflexive and transitive closure
of R. The pre- and post-images of a setS ⊆ ZN via a relationR ⊆ ZN × ZN are
defined aspre(S,R) = {u ∈ Z

N | ∃v ∈ S . (u,v) ∈ R} andpost(S,R) = {v ∈
Z
N | ∃u ∈ S . (u,v) ∈ R}. The weakest pre-imageis the dual of the pre-image

p̃re(S,R) = {u ∈ ZN | ∀v . (u,v) ∈ R ⇒ v ∈ S}. We sometimes denote relations
by their defining logical formulae.

An idempotent semiringis a set(S,+, ·,0,1) equipped with two operations, the
addition+ and the multiplication·, such that(S,+,0) is an idempotent (i.e.,p+p = p
for all p ∈ S) commutative monoid with neutral element0 and(S, ·,1) is a monoid
with neutral element1. Moreover, multiplication distributes both left and rightover
addition and0 · r = r · 0 = 0, for all r ∈ S.
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4. Modular Safety Analysis of Integer Programs

In this section we describe a modular verification techniquefor integer programs
consisting of collections of procedures with integer parameters, that call each other.
Our method is able to analyze a function in isolation, independently of its calling con-
text, and infer a summary relation, between the input and output values of its param-
eters. On the downside, recursive call schemes are currently beyond the reach of our
technique, being considered as subject of future research.

In the rest of this section, we simplify the form of integer programs, without loss
of generality, in several ways. First, we consider that the semantics of all statements
of the program are relations that can be encoded in Presburger arithmetic. The idea is
that a program statement which applies multiplication to two different variables can be
simulated by a program using only Presburger definable statements2. Second, we as-
sume that each statement can be encoded using a quantifier-free conjunction of atomic
propositions – disjunctive relations can be represented using different transitions be-
tween the same source and destination control location. Finally, we assume that the
transitive closure of each conjunctive relation corresponding to a cycle in the program
is Presburger definable. As we show in the next section, this assumption holds for
certain classes of relations, calledperiodic. Since each statement on a loop can be sim-
ulated using only increment, decrement and zero test, and moreover, these relations are
all periodic, as it will be shown next, the assumption on the computability of transitive
closures of cycles loses no generality.

4.1. Syntax

We define integer programs as collections of procedures. We abstract from specific
programming language constructs and assume that each procedure is a control flow
graph whose edges are labeled by Presburger arithmetic relations. In addition, cer-
tain edges correspond to calls between procedures, and the parameters and results are
passed on by values. Formally, aninteger programis a tupleP = 〈xg, {P1, . . . , Pn},
Pm〉 wherexg areglobal variables,P1, . . . , Pn areprocedures, Pm is themainproce-
dure, for somem = 1, . . . , n, and each procedure is a tuplePi = 〈xi,

−→x in
i ,−→x out

i , Qi,
q0,i, qf,i, qe,i,∆i〉, where:

• xi are thelocal variables ofPi. We require thatxi∩xg = ∅ and thatxi∩xj = ∅
for all indicesi 6= j, i.e. the global variables are the only variables shared by any
two procedures.

• −→x in
i ⊆ xi and−→x out

i ⊆ xi are theinput andoutputvariables ofPi. Intuitively,
input variables are used to pass the arguments, and output variables are used to
retrieve the resulting values from a procedure.

• Qi are thecontrol statesof Pi. We require that the sets of control states are
pairwise disjoint, i.e.Qi ∩Qj = ∅, for all i 6= j.

2In fact, only increment, decrement and zero test are sufficient.
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• ∆i is a set oftransition rulesof the form, either:

1. q
R(xi ∪xg,x

′
i ∪x

′
g)

−−−−−−−−−−−−→ q′ is an internal transition, whereq, q′ ∈ Qi are the

source and destination state, andR(xi ∪ xg,x
′
i ∪ x

′
g) is a Presburger arith-

metic relation

2. q
−→
z

′=callj(
−→
t )

−−−−−−−−→ q′ is acall transition, whereq, q′ ∈ Qi are the source and

destination control states, respectively,j = 1 . . . n is the index of the callee
procedure,

−→
t is a sequence of linear terms overxg∪xi, calledparameters,

and−→z ⊆ xg ∪ xi is a sequence of variables, calledreturn variables. We
require that|

−→
t | = |−→x in

j | and|−→z | = |−→x out
j |, i.e. the numbers of param-

eters and return variables of the call transition match the numbers of input
and output variables of the callee, respectively.

• q0,i, qf,i, qe,i ∈ Qi are theinitial , final anderror control states ofPi. We require
that these states are pairwise disjoint, thatq0,i has no incoming transition rules,
and thatqf,i andqe,i have no outgoing transition rules.

For a programP = 〈P1, . . . , Pn〉 thecall graphof P, denotedCG(P) = 〈P, →֒〉,
is a graph whose vertices are procedures, and edgesPi →֒ Pj represent calls ofPi to
Pj . The programP is said to berecursiveif and only if CG(P) has cycles. In this
thesis, we proceed under the assumption that the consideredprogram is not recursive.

4.2. Semantics

A configurationof a procedurePi = 〈xi,
−→x in

i ,−→x out
i , Qi, q0,i, qf,i, qe,i,∆i〉 is

a pair 〈q, ν〉, whereq ∈ Qi is a control state andν : xi ∪ xg → Z is a valuation
of the variables visible inPi. For each procedurePi, we define the set of valuations
of variables visible inPi asVi = Z

xi∪xg . Next, we define predicates MATCHCALL

and MATCHCALL RET which are later used to define compatibility of valuations atcall
(return) sites with initial (final) valuations of called procedures.

MATCHCALL (q
−→
z

′=callj(
−→
t )

−−−−−−−−→ q′ ∈ ∆i, ν ∈ Vi, ν1 ∈ Vj)
def
≡

∧{
ν(x) = ν1(x) for all x ∈ xg (values of global variables match)
ν((
−→
t )k) = ν1((

−→x in
i )k) for all 1 ≤ k ≤ |

−→
t | (input values match)

MATCHCALL RET(q
−→
z

′=callj(
−→
t )

−−−−−−−−→ q′ ∈ ∆i, ν, ν
′ ∈ Vi, ν1, ν2 ∈ Vj)

def
≡

∧





MATCHCALL (q
−→
z

′=callj(
−→
t )

−−−−−−−−→ q′, ν, ν1)

ν′(x) = ν2(x) for all x ∈ xg (values of global variables match)
ν′((−→z )k) = ν2((

−→x out
i )k) for all 1 ≤ k ≤ |−→z | (output values match)

ν(x) = ν′(x) for all x ∈ xi \
−→z (frame rule)

Informally, MATCHCALL evaluates to true if a valuationν at a call site of a procedure
Pi is compatible with a valuationν1 of a called procedurePj . MATCHCALL RET
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moreover requires that a valuationν′ at a return site of a procedurePi is compatible
with a valuationν2 of a called procedurePj and that the frame rule is respected.

For each procedurePi = 〈xi,
−→x in

i ,−→x out
i , Qi, q0,i, qf,i, qe,i,∆i〉, we define the set

of summaries compatible withPi asSi = {Si : Qi × Qi → Vi × Vi}. Intuitively,
a summarySi of a procedurePi maps each pair of control states(q, q′) ∈ Qi ×Qi to
a relationSi(q, q

′) ∈ Vi×Vi between valuations inq andq′ that are feasible by an exe-
cution ofPi that starts inq and ends inq′. For a programP = 〈xg, {P1, . . . , Pn}, Pm〉,
the set of summaries compatible withP is defined asS = S1 × . . .× Sn.

Given two configurations〈q, ν〉 and 〈q′, ν′〉 of a procedurePi, the configuration
〈q′, ν′〉 is said to be animmediate successorof 〈q, ν〉, with respect to a program sum-
maryS = (S1, . . . , Sn) ∈ S, if and only if either:

• q
R
−→ q′ ∈ ∆i andν, ν′ |= R (internal action)

• q
−→
z =callj(

−→
t )

−−−−−−−−→ q′ ∈ ∆i and MATCHCALL RET(q
−→
z =callj(

−→
t )

−−−−−−−−→ q′, ν, ν′, ν1, ν2)

for some(ν1, ν2) ∈ Sj(q0,j , qf,j) (successful call)

• q′ = qe,i, q
−→
z =callj(

−→
t )

−−−−−−−−→ q′′ ∈ ∆i and MATCHCALL RET(q
−→
z =callj(

−→
t )

−−−−−−−−→ q′′,

ν, ν′, ν1, ν2) for someq′′ ∈ Qi and for some(ν1, ν2) ∈ Sj(q0,j , qe,j)

(erroneous call)

A run of lengthk of a procedurePi from q to q′, under a program summaryS ∈ S, is
a finite sequence〈q0, ν0〉 −→ 〈q1, ν1〉 −→ . . . −→ 〈qk, νk〉, such thatq = q0, q′ = qk, and

〈qi+1, νi+1〉 is an immediate successor of〈qi, νi〉 with respect toS, for all 0 ≤ i < k.
The summary of a procedurePi under a program summaryS ∈ S is a mapping

[[Pi]]S ∈ Si defined for eachq, q′ ∈ Qi as

[[Pi]]S(q, q
′)

def
= {(ν, ν′) | (q, ν)−→ . . .−→(q′, ν′) is a run ofPi of lengthk≥1 underS}

Thesummary of a programP, denoted by[[P]], is defined as the least fixpoint of
the function

S → S
S ∈ S 7→ ([[P1]]S , . . . , [[Pn]]S)

We denote the components of the program summary[[P]] as[[P]] = ([[P1]], . . . , [[Pn]]).
Intuitively, [[Pi]] represents the reachability relation between two arbitrary control states
of Pi in a finite and non-zero number of steps.

Further, we write[[P]]f = ([[P1]]
f
, . . . , [[Pn]]

f
), where[[Pi]]

f def
= [[Pi]](q0,i, qf,i), to

denote only the summaries from the initial to the final control state. Further, we define
thefinal state summaryas[[P]]f∃ = ([[P1]]

f
∃, . . . , [[Pn]]

f
∃) where

[[Pi]]
f
∃

def
= ∃(xi ∪ x′

i) \ (
−→x in

i ∪
−→x ′

i
out

) . [[Pi]]
f
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Intuitively, [[P]]f∃ is computed from[[P]]f by eliminating variables that are not in the
signature ofPi. Similarly, we define[[P]]e = ([[P1]]

e
, . . . , [[Pn]]

e
) and theerror state

summary[[P]]e∃ = ([[P1]]
e
∃, . . . , [[Pn]]

e
∃), where[[Pi]]

e def
= [[Pi]](q0,i, qe,i) and

[[Pi]]
e
∃

def
= ∃(xi ∪ x′

i) \ (
−→x in

i ∪
−→x ′

i
out

) . [[Pi]]
e

4.3. Computing Program Summaries

As we deal only with non-recursive programs in this paper, the call graph of a
programP = 〈xg, {P1, . . . , Pn}, Pm〉, denotedCG(P) is a dag, and therefore one
can choose a topological ordering of the proceduresPi1 , . . . , Pin , such that for all
1 ≤ k < ℓ ≤ n, there is no path fromPik to Piℓ in CG(P).

Algorithm 1 computes Presburger formulae defining the summaries of the proce-
dures, in the given topological order, starting with the procedures that do not have calls
to other procedures. Since the program is not recursive, thefixpoint [[P]] is reached
in at mostn steps because each procedure needs to be evaluated only once. Once the
summary of a procedure is computed, it is used to replace the call transitions involv-
ing that procedure in every procedure which is higher in the topological order w.r.t.

Algorithm 1 Program Summary Algorithm

input a programP = 〈xg, {Pi1 , . . . , Pin}, Pm〉 ordered w.r.t.CG(P)

output a summary([[P]]f∃, [[P]]
e
∃) of the program

1: function PROGRAMSUMMARY (P = 〈xg, {Pi1 , . . . , Pin}, Pm〉)
2: ([[P]]f∃, [[P]]

e
∃)← (〈∅, . . . , ∅〉, 〈∅, . . . , ∅〉)

3: for k = 1, . . . , n do
4: ([[Pik ]]

f
∃, [[Pik ]]

e
∃)← PROCSUMMARY (Pik , [[P]]

f
∃, [[P]]

e
∃)

5: if V e
m is satisfiablethen

6: report “program is unsafe”

input a procedureP =〈x,−→x in,−→x out, Q, q0, qf , qe,∆〉, and
a program summary([[P]]f∃, [[P]]

e
∃)

output a summary ofP w.r.t. (Vf ,Ve)

1: function PROCSUMMARY ( P , (Vf ,Ve) )

2: for each q
−→
z

′=callj(
−→
t )

−−−−−−−−→ q′ ∈ ∆ do

3: Rf ← PLUGSUMMARY (i, j, [[Pi]]
f
∃,
−→
t ,−→z ′)

4: Re ← PLUGSUMMARY (i, j, [[Pi]]
e
∃,
−→
t ,−→z ′)

5: ∆←
(
∆ \ {q

−→
z

′=callj(
−→
t )

−−−−−−−−→ q′}
)
∪ {q

Rf
−−→ q′, q

Re−−→ qe}

6: return PROCSUMMARY NOCALLS (P )

1: function PLUGSUMMARY (i, j, R,
−→
t ,−→z ′)

2: return R
[
(
−→
t )k/(

−→x in
i )k

]
k=1..|

−→
t |

[
(−→z )′k/(

−→x out
i )′k

]
k=1..|−→z |

∧ Id(xi\
−→
x

out
i )
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Algorithm 2 Procedure Summary Algorithm

input a procedureP = 〈x,−→x in,−→x out, Q, q0, qf , qe,∆〉 without call transitions
output The summary relations([[P ]]

f
∃, [[P ]]

e
∃)

1: function PROCSUMMARY NOCALLS(P )
2: changed← true
3: while changeddo
4: changed← false

5: for each q ∈ Q \ {q0, qf , qe} with self-loopsq
R1−−→ q, . . . , q

Rk−−→ q do

6: T ← DISJTRANSITIVECLOSURE(R1, . . . , Rk)

7: for each q1
P
−→ q andq

Q
−→ q2 such thatq1 6= q, q2 6= q do

8: if ∀q1
R′

−→ q2 ∈ ∆ . P ◦ T ◦Q 6⇒ R′ then

9: ∆← ∆ ∪ {q1
P◦T◦Q
−−−−−→ q2}

10: changed← true

11: Q← Q \ {q}

12: ∆← ∆\
(
{q

R1−−→ q, . . . , q
Rk−−→ q}∪{q′

R′

−→ q, q
R′′

−−→ q′′ | q′, q′′ ∈ Q}
)

13: return
(
PROJECT(

∨
{R | q0

R
−→ qf}), PROJECT(

∨
{R | qi

R
−→ qe})

)

1: function PROJECT(R)
2: return ∃(xi ∪ x′

i) \ (
−→x in

i ∪
−→x ′

i
out

) . R

CG(P) (function PROCSUMMARY , lines 3 and 4). Additionally, the algorithm checks
for error traces by also computing the error summary of each procedure and checking
the resulting formula for satisfiability. The problem is thus reduced to computing the
summary of a procedure without call transitions.

Algorithm 2 implements the function PROCSUMMARY NOCALLS, used to generate
the (error) summary of a procedure without call transitions. The idea of this algorithm
is to eliminate control states which are neither initial, error, or final, while introducing
new transitions labeled with compositions of relations between the remaining states.
We iterate the following until no more states can be eliminated. For each control state
with (possibly zero) self-loops labeled with relationsR1, . . . , Rk, we compute the tran-
sitive closureT = (R1 ∨ . . . ∨ Rk)

∗. By convention, ifk = 0, thenT is the identity

relation. Then we compose the relation of each incoming transitionq1
R
−→ q with T and

with the relation of each outgoing transitionq
Q
−→ q2 and replace the pair of incoming

and outgoing transitions with the transitionq1
P◦T◦Q
−−−−−→ q2, which avoidsq. Finally, we

eliminateq and all transitions involving it from the procedure. For an example of a run
of this algorithm, the reader may refer to Figure 2 (a), (b), (c), (f), and (g).

The termination of Algorithm 2 is clearly determined by the termination of the
transitive closure computation function DISJTRANSITIVECLOSUREsince at each iter-
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ation of the main loop, the boolean variablechanged is set to true only if at least one
control state is eliminated. Since the set of control statesis finite, this implies the termi-
nation of the main loop provided that the semi-algorithm DISJTRANSITIVECLOSURE

terminates.

4.4. Computing Transitive Closures of Disjunctive Relations

In this section, we present a semi-algorithm for computing transitive closures of
disjunctive relations. Given a (possibly empty) set of Presburger definable relations
{R1, . . . , Rk}, Algorithm 3, if it terminates, returns the reflexive and transitive clo-
sure of the disjunctive relationR = R1 ∨ . . . ∨ Rk. We assume in the following that
the transitive closureR+

i of each relation in the set is Presburger definable. The algo-
rithm enumerates all unrollings of the relationsR1, . . . , Rk and computes increasingly
larger underapproximations ofR+. If two successive such underapproximations are
equivalent, the algorithm terminates and returns the precise transitive closure.

More precisely, Algorithm 3 builds breadth-first a tree structure in which each edge
corresponds to a relationRi, and each node corresponds to the composition of the tran-
sitive closures of all relations along the path from the rootto itself. The algorithm
backtracks either when the composition becomes unsatisfiable, or when it is included
in the union of the relations corresponding to the nodes which have been already con-
structed (i.e. if the test on line 7 fails). As an optimization, if a nodeN is obtained from
its parent by composing it with the transitive closureR+

i , it is not necessary to add the
child corresponding toRi toN since this child would be automatically subsumed byN
(line 9). The result of the algorithm is the disjunction of all relations corresponding to
nodes in the tree (line 11). For an example of a terminating execution of this algorithm,
the reader may refer to Figure 2 (d) and (e).

Algorithm 3 Reflexive and Transitive Closure of Disjunctive Relations

input a set of relationsS = {R1, . . . , Rk}
output The reflexive and transitive closure(R1 ∨ . . . ∨Rk)

∗

Queue, Tree← ∅

1: function DISJTRANSITIVECLOSURE(S)
2: if S = ∅ then
3: return Id
4: Queue.add(Id,⊥)
5: while !Queue.empty() do
6: 〈N,P 〉 ← Queue.remove()
7: if N is satisfiable andN 6⇒

∨
Tree then

8: Tree← Tree ∪ {N}
9: for eachR ∈ S such thatR 6= P do

10: Queue.add(N ◦R+, R)

11: return
∨
Tree

Theorem 1. LetS = {R1, . . . , Rk} be the input to the Algorithm 3. If the algorithm
terminates, then the output is(R1 ∨ . . . ∨Rk)

∗.
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Proof: The reflexive and transitive closure of a relationR = R1 ∨ . . . ∨ Rk is the
limit of the increasing sequence defined byS0 = ⊥, andSi+1 = Si ∨ (Si ◦ R),
i.e. R∗ =

∨∞
i=0 Si. Let T0, T1, T2 . . . be the sequence of trees, as generated by the

algorithm. Clearly,T0 ⊆ T1 ⊆ T2 ⊆ . . ., since the algorithm only adds new nodes, but
never erases existing nodes. We will show that:

1. for eachi ≥ 0, there existsj ≥ 0, such thatSi ⇒
∨
Tj

2.
∨

Tj ⇒ R∗ for all j ≥ 0

If the algorithm terminates, the sequenceT0, T1, T2, . . . has a maximal elementT , and
since, by (1), for alli ≥ 0, Si ⇒

∨
T , we have thatR∗ ⇒

∨
T , and therefore∨

T = R∗, by (2).
To show (1), let−→s = Ri1 ◦ . . . ◦ Rit be a maximal satisfiable sequence of com-

positions, in some iterationSi of the sequence leading toR∗. We will exhibit a tree
T−→

s
produced by the algorithm, such that−→s ⇒

∨
T−→

s
. SinceSi has finitely many

compositions−→s , and since the{Ti}i≥0 sequence is strictly increasing, it is enough to
takeTj as the maximal treeT−→

s
in the sequence.

Let ik1
, . . . , iks

be the subsequence ofi1, . . . , it obtained by replacing each (stut-
tering) block of consisting of repetitions of the same relation Rij by Rij . Since
Ri1 ◦ . . . ◦ Rit is satisfiable, thenR+

i1
◦ . . . ◦ R+

it
is satisfiable as well. Notice that

every prefix of this sequence is satisfiable. LetR+
i1
◦ . . .◦R+

im
be the maximal prefix of

−→s for which there exists some treeTℓ, which contains the relation corresponding to this
prefix at the tree positioni1 · . . . · im. ClearlyR+

i1
◦ . . . ◦R+

im
⇒

∨
Tℓ. To find the tree

which subsumes the entire sequence, we iterate the following, forh = m+ 1, . . . , t:

• if R+
i1
◦ . . . ◦R+

ih
6⇒

∨
Tℓ, letQ be the smallest prefix-closed subset of positions

in Tℓ which subsumesR+
i1
◦ . . . ◦R+

ih−1
.

• let T ′ be the tree obtained fromTℓ by adding to each maximal positionp in Q, a
node〈p · ih, Tℓ(p) ◦R

+
ih
〉, only if Tℓ(p) ◦R

+
ih
6⇒

∨
Tℓ.

• let Tℓ be the next tree in the sequence which containsT ′.

To prove (2), observe that the summary corresponding to eachpath in in some treeTi

generated by the algorithm is subsumed byR∗, hence
∨

i≥0 Ti ⇒ R∗. ✷

As previously mentioned, Algorithm 1 computing a program summary terminates
for non-recursive programs provided that each call to the DISJTRANSITIVECLOSURE

function terminates. In general, this is, however, not truedue to the undecidability of
the safety problem for integer programs [44].

4.4.1. Over- and Underapproximations of Transitive Closures
Termination of the disjunctive closure algorithm can be imposed in two ways, de-

pending on the goal of the analysis. If the goal is proving correctness of the sys-
tem, i.e. unreachability of the error states, one may resortto overapproximation of
the disjunctive loop relationsR1 ∨ . . . ∨ Rk by a single, weaker, relationR♯ (i.e.
R1 ∨ . . . ∨ Rk ⇒ R♯) whose reflexive and transitive closure is Presburger definable
and can be computed by our methods. If unreachability of error states in the program
can be proved using the overapproximation instead of the original relation, then this
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constitutes a valid correctness proof, since every trace ofthe original program is a trace
of the abstract program.

To this end, Algorithm 3 can be modified into Algorithm 4, which guarantees ter-
mination, at the expense of giving up precision. The crux of Algorithm 4 is that the
expansion of a tree node situated at a depth beyond a certain threshold is done by com-
position withR♯+ (line 14), instead ofR+

i for somei = 1, . . . , k as in the case of
nodes below the threshold (line 11). SinceR1 ∨ . . . ∨ Rk ⇒ R♯, then for any se-
quencei1, . . . , im ∈ {1, . . . , k}, the relationR+

i1
◦ . . . ◦ R+

im
is subsumed byR♯+.

This prevents future descendants of nodes above the threshold to be added to the queue
(the test on line 7 will fail for them), causing termination of the main loop. The re-
turned value in this case is an overapproximation of the reflexive and transitive closure
(R1 ∨ . . . ∨Rk)

∗.

Algorithm 4 Abstract Reflexive and Transitive Closure of Disjunctive Relations

input a set of relationsS = {R1, . . . , Rk}
output a relationR such that(R1 ∨ . . . ∨Rk)

∗ ⇒ R
Queue, Tree← ∅

1: function ABSTRANSITIVECLOSURE(S)
2: if S = ∅ then
3: return Id
4: Queue.add(Id,⊥, 0)
5: while !Queue.empty() do
6: 〈N,P, depth〉 ← Queue.remove()
7: if N is satisfiable andN 6⇒

∨
Tree then

8: Tree← Tree ∪ {N}
9: if depth ≤ Threshold then

10: for eachR ∈ S such thatR 6= P do
11: Queue.add(N ◦R+, R, depth+ 1)

12: else
13: R♯ ← ABSTRACTDISJRELATION(S)

14: Queue.add(N ◦R♯+, R, depth+ 1)

15: return
∨
Tree

On the other hand, if the goal of the analysis is to find errors in the program, the dis-
junctive closure algorithm can be stopped after a given number of steps, the result being
an underapproximation of the transitive closure, i.e. a relationR♭ ⇒ (R1∨ . . .∨Rk)

∗.
Even if they cannot be used to certify correctness of systems, underapproximations
play an important role in finding errors within complex systems since every error trace
found using underapproximations is a valid error trace of the program.

A direct consequence of the proof of Theorem 1 is that the disjunction of the nodes
in each tree built by the DISJTRANSITIVECLOSURE function is an underapproxima-
tion of the transitive closure. Thus the algorithm can be stopped if, e.g., the number
of nodes reaches a predefined threshold, and the result will be a relation stronger than
(R1 ∨ . . . ∨ Rk)

∗. This relation can be used in Algorithm 2 to underapproximate the
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summary of a procedure and thus the summary of a program. If insufficient, the under-
approximation can be improved by letting the DISJTRANSITIVECLOSURE algorithm
run longer.

5. Computing Transitive Closures of Periodic Relations

In this section, we present a general framework for computing closed formsand
transitive closuresof certain relations, calledperiodic. The closed form of a relation
R(x,x′) is a relationR̂(k,x,x′) where substituting the parameterk with an integerm
gives a relation equivalent toRm for eachm ≥ 0. Once the closed form is computed,
the transitive closure ofR can be defined as∃k ≥ 1 . R̂(k,x,x′).

We define a notion of periodicity on classes of relations thatcan be naturally repre-
sented as matrices. In general, an infinite sequence of integers is said to beperiodic if
the elements of the sequence situated at equal distance one from another differ by the
same quantity (while admitting some non-periodic initial prefix of finite length in the
sequence). This definition is generalized to matrices of integers, entry-wise. Assuming
that each finite powerRk of a relationR is represented by a matrixMk, R is said to be
periodic if the infinite sequence{Mk}

∞
k=0 of matrix representations of powers ofR is

periodic.
Periodicity guarantees that the sequence has an infinite subsequence which can be

captured by an existentially quantified formula, which defines infinitely many powers
of the relation. Then, the remaining powers can be computed by composing the exis-
tentially quantified formula with only finitely many (given by the size of the period)
powers of the relation.

For instance, consider the relationR defined asx′ = y + 1 ∧ y′ = x. This rela-
tion is periodic, and its odd powersR1, R3, R5, . . . can be represented by the formula
∃ℓ ≥ 0 . (x′ = y + ℓ+ 1 ∧ y′ = x+ ℓ). Even powersR2, R4, R6, . . . can then be rep-
resented by composing this formula withR.

We show that the closed form of a periodic relation can be defined, once theperiod
and theprefix of the relation are known. We present a generic algorithm that finds
a period and a prefix of periodic relations and computes theirclosed form and transitive
closure.

5.1. Periodic Sequences

We first define the notion of periodic sequences of integers. This definition can be
generalized to arbitrary semirings.

Definition 1. Given an infinite sequence{sk}∞k=0 ∈ Z∞ of integers, we say that it is
periodicif and only if there exist integersb ≥ 0, c > 0 andλ0, . . . , λc−1 ∈ Z∞ such
that sb+(k+1)c+i = λi + sb+kc+i, for all k ≥ 0 and i = 0, 1, . . . , c − 1 The smallest
valuesb ∈ N, c ∈ N+ for which the above holds are called theprefixand theperiodof
{sk}

∞
k=0. The valuesλ0, λ1, . . . , λc−1 ∈ Z∞ are called theratesof {sk}∞k=0.

Example 1. The sequence{σk}
∞
k=0 whereσ0 = σ1 = 10, σk = 5ℓ + 3 for each

k = 2ℓ, ℓ ≥ 1, and σk = 3ℓ + 1 for eachk = 2ℓ + 1, ℓ ≥ 1, is periodic with
prefix b = 2, periodc = 2 and ratesλ0 = 5, λ1 = 3. The sequence{τk}∞k=0 where

17



σk = 7ℓ+1 for eachk = 3ℓ, ℓ ≥ 0, σk = ℓ2 for eachk = 3ℓ+1, ℓ ≥ 0, andσk = ℓ3

for eachk = 3ℓ+ 2, ℓ ≥ 0 is not periodic. ✷

The notion of periodic sequences extends to sequences of integer matrices:

Definition 2. A sequence of integer matrices{Ak}
∞
k=0 ∈ Zm×m

∞ is said to be periodic
if, for all 1 ≤ i, j ≤ m, the sequence{(Ak)ij}

∞
k=0 is periodic.

The following lemma gives an alternative characterizationof periodic sequences of
matrices:

Lemma 1. An infinite sequence of matrices{Ak}
∞
k=1 ∈ Z

m×m
∞ is periodic if and

only if there exist integersb ≥ 0, c > 0 and Λ0, . . . ,Λc−1 ∈ Zm×m
∞ such that

Ab+(k+1)c+i = Λi +Ab+kc+i, for all k ≥ 0 andi = 0, 1, . . . , c− 1

Proof: According to the definition,{Ak}
∞
k=1 is periodic if and only if, for each1 ≤

i, j ≤ m there existbij ≥ 0, cij > 0 andλij
l ∈ Z∞ such that(Abij+(k+1)cij+l)ij =

λij
l + (Abij+kcij+l)ij for all k ≥ 0, l = 0, 1, . . . , cij − 1. Let c be the least common

multiple of all cij , b be the maximum of allbij and letΛt, t = 0, 1, . . . , c − 1 be the
matrix defined as:

(Λt)ij =
(
λij
(b−bij+t) mod cij

)
·
c

cij

The conditionAb+(k+1)c+i = Λi + Ab+kc+i is verified for all k ≥ 0 and i =
0, 1, . . . , c− 1, with the above definitions. ✷

5.2. Periodic Relations

Let x = {x1, . . . , xN} be a set of variables. In this section, we consider thatR is
a class of first-order arithmetic formulae with free variables inx ∪ x′. These formulae
denote integer relationsR ⊆ ZN ×ZN . We define∗-consistentand periodic relations.

Definition 3. A relationR is ∗-consistent if and only ifRn is consistent for alln ≥ 0.

Definition 4. A relationR ∈ R is said to beperiodicif and only if, either (1) it is not
∗-consistent, or (2) it is∗-consistent and there exist two functions:

• σ : R → (Zm×m
∞ )⊥ mapping eachconsistentrelation fromR into a matrix, and

each inconsistent relation into⊥

• ρ : Zm×m
∞ → Rmapping each matrix into a relation fromR such thatρ(σ(R))⇔

R for each consistent relationR ∈ R

such that the infinite sequence of matrices{σ(Ri)}∞i=0 ∈ Z
m×m
∞ is periodic.

If each relationR ∈ R is periodic, then the class of relationsR is called periodic
as well. The following lemma gives an alternative characterization of ∗-consistent
periodic relations.
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Lemma 2. A∗-consistent relationR is periodic if and only if there exist integersb ≥ 0,
c > 0, m > 0 and a matricesΛ0, . . . ,Λc−1 ∈ Z

m×m
∞ such that

Rnc+b+i ⇔ ρ(n · Λi + σ(Rb+i))

for all n ≥ 0 and for all0 ≤ i < c.

Proof: By induction onn ≥ 0, we prove thatσ(Rnc+b+i) = n · Λ + σ(Rb+i), for all
n ≥ 0 and for all0 ≤ i < c. The base case trivially holds. For the induction step,
observe that

σ(Rb+i+(n+1)c) = Λi + σ(Rb+i+nc) = Λ+n ·Λ+ σ(Rb+i) = (n+1) ·Λi + σ(Rb).

The first equality is by Lemma 1, the second is by the inductionhypothesis. ✷

Next, we define prefix, period and rates of periodic relations.

Definition 5. If R is a ∗-consistent and periodic relation, we callprefix, periodand
ratesof R the minimal integersb ≥ 0, c > 0 and matricesΛ0 . . . ,Λc−1 ∈ Z

m×m
∞

satisfying the condition of Lemma 2. IfR is not∗-consistent, we define its prefix and
period asb = inf{n ≥ 0 | Rn is inconsistent} andc = 1.

If k is a variable not inx∪x′, letR[k] be the class of first-order arithmetic formulae
with free variables from the setx ∪ x′ ∪ {k}. The variablek is called a parameter,
and these formulae are calledparametric relations, in the following. The following
definition emphasizes the role of parametric relations.

Definition 6. Let R(x,x′) ∈ R be a relation. Theclosed formof R is the formula
R̂(k,x,x′) ∈ R[k] such thatR̂(k,x,x′)[n/k]⇔ Rn(x,x′), for all n ≥ 0.

It follows immediately from the above definition that the closed form of a relation is
unique, up to equivalence. Defining the transitive closure of a relation is closely related
to defining its closed form, sinceR+(x,x′)⇔ ∃k > 0 . R̂(k,x,x′), for all R ∈ R.

The algorithm presented in this section computes the transitive closure of a periodic
relationR by computing the closed form of a subsequence{σ(Rb+nc)}n≥0 for some
b ≥ 0, c > 0 (not necessarily the prefix and the period ofR).

Definition 7. Given a relationR(x,x′) and integersb ≥ 0, c > 0, theclosed formof
the the infinite sequence{Rb+nc}n≥0 is a formulaR̂b,c(ℓ,x,x

′) such that

R̂b,c(ℓ,x,x
′)[n/ℓ]⇔ Rb+nc

for all n ≥ 0.

Once the closed form̂Rb,c(ℓ,x,x
′) is computed for someb ≥ 0, c > 0, both the

transitive closure and the closed form ofR can be defined as shown by the following
lemma.
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Lemma 3. LetR be a relation,b > 0, c > 0 be arbitrary integers and̂Rb,c(ℓ,x,x
′)

be the closed form of the infinite sequence{Rb+nc}n≥0. Then, the transitive closure of
R can be defined as:

R+ ⇔
( b−1∨

i=1

Ri
)
∨ ∃ℓ ≥ 0 . R̂b,c(ℓ,x,x

′) ◦
( c−1∨

j=0

Rj
)

and the closed form ofR can be defined as

R̂(k,x,x′)⇔
( b−1∨

i=1

(k = i)∧Ri
)
∨ ∃ℓ ≥ 0 . R̂b,c(ℓ,x,x

′)◦
( c−1∨

j=0

(k = b+ℓc+j)∧Rj
)

Proof: Let R̂b,c(ℓ,x,x
′) be the closed form of{Rb+nc}n≥0 for some integersb >

0, c > 0. Observe that

R+ ⇔
∨∞

i=1 R
i ⇔

(∨b−1
i=1 R

i
)
∨

(∨∞
n=0 R

nc+b
)
◦
(∨c−1

j=0 R
j
)

⇔
(∨b−1

i=1 R
i
)
∨ ∃ℓ ≥ 0 . R̂b,c(ℓ,x,x

′) ◦
(∨c−1

j=0 R
j
)

The last equivalence above follows from Definition 7. In a similar way, we infer that
the closed form of a relationR can be defined as

R̂(k,x,x′)⇔
( b−1∨

i=1

(k = i)∧Ri
)
∨ ∃ℓ ≥ 0 . R̂b,c(ℓ,x,x

′)◦
( c−1∨

j=0

(k = b+ℓc+j)∧Rj
)
,

which completes the proof. ✷

Next, consider a functionπ : Z[k]m×m
∞ → R[k] mapping matrices of linear terms

of the formα · k + β, with integer coefficients, into parametric relationsR(k,x,x′),
such that

π(M)[n/k]⇔ ρ(M [n]), for all n ∈ Z

for allM ∈ Z[k]m×m
∞ . In other words,π is theparametric counterpartof theρ function

from Definition 4. Concrete examples of parametric matrix-relations mappings will be
given in Sections 7.2, 7.5, and 7.8.

We next show that the transitive closure and the closed form of a periodic relationR
with prefix b, periodc, and ratesΛ0, . . . ,Λc−1 can be defined in first order arithmetic.
If R is not∗-consistent, then clearlyR+ ⇔

∨b−1
i=1 R

i andR̂(k,x,x′) ⇔
∨b−1

i=1 (k =
i ∧ Ri). If R is ∗-consistent, then by Lemma 2,Rnc+b ⇔ ρ(n · Λ0 + σ(Rb)). Then,
we apply the following proposition which shows that the closed form of the sequence
{Rb+nc}n≥0 can be defined aŝRb,c(ℓ,x,x

′)⇔ π(ℓ · Λ0 + σ(Rb)).

Proposition 1. LetR be a relation,b > 0, c > 0 be arbitrary integers, andΛ ∈ Z
m×m
∞

be a matrix such that, for alln ≥ 0:

1. ρ(n · Λ + σ(Rb)) 6⇔ ⊥, and
2. Rnc+b ⇔ ρ(n · Λ0 + σ(Rb)).

Then,R is ∗-consistent and̂Rb,c(k,x,x
′)⇔ π(k · Λ + σ(Rb)).
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Proof: Clearly, if both conditions hold, it follows thatR is ∗-consistent. The mapping
π : Z[k]m×m

∞ → R[k] satisfies the following equivalence for allM ∈ Z[k]m×m
∞ and

for all n ∈ Z

π(M)[n/k]⇔ ρ(M [n])

Thus, lettingM = k · Λ + σ(Rb), it follows that if the two conditions hold, then

π(M)[n/k]⇔ ρ(M [n])⇔ Rb+nc.

Hence,π(M) = π(k ·Λ+ σ(Rb)) is the closed form of of the sequence{Rb+nc}n≥0,
by Definition 7. ✷

Having computed̂Rb,c(ℓ,x,x
′), we can finally apply Lemma 3 to define the tran-

sitive closure and the closed form ofR.

5.3. Transitive Closure Algorithm
The result of this section is a generic algorithm that computes the transitive closure

of a given periodic relation (Algorithm 5). The algorithm needs to be instantiated for
a specific classR of periodic relations by providing the corresponding mappingsσ,
ρ (Definition 4) andπ (the parametric counterpart ofρ) as discussed in the previous.
This algorithm can be easily adapted to compute the closed form of a relation, instead
of its transitive closure, as we show in the end of this section. Next, in Section 7 we
show how this algorithm can be used with three classes of relations: difference bounds,
octagons, and finite monoid affine transformations.

The main idea of the algorithm is to discover integersb ≥ 0 andc > 0 such that
the sequence{σ(Rb+nc)}n≥0 is periodic. Provided that relationR is periodic, the
enumeration on lines 2,4,16 is guaranteed to eventually finda pair(b, c) for which the
algorithm terminates at line 7 or 12, as we later prove in Theorem 2. For each prefix-
period candidate(b, c), we consider the first three powers supposed to be equidistant,
namelyRb, Rb+c andRb+2c, and we check that all three are consistent (lines 5-6). If at
least one is inconsistent, the relation is not∗-consistent, and the transitive closure is the
disjunction of all powers up to the first one which is inconsistent (line 7). Otherwise,
if Rb, Rb+c andRb+2c are consistent, the algorithm attempts to compute the first rate
of the sequence (line 8), by comparing the matricesσ(Rb), σ(Rb+c) andσ(Rb+2c).
If the distanceΛ betweenσ(Rb+c) andσ(Rb) equals the one betweenσ(Rb+2c) and
σ(Rb+c), thenΛ is a potential candidate for the rate of the sequence{σ(Rb+nc)}n≥0.

The rest of the main loop (lines 8-16) is dedicated to checking whetherb, c andΛ
constitute a valid prefix, period and rate of the sequence of powers ofR. To this end, it
is sufficient to check whether (i) the sequence of relations{ρ(n ·Λ+σ(Rb))}∞n=0 is ∗-
consistent, and (ii) that it follows the pattern of a periodic sequence. The first condition
is checked by the MAX CONSISTENTprocedure which returns the largestn ≥ 0 for
whichrho(n·Λ+σ(Rb)) is consistent, or∞, if no suchn exists. The second condition
is checked by the MAX PERIODIC procedure, which returns the largestn for which the
sequence{ρ(n · Λ + σ(Rb))}∞n=0 is compliant withRc, or∞, if no suchn exists.

Since, by the definition of MAX PERIODIC, eitherL = K = ∞, or elseL < K,
the following Lemma 4 ensures that if the test on line 11 succeeds for the chosenb, c
andΛ, thenπ(k · Λ + σ(Rb)) is the closed form of the sequence{σ(Rb+nc)}n≥0 and
consequently, the transitive closure can be defined using Lemma 3 (line 12).
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Algorithm 5 Transitive Closures of Periodic Relations
input a periodic relationR
output The transitive closure ofR

1: function TRANSITIVECLOSURE(R)
2: let P ← R and b← 1 and bjump = 1
3: while true do
4: for all c = 1, 2, . . . , b do
5: for all ℓ = 0, 1, 2 do
6: if Rb+ℓc ⇔ ⊥ then
7: return R+ ⇔ P ∨

(∨b+ℓc−1
i=b+1 Ri

)

8: if ∃Λ . σ(Rb) + Λ = σ(Rb+c) ∧ σ(Rb+c) + Λ = σ(Rb+2c) then
9: K ← MAX CONSISTENT(R, b,Λ)

10: L← MAX PERIODIC(R, b,Λ, c,K)
11: if L =∞ then
12: return P ∨ ∃k ≥ 0 . π(k · Λ + σ(Rb)) ◦

(∨c−1
j=0 R

j
)

13: bjump ← max{bjump, b+ c · (L+ 1)}

14: bnext ← max{b+ 1, bjump}

15: P ← P ∨
∨bnext−1

i=b Ri

16: b← bnext
17: function MAX CONSISTENT(R,b,Λ)
18: return sup{n ∈ N | ρ(n · Λ + σ(Rb)) 6⇔ ⊥}

19: function MAX PERIODIC(R, b, Λ, c, K)
20: return sup{n≤K | ∀0≤ℓ<n . ρ(ℓ·Λ+σ(Rb)) ◦Rc ⇔ ρ((ℓ+1)·Λ+σ(Rb))}

Lemma 4. LetR be a periodic relation, letb > 0, c > 0 be integers such thatRb 6⇔ ⊥,
andΛ ∈ Z

m×m
∞ be a matrix such that, for alln ≥ 0:

1. ρ(n · Λ + σ(Rb)) 6⇔ ⊥, and
2. ρ((n+ 1) · Λ + σ(Rb))⇔ ρ(n · Λ + σ(Rb)) ◦Rc.

Then,R is ∗-consistent and̂Rb,c(k,x,x
′)⇔ π(k · Λ + σ(Rb)).

Proof: It is sufficient to prove that

Rb+nc ⇔ ρ(n · Λ + σ(Rb)) for all n ≥ 0.

For, if the above is true, the statement of this lemma followsfrom Proposition 1. The
base casen = 0 follows from Definition 4 and the fact thatRb is consistent. The
induction step is as follows:

✷

R(n+1)c+b ⇔ Rnc+b ◦Rc

⇔ ρ(n · Λ + σ(Rb)) ◦Rc (by the induction hypothesis)
⇔ ρ((n+ 1) · Λ + σ(Rb))
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Suppose now that the test on line 11 fails, i.e. the sequence of relations{ρ(n · Λ+
σ(Rb))}∞n=0 is neither∗-consistent, nor periodic. In this case we could start looking
for a new prefix, period and rate, by incrementingb, settingc to one, and continuing
to look for another candidate rateΛ, which satisfies the test at line 8. This could be
achieved by simply incrementingb by one, i.e. without the update at line 13. However,
for relations with very long prefixes, this would be quite inefficient, as shown by the
following example.

Example 2. Consider, for instance, the relation:

R ≡ x′ = x+ 1 ∧ 0 ≤ x ≤ 109

The relationRi is consistent for all1 ≤ i ≤ 109 and becomes inconsistent fori =

109 + 1. Without line 13, Algorithm 5 would need at least⌈ 10
9

3 ⌉ iterations of the main
loop in order to discover the inconsistency (line 6).

Notice that MAX PERIODIC returns the span of the interval in which the relation
is periodic with the current rate. The algorithm optimizes the search by storing the
upper bound of the periodic interval inbjump. If the sequence is periodic for none of
c = 1, . . . , b, line 16 updatesb with the upper bound of the periodic interval in case
such interval was detected, or otherwise, it incrementsb by one as in the unoptimized
case.

Example 3. (contd.) For the relation in the previous example, the prefix109 is discov-
ered after the first iteration, since the call toMAX PERIODIC with b = c = 1 returns
L = 109. The inconsistency of the sequence{Ri}∞i=1 is discovered at the second
iteration of the main loop (line 6).

For efficiency reasons, the algorithm maintains (and updates) a prefix relationP
with the following invariant property:

P ⇔
b∨

i=0

Ri (1)

By updatingP at line 15, we compute part of the prefix up to the next candidate for b.
Finally, we prove the correctness of Algorithm 5 and give bounds on the number of

iterations of the main loop of Algorithm 5 and on the sizes of integersb, c considered
during any iteration of the main loop, in terms of the prefix and the period of the input
relation.

Theorem 2. If R is a periodic relation with prefixB and periodC, then Algorithm
5 eventually terminates after at most(B + C)2 + C iterations of the main loop at
lines 4-13 and returns the transitive closure ofR. Moreover,c ≤ B + C and b ≤
B + C + 3C2 + 3BC for each prefixb and periodc considered by the algorithm.

Proof: Let us first prove that (1) holds whenever the control is at one of the lines 3-13.
Initially P ⇔ R andb = 1, so (1) holds trivially. If (1) holds before executing line 15,
then it will also hold after executing lines 15-16, by the definition of MAX PERIODIC.

Let bi (ci, respectively),i ≥ 1 be the value ofb (c, respectively) during thei-th
iteration of the main loop at line 5. We next make several observations:
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1. By definition ofB andC, if bi ≥ B andci = kC for somek ≥ 1, then the
algorithm returns at line 12

2. The prefix increases with each iteration of the outer loop (line 16)
3. For each considered prefixb, the algorithm consecutively tests periods in the

range1, . . . , b

By observation 1, proving termination of Algorithm 5 amounts to showing thatbi ≥ B
and ci = kC for somei, k ≥ 1. We next prove that the algorithm terminates in
at most(B + C)2 + C iterations of the main loop and thatci ≤ B + C andbi ≤
B + C + 3C2 + 3BC for eachi ≥ 1.

First suppose thatR is not∗-consistent and hence,RB ⇔ ⊥ andRB−1 6⇔ ⊥, by
definition ofB. The algorithm eventually reaches line 7, sinceb increases with each
iteration of the outer loop, by observation 2. If the test at line 8 succeeds duringi-th
iteration, then definition of MAX CONSISTENTprocedure guarantees thatbi + ciKi <
B. SinceLi ≤ Ki by definition of MAX PERIODIC procedure, if follows thatbi +
ciLi < B. Consequentlybi+1 ≤ B + C. If bi+1 ≥ B, the algorithm terminates in the
(i+ 1)-th iteration at line 7. The algorithm thus terminates afterat most(B − 1)2 + 1
iterations of the main loop. Clearly,bi ≤ B + C for eachi ≥ 1 and sinceci ≤ bi, it
follows thatci ≤ B + C too.

Next, suppose thatR is ∗-consistent. Let us first consider the unoptimized algo-
rithm without line 13. Then,b is incremented by one in each iteration of the outer loop
at line 16. Consequently, the algorithm returns at line 12 whenbi = B+C andci = C
at the latest, by observation 3. Clearly, the algorithm terminates after at most(B+C)2

iterations of the main loop and in each iteration,ci ≤ bi ≤ B + C.
Next, let us consider a∗-consistent relation and the optimized algorithm with line

13. If the algorithm returns for somebi ≤ B + C, the bounds follow easily. Suppose
that the algorithm has not returned for somebi ≤ B + C and leti ≥ 1 be the unique
index such thatbi ≤ B + C andbi+1 > B + C. Clearly, ci = bi andci+1 = 1,
by observation 3. Notice that ifbi+1 = bi + 1, then bi = B + C and therefore,
the algorithm terminates at line 12 for prefix-period candidate(B+C,C) at the latest.
Thus, if the algorithm does not terminate for a prefix candidate in the range1..(B+C),
it cannot be thatbi+1 = bi + 1. Consequently,bi+1 > bi + 1 and hence,bi+1 = bjump

for somebjump > bi + 1. Sincebjump > bi + 1, a periodic interval〈bi, . . . , bi + Lci〉
of the sequence{σ(Rm)}m≥0 must have been detected for some2 ≤ L < ∞ by
the MAX PERIODIC procedure and thus,bi+1 = bjump = bi + (L + 1)ci. We now
demonstrate thatbi+1 ≤ B+C +3C2 +3BC. By contradiction, suppose thatbi+1 >
B + C + 3C2 + 3BC. We define (see Figure 3 for illustration):

Q = lcm(C, ci) d = ⌈B+C−bi
Q ⌉ · Qci e = bi + cid j = (e−B) mod C

It follows thate − bi = kQ for somek ≥ 1 ande − (B + C) ≤ Q. Sinceci ≤ bi ≤
B + C, it follows thatQ ≤ C(B + C) = C2 + BC. Since we assume thatbi+1 >
B +C + 3C2 + 3BC, it follows thatbi+1 − (B +C) ≥ 3Q and thereforebi+1 − e ≥
2Q. LetΛ0, . . . ,ΛC−1 be the rates of the sequence{σ(Rm)}m≥0 corresponding toB
andC andΛ be the rate considered by the algorithm in thei-th iteration. Let denote
Mm = σ(Rm) for all m ≥ 0. By periodicity of the sequence{σ(Rm)}m≥0, it follows
thatMe+

Q
CΛj = Me+Q. Recall thatbi+1 ≥ e+2Q and thate− bi is a multiple ofci.
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Figure 3: Bounding the prefixbi+1

It follows thatMe +
Q
ci
Λ = Me+Q. More generally,Me+ℓci+Q = Me+ℓci +

Q
ci
Λ for

all 0 ≤ ℓ < Q
ci

. Combining this observation with the fact that{Mm}m≥0 is periodic
with respect toB,C, it follows that

Me+ℓci+kQ = Me+ℓci + kQ
ci
λ, and

Me+(ℓ+1)ci+kQ = Me+(ℓ+1)ci + kQ
ci
λ

for all k ≥ 0, ℓ ≥ 0. Consequently,

Me+(ℓ+1)ci+kQ −Me+ℓci+kQ = Me+(ℓ+1)ci −Me+ℓci

for all k ≥ 0, ℓ ≥ 0. In other words,Me+kci = Me + kλ for all k ≥ 0. Combining it
with Mbi+kci = Mbi + kλ for all 0 ≤ k ≤ d, wherebi + dci = e, we finally infer that
Mbi+kci = Mbi + kλ for all k ≥ 0. This however implies thatLi =∞, contradiction.
Thus,ci ≤ bi ≤ B + C + 3C2 + 3BC in each iteration of the main loop. Notice that
if bi ≤ B + C andbi+1 > B + C, it takes at mostC more iterations to return at line
12. Hence, the main loop is iterated at most(B + C)2 + C times in total.

Combining the bounds inferred in the above three cases, we obtain the bounds
stated in this theorem. We finally prove if the algorithm terminates, the returned rela-
tion is indeed the transitive closure.

• R is not ∗-consistent, then here exists an integerK > 0 such thatRK ⇔ ⊥.
Then the algorithm will return at line 7, with the correct result:

P ∨
b+ℓc−1∨

i=b+1

Ri ⇔
b∨

i=1

Ri ∨
b+ℓc−1∨

i=b+1

Ri ⇔
b+ℓc−1∨

i=1

Ri

• R is ∗-consistent, then by previous arguments, the algorithm reaches the line 12
after at most(B + C)2 + C iterations of the main loop and returns the result:

P ∨ ∃k ≥ 0 . π(k · Λ + σ(Rb)) ◦
(∨c−1

j=0 R
j
)

⇔
(∨b

i=1 R
i
)
∨
(
∃k ≥ 0 . π(k · Λ + σ(Rb)) ◦

(∨c−1
j=0 R

j
))

which is indeed the transitive closure ofR, by Lemma 4 and Lemma 3. ✷
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Algorithm 6 Closed Form of Periodic Relations
input a periodic relationR
output The closed form ofR

1: function CLOSEDFORM(R)
2: let P ← R and b← 1 and bjump = 1
3: while true do
4: for all c = 1, 2, . . . , b do
5: for all ℓ = 0, 1, 2 do
6: if Rb+ℓc ⇔ ⊥ then
7: return R̂(k,x,x′)⇔

∨b+ic−1
j=1 (k = j) ∧Rj

8: if ∃Λ . σ(Rb) + Λ = σ(Rb+c) ∧ σ(Rb+c) + Λ = σ(Rb+2c) then
9: K ← MAX CONSISTENT(R, b,Λ)

10: L← MAX PERIODIC(R, b,Λ, c,K)
11: if L =∞ then
12: return R̂(k,x,x′)⇔

∨
{ ∨b+c−1

i=1 (k = i) ∧Ri

∃ℓ ≥ 1 . π(ℓ·Λ + σ(Rb))◦
(∨c−1

j=0(k = b+ℓc+j) ∧Rj
)

13: bjump ← max{bjump, b+ c · (L+ 1)}

14: bnext ← max{b+ 1, bjump}

15: P ← P ∨
∨bnext−1

i=b (k = i ∧Ri)
16: b← bnext
17: function MAX CONSISTENT(R,b,Λ)
18: return sup{n ∈ N | ρ(n · Λ + σ(Rb)) 6⇔ ⊥}

19: function MAX PERIODIC(R, b, Λ, c, K)
20: return sup{n≤K | ∀0≤ℓ<n . ρ(ℓ·Λ+σ(Rb)) ◦Rc ⇔ ρ((ℓ+1)·Λ+σ(Rb))}

Algorithm 6 is a straightforward adaptation of Algorithm 5 that computes the closed
form of a relation instead of its transitive closure, by modifying lines 7,12, and 15.
Later, we use Algorithm 6 to compute transitive closures of finite monoid affine rela-
tions in Section 7.8.

6. Integer Relations

This section introduces three classes of integer relations, which are shown to be
periodic next, in Section 7. We define firstdifference boundsrelations, and generalize
them tooctagonal relations. The class of octagonal relations is non-deterministic, i.e.
the next values are not functions of the current values of thevariables. Finally, we
introduce a deterministic class, namelyaffine relations, and concentrate on a semantic
restriction of it, called thefinite monoid property. All results in this section are proved
elsewhere, and recalled here for the sake of self containment.
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6.1. Difference Bounds Relations

Difference bounds constraints are known aszonesin the context of timed automata
verification [1] and abstract interpretation [43]. They aredefined syntactically as con-
junctions of atomic propositions of the formx−y ≤ c, wherex andy are variables and
c is an integer constant. Difference bounds constraints can be represented as matrices
and graphs. Moreover, their canonical form, useful for efficient inclusion checks, can
be computed by the classical Floyd-Warshall algorithm. We report on these results in
Section 6.1.1.

Difference bounds relations are defined as difference bounds constraints where
variables can be also primed (e.g.x − x′ ≤ 0). The problem of computing transi-
tive closures of difference bounds relations has been studied by Comon and Jurski [19]
who showed that the transitive closure of a difference bounds relation is Presburger
definable. Their proof was subsequently simplified in [15], using the notion ofzigzag
automata. Intuitively, zigzag automaton corresponding toa difference bounds relation
R is a finite weighted automaton that encodesm-th power ofR by minimal runs of
lengthm + 2. Zigzag automata are also a reasoning tool use in Section?? to prove
periodicity of difference bounds relations. Furthermore,they also play a crucial role in
deriving EXPTIME complexity upper bounds for Algorithm 5, for the class of differ-
ence bounds relations (Section 8).

We give the definitions of difference bounds relations and zigzag automata in Sec-
tion 6.1.2 and Section 6.1.3, respectively. In the rest of this section, letx = {x1, x2, ..., xN}
be a set of variables ranging overZ.

6.1.1. Difference Bounds Constraints
The following definition formalizes the notion of a difference bounds constraint.

Definition 8. A formulaφ(x) is a difference bounds constraintif it is equivalent to
a finite conjunction of atomic propositions of the formxi − xj ≤ aij , 1 ≤ i, j ≤
N, i 6= j, whereaij ∈ Z.

For instance,x − y = 5 is a difference bounds constraint, as it is equivalent to
x − y ≤ 5 ∧ y − x ≤ −5. In practice, difference bounds constraints are represented
either as matrices or as graphs:

Definition 9. Letx = {x1, x2, ..., xN} be a set of variables ranging overZ andφ(x)
be a difference bounds constraint. Then adifference bounds matrix(DBM) represent-
ing φ is anN ×N matrixMφ such that:

(Mφ)i,j =

{
αi,j if (xi − xj ≤ αi,j) ∈ AP (φ)

∞ otherwise

Definition 10. Let x = {x1, x2, ..., xN} be a set of variables ranging overZ and
φ(x) be a difference bounds constraint. Thenφ can be represented as a weighted
graphGφ = (x,→), where each vertex corresponds to a variable, and there is anedge

xi
aij
−−→ xj in Gφ if and only if there exists a constraintxi − xj ≤ aij in φ. This graph

is also called aconstraint graph.
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Clearly,Mφ is the incidence matrix ofGφ. If M ∈ Z
N×N
∞ is a DBM, the corre-

sponding difference bounds constraint is defined asΦM ⇔
∧

Mij<∞ xi − xj ≤ Mij .
We denote by||φ|| =

∑
(xi−xj≤aij)∈AP (φ) |aij | the sum of absolute values of all coef-

ficients ofφ. The restriction of a DBMMφ to variablesz ⊆ x, denoted as(Mφ)↓z,
is a matrix obtained by erasing the rows and columns ofMφ which encode constraints
that involve variablesz \ x. For two difference bounds matricesM1,M2, we write
M1 = M2 if and only if (M1)ij = (M2)ij for all 1 ≤ i, j ≤ N andM1 ≤ M2 if and
only if (M1)ij ≤ (M2)ij for all 1 ≤ i, j ≤ N .

A DBM M is said to beconsistentif and only if its corresponding constraintφM

is consistent. The following proposition relates the consistency ofφ to the existence of
an elementary negative weight cycle ofGφ.

Proposition 2. Letφ be a difference bounds constraint andGφ be the constraint graph
of φ. Then, the following statements are equivalent:

• φ is consistent

• Gφ contains an elementary negative weight cycle

Proof: See e.g. [20],§25.5. ✷

The next definition gives a canonical form for consistent DBMs.

Definition 11. A consistent DBMM ∈ Z
N×N
∞ is said to beclosedif and only ifMii =

0 andMij ≤Mik +Mkj , for all 1 ≤ i, j, k ≤ N .

Given a consistent DBMM ∈ ZN×ZN , we denote the (unique) closed DBM by
M∗. It is well-known that, ifM is consistent, thenM∗ is unique, and can be computed
fromM in timeO(N3), by the classical Floyd-Warshall algorithm [20]. Consistency of
M can be checked by the Floyd-Warshall algorithm too. By Proposition 2, it amounts
to checking whetherM∗

ii < 0 for some1 ≤ i ≤ N . The closed form is needed to
check the equivalence and entailment of two difference bounds constraints.

Proposition 3 ([43]). Letφ1 andφ2 be consistent difference bounds constraints. Then,

• φ1 ⇔ φ2 if and only ifM∗
φ1

= M∗
φ2

,

• φ1 ⇒ φ2 if and only ifM∗
φ1
≤M∗

φ2
.

The following proposition shows that given a difference bounds constraintφ(x),
the formula∃xk.φ is a difference bounds constraint as well, and its closed DBMis
effectively computable fromM∗

φ .

Proposition 4. Let φ(x), x = {x1, . . . , xN}, be a consistent difference bounds con-
straint. Further, let1 ≤ k ≤ N andM ′ be the restriction ofM∗

φ tox\{xk}. Then,M ′

is closed andΦ(M ′) ⇔ ∃xk.φ(x). Moreover, the constraint graphG′ corresponding
to Φ(M ′) is obtained by erasing the vertexxk together with the incident arcs from the
graphGΦ(M∗

φ
).
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Proof: We use the following notation: for aN × N DBM M we denote byγ(M) =
{v ∈ Z

N | vi − vj ≤ mi,j , 1 ≤ i, j ≤ N} the set ofconcretizationsof M . Notice that
a DBM M is consistent if and only ifγ(M) 6= ∅.

Clearly,M ′ is the incidence matrix ofG′. Without loss of generality, we assume
thatk = N . It is sufficient to show that:

γ(M ′) = {(v1, v2, . . . , vN−1) | (v1, v2, . . . , vN−1, v) ∈ γ(M∗
φ) for somev ∈ Z}

The “⊇” direction is obvious, sinceM ′ is the restriction ofM∗
φ to {x1, x2, . . . , xN−1}.

For the “⊆” direction, we must show that there existsv ∈ Z such thatvi−v ≤ (M∗
φ)i,N

andv − vj ≤ (M∗
φ)N,j

, for all 1 ≤ i, j ≤ N . But this amounts tovi − (M∗
φ)i,N ≤

(M∗
φ)N,j

+ vj , for all 1 ≤ i, j ≤ N . Since(v1, v2, . . . , vN−1) ∈ γ(M ′) we have

vi − vj ≤ (M∗
φ)i,j , for all 1 ≤ i, j ≤ n. SinceM∗

φ is closed,(M∗
φ)i,j ≤ (M∗

φ)i,N +

(M∗
φ)N,j

, which leads to the conclusion. DBMM ′ is closed as a direct consequence
of the fact thatM∗

φ is closed. ✷

6.1.2. Difference Bounds Relations and Their Powers
We first define difference bounds relations.

Definition 12. Letx = {x1, . . . , xN} be a set of variables. A relationR ∈ Z
N×ZN

is a difference bounds relationif it can be defined by a difference bounds constraint
R(x,x′).

The class of relations defined by difference bounds constraints over the variables
x ∪ x′ is denotedRdb in the following. A consequence of Proposition 4 is thatRdb is
closed under composition.

Proposition 5. Rdb is closed under intersection and composition.

Proof: Let R1(x,x
′), R2(x,x

′) be difference bounds constraints defining difference
bounds relations. By Definition 8, the conjunctionR1(x,x

′) ∧ R2(x,x
′) is a differ-

ence bounds constraint too. The composition of relationsR1 ◦ R2 can be defined as
∃x′′ . (R1(x,x

′′)∧R2(x
′′,x′)) which is again a difference bounds constraint, by Def-

inition 8 and Proposition 4. ✷

Example 4. LetR(x1, x2, x
′
1, x

′
2)⇔ x1−x′

1 ≤ 1∧x1−x′
2 ≤ −1∧x2−x′

1 ≤ −2∧
x2−x′

2 ≤ 2 be a difference bounds relation. Figure 4a shows the graph representation
GR and Figure 4b the closed DBM representation ofR. ✷

Given a difference bounds relationR(x,x′), we define them-times concatenation
of GR with itself.

Definition 13. LetR(x,x′), x = {x1, . . . , xN}, be a difference bounds relation and
GR be its constraint graph. Them-times unfoldingof GR is defined as

GmR = (

N⋃

k=0

x(k),→),

wherex(k) = {x
(k)
i | 0 ≤ i ≤ N} and for all0 ≤ k < N ,
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Figure 4: Graph and matrix representation of a relation. Graph unfolding.

• (x
(k)
i

c
−→ x

(k)
j ) ∈→ if and only if(xi − xj ≤ c) ∈ AP (φ)

• (x
(k)
i

c
−→ x

(k+1)
j ) ∈→ if and only if(xi − x′

j ≤ c) ∈ AP (φ)

• (x
(k+1)
i

c
−→ x

(k)
j ) ∈→ if and only if(x′

i − xj ≤ c) ∈ AP (φ)

• (x
(k+1)
i

c
−→ x

(k+1)
j ) ∈→ if and only if(x′

i − x′
j ≤ c) ∈ AP (φ)

Each constraint inRm corresponds to a path between extremal points inGmR . Notice
that, sinceRdb is closed under relational composition, thenRm ∈ Rdb for anym > 0.
Then we have:

Rm ⇔
∧

1≤i,j≤N xi − xj ≤ min{x0
i −→ x0

j} ∧ x′
i − x′

j ≤ min{xm
i −→ xm

j } ∧

xi − x′
j ≤ min{x0

i −→ xm
j } ∧ x′

i − xj ≤ min{xm
i −→ x0

j}

wheremin{xp
i −→ xq

j} is the minimal weight between all paths among the extremal

verticesxp
i andxq

j in GmR , for p, q ∈ {0,m}.

Example 5. Figure 4c depicts them-times unfolding ofGR for the relationR⇔ x1−
x′
1 ≤ 1 ∧ x1 − x′

2 ≤ −1 ∧ x2 − x′
1 ≤ −2 ∧ x2 − x′

2 ≤ 2. ✷

The set of paths between any two extremal points inGmR can be seen as words over
the finite alphabet of subgraphs ofGmR that are accepted by a finite weighted automaton
calledzigzag automaton[15]. In the following section, we give the definition of these
automata.

6.1.3. Zigzag Automata
This section defines zigzag automata, which can seen as recognizers of powers of

difference bounds relations. Intuitively, a zigzag automaton corresponding to a differ-
ence bounds relationR is a finite weighted automaton that encodesm-th power ofR
by minimal runs of lengthm+ 2.
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6.1.4. Alphabet and Words
Without losing generality, in the following we work with a simplified (yet equiv-

alent) form of difference bounds relations: all constraints of the formx − y ≤ α are
replaced byx− t′ ≤ α ∧ t′ − y ≤ 0, and all constraints of the formx′ − y′ ≤ α are
replaced byx′ − t ≤ α ∧ t − y′ ≤ 0, by introducing fresh variablest 6∈ x. In other
words, we can assume that the constraint graphGR corresponding toR is bipartite, i.e.
it does only contain edges fromx to x′ and vice versa.

A pathπ in GmR between, say,x0 andym, with x, y ∈ x is represented by a word
w = w1 . . . wm of lengthm, as follows: thewi symbol representssimultaneouslyall
edges ofπ that involve only nodes fromxi−1 ∪xi, 1 ≤ i ≤ m. Since we assumed that
GmR is bipartite, it is easy to see that, for a path fromx0 to ym, coded by a wordw, the
number of times thewi symbol is traversed by the path is odd, whereas for a path from
x0 to y0, or from xm to ym, this number is even. Hence the names ofevenandodd
automata.

Given a difference bounds relationR, theeven alphabetof R, denoted asΣe
R, is

the set of all graphs satisfying the following conditions, for eachG ∈ Σe
R:

1. the set of nodes ofG is x ∪ x′

2. for anyx, y ∈ x ∪ x′, there is an edge labeled withα ∈ Z from x to y, only if
the constraintx− y ≤ α occurs inφ

3. the in-degree and out-degree of each node are at most one
4. the number of edges fromx to x′ equals the number of edges fromx′ to x

Notice that the number of edges in all symbols ofΣe
R is even.

The odd alphabetof R, denoted byΣo
R, is defined in the same way, with the ex-

ception of the last condition, which becomes:

4. the difference between the number of edges fromx to x′ and the number of
edges fromx′ to x is either 1 or−1

Notice that the number of edges in all symbols ofΣo
R is odd.

LetΣR = Σe
R∪Σ

o
R∪{ǫ} be the alphabet of the zigzag automaton forR, whereǫ is

a special symbol of weight0. The weight of any symbolG ∈ Σe
R∪Σ

o
R, denotedω(G),

is the sum of the weights that occur on its edges. For a wordw = w1w2 . . . wn ∈ Σ∗
R,

we define its weight asω(w) =
∑n

i=1 ω(wi).

6.1.5. Construction of Zigzag Automata
We are now ready for the definition of automata recognizing words that represent

encodings of paths fromGmR . Theeven automatonrecognizes paths that start and end
on the same side ofGmR i.e., either paths fromx0

i tox0
j , or fromxm

i toxm
j , for some1 ≤

i, j ≤ N , respectively. We call the automata recognizing paths fromx0
i to x0

j forward
even automata, and the ones recognizing paths fromxm

i toxm
j backwardeven automata

(Figure 5 (a)). Theodd automatarecognize paths from one side ofGmR to another. The
automata recognizing paths fromx0

i to xm
j are calledforward odd automata, whereas

the ones recognizing paths fromxm
i to x0

j are calledbackwardodd automata (Figure 5
(b)).
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Figure 5: Runs of Even and Odd Automata

The even and odd automata share the same alphabet and transition table, while the
differences are in the sets of initial and final states. The common transition table is
defined asTR = 〈Q,∆, w〉, whereQ is the set of control states defined as:

Q = Qg ∪
⋃

1≤i,j≤N (Qef
ij ∪Qeb

ij ∪Qof
ij ∪Qob

ij ) where

Qg = {l, r, lr, rl,⊥}N

Qef
ij = {Iefij , F

ef} Qeb
ij = {Ieb, F eb

ij }

Qof
ij = {Iofi , F of

j } Qob
ij = {Iobi , F ob

j }

The{l, r, lr, rl,⊥} components of states inQg capture the direction of incoming and
outgoing edges (l for a path traversing from right to left,r for a path traversing from
left to right, lr for a right incoming and right outgoing path,rl for a left incoming
and left outgoing path, and⊥ when there are no incoming nor outgoing edges from
that node.). Given1 ≤ i, j ≤ N , the setsQef

ij , Q
eb
ij , Q

of
ij , Q

ob
ij contain the initial and

the final state in even forward (ef ), even backward (eb), odd forward (of ), and odd
backward (ob) zigzag automaton corresponding toi, j, respectively. The four automata
recognize paths fromx(0)

i to x
(0)
j (ef ), from x

(0)
i to x

(0)
j (eb), from x

(0)
i to x

(m)
j (of ),

and fromx
(m)
i to x

(0)
j (ob) in GmR , respectively.

The set of transitions∆ is defined as:

∆ = ∆g ∪∆l

⋃
1≤i,j≤N

(∆ef
ij ∪∆eb

ij ∪∆of
ij ∪∆ob

ij )

There is a transition
〈q1 . . . qN 〉

G
−→ 〈q′1, . . . , q

′
N 〉

in ∆g if and only if the following conditions hold, for all1 ≤ i ≤ N :
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• qi = l iff G has one edge whose destination isxi, and no other edge involving
xi.

• q′i = l iff G has one edge whose source isx′
i, and no other edge involvingx′

i.

• qi = r iff G has one edge whose source isxi, and no other edge involvingxi.

• q′i = r iff G has one edge whose destination isx′
i, and no other edge involving

x′
i.

• qi = lr iff G has exactly two edges involvingxi, one havingxi as source, and
another as destination.

• q′i = rl iff G has exactly two edges involvingx′
i, one havingx′

i as source, and
another as destination.

• q′i ∈ {lr,⊥} iff G has no edge involvingx′
i.

• qi ∈ {rl,⊥} iff G has no edge involvingxi.

Some even paths inGmR may be of length strictly less thanm. Since we want to
recognize these path by runs of lengthm+2, we need several zero weight self-loop
transitions:

∆l = {F
ef ǫ
−→ F ef , Ieb

ǫ
−→ Ieb}

Finally, we define for eachq ≤ i, j ≤ N and each of the four zigzag automata
(ef, eb, of, ob), the set of transitions that are incident with an initial ora final control
state of the respective automaton:

∆ef
ij =




{Iefij

ǫ
−→ q | qi = r, qj = l, qh ∈ {lr,⊥}, 1 ≤ h ≤ N , h 6∈ {i, j}} if i 6= j

{Iefij
ǫ
−→ q | qi = qj = lr, qh ∈ {lr,⊥}, 1 ≤ h ≤ N , h 6= i} if i = j

⋃
{q

ǫ
−→ F ef | q ∈ {rl,⊥}N}

∆eb
ij =




{q

ǫ
−→ F eb

ij | qi = l, qj = r, qh ∈ {lr,⊥}, 1 ≤ h ≤ N , h 6∈ {i, j}} if i 6= j

{q
ǫ
−→ F eb

ij | qi = qj = lr, qh ∈ {lr,⊥}, 1 ≤ h ≤ N , h 6= i} if i = j

⋃
{Ieb

ǫ
−→ q | q ∈ {rl,⊥}N}

∆of
ij = {Iofi

ǫ
−→ q | qi = r andqh ∈ {lr,⊥}, 1 ≤ h ≤ N , h 6= i}

⋃
{q

ǫ
−→ F of

j | qj = r andqh ∈ {rl,⊥}, 1 ≤ h ≤ N , h 6= j}

∆ob
ij = {Iobi

ǫ
−→ q | qi = l andqh ∈ {lr,⊥}, 1 ≤ h ≤ N , h 6= i}

⋃
{q

ǫ
−→ F ob

j | qj = l andqh ∈ {rl,⊥}, 1 ≤ h ≤ N , h 6= j}
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The weight functionw maps each transitionq
a
−→ q′ ∈ ∆, q, q′ ∈ Q, a ∈ ΣR to

w(a).
Finally, for each1 ≤ i, j ≤ N , we define four zigzag automata

Aef
ij = 〈Q,∆, w, Iefi,j , F

ef 〉
Aeb

ij = 〈Q,∆, w, Ieb, F eb
i,j〉

Aof
ij = 〈Q,∆, w, Iofi , F of

j 〉
Aob

ij = 〈Q,∆, w, Iobi , F ob
j 〉

Notice that these automata share the same states and transitions, and the number of
states is at most5N + 2N2 + 4N + 2, whereN is the number of variables inx.

6.1.6. Language of Zigzag Automata
Recall thatGmR denotes the constraint graph corresponding toRm, obtained by

concatenating the constraint graph ofR to itselfm > 0 times. We say that a path in
GmR stretches betweenk and l, for somek ≤ l, if the path contains at least one node
fromxi, for eachk ≤ i ≤ l and contains no node fromxi, for eachi such thati < k or
i > l. Intuitively, all paths fromx0

i to x0
j in GmR are recognized by the automatonAef

ij ,

paths fromxm
i to xm

j by Aeb
ij (Figure 5 (a)), paths fromx0

i to xm
j by Aof

ij , and paths
from xm

i to x0
j by Aob

ij (Figure 5 (b)). The following lemma makes the relationship
between between paths inGmR and runs in zigzag automata of lengthm+ 2 precise.

Lemma 5 ([15]). Suppose thatGmR does not have cycles of negative weight, for some
m > 0. Then, for any1 ≤ i, j ≤ N , i 6= j, the following hold:

1. Aef
ij has an accepting run of lengthm+2 if and only if there exists a path inGmR ,

fromx0
i to x0

j , that stretches between0 andn, for some0 ≤ n ≤ m. Moreover,
the minimal weight among all paths fromx0

i to x0
j in GmR , stretching from0 to n,

for some0 ≤ n ≤ m, equals the minimal weight among all accepting runs of
Aef

ij of lengthm+ 2.

2. Aeb
ij has an accepting run of lengthm+2 if and only if there exists a path inGmR ,

fromxm
i toxm

j , that stretches betweenn andm, for some0 ≤ n ≤ m. Moreover,
the minimal weight among all paths fromxm

i to xm
j in GmR , stretching fromn to

m, for some0 ≤ n ≤ m, equals the minimal weight among all accepting runs
ofAeb

ij , of lengthm+ 2.

3. Aof
ij has an accepting run of lengthm + 2 if and only if there exists a path in
GmR , fromx0

i to xm
j . Moreover, the minimal weight among all paths fromx0

i to
xm
j in GmR equals the minimal weight among all accepting runs of lengthm+ 2.

4. Aob
ij has an accepting run of lengthm+2 if and only if there exists a path inGmR ,

fromxm
i to x0

j . Moreover, the minimal weight among all paths fromxm
i to x0

j in
GmR equals the minimal weight among all accepting runs of lengthm+ 2.

Proof: See [15], Lemmas 4.3, 4.4, 4.6 and 4.7. ✷

Example 6. Let us show the construction of the zigzag automaton for the relationR⇔
x1 − x′

1 ≤ 1 ∧ x1 − x′
2 ≤ −1 ∧ x2 − x′

1 ≤ −2 ∧ x2 − x′
2 ≤ 2. Figures 5(a) and

(b) depictGR andM∗
R. Notice that there are only forward odd paths, i.e. paths from
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x0 to xm in GmR for anym ≥ 1. The transition tableTR = 〈Q,∆, w〉 of the zigzag
automaton is depicted in Figure 6 (isolated states, such as(r, l), have been removed).
For instance, the automatonAef

xy = 〈TR, I
of
x , F of

x 〉 recognizes a run of lengthm+2
with weightw if and only if there is a path fromx0 to xm in GmR of lengthm and with
weightw. There are four such paths inG3R and the Figure 7 shows the corresponding
runs of the zigzag automaton. The second and the third runs have minimal weight. ✷
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Figure 6: Zigzag automaton
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6.2. Octagonal Relations

Octagonal constraints (also known as Unit Two Variables PerInequality or UTVPI,
for short) appear in the context of abstract interpretationwhere they have been exten-
sively studied as an abstract domain [43]. They are defined syntactically as a conjunc-
tions of atomic propositions of the form±x±y ≤ c, wherex andy are variables andc
is an integer constant. Thus, they can be seen as a generalization of difference bounds
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constraints. We adopt the classical representation of octagonal constraints (or octagons,
for short)φ(x1, . . . , xN ) as difference bounds constraintsφ(y1, . . . , y2N ), wherey2i−1

stands for+xi andy2i stands for−xi with an implicit conditiony2i−1 = −y2i, for each
1 ≤ i ≤ N . With this convention, [5] provides an algorithm for computing the canon-
ical form of an octagon, by first computing the canonical formof the corresponding
difference bounds constraint and subsequentlytighteningthe difference bounds con-
straintsyi − yj ≤ c. We present these results in Section 6.2.1.

Octagonal relations are defined as octagonal constraints where variables can be also
primed. Octagonal relations were studied in [11] where it was shown that the transitive
closure is Presburger definable. The core result of [11] is that the canonical form of the
m-th power of an octagonal relationR can be computed directly from them-th power
of a difference bounds relation that representsR. We present these results in Section
6.2.2.

6.2.1. Octagonal Constraints
Let x = {x1, x2, ..., xN} be a set of variables ranging overZ. The class of integer

octagonal constraints is defined as follows:

Definition 14. A formulaφ(x) is anoctagonal constraintif it is equivalent to a finite
conjunction of terms of the formxi−xj ≤ aij , xi+xj ≤ bij or−xi−xj ≤ cij where
aij , bij , cij ∈ Z, for all 1 ≤ i, j ≤ N .

We represent octagons as difference bounds constraints over the dual set of vari-
ablesy = {y1, y2, . . . , y2N}, with the convention thaty2i−1 stands forxi andy2i for
−xi, respectively. For example, the octagonal constraintx1 + x2 = 3 is represented
asy1 − y4 ≤ 3 ∧ y2 − y3 ≤ −3. In order to handle they variables in the following,
we definēı = i − 1, if i is even, and̄ı = i + 1 if i is odd. Obviously, we havē̄ı = i,
for all i ∈ Z, i ≥ 0. We denote byφ(y) the difference bounds constraint overy that
representsφ(x) and which is defined as follows:

Definition 15. Given an octagonal constraintφ(x), x = {x1, . . . , xN}, its difference
bounds representationφ(y), y = {y1, . . . , y2N} is a conjunction of the following
difference bounds constraints where1 ≤ i 6= j ≤ N , c ∈ Z.

(xi − xj ≤ c) ∈ AP (φ) ⇔ (y2i−1 − y2j−1 ≤ c), (y2j − y2i ≤ c) ∈ AP (φ)

(−xi + xj ≤ c) ∈ AP (φ) ⇔ (y2j−1 − y2i−1 ≤ c), (y2i − y2j ≤ c) ∈ AP (φ)

(−xi − xj ≤ c) ∈ AP (φ) ⇔ (y2i − y2j−1 ≤ c), (y2j − y2i−1 ≤ c) ∈ AP (φ)

(xi + xj ≤ c) ∈ AP (φ) ⇔ (y2i−1 − y2j ≤ c), (y2j−1 − y2i ≤ c) ∈ AP (φ)

(2xi ≤ c) ∈ AP (φ) ⇔ (y2i−1 − y2i ≤ c) ∈ AP (φ)

(−2xi ≤ c) ∈ AP (φ) ⇔ (y2i − y2i−1 ≤ c) ∈ AP (φ)

The following equivalence relatesφ andφ :

φ(x)⇔ (∃y2, y4, . . . , y2N . φ ∧
N∧

i=1

y2i−1 = −y2i)[xi/y2i−1]
N
i=1 (2)
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An octagonal constraintφ is equivalently represented by the DBMMφ ∈ Z
2N×2N
∞ ,

corresponding toφ. We sometimes writeMφ instead ofMφ. We say that a DBM
M ∈ Z

2N×2N
∞ is coherentiff Mij = M̄ı̄ for all 1 ≤ i, j ≤ 2N . This property

is needed since e.g. an atomic propositionxi − xj ≤ aij , 1 ≤ i, j ≤ N , can be
represented as bothy2i−1−y2j−1 ≤ aij andy2j −y2i ≤ aij . Dually, a coherent DBM
M ∈ Z

2N×2N
∞ corresponds to the octagonal constraint:

ΩM ⇔
∧

1≤i,j≤N

(xi−xj ≤M2i−1,2j−1∧xi+xj ≤M2i−1,2j∧−xi−xj ≤M2i,2j−1)

(3)
A coherent DBMM is said to beoctagonal-consistentif and only ifΩM is consistent.
Similar to the case of difference bounds constraints, for anoctagonal constraintφ, we

define||φ|| as||φ||
def
= ||φ||, where||φ|| is the maximal absolute value of all coefficients

of φ defined in Section 6.1.

Definition 16. An octagonal-consistent coherent DBMM ∈ Z2N×2N
∞ is said to be

tightly closedif and only if the following hold, for all1 ≤ i, j, k ≤ 2N :

1. Mii = 0 3. Mij ≤Mik +Mkj

2. Miı̄ is even 4. Mij ≤ ⌊
Miı̄

2 ⌋+ ⌊
M̄j

2 ⌋

Given an octagonal-consistent coherent DBMM ∈ Z
2N ×Z

2N , we denote the
(unique) tightly closed DBM byM t . The following theorem from [5] provides an
effective way of testing octagonal-consistency and computing the tight closure of a co-
herent DBM. Moreover, it shows that the tight closure of a given DBM is unique and
can also be computed in timeO(N3).

Theorem 3. [5] Let M ∈ Z
2N×2N
∞ be a coherent DBM. ThenM is octagonal-consistent

if and only ifM is consistent and⌊M
∗
iı̄

2 ⌋+⌊
M∗

ı̄i

2 ⌋ ≥ 0, for all 1 ≤ i ≤ 2N . Moreover, if
M is octagonal-consistent, the tight closure ofM is the DBMM t ∈ Z

2N×2N
∞ defined

as:

M t
ij = min

{
M∗

ij ,

⌊
M∗

iı̄

2

⌋
+

⌊
M∗

̄j

2

⌋}

for all 1 ≤ i, j ≤ 2N whereM∗ ∈ Z
2N×2N
∞ is the closure ofM .

The tight closure of DBMs is needed for checking equivalenceand entailment be-
tween octagonal constraints.

Proposition 6 ([43]). Let φ1 and φ2 be octagonal-consistent octagonal constraints.
Then,

• φ1 ⇔ φ2 if and only ifM t
φ1

= M t
φ2

,

• φ1 ⇒ φ2 if and only ifM t
φ1
≤M t

φ2
.

It has been shown in [11] that octagonal constraints are closed under existential
quantification.
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Figure 8: Graph and matrix representation of a relation.

Proposition 7. Let φ(x), x = {x1, . . . , xN}, be an octagonal-consistent octagonal
constraint. Further, let1 ≤ k ≤ 2N and M ′ be the restriction ofM t

φ
to y \

{y2k−1, y2k}. Then,M ′ is tightly closed, andΩ(M ′)⇔ ∃xk.φ(x).

Proof: See [11], Theorem 2. ✷

6.2.2. Octagonal Relations and Their Powers
Definition 17. Letx = {x1, . . . , xN} be a set of variables. A relationR ∈ Z

N×ZN

is anoctagonal relationif it can be defined by an octagonal constraintR(x,x′).

The class of relations defined by octagonal constraints is denoted byRoct in the
following.

Example 7. Consider the octagonal relationR(x1, x2, x
′
1, x

′
2)⇔ x1+x2 ≤ 5∧x′

1−
x1 ≤ −2 ∧ x′

2 − x2 ≤ −3 ∧ x′
2 − x′

1 ≤ 1. Its difference bounds representation is
R(y,y′)⇔ y1 − y4 ≤ 5∧ y3 − y2 ≤ 5∧ y′1 − y1 ≤ −2∧ y2 − y′2 ≤ −2∧ y

′
3 − y3 ≤

−3 ∧ y4 − y′4 ≤ −3 ∧ y′3 − y′1 ≤ 1 ∧ y′2 − y′4 ≤ 1, wherey = {y1, . . . , y4}. Figure
8a shows the graph representationGR. Note that the implicit constrainty′3 − y′4 ≤ 1
(represented by a dashed edge in Figure 8a) is not tight. The tightening step replaces
the bound1 (crossed in Figure 8a) with0. Figure 8b shows the tightly closed DBM
representation ofR, denotedM t

R. ✷

A consequence of Proposition 7 is thatRoct is closed under composition.

Proposition 8. Roct is closed under intersection and composition.

Proof: LetR1(x,x
′), R2(x,x

′) be octagonal constraints defining octagonal relations.
By Definition 14,R1(x,x

′)∧R2(x,x
′) is an octagonal constraints to. The composition

of relationsR1 ◦R2 can be defined as∃x′′ . (R1(x,x
′′) ∧R2(x

′′,x′)) which is again
an octagonal constraint, by Definition 14 and Proposition 7. ✷

We rely in the following chapters on the main result of [11], which establishes the
following relation betweenM t

Rm
(the tightly closed octagonal DBM corresponding to

them-th iteration ofR) andM∗
R

m (the closed DBM corresponding to them-th iteration

of the difference bounds relationR), for all m ≥ 0:
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Theorem 4. [11] Let R(x,x′), x = {x1, . . . , xN}, be a∗-consistent octagonal rela-
tion. Then,M t

Rm
= M t

R
m for all m ≥ 0. Consequently,

(M t
Rm

)ij = min
{
(M∗

R
m)ij ,

⌊
(M∗

Rm )iı̄
2

⌋
+
⌊
(M∗

Rm )̄j
2

⌋}

for all 1 ≤ i, j ≤ 4N .

This relation is in fact a generalization of the tight closure definition from Theorem 3,
fromm = 1 to anym ≥ 0.

6.3. Finite Monoid Affine Relations
Sections 6.1 and 6.2 presented two classes of non-deterministic relations. In this

section, we present linear affine relations which are a general model of deterministic
transition relations. Linear affine relations are relations of the formx′ = A × x +
b ∧ φ(x), wherex′ = A× x+ b is an affine transformation andφ(x) is a Presburger
guard. We present two subclasses of linear affine relations,calledfinite monoid affine
relationsandpolynomially bounded affine relations.

The class of finite monoid affine relations was the first class of integer relations
for which the transitive closure has been shown to be Presburger definable by Boigelot
[9]. Informally, an affine relation is a finite monoid relation if the set of powers of
its transformation matrix is finite. Originally, Boigelot characterized this class by two
decidable conditions in [9] (we report on these conditions in Lemma 5). Later, Finkel
and Leroux noticed in [25] that Boigelot’s conditions correspond to the finite monoid
property, which is also known to be decidable [42].

The second subclass of polynomially bounded relations is defined by dropping one
of the Boigelot’s conditions and by requiring that the guardof a relation is linear.
We study this subclass in Chapter?? which presents a method for computation of
termination preconditions for this class.

Definition 18. Let x = 〈x1, . . . , xN 〉 be a vector of variables ranging overZ. A
relationR ∈ Z

N × Z
N is anaffine relationif it can be defined by a formulaR(x,x′)

of the form
R(x,x′) ⇔ x′ = A× x+ b ∧ φ(x) (4)

whereA ∈ Z
N×N , b ∈ Z

N , andφ is a Presburger formula over unprimed variables
only, called theguard. The formulax′ = A× x+ b, defining a linear transformation,
is called theupdate.

The affine transformation is said to have thefinite monoid property[9, 25] if the
monoid of powers ofA, denoted as〈MA,×〉, whereMA = {Ai | i ≥ 0}, is finite. In
this case, we also say thatA has the finite monoid property. HereA0 = IN andAi =
A×Ai−1, for i > 0. Intuitively, the finite monoid property is equivalent to the fact that
A has finitely many powers (considering the standard integer multiplication). A linear
affine relation has the finite monoid property if and only if the matrixA defining the
update has the finite monoid property.

It has been shown in [25] that finite monoid property can be equivalently character-
ized by a pair of conditions. Before presenting this characterization, we recall several
notions of linear algebra.
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If A ∈ Z
n×n is a square matrix, andv ∈ Z

n is a column vector of integer con-
stants, then any complex numberλ ∈ C such thatAv = λv, for some complex vector
v ∈ C

n, is called aneigenvalueof A. The vectorv in this case is called aneigen-
vectorof A. It is known that the eigenvalues ofA are the roots of thecharacteristic
polynomialPA(x) = det(A−xIn) = 0, which is an effectively computable univariate
polynomial. Theminimal polynomialof A is the polynomialµA of lowest degree such
thatµA(A) = 0. By the Cayley-Hamilton Theorem, the minimal polynomial always
divides the characteristic polynomial, i.e. the roots of the former are root of the latter.

If λ1, . . . , λm are the eigenvalues ofA, thenλp
1, . . . , λ

p
m are the eigenvalues of

Ap, for all integersp > 0. A matrix is said to bediagonalizableif and only if there
exists a non-singular matrixU ∈ CN×N and a diagonal matrix with the eigenvalues
λ1, . . . , λm occurring on the main diagonal, such thatA = U ×D × U−1. This is the
case if and only ifµA has only roots of multiplicity one (see e.g. Thm 8.47 in [9]).

A complex numberr is said to be aroot of the unityif rd = 1 for some integer
d > 0. The cyclotomic polynomialFd(x) is the product of all monomials(x − ω),
whereωd = 1, andωe 6= 1, for all 0 < e < d. It is known that a polynomial has only
roots which are roots of unity if and only if it is a product of cyclotomic polynomials.

With these notions, the finite monoid property is defined by the following equiva-
lent conditions.

Theorem 5. [Thm 8.42 and 8.44 in [9] and Prop 2 in [25]] a relationR ≡ A×x+b,
whereA ∈ Z

N×N andb ∈ Z
N has the finite monoid condition if and only if there

existsp > 0 such that the following hold:

1. every eigenvalue ofAp belongs to the set{0, 1},
2. the minimal polynomialµAp(x) ofAp belongs to the set{0, x, x− 1, x(x− 1)}

(or, equivalently,Ap is diagonalizable).

Both conditions in Theorem are decidable [9, 42].

In Chapter??, we study another subclass of affine relations with linear guards and
transformation matrix whose eigenvalues are either zero orroots of the unity.

Definition 19. If x = 〈x1, . . . , xN 〉 is a vector of variables ranging overZ, a polyno-
mially bounded affine relationis a relation of the form

R(x,x′) ⇔ x′ = A× x+ b ∧ Cx ≥ d (5)

whereA ∈ Zn×n, C ∈ Zp×n are matrices, andb ∈ Zn, d ∈ Zp are column vectors
of integer constants and moreover, all eigenvalues ofA are either zero or roots of the
unity.

Note that ifA is a finite monoid matrix, then all eigenvalues ofA are either zero
or roots of the unity. Thus, the condition onA is weaker for polynomially bounded
affine relations. However, since the guard of finite monoid relations is more general
(Presburger), the two classes are incomparable.
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7. Periodicity of Integer Relations

This section is dedicated to instantiations of Algorithm 5 from Chapter?? to three
classes of arithmetic relations for which the transitive closure is known to be defin-
able in Presburger arithmetic: difference bounds relations, octagonal relations, and
finite monoid affine transformations. To compute the transitive closure of these rela-
tions using Algorithm 5, one first needs to prove that the three classes are periodic,
otherwise termination of Algorithm 5 is not guaranteed. Ourproofs rely mostly on
a fact that any matrix is periodic when its powers are computed in the tropical semiring
(Z∞,min,+,∞, 0). The intuition behind periodicity of difference bounds relations is
that thek-th power of a relation from this class can be encoded by minimal runs of
lengthk in zigzag automatawhich in turn can be computed as thek-th tropical power
of the incidence matrix of the automaton. Thus, periodicityof the sequence of tropi-
cal powers of the incidence matrix entails periodicity of a difference bounds relation.
Periodicity of the three classes thus provides common grounds to the acceleration prob-
lem and also gives shorter proofs for the fact that the transitive closures of these three
classes are definable in Presburger arithmetic.

The efficiency of Algorithm 5 depends on two factors. Given a relation with prefix
b and periodc, Theorem 2 proves that Algorithm 5 makesO((b+ c)2) iterations of the
main loop. Thus, the prefixb and the periodc are important complexity parameters,
and we give asymptotic bounds for them in Chapter??. For difference bounds and
octagonal relations, these bounds are closely related to bounds on the prefix and the
period of the incidence matrix of zigzag automata. This chapter therefore gives an
alternative proof to the fact that each matrix is periodic inthe tropical semiring which
moreover gives asymptotic bounds.

Another important efficiency factor is the complexity of theprocedures MAX CON-
SISTENTand MAX PERIODIC, which are called by Algorithm 5 to detect the maximal
interval that is periodic with respect to the current prefix and period candidates. In
general, for all three classes of relations we consider, these procedures can be imple-
mented using Presburger arithmetic queries. However, in practice, one would like to
avoid as much as possible using Presburger solvers, due to reasons of high complexity
of decision procedures for Presburger arithmetic. In this chapter, we give direct deci-
sion methods which avoid calls to external Presburger or SMTsolvers completely and
which are of polynomial time complexity in the size of the prefix, period,||R||, andN ,
where||R|| denotes the sum of absolute values of the coefficients of a relationR andN
denotes the number of variables used to define a given relationR.

Roadmap..In Section 7.1, we prove that every matrix is periodic in the tropical semir-
ing and establish asymptotic bounds on the size of its prefix and period. Next, Sections
7.2, 7.5, and 7.8 study the classes of difference bounds, octagonal, and finite monoid
affine relations, respectively. In each of these sections, we prove that the respective
class is periodic, present implementations of the MAX CONSISTENTand MAX PERI-
ODIC procedures, and study their complexity. We defer all experiments with Algorithm
5 to Chapter??.
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7.1. Periodicity of Matrices

In this section, we prove that each matrix is periodic when its powers are computed
in thetropical semiringwhich is defined as follows.

An idempotent semiringis a set(S,+, ·,0,1) equipped with two operations, the
addition+ and the multiplication·, such that(S,+,0) is an idempotent (i.e.,p+p = p
for all p ∈ S) commutative monoid with neutral element0 and(S, ·,1) is a monoid
with neutral element1. Moreover, multiplication distributes both left and rightover
addition and0 · r = r · 0 = 0, for all r ∈ S. Thetropical semiring3 is an idempotent
semiring(Z∞,min,+,∞, 0) [52] with the extended arithmetic operationsx+∞ =∞,
andmin(x,∞) = x, for all x ∈ Z, wheremin(x, y) denotes the minimum between
the valuesx andy.

If S is a set, letSm×m denote the set of square matrices of sizem, with entries in
S. For two matricesA,B ∈ Z

m×m
∞ , we define the sum(A + B)ij = Aij + Bij . The

classical product is defined forA,B ∈ Z
m×m as(A × B)ij =

∑m
k=1(aik · bkj). The

tropical productis defined forA,B ∈ Z
m×m
∞ as(A⊠B)ij = minmk=1(aik + bkj). Let

Im ∈ Zm×m be the identity matrix, i.e.Iii = 1 andIij = 0, for all 1 ≤ i, j ≤ m,
i 6= j, andIm ∈ Z

m×m
∞ be the tropical identity matrix, i.e.Iii = 0 andIij = ∞, for

all 1 ≤ i, j ≤ m, i 6= j. Then we defineA0 = I, A⊠
0

= I andAk = Ak−1 × A,
A⊠

k

= A⊠
k−1

⊠A, for all k > 0.
With these notions, a periodic matrix can be defined as follows.

Definition 20. A matrix A ∈ Z
m×m
∞ is called periodic if the sequence of tropical

powers{A⊠
k

}∞k=1 is periodic.

Intuitively, if A is the incidence matrix of a weighted digraph, then the sequence
{A⊠

k

}∞k=1 of tropical powers ofA gives the minimal weight paths of lengthsk =
1, 2, . . . between any two vertices of the graph. It has been proved in [52] that every
matrixA ∈ Zm×m

∞ is periodic. We define the prefix (period) of a matrixA as the pre-
fix (period) of the sequence{A⊠

k

}∞k=1. We will often refer to periodicity (or prefix,
period) of graphs, by which we mean periodicity (or prefix, period, respectively) of the
corresponding incidence matrix.

We have argued that the complexity of the transitive closurealgorithm depends on
the size of the prefix and the period of the input relations, which will be later (in Section
7.2) shown to be bounded by the size of the prefix and the periodof a certain kind of
graphs, for difference bounds and octagonal relations. Theresult of [52] is however
not suitable to establish bounds on the prefix and period of a graph. In this section, we
therefore give an alternative proof of periodicity of matrices that moreover establishes
bounds on sizes of their prefix and period.

Recall from Section?? that given a pathπ, we denote byw(π) its weight and that
w(π) denotes its average weight. Ifλ1, . . . , λk are pairwise distinct elementary cycles,
the expressionθ = σ1 ·λ

∗
1 ·σ2 . . . σk ·λ

∗
k ·σk+1 is called apath scheme of sizek. A path

schemeθ = σ1.λ
∗
1.σ2 such that|σ1.σ2| ≤ |V |

4 is calledbasic. A path scheme encodes

3Actually, the dual structure(Z−∞,max,+,−∞, 0) is also known as the tropical semiring in the liter-
ature.
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the infinite set of paths[[θ]] = {σ1 · λ
n1
1 · σ2 . . . σk · λ

nk

k · σk+1 | n1, . . . , nk ∈ N}.
Given a weighted digraphG = 〈V,E,w〉, we denote byMG its incidence matrix.

The first observation is that, for every minimal weight path in a weighted graph,
there is an equivalent path following a path scheme whose size is bounded by the
square of the size of the graph.

Proposition 9. LetG = 〈V,E,w〉 be a weighted digraph andρ be a minimal weight
path inG. Then there exists a path schemeθ = σ1 · λ

∗
1 · . . . · σk · λ

∗
k · σk+1 in G, such

thatσ1, . . . , σk+1 are acyclic andk ≤ ||V ||2, and a pathρ′ ∈ [[θ]] starting and ending
in the same vertices asρ, such that|ρ| = |ρ′| andw(ρ) = w(ρ′).

Proof: For each vertexv ∈ V , we partition the set of elementary cycles that start
and end inv, according to their length. The representative of each equivalence class is
chosen to be a cycle of minimal weight in the class. Since the length of each elementary
cycle is at most||V ||, there are at most||V ||2 such equivalence classes.

Let ρ be any path of minimal weight inG. First, notice thatρ can be factorized as:

ρ = σ1 · λ1 · . . . · σk · λk · σk+1

whereσ1, . . . , σk+1 are elementary acyclic paths, andλ1, . . . , λk are elementary cy-
cles. This factorization can be achieved by a traversal ofρ while collecting the vertices
along the way in a bag. The first vertex which is already in the bag marks the first ele-
mentary cycle. Then we empty the bag and continue until the entire path is traversed.

Next, we repeat the following two steps until nothing changes:

1. For alli = 1, . . . , k − 1 move all cyclesλj , j > i, starting and ending with the
same vertex asλi, next toλi, in the ascending order of their lengths. The result
is a pathρ′ of the same length and weight asρ.

2. Factorize any remaining non-elementary acyclic pathσi · σi+1 · . . . · σi+j as in
the previous.

The loop above is shown to terminate, since the sum of the lengths of the remaining
acyclic paths decreases with every iteration. The result isa path of the same length and
weight asρ, which starts and ends in the same vertices asρ, in which all elementary
cycles of the same length are grouped together. Sincew(ρ) is minimal for |ρ|, same
holds forρ′, and moreover, all elementary cycles can be replaced by their equivalence
class representatives, without changing neither the length, nor the weight of the path.
The result is a path which belongs to a scheme with at most||V ||2 cycles. ✷

Second, for every minimal weight path in the graph, there exists an equivalent path
which follows a basic path scheme.

Lemma 6. LetG = 〈V,E,w〉 be a weighted digraph andρ be a minimal weight path.
Then there exists a pathρ′, starting and ending in the same vertices asρ, such that
w(ρ) = w(ρ′) and |ρ| = |ρ′|, and a basic path schemeθ = σ · λ∗ · σ′ such that
ρ′ ∈ [[θ]].

Proof: By Proposition 9, for any pathρ in G there exists a path schemeθ = σ1 · λ
∗
1 ·

σ2 . . . σk · λ
∗
k · σk+1, such thatσ1, . . . , σk+1 are acyclic andk ≤ ||V ||2, and a path
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ρ′, starting and ending in the same vertices asρ, of the same weight and length asρ,
such thatρ′ = σ1 · λ

n1
1 · σ2 . . . σk · λ

nk

k · σk+1 for somen1, . . . , nk ≥ 0. Suppose
that λi is a cycle with minimal average weight among all cycles in thescheme, i.e.
w(λi)
|λi|

≤ w(λj)
|λj |

, for all 1 ≤ j ≤ k. For eachnj there existpj ≥ 0 and0 ≤ qj < |λi|,
such thatnj = pj · |λi|+ qj . Let ρ′ be the path:

σ1 · λ
q1
1 · σ2 . . . σi−1 · λ

ni+
∑i−1

j=1 pj ·|λj |+
∑k

j=i+1 pj ·|λj |

i · σi+1 · . . . σk · λ
qk
k · σk+1

It is easy to check that|ρ′| = |ρ| andw(ρ′) ≤ w(ρ).
Clearlyρ′ follows the path schemeρ1 ·λ∗

i ·ρ2, whereρ1 = σ1 ·λ
q1
1 ·σ2 . . . σi−1 and

ρ2 = σi+1 · . . . σk ·λ
qk
k · σk+1. Sinceλ1, . . . , λk are elementary paths, all their lengths

are strictly smaller than||V ||. Sinceqj < |λi| ≤ ||V ||, andk ≤ ||V ||2, by Proposition 9,
we have that|ρ1 · ρ2| < ||V ||

4. Thus,ρ1 · λ∗
i · ρ2 is basic. ✷

The following lemma shows that, for a sufficiently long minimal weight path, there
exists an equivalent path which follows a basic path scheme and moreover, this path
scheme is followed by infinitely many minimal paths. Recall that

µ(G) = max{|n| | u
n
−→ v in G}

denotes the maximum absolute value of all weights inG.

Lemma 7. LetG = 〈V,E,w〉 be a weighted digraph, andu, v ∈ V be two vertices.
Then for every minimal weight pathρ formu to v, such that|ρ| ≥ µ(G) · ||V ||6, there
exists a pathρ′ fromu to v, such thatw(ρ) = w(ρ′) and |ρ| = |ρ′|, and a basic path
schemeθ = σ ·λ∗ ·σ′, such thatρ′ = σ ·λb ·σ′, for someb ≥ 0. Moreover, there exists
c | lcm(1,...,||V ||−1)

|λ| such thatσ · λb+kc · σ′ is a minimal weight path fromu to v, for all
k ≥ 0.

Proof: By Lemma 6, every minimal weight path fromu to v follows a basic path
scheme. LetL > 0 be an integer, and letσi ·λ

∗
i ·σ

′
i andσj ·λ

∗
j ·σ

′
j be two possible path

schemes such thatρi = σi ·λ
bi
i ·σ

′
i, ρj = σj ·λ

bj
j ·σ

′
j are two paths of lengthL, for some

bi, bj ≥ 0. We assume without loss of generality thatλi has smaller average weight,
i.e. w(λi) < w(λj). We first prove that, ifL ≥ µ(G) · ||V ||6, thenw(ρi) ≤ w(ρj). We
have:

bi =
L−|σi·σ

′
i|

|λi|
,

bj =
L−|σj ·σ

′
j |

|λj |
,

and
w(ρi) = w(σi · σ

′
i) +

L−|σi·σ
′
i|

|λi|
w(λi),

w(ρj) = w(σj · σ
′
j) +

L−|σj ·σ
′
j |

|λj |
w(λj).

Thenw(ρi) ≤ w(ρj) if and only if

L ≥
|λi||λj |(w(σi · σ

′
i)− w(σj · σ

′
j)) + |λi||σj · σ

′
j |w(λj)− |λj ||σi · σ

′
i|w(λi)

w(λj)|λi| − w(λi)|λj |
.
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Sinceλi has a strictly smaller average weight thanλj , we have thatw(λj)|λi| −
w(λi)|λj | > 0 and sincew(λi), w(λj), |λi|, |λj | ∈ Z, we have thatw(λj)|λi| −

w(λi)|λj | ≥ 1. By Lemma 6, we have|σi · σ
′
i|, |σj · σ

′
j | ≤ ||V ||

4, andw(σi · σ
′
i) −

w(σj · σ
′
j) ≤ µ(G) · ||V ||4. We compute:

L ≥ µ(G) · ||V ||6

≥ |λi||λj |(w(σi · σ
′
i)− w(σj · σ

′
j)) + |λi||σj · σ

′
j |w(λj)− |λj ||σi · σ

′
i|w(λi)

≥
|λi||λj |(w(σi·σ

′
i)−w(σj ·σ

′
j))+|λi||σj ·σ

′
j |w(λj)−|λj ||σi·σ

′
i|w(λi)

w(λj)|λi|−w(λi)|λj |

Since the choice ofρi andρj was arbitrary, for eachL ≥ µ(G) · ||V ||6, the path scheme
with minimal average weight cycle is chosen by the minimal weight path of lengthL.

Second, we show that this happens periodically. For two paths ρi = σi · λ
bi
i · σ

′
i

andρj = σj · λ
bj
j · σ

′
j of equal lengths, as before, letcij = lcm(|λi|, |λj |), ci =

cij
|λi|

andcj =
cij
|λj |

. We have that|λkci
i | = |λ

kcj
j | = kcij , for all k ≥ 0. Moreover, since

w(λi) < w(λj), we have thatw(λkci
i ) < w(λ

kcj
j ). It follows that

w(σi · λ
bi+kci
i · σ′

i) ≤ w(σj · λ
bj+kcj
j · σ′

j)

for all k ≥ 0. Finally, since|λi|, |λj | < ||V ||, we have thatcij | lcm(1, . . . , ||V ||−1) and

thusci |
lcm(1,...,||V ||−1)

|λi|
. Since the choice ofi does not change this fact, it is enough to

takec = lcm(1,...,||V ||−1)
|λ| andb = bi to obtain thatσi · λ

b+kc
i · σ′

i has minimal weight
among all paths fromu to v of the same length, for allk ≥ 0. ✷

The following lemma is essential to prove an upper bound on the period of weighed
digraphs.

Lemma 8. For eachn ≥ 1, lcm(1, . . . , n) is bounded by2O(n).

Proof: We know thatlcm(1, . . . , n) =
∏

p≤n p
⌊logp(n)⌋ where the product is taken

only over primesp. Obviously, for every primep we have thatp⌊logp(n)⌋ ≤ plogp(n) =
n. Hence,lcm(1, . . . , n) ≤

∏
p≤n n = nπ(n), whereπ(n) denotes the prime-counting

function (which gives the number of primes less than or equalto n, for every natural
numbern). Using the prime number theorem which states thatlimn→∞

π(n)
n/ln(n) = 1

we can effectively boundπ(n). That is, for anyǫ > 0, there existsnǫ such that
π(n)

n/ln(n) ≤ (1 + ǫ) for all n ≥ nǫ . Consequently,nπ(n) ≤ n(1+ǫ)n/ln(n) = e(1+ǫ)n =

2log2(e)(1+ǫ)n = 2O(n) for all n ≥ nǫ, and completes the proof. ✷

The following theorem gives asymptotic bounds on the size ofthe prefix and the
period of a weighted digraphG = 〈V,E,w〉, in terms ofµ(G) and||V ||.

Theorem 6. LetG = 〈V,E,w〉 be a digraph, andMG ∈ Z
||V ||×||V ||
∞ be its incidence

matrix. Then, the sequence{M⊠
i

G }i≥0 is periodic. Moreover, its prefixb is bounded by
µ(G)·O(||V ||6), and its period divideslcm(1, . . . , ||V ||−1) and is bounded by2O(||V ||).

Proof: A direct consequence of Lemma 7 is that each minimal weight pathρ in G of
length at leastµ(G) · ||V ||6 must be of the formρ = σ · λb · σ′, and moreover, for
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somec | lcm(1,...,||V ||−1)
|λ| , we have thatσ · λb+kc · σ′ is a minimal weight path, for all

k ≥ 0. Hence, for each1 ≤ i, j ≤ ||V ||, the sequence{(M⊠
k

G )ij}
∞
k=0 is periodic with

prefix at mostµ(G) · ||V ||6 and period which divideslcm(1, . . . , ||V || − 1). The prefix
b of MG is the maximum of all prefixes, and the periodc is the least common multiple
of the periods of the sequences{(M⊠

i

G )ij}
∞
k=0, respectively. Henceb is bounded by

µ(G) ·O(||V ||6) andc divideslcm(1, . . . , ||V ||−1). By Lemma 8,lcm(1, . . . , ||V ||−1)
is bounded by2O(||V ||). Sincec divides lcm(1, . . . , ||V || − 1), the same bound forc
follows immediately. ✷

7.2. Difference Bounds Relations

Recall from Section 6.1 that a difference bounds relationR ⊆ Z
N × Z

N can be
equivalently represented as a difference bounds matrix (DBM) MR. Similarly, for
each DBMM there is a corresponding difference bounds relationΦM . Furthermore,
difference bounds relations can be represented canonically by DBMsM∗

R.
The first step to proving that the classRdb is periodic is defining the mappings

between relations and matrices (Definition 4). Given a consistent difference bounds
relationR ∈ Rdb, we defineσ(R) = M∗

R ∈ Z
2N×2N
∞ to be the closed characteristic

DBM of R. Dually, for any DBMM ∈ Z2N×2N
∞ , let ρ(M) = ΦM ∈ Rdb be the

difference bounds relation corresponding toM . We clearly haveρ(σ(R))⇔ R, for all
consistent relationsR, as required by Definition 4.

In order to define a functionπ : Z[k]m×m
∞ → R[k] mapping matrices of lin-

ear terms of the formα · k + β, with integer coefficients, into parametric relations
R(k,x,x′), we define the class ofparametricdifference bounds relations.

Definition 21. A formulaφ(x, k) is a parametric difference bounds constraintif it is
equivalent to a finite conjunction of atomic propositions ofthe formxi − xj ≤ tij , for
some1 ≤ i, j ≤ N , i 6= j, wheretij are univariate linear terms ink.

The class of parametric difference bounds relations with parameterk is denoted as
Rdb[k]. Similar to the non-parametric case (Definition 8), a parametric difference
bounds constraintφ(k) can be represented by a matrixMφ[k] ∈ Z[k]N×N

∞ of uni-
variate linear terms, where(Mφ[k])ij = tij if xi − xj ≤ tij occurs inφ, and∞ oth-
erwise. Dually, a matrixM [k] of linear terms corresponds to the formulaΦM (k) ⇔∧

M [k]ij 6=∞ xi − xj ≤ M [k]ij . With these considerations, we defineπ(M [k]) =

ΦM (k) to be the parametric counterpart of theρ function from Definition 4. Clearly,
for each matrixM ∈ Z[k]m×m

∞ , the mappingπ satisfies the required property that
π(M)[n/k]⇔ ρ(M [n]) for all n ∈ Z.

7.3. Proving Periodicity

In this section, we prove that all relations defined using difference bounds con-
straints are periodic in the sense of Definition 4. A direct consequence is that these
relations are also periodic, which ensures the terminationof Algorithm 5 on theRdb

class.
Let R ∈ Rdb be an arbitrary difference bounds relation for the rest of this section.

If R is not∗-consistent, then by Definition 4,R is periodic. We consider from now on

46



thatR is ∗-consistent and prove that the sequence{σ(Ri)}∞i=0 is periodic in this case.
We haveσ(Ri) = M∗

Ri for anyi ≥ 0.
The proof idea is that the entries of the sequence{M∗

Ri}∞i=0 represent minimal
weight paths in the graph corresponding to thei-times “unfolding” ofR, for anyi ≥
0. These paths form a regular language recognized by a finite weighted automaton.
Consequently, the minimal weights fori = 0, 1, 2, . . . are entries in the sequence of
tropical powers of the incidence matrix of this automaton. But then they form periodic
sequences, according to Theorem 6.

For all1 ≤ i, j ≤ N , we obtain the following equalities:

[σ(Rm)]i,j = min{x0
i −→ x0

j}

[σ(Rm)]i+N,j+N = min{xm
i −→ xm

j }

[σ(Rm)]i,j+N = min{x0
i −→ xm

j }

[σ(Rm)]i+N,j = min{xm
i −→ x0

j}

(6)

Recall the definition of thezigzag automatafrom Section 6.1.3 that recognize paths
within constraint graphs. In the following, we view these automata as reasoning tools,
needed to prove the periodicity of the difference bounds constraints. Recall thatTR =
〈Q,∆, w〉 is the common transition table of all zigzag automata forR ∈ Rdb. Let
MR ∈ Z

||Q||×||Q||
∞ be the incidence matrix ofTR, where||Q|| is the number of control

states inTR. Without loss of generality, we assume that states inQ are both reachable
and co-reachable4. For each pair of variablesxi, xj , there are eight indices, denoted
asIefi,j , F ef , Ieb, F eb

i,j , I
of
i , F of

j , Iobi , F ob
j ∈ {1, . . . , ||Q||} corresponding to the initial

and final states of the four zigzag automata, respectively. According to Lemma 5, the
minimal weight path of lengthm + 2 from Iefi,j to F ef matches the minimal weight
path between the extremal pointsx0

i andx0
j of GmR . Similarly for paths fromIeb to

F eb
i,j , from Iofi to F of

j , and fromIobi to F ob
j . However the weights of the paths in the

zigzag automata are captured by the tropical powers ofMR, as follows:

min{x0
i −→ x0

j} =
[
MR

⊠
m+2]

Ief
i,j ,F

ef

min{xm
i −→ xm

j } =
[
MR

⊠
m+2]

Ieb,F eb
i,j

min{x0
i −→ xm

j } =
[
MR

⊠
m+2]

Iof
i ,F of

j

min{xm
i −→ x0

j} =
[
MR

⊠
m+2]

Iob
i ,F ob

j

(7)

By Theorem 6, the tropical powers ofMR form a periodic sequence, therefore
the sequence{MR

⊠
m+2

}m≥0 is periodic. By equating the equivalences (6) and (7)
from the previous, we obtain that the sequence{σ(Rm)}m≥0 is periodic as well. The
following theorem summarizes the above arguments.

Theorem 7. The class of difference bounds relations is periodic.

4A state is said to bereachableif there exists a path from an initial state to it, andco-reachableif there
exists a path from it to a final state.
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Moreover, sinceMRm is a projection ofM⊠
m+2

R for all m ≥ 0 if R is ∗-consistent,
the prefix of a∗-consistent relationR is bounded by the prefix ofTR. Similar claim
can be made for the period ofR.

Proposition 10. Let TR = (Q,∆, w) be the common transition table of zigzag au-
tomata defined for a∗-consistent difference bounds relationR. Then, the size of the
prefix ofR is bounded by the size of the prefix ofTR and the period ofR divides the
period ofTR.

Proof: The proof of Lemma 1 shows that ifbij (cij) is the prefix (period) of the
sequence{(M⊠

m

R )ij}m≥0 for all 1 ≤ i, j ≤ ||Q||, then the sequence{M⊠
m

R }m≥0 has
the prefix defined asb = maxij{bij} and the period defined asc = lcmij{cij}. Since
R is ∗-consistent,MRm is a projection ofM⊠

m+2

R for all m ≥ 0. Then the bounds
stated in this proposition follow from the definition ofb andc. ✷

In conclusion, Algorithm 5 will terminate on difference bounds relations. More-
over, the result is formula definable in Presburger arithmetic. In particular, this also
simplifies the proof that transitive closures of differencebounds relations are Pres-
burger definable, from [15]. The following result is needed in the following section to
design a cost-effective implementation of Algorithm 5.

Corollary 1. If R ∈ Rdb be a difference bounds relation, the rateΛ of the periodic
sequence{σ(Ri)}∞i=0 is a closed DBM.

Proof: Sinceσ(Rm) = M∗
Rm for all m ≥ 0, σ(Rm) is closed and thus we have for all

1 ≤ i, j, k ≤ 2N andm ≥ 0:
[
σ(Rm)

]
i,j
≤

[
σ(Rm)

]
i,k

+
[
σ(Rm)

]
k,j

Since{σ(Rm)}∞m=0 is periodic, there existsb ≥ 0, c > 0 andΛ ∈ Z
2N×2N
∞ such that:

σ(Rb+nc) = σ(Rb) + n · Λ

for all n ≥ 0. Consequently, we have, for all1 ≤ i, j, k ≤ 2N and alln ≥ 0:
[
σ(Rb)

]
i,j

+ n · Λij ≤
[
σ(Rb)

]
i,k

+
[
σ(Rb)

]
k,j

+ n · (Λik + Λkj)

We obtain:

n · (Λij − Λik − Λkj) ≤
[
σ(Rb)

]
i,k

+
[
σ(Rb)

]
k,j
−
[
σ(Rb)

]
i,j
, ∀n ≥ 0

Suppose thatΛ is not closed i.e., there exist1 ≤ i, j, k ≤ 2N such thatΛij > Λik +
Λkj , we get a contradiction with the above. ✷

7.4. Checking∗-consistency and Periodicity

In this section, we describe cost-effective ways to implement the MAX CONSIS-
TENT and MAX PERIODIC procedures from Algorithm 5 for difference bounds rela-
tions.
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First, we need to introduce several technical notions. Aunivariate linear termis
a term of the formα · k + β, whereα, β ∈ Z are integer constants. LetZ[k] denote
the set of all univariate linear terms with variablek. For two setsS, T ⊆ Z[k], we
defineS ⊕ T = {(α1 + α2) · k + β1 + β2 | α1 · k + β1 ∈ S, α2 · k + β2 ∈ T}.
For two linear termst1 = α1 · k + β1 and t2 = α2 · k + β2, we define the partial
order on termst1 � t2 ⇔ α1 ≤ α2 ∧ β1 ≤ β2. We denote the strict inequality
on terms byt1 ≺ t2 ⇔ t1 � t2 ∧ t2 6� t1. For a finite set of linear termsS, we
denote by MINTERMS(S) = {t ∈ S | ∀s ∈ S . s 6≺ t} the set of minimal terms in
S, with respect to this order. For a set of integer constants{a1, . . . , an}, we denote by
MAX M IN{ai}

n
i=1 the positive valuemax{ai}

n
i=1 −min{ai}

n
i=1.

Proposition 11. LetS = {αi · k + βi}
m
i=1 be a set of univariate linear terms. Then

||M INTERMS(S)|| ≤ min(MAX M IN{αj}
m
j=1,MAX M IN{βj}

m
j=1)

Proof: A termα ·k+β corresponds to the point(α, β) in the 2-dimensional space. All
terms fromS are points in the rectangle defined by the bottom left corner(min{αj}

m
j=1,

min{βj}
m
j=1) and the upper right corner(max{αj}

m
j=1,max{βj}

m
j=1). Since all terms

in M INTERMS(S) are incomparable w.r.t.�, there can be at mostmin(max{αj}
m
j=1−

min{αj}
m
j=1,max{βj}

m
j=1 −min{βj}

m
j=1) such terms. Hence the result. ✷

Given a linear termt = α·k+β, we denote byt(n) the valueα·n+β, for anyn ∈ N.
The set of valuations of a termt, with respect to the thresholdℓ is [[t]]≥ℓ = {t(n) | n ≥
ℓ}. These notations are naturally lifted to sets of terms, i.e.T (n) = {t(n) | t ∈ T}.
and[[T ]]≥ℓ =

⋃
t∈T [[t]]≥ℓ.

Unlike DBMs with constant entries, parametric DBMs do not have a closed form,
since in general, the minimum of two univariate linear termscannot be defined again as
a linear term. A way around this problem is using matrices of sets of univariate linear
terms, with the convention that a setT = {t1(k), . . . , tn(k)} of univariate linear terms
denotes the functionk 7→ min{t1, . . . , tn}, andmin(∅) = ∞. The Floyd-Warshall
algorithm for computing closed forms of DBMs with constant entries can be easily
adapted to parametric DBMs.

Algorithm 7 takes as input a matrix of univariate linear terms, and produces a matrix
of sets of such terms (each set of termsT is interpreted asmin(T )). Lines 2-7 initialize
the output matrix with sets of terms. Lines 8-14 correspond to the classical Floyd-
Warshall iteration.

Proposition 12. LetM ∈ Z
m×m
∞ [k] be a parametric DBM, such thatMij = αij · k+

βij , for all 1 ≤ i, j ≤ m. Then, Algorithm 7 runs in at mostO(µ3 ·m6) time where

µ = min( max
1≤i,j≤m

{|αij |}, max
1≤i,j≤m

{|βij |})

Moreover, we have||Mij || ≤ 2m · µ.

Proof: Each termα · k + β ∈ M[i][j] is a sum of at mostm termsαij · k + βij . We
have:

−m ·max1≤i,j≤m{|αij |} ≤ α ≤ m ·max1≤i,j≤m{|αij |}, and
−m ·max1≤i,j≤m{|βij |} ≤ β ≤ m ·max1≤i,j≤m{|βij |}.
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Algorithm 7 Closure Algorithm for Parametric DBMs

1: procedure PARAMETRICFW(M )
2: for all i = 0, . . . ,m− 1 do
3: for all j = 0, . . . ,m− 1 do
4: if M [i][j] =∞ then
5: M[i][i]← ∅
6: else
7: M[i][j]← {M [i][j]}

8: for all k = 0, . . . ,m− 1 do
9: for all i = 0, . . . ,m− 1 do

10: for all j = 0, . . . ,m− 1 do
11: T0 ←M[i][j]
12: T1 ←M[i][k]
13: T2 ←M[k][j]
14: M[i][j]← M INTERMS (T0 ∪ (T1 ⊕ T2))

15: return M[i][j]

16: procedure M INTERMS(S)
17: return {t ∈ S | ∀s ∈ S . s 6≺ t}

By an argument similar to the one used in Proposition 11, we have that||M[i][j]|| ≤
2m · µ, whereµ is defined asµ = min(max1≤i,j≤m{|αij |},max1≤i,j≤m{|βij |}).
Therefore, each call to MINTERMS takes at mostO(m3 · µ3) time. Since the classical
Floyd-Warshall algorithm (i.e. Algorithm 7 in which we consider that MINTERMS

needs constant time) runs in timeO(m3), we obtain the result. ✷

MAX CONSISTENT.. Given a difference bounds relationR, integersb ≥ 0, c > 0
such thatRb+2c is consistent, and a matrixΛ ∈ Z

2N×2N
∞ , let us denoteMR,b,Λ =

k · Λ + σ(Rb) ∈ Z[k]2N×2N
∞ . With this notation, we have:

MAX CONSISTENT(R, b,Λ) = sup{n ∈ N |MR,b,Λ[n] is consistent}.

SinceRb+2c is consistent, it follows that MAX CONSISTENT(R, b,Λ) > 2 and hence,
we can define MAX CONSISTENT(R, b,Λ) equivalently as

MAX CONSISTENT(R, b,Λ) = inf{n ∈ N |MR,b,Λ[n] is inconsistent} − 1.

In analogy to the non-parametric case, the inconsistency ofa parametric difference
bounds constraint amounts to the existence of a strictly negative elementary cycle in
the constraint graph corresponding toMR,b,Λ[n] for some valuationn ∈ N of k. The
MAX CONSISTENTprocedure can be implemented as follows. Let

M = PARAMETRICFW(MR,b,Λ)

as returned by Algorithm 7. Obviously,MR,b,Λ[n] is not consistent if and only if
min(Mii[n]) < 0 for somei = 1, . . . , 2N . The minimal value ofn for which this
is the case isK ′ = min{Γ(Mii)}

2N
i=1, whereΓ is a constant defined in the following

lemma. Then, MAX PERIODIC returns integerK defined asK = K ′ − 1.
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Lemma 9. Let T = {αi · k + βi}
m
i=1 be a set of univariate linear terms andℓ ∈ N

be a constant. Thenminn≥ℓ T (n) < 0 if and only if there exists1 ≤ i ≤ m such
that eitherαi < 0, or αi · ℓ + βi < 0. Moreover the smallest valuen such that
minn≥ℓ{αi · n+ βi}

m
i=1 < 0 is Γ(T ) = minmj=1 γj where:

γj =





max(ℓ, ⌊− βj

αj
⌋+ 1) if αj < 0

ℓ if αj ≥ 0 ∧ αj · ℓ+ βj < 0
∞ otherwise

Proof: minn≥ℓ T (n) < 0 iff there exists1 ≤ i ≤ m such thatαi · n + βi < 0. Let us
fix i for the rest of the proof. There are three cases:

• if αi < 0 we haven ≥ ⌊− bi
αi
⌋+ 1, hencen ≥ γi = max(ℓ, ⌊− bi

αi
⌋+ 1).

• if αi ≥ 0 andαi ·ℓ+βi ≥ 0, we haveαi ·n+βi ≥ 0, for all n ≥ ℓ, contradiction.

• else, we haveαi ≥ 0 andαi · ℓ+ βi < 0, in which case we haven ≥ γi = ℓ.

✷

Proposition 13. For a difference bounds relationR, integersb ≥ 0, c > 0 such that
Rb is consistent and a matrixΛ ∈ Z

2N×2N
∞ , MAX CONSISTENT(R, b,Λ) runs in time

at mostO((b+ c)3 · ||R||3 ·N9).

Proof: ComputingM requires one application of Algorithm 7. By Proposition 12,the
call to Algorithm 7 requires time at mostO(µ3 ·N6), where:

µ = min( max
1≤i,j≤2N

{|Λij |}, max
1≤i,j≤2N

{|(σ(Rb))ij |})

Since the constraint graphGbR has(b+1)·N nodes, any minimal path between extremes
may not exceed weight(b + 1) · N · ||R||. This is becauseRb is consistent, i.e. there
are no negative cycles inGbR, and a path going through a positive cycle is not minimal.
Since the rateΛ is computed asΛ = σ(Rb+c) − σ(Rb), we similarly infer thatΛij ≤
(b + c + 1) ·N · ||R|| for all 1 ≤ i, j ≤ 2N . Henceµ ≤ (b + c + 1) ·N · ||R||, which
gives the result. ✷

MAX PERIODIC.. Given a difference bounds relationR, integersK ∈ N∞, b ≥ 0 and
c > 0, such thatRb is consistent, and a matrixΛ ∈ Z2N×2N

∞ , the procedure

MAX PERIODIC(R, b,Λ, c,K)

returns the maximal integer5 0 ≤ n ≤ K such that:

∀0 ≤ ℓ < n . ρ(ℓ · Λ + σ(Rb)) ◦Rc ⇔ ρ((ℓ+ 1) · Λ + σ(Rb))

5The successful test at line 8 of Algorithm 5 implies thatn ≥ 2.
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or∞, if K = ∞ and the above equivalence holds for allℓ. The left-hand side of the
equivalence can be encoded by a matrix of terms of the formmin{ti}

m
i=1, whereti are

univariate linear terms, and can be computed by Algorithm 7.The DBM corresponding
to the right-hand side is shown to be closed for all valuations ofk, which means that the
relation on the right-hand side of the equivalence can be defined simply by a parametric
DBM, instead of a matrix of min-terms, which is the case for the left-hand side.

Lemma 10. Let R ∈ Rdb be a difference bounds relation, andΛ be the rate of the
periodic sequence{σ(Ri)}∞i=0. Then, for allb ≥ 0 andn > 0, the DBMn ·Λ+σ(Rb)
is closed.

Proof: A direct consequence of the fact thatσ(Rb) is closed by definition, and thatΛ
is also closed, by Corollary 1. ✷

We need thus to check equivalence (for allk ≥ 0) between a matrix of minima of
sets of linear terms ink and a parametric DBM. By Proposition 3, equivalence of two
difference bounds constraints amounts to the equality of their closed DBMs. In order
to find the maximal interval0, . . . , n in which min{αi · k + βi}

m
i=1 = α0 · k + β0

holds, for allk = 0, . . . , n, we apply the following lemma to each entry in the left
and right-hand side of the above equivalence, and return theminimal value among all
entries, for which the equivalence holds, incremented by one6.

Lemma 11. LetT = {αi ·k+βi}
m
i=1 be a set of univariate linear terms,t0 = α0 ·k+

β0 ∈ Z[k] be a term, andℓ ∈ N be a constant. Then there exists an integerκ > ℓ + 1
such thatminT (n) = t0(n), for all ℓ ≤ n ≤ κ, if and only if the following hold:

1.
∨m

i=1(αi = α0 ∧ βi = β0) ∧
∧m

i=1

∧2
j=0[α0 · (ℓ+ j) + β0 ≤ αi · (ℓ+ j) + βi]

2. κ ≤ min{⌊ βi−β0

α0−αi
⌋ | 1 ≤ i ≤ m, α0 6= αi, ⌊

βi−β0

α0−αi
⌋ > ℓ+ 1}

Proof: We assume without loss of generality thatm ≥ 2 and that all termsαi · k +
βi, i = 1, . . . ,m are distinct.
”⇒” If minT (n) = t0(n), for all ℓ ≤ n ≤ κ andκ > ℓ+1, then clearly

∧m
i=1

∧2
j=0[α0·

(ℓ + j) + β0 ≤ αi · (ℓ + j) + βi], i.e. the second conjunct of the first point is valid.
To show the validity of the first conjunct of the first point, suppose without loss of
generality that:

t0(ℓ) = t1(ℓ) ≤ t2(ℓ)
t0(ℓ+ 1) = t2(ℓ+ 1) ≤ t1(ℓ+ 1)
t0(ℓ+ 2) < t1(ℓ+ 2)
t0(ℓ+ 2) < t2(ℓ+ 2)

The choice oft1 andt2 is not important. We obtain a contradiction in the following
way:

ℓ = β1−β0

α0−α1
≥ β2−β0

α0−α2

ℓ+ 1 = β2−β0

α0−α2
≥ β1−β0

α0−α1

6Since∀0 ≤ ℓ ≤ κ . φ if and only if ∀0 ≤ ℓ < κ+ 1 . φ.
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To show the second point, assume by contradiction thatκ > ⌊ βi−β0

α0−αi
⌋ > ℓ + 1 for

somei = 1, . . . ,m, such that the termαi · k + βi is distinct fromα0 · k + β0. Since,
by the first point, we haveβ0 ≤ βi, and βi−β0

α0−αi
> 0, thenα0 > αi. It follows that

α0 ·κ > αi ·κ+βi, which contradicts the fact thatt0 is minimal in the intervalℓ, . . . , κ.
”⇐” By the first point,t0(n) = ti(n), for all n, andminT (n) = t0(n), for n = ℓ, ℓ+
1, ℓ+ 2. To prove thatminT (n) = t0(n) for all ℓ ≤ n ≤ κ, assume by contradiction,
thatminT (p) = ti(p) < t0(p) for somep = ℓ, . . . , κ and somei = 1, . . . ,m, such
that ti is distinct fromt0. But then we have(αi − α0) · p < β0 − βi ≤ 0. The
last inequality is due to the first point. Sincep > 0, we have thatαi < α0, hence
κ ≥ p > ⌊ βi−β0

α0−αi
⌋, contradiction. ✷

Proposition 14. For a difference bounds relationR, and integersb ≥ 0, c > 0 such
that Rb+c is consistent and a matrixΛ ∈ Z

2N×2N
∞ , MAX PERIODIC runs in time at

mostO((b+ c)3 · ||R||3 ·N9).

Proof: We apply Algorithm 7 to compose the parametric DBMk · Λ + σ(Rb) with
σ(Rc), which requires timeO(µ3 · N6), cf. Proposition 12. By an argument similar
to the one used in the proof of Proposition 13, we obtainµ ≤ (b + c + 1) · N · ||R||.
The result of MAX PERIODIC is theκ bound from Lemma 11, which can be established
during the computation of the min-sets using Algorithm 7. Hence the result follows.✷

Finally, we prove the asymptotic complexity on the running of Algorithm 5 for
a difference bounds relationR in terms of its prefix, period, the number of variables
used to defineR, and the sum of absolute values of coefficients ofR.

Theorem 8. LetR be a difference bounds relation with prefixB and periodC. Then,
Algorithm 5 computes the transitive closure ofR in at mostO((B + C)8 · ||R||3 ·N9)
time.

Proof: By Theorem 2, Algorithm 5 takes at mostO((B + C)2) iterations of the main
loop and in each iteration and moreover, the algorithm considers a prefix and period
candidatesb andc such that bothb andc are bounded byO((B+C)2). By Proposition
13, Procedure MAX CONSISTENTruns in time at mostO((b+ c)3 · ||R||3 ·N9). Com-
bining this bound with the bound onb andc, if follows that MAX CONSISTENTruns in
time at mostO((B + C)6 · ||R||3 · N9). We obtain the same bound on running time
of MAX PERIODIC, by Proposition 14. The test on line 8 can be performed inO(N2)
time, by Proposition 3. The greatest power of a relation thatis computed by the algo-
rithm isRb+2c. Since the composition of difference bounds relations can be computed
in O(N3) time, if follows that these computations are performed inO((B + C) ·N3)
time. Since the algorithm takes at mostO((B + C)2) iterations, we finally infer that
the total running time of Algorithm 5 is bounded byO((B + C)8 · ||R||3 ·N9). ✷

Running Example..We demonstrate the main steps of Algorithm 5 applied to the dif-
ference bounds relationR⇔ x1−x

′
1 ≤ 1∧x1−x

′
2 ≤ −1∧x2−x

′
1 ≤ −2∧x2−x

′
2 ≤ 2.

The first valid guess for(b, c) = (2, 2), for which the test on line 9 succeeds, leads to
the candidate rateΛ (Figure 9). The MAX CONSISTENTprocedure first computes the
parametric DBM corresponding toρ(k · Λ + σ(Rb)), shown in Figure 10a. The DBM
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MRb = MRc =




0 ∞ −3 0
∞ 0 −1 −3
∞ ∞ 0 ∞
∞ ∞ ∞ 0


MRb+c =




0 ∞ −6 3
∞ 0 −4 −6
∞ ∞ 0 ∞
∞ ∞ ∞ 0


Λ =




0 ∞ −3 −3
∞ 0 −3 −3
∞ ∞ 0 ∞
∞ ∞ ∞ 0




Figure 9: Candidate rateΛ for (b, c) = (2, 2).




0 ∞ (−3− 3k) −3k
∞ 0 (−1− 3k) (−3− 3k)
∞ ∞ 0 ∞
∞ ∞ ∞ 0




(a)k · Λ +M
Rb

x2 x′
2

x1 x′
1

−3−3k

−3k

−1−3k

−3−3k

(b) Gσ(k·Λ+M
Rb )

x2 x′
2

1x x′
1

−3

0

−1

−3

(c) GRc

Figure 10: Left-hand side of the MAX PERIODIC equivalence test

is already closed and thus, application of Algorithm 5 doesn’t change its entries. Next,
Lemma 9 is applied to compute the valueK =∞ that MAX CONSISTENTreturns.

The MAX PERIODIC procedure checks that

ρ(k · Λ + σ(Rb)) ◦Rc ⇔ ρ((k + 1) · Λ + σ(Rb))

for all k ≥ 0. The parametric DBMρ((k+1) ·Λ+σ(Rb)) representing the right-hand
side of the equivalence is shown in Figure 11. The left-hand side is equivalent to the
composition ofσ(k · Λ + MRb) (Figures 10a and 10b) withRc (Figure 10c). This
amounts to the computation of shortest paths between extremal vertices of the graph in
Figure 12 which results in a graph identical to the one in Figure 11. Since this graph
represents the right-hand side, the above equivalence holds for all k ≥ 0 and thus,
MAX PERIODIC returnsL =∞.

Then, a test on line 12 succeeds and Algorithm 5 returns the transitive closure:

R+ ⇔
∨b−1

i=1 R
i ∨ ∃k ≥ 0 .

∨c−1
i=0 π(k · Λ + σ(R2)) ◦Ri ⇔

(x1−x
′
1≤1 ∧ x1−x

′
2≤−1 ∧ x2−x

′
1≤−2 ∧ x2−x

′
2≤−2) ∨ ∃k ≥ 0 .

(x1−x
′
1≤−3k−3 ∧ x1−x

′
2≤−3k ∧ x2−x

′
1≤−3k−1 ∧ x2−x

′
2≤−3k−3) ∨

(x1−x
′
1≤−3k−2 ∧ x1−x

′
2≤−3k−4 ∧ x2−x

′
1≤−3k−5 ∧ x2−x

′
2≤−3k−2)




0 ∞ (−6− 3k) (−3− 3k)
∞ 0 (−4− 3k) (−6− 3k)
∞ ∞ 0 ∞
∞ ∞ ∞ 0




(a) (k + 1) · Λ +M
Rb

x2 x′
2

x1 x′
1

−6−3k

−3−3k

−4−3k

−6−3k

(b) Gσ((k+1)·Λ+M
Rb )

Figure 11: Right-hand side of the MAX PERIODIC equivalence test
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x2 x′′
2 x′

2

x1 x′′
1 x′

1
−3−3k

−3k

−1−3k

−3−3k

−3

0

−1

−3

Figure 12: Computing parametric compositionσ(k · Λ +MRb) ◦Rc.

After the elimination of the existential quantifier, we obtain:

R+ ⇔ (x1−x
′
1≤1 ∧ x1−x

′
2≤−1 ∧ x2−x

′
1≤−2 ∧ x2−x

′
2≤−2) ∨

(x1−x
′
1≤−3 ∧ x1−x

′
2≤0 ∧ x2−x

′
1≤−1 ∧ x2−x

′
2≤−3) ∨

(x1−x
′
1≤−2 ∧ x1−x

′
2≤−4 ∧ x2−x

′
1≤−5 ∧ x2−x

′
2≤−2)

7.5. Octagonal Relations

Recall from Section 6.2 that an octagonal relationR ⊆ Z
N × Z

N defined by a
formulaR(x,x′) can be represented as a difference bounds relationR(y,y′) defined
over the dual set of variables with the convention thaty2i−1 stands forxi andy2i for
−xi. Then, an octagonal relationR can be represented by a difference bounds matrix
MR. Similarly, for each DBMM , there is a corresponding octagonal relationΩM .
Furthermore, octagonal relations can be represented canonically by DBMsM t

R
.

We start by defining the mappings between octagonal relations and their matrix
encodings required by Definition 4. Given a consistent octagonal relationR(x,x′) let
σ(R) = M t

R
. Dually, for any coherent DBMM ∈ Z

4N×4N
∞ , letρ(M) = ΩM . Clearly,

ρ(σ(R)) ⇔ R, as required by Definition 4. In order to define the mappingπ, we first
define the class ofparametricoctagonal relations.

Definition 22. A formulaφ(x, k) is aparametric octagonal constraintif it is equivalent
to a finite conjunction of terms of the formxi−xj ≤ uij , xi+xj ≤ vij or xi+xj ≥ tij ,
whereuij , vij andtij are univariate linear terms ink, for all 1 ≤ i, j ≤ N .

A parametric octagonφ(x, k) is represented by a matrixMφ[k] ∈ Z[k]2N×2N
∞ of

univariate linear terms. Vice versa, a matrixM [k] ∈ Z[k]2N×2N
∞ encodes a para-

metric octagonal relation, denoted asΩM (k). With these considerations, we define
π(M [k]) = ΩM (k) to be the parametric counterpart of theρ function from Definition
4.

7.6. Proving Periodicity

In order to prove that the classRoct of octagonal relations is periodic, we need to
prove that the sequence{σ(Rm)}∞m=0 is periodic, for an arbitrary relationR ∈ Roct. It
is sufficient to consider only the case whereR is ∗-consistent i.e.,σ(Rm) = M t

Rm
, for

all m ≥ 0. We rely in the following on Theorem 4 which gives a method to compute
M t

Rm
, the tightly closed DBM representation ofRm, from M∗

R
m , the closed DBM

representation ofR
m

.
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We have previously shown, in Section 7.2, that difference bounds relations are
periodic. In particular, this means that the sequence{M∗

R
m}∞m=0, corresponding to the

iteration of the difference bounds relationR, is periodic. To prove that the sequence
{M t

Rm
}∞m=0 is also periodic, it is sufficient to show that (i) the minimumand (ii)

the sum of two periodic sequences are periodic, and also that(iii) the integer half of
a periodic sequence is also periodic.

Lemma 12. Let {sm}∞m=0 and {tm}∞m=0 be two periodic sequences. Then the se-
quences{min(sm, tm)}∞m=0, {sm + tm}

∞
m=0 and

{⌊
sm
2

⌋}∞

m=0
are periodic as well.

Let bs (cs) be the prefix (period) of{sm}∞m=0, let bt (ct) be the prefix (period) of
{tm}

∞
m=0, and let defineb = max(bs, bt), c = lcm(cs, ct), andbm = b+maxc−1

i=0 Kic,
where

Ki =





⌈ sb+i−tb+i

λ
(t)
i −λ

(s)
i

⌉
if λ(s)

i < λ
(t)
i andtb+i < sb+i

⌈ tb+i−sb+i

λ
(s)
i −λ

(t)
i

⌉
if λ(t)

i < λ
(s)
i andsb+i < tb+i

0 otherwise

for eachi = 0, . . . , c−1 and whereλ(s)
0 , ..., λ

(s)
c−1 (λ(t)

0 , ..., λ
(t)
c−1) are rates of{sm}∞m=0

({tm}∞m=0) with respect to the common prefixb and periodc. Then, the prefix and the
period of the above sequences are:

prefix period
{sm + tm}

∞
m=0 b c{⌊

sm
2

⌋}∞

m=0
b 2c

{min(sm, tm)}∞m=0 bm c

Proof: We can show that the sum sequence{sm + tm}
∞
m=0 is periodic as well, with

prefix b, periodc and ratesλ(s)
0 + λ

(t)
0 , ..., λ

(s)
c−1 + λ

(t)
c−1. In fact, for everyk ≥ 0 and

i = 0, ..., c− 1 we have successively:

(s+ t)b+(k+1)c+i = sb+(k+1)c+i + tb+(k+1)c+i (8)

= λ
(s)
i + sb+kc+i + λ

(t)
i + tb+kc+i (9)

= λ
(s)
i + λ

(t)
i + sb+kc+i + tb+kc+i (10)

= (λ
(s)
i + λ

(t)
i ) + (s+ t)b+kc+i (11)

For the min sequence{min(sm, tm)}∞m=0, it can be shown that, for eachi =
0, ..., c− 1 precisely one of the following assertions hold:

1. (λ
(s)
i < λ

(t)
i or λ(s)

i = λ
(t)
i and sb+i < tb+i) and ∀k ≥ 0. sb+Kic+kc+i ≤

tb+Kic+kc+i

2. (λ
(t)
i < λ

(s)
i or λ(s)

i = λ
(t)
i and tb+i < sb+i) and ∀k ≥ 0. tb+Kic+kc+i ≤

sb+Kic+kc+i

Intuitively, starting from the positionb + Kic, on every periodc, the minimum
amongst the two sequences is always defined by the same sequence i.e., the one having
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the minimal rate on indexi, or if the rates are equal, the one having the smaller starting
value.

We can show now that the min sequence{min(sm, tm)}∞m=0 is periodic starting at
bm = b + maxc−1

i=0 Kic, with periodc and ratesmin(λ
(s)
0 , λ

(t)
0 ), ...,min(λ

(s)
c−1, λ

(t)
c−1).

That is, we have successively, for everyk ≥ 0 and i = 0, ..., c − 1, and whenever
i satisfies the condition (1) above (the case wheni satisfies the condition (2) being
similar):

min(sbm+(k+1)c+i, tbm+(k+1)c+i) = sbm+(k+1)c+i

= λ
(s)
i + sbm+kc+i

= min(λ
(s)
i , λ

(t)
i ) + min(sbm+kc+i, tbm+kc+i)

For the sequence
{⌊

sm
2

⌋}∞

m=0
, assume that the sequence{sm}∞m=0 is periodic with

prefix b, periodc and ratesλ0, ..., λc−1. It can be easily shown that the sequence⌊ sm2 ⌋
is periodic as well with prefixb, period2c, and ratesλ0, ..., λc−1, λ0, ..., λc−1.

We have successively for anyk ≥ 0, and for anyi = 0, ..., c− 1:
⌊sb+(k+1)2c+i

2

⌋
=

⌊
2λi + sb+k·2c+i

2

⌋
= λi +

⌊sb+k·2c+i

2

⌋

Similarly, for anyk ≥ 0 and for anyi = 0, ..., c− 1, we have:
⌊s(b+k+1)2c+c+i

2

⌋
=

⌊
2λi + sb+k·2c+c+i

2

⌋
= λi +

⌊sb+k·2c+c+i

2

⌋

✷

The theorem below is an immediate consequence of Theorem 4 and Lemma 12.

Theorem 9. The class of octagonal relations is periodic.

Corollary 2. If R ∈ Roct is an octagonal relation, the rateΛ of the periodic sequence
{σ(Ri)}∞i=0 is tightly closed.

Proof: On one hand,σ(Ri) = M t
Ri is tightly closed, by definition. By Theorem 9,

there existb ≥ 0, c > 0 andΛ ∈ Z
4N×4N
∞ , for all n ≥ 0:

σ(Rnc+b) = n · Λ + σ(Rb)

The first two points of Definition 16 are immediate. The closure (point 3 of Definition
16) is by Corollary 1. We are left with proving the last point,namely that for all
1 ≤ i, j ≤ 4N :

Λij ≤ ⌊
Λiı̄

2
⌋+ ⌊

Λ̄j

2
⌋ (12)

Sinceσ(Rnc+b) is tightly closed, for alln ≥ 0, we have, for all1 ≤ i, j ≤ 4N :

n · Λij + σ(Rb)ij ≤ ⌊
n·Λiı̄+σ(Rb)iı̄

2 ⌋+ ⌊
n·Λ̄j+σ(Rb)̄j

2 ⌋

≤ n · (⌊Λiı̄

2 ⌋+ ⌊
Λ̄j

2 ⌋) + ⌊
σ(Rb)iı̄

2 ⌋+ ⌊
σ(Rb)̄j

2 ⌋+ 2

The last inequality holds because, for allx, y ∈ Z andn ≥ 0:

57



• ⌊x+y
2 ⌋ ≤ ⌊

x
2 ⌋+ ⌊

y
2 ⌋+ 1,

• ⌊n·x2 ⌋ = n · ⌊x2 ⌋ if x is even,

andΛiı̄ andΛ̄j are both even. We calculate:

n · (Λij − ⌊
Λiı̄

2
⌋ − ⌊

Λ̄j

2
⌋) ≤ ⌊

σ(Rb)iı̄
2
⌋+ ⌊

σ(Rb)̄j
2

⌋ − σ(Rb)ij + 2, ∀n ≥ 0

Then the condition (12) follows. ✷

7.7. Checking∗-consistency and Periodicity
Similar to the case of difference bounds relations, in this section we give efficient

ways to implement the MAX CONSISTENTand MAX PERIODIC procedures from Algo-
rithm 5. In the rest of this section,a univariate linear half-termis a term of the form
⌊α·k+β

2 ⌋, where the mappingx 7→ ⌊x2 ⌋ denotes the integer division by two.
Unlike the case of octagonal constraints with constants coefficients, the matrices

representing parametric octagons do not have a tightly closed canonical form. To over-
come this problem, one can use Algorithm 7 and Theorem 3 to define the tight closure
of a parametric octagonal matrix as a matrix whose entries are either∞ or terms of
the formmin{ti(k)}

m
i=1, whereti(k) are either univariate linear terms or sums of half-

terms.

MAX CONSISTENT.. Given an octagonal relationR, integersb ≥ 0, c > 0 such that
Rb+2c is consistent, and a matrixΛ ∈ Z

4N×4N
∞ , let us denoteMR,b,Λ = k·Λ+σ(Rb) ∈

Z[k]4N×4N
∞ . Similarly as in the difference bounds case, we have:

MAX CONSISTENT(R, b,Λ) = sup{n ∈ N |MR,b,Λ[n] is octagonal-consistent}
= inf{n ∈ N |MR,b,Λ[n] is octagonal-inconsistent}−1

According to Theorem 3,MR,b,Λ[n] is octagonal-inconsistent for some valuation
n ∈ N of k, if either

(i) M [n]R,b,Λ is inconsistent, or

(ii) ⌊
(M [n]∗R,b,Λ)

iı̄

2 ⌋+ ⌊
(M [n]∗R,b,Λ)

ı̄i

2 ⌋ < 0 for some1 ≤ i ≤ 4N .

LetM = PARAMETRICFW(MR,b,Λ), as returned by Algorithm 7. Checking for the
case (i) can be done in a similar way as for difference bounds constraints (Section 7.2).
The condition of case (ii) is equivalent to the following:

min [[{⌊
t

2
⌋+ ⌊

u

2
⌋ | t ∈Miı̄, u ∈Mı̄i]]≥0 < 0, for some1 ≤ i ≤ 4N (13)

The following lemma shows that a set of sums of univariate half-terms is semantically
equivalent to the union of two sets of univariate linear terms.

Lemma 13. LetT = {ti+
∑mi

j=1⌊
uij

2 ⌋}
n
i=1, whereti = αi ·k+βi, uij = γij ·k+ δij

are univariate linear terms. Then there exist two setsL,U of univariate linear terms
such that for allk ≥ 0:

min{L(k)} = min{T (2k)}
min{U(k)} = min{T (2k + 1)}

Moreover||L|| ≤ ||T || and ||U|| ≤ ||T ||.
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Proof: For a univariate linear termγ · k + δ ∈ Z[k], we have:

[[⌊
γ · k + δ

2
⌋]]≥0 = [[γ · k + ⌊

δ

2
⌋]]≥0 ∪ [[γ · k + ⌊

γ + δ

2
⌋]]≥0.

Let
L = {(2αi +

∑mi

j=1 γij) · k + βi +
∑mi

j=1⌊
δij
2 ⌋}

n
i=1, and

U = {(2αi +
∑mi

j=1 γij) · k + αi + βi +
∑mi

j=1⌊
γij+δij

2 ⌋}ni=1.

Clearly [[T ]]≥0 = [[L]]≥0 ∪ [[U ]]≥0, min{L(k)} = min{T (2k)}, andmin{U(k)} =
min{T (2k + 1)} for all k ≥ 0. It is easy to see that||L|| ≤ ||T || and||U|| ≤ ||T ||. ✷

Let us denoteTi = {⌊ t2⌋+ ⌊
u
2 ⌋ | t ∈Miı̄, u ∈Mı̄i}. Then, the condition (13) can

be rewritten as
min [[Ti]]≥0 < 0, for some1 ≤ i ≤ 4N .

By Lemma 13, for eachi = 1, . . . , 4N there exist sets of univariate linear termsLi and
Ui such thatmin{Li(k)} = min{Ti(2k)} andmin{Ui(k)} = min{Ti(2k+1)} for all
k ≥ 0. Therefore, for all1 ≤ i ≤ 4N , we have

(min [[Ti]]≥0 < 0)⇔ (min [[Li]]≥0 < 0) ∨ (min [[Ui]]≥0 < 0).

With these considerations, the MAX CONSISTENTprocedure can be implemented
as follows. We define

Kdb = min{Γ(Mii)}
4N
i=1,

KL = min{Γ(Li)}
4N
i=1,

KU = min{Γ(Ui)}
4N
i=1

where given a set of univariate linear termsT , Γ(T ) is a constant defined in the Lemma
9. Note thatKdb is the minimal integern ∈ N such thatM [n]R,b,Λ is inconsistent. By
Lemma 13,min{2 · KL, 2 · KU − 1} is the minimal integer for which (13) holds, or

equivalently, the minimal integern ∈ N such that⌊
(M [n]∗R,b,Λ)

iı̄

2 ⌋+⌊
(M [n]∗R,b,Λ)

ı̄i

2 ⌋ < 0,
for some1 ≤ i ≤ 4N . Consequently, the MAX CONSISTENTprocedure returns:

MAX CONSISTENT(R, b,Λ) = min{Kdb, 2 ·KL, 2 ·KU − 1} − 1.

Proposition 15. For an octagonal relationR, an integerb ≥ 0 such thatRb is consis-
tent and a matrixΛ ∈ Z

4N×4N
∞ , MAX CONSISTENTruns in time at mostO((b + c)3 ·

||R||3 ·N9).

Proof: ComputingM requires one application of Algorithm 7. By Proposition 12,the
call to Algorithm 7 requires time at mostO(µ3 ·N6), where:

µ = min( max
1≤i,j≤2N

{|Λij |}, max
1≤i,j≤2N

{|(σ(Rb))ij |})

Moreover, the size ofMij is bounded by8N · µ, by Proposition 12. By an argument
similar to the one in the proof of Proposition 12, one infers thatµ ≤ (b+c+1)·2N ·||R||.
Consequently,M takes at mostO((b+ c)3 · ||R||3 ·N9) time and||Mij || is bounded by
O((b+ c) · ||R|| ·N2).

Hence, computingLi andUi can be done in time at mostO(N2 · (b + c) · ||R||).
By Lemma 13,||Li|| ≤ ||Mij ||, and ||Ui|| ≤ ||Mij || and consequently,Kdb,KL, an
KL can be computed inO((b + c) · ||R|| · N3) time for each1 ≤ i ≤ 4N . Hence,
MAX CONSISTENTprocedure runs in time at mostO((b+ c)3 · ||R||3 ·N9). ✷
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MAX PERIODIC.. Given an octagonal relationR, two integersb ≥ 0 andc > 0, such
thatRb is consistent, a constantK ∈ N∞, and a matrixΛ ∈ Z

4N×4N
∞ , the procedure

MAX PERIODIC(R, b,Λ, c,K) returns the maximal positive integern ≤ K such that
the equivalenceρ(ℓ ·Λ+σ(Rb))◦Rc ⇔ ρ((ℓ+1) ·Λ+σ(Rb)) holds for all0 ≤ ℓ < n,
or∞ if the above holds for all positiveℓ.

The left-hand side of the equivalence can be encoded by a matrix M1 of terms of
the formmin{ti}

m
i=1, whereti are either univariate linear terms or sums of univariate

half-terms, and can be computed by Algorithm 7. We show that the DBM M2 that
encodes the right-hand side relation is tightly closed, forall valuation ofk, meaning
that the right-hand side can be simply represented by a parametric DBM, under the
octagonal interpretation.

Lemma 14. LetR ∈ Roct be an octagonal relation, andΛ be the rate of the periodic
sequence{σ(Ri)}∞i=0. Then, for allb, n ≥ 0, the DBM(n+ 1) · Λ + σ(Rb) is tightly
closed.

Proof: As a direct consequence of the fact thatσ(Rb) is tightly closed, by definition,
and thatΛ is tightly closed, by Corollary 2. ✷

Two octagonal relations are equivalent whenever their tightly closed DBM encod-
ings are equal (Proposition 6). Hence we need to check for equality (inside some
interval) between min-sets of univariate linear terms and sums of half-terms (the left-
hand side matrixM1) and univariate linear terms (the right-hand side matrixM2). Here
again Lemma 13 comes to rescue. We computeM1 using Algorithm 7 and Theorem 4.
Using Lemma 13, we splitM1 toM1,L andM1,U , whereM1,L,M1,U are matrices with
sets of univariate terms as entries such thatmin{(M1,L)ij(k)} = min{Mij(2k)} and
min{(M1,U )ij(k)} = min{Mij(2k+1)} for all k ≥ 0. Similarly, we splitM2 toM2,L

andM2,U . Then, we apply Lemma 11 to compute the upper boundPL (PU ) of the in-
terval in whichM1,L andM2,L (M1,U andM2,U ) are equal. Finally, the upper bound
of the interval in whichM1 andM2 are equal is computed asmin{2·PL, 2·PU−1}+1.

Proposition 16. For a difference bounds relationR, and integersb ≥ 0, c > 0 such
that Rb+c is consistent and a matrixΛ ∈ Z

2N×2N
∞ , MAX PERIODIC runs in time at

mostO((b+ c)3 · ||R||3 ·N9).

Proof: By an argument similar to the one used in the proof of Proposition 15, Algorithm
7 computes the matrixM of sets representing the parametric composition ofk · Λ +
σ(Rb) with σ(Rc) in timeO((b + c)3 · ||R||3 · N9). Moreover the size of each entry
Mij is bounded byO((b+ c) · ||R|| ·N2). Computing the minimal bound from Lemma
11 requires thenO((b+ c) · ||R|| ·N4) time. Hence the result. ✷

Finally, we prove the asymptotic complexity on the running of Algorithm 5 for
an octagonal relationR in terms of its prefix, period, the number of variables used to
defineR, and the sum of absolute values of coefficients ofR.

Theorem 10. LetR be an octagonal relation with prefixB and periodC. Then, Al-
gorithm 5 computes the transitive closure ofR in at mostO((B + C)8 · ||R||3 · N9)
time.
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Proof: The bounds on the running time of procedures MAX CONSISTENT (Proposi-
tions 15) and MAX PERIODIC (Proposition 16) for octagonal relations are same as for
difference bounds relations (Propositions 13 and 14, respectively). Similarly, relational
composition of octagons has the same asymptotic boundO(N3) as difference bounds
constraints. Hence, we obtain the same bound as in Theorem 8. ✷

Running Example.Consider the octagonal relationR(x1, x2, x
′
1, x

′
2) ⇔ x1 + x2 ≤

5 ∧ x′
1 − x1 ≤ −2 ∧ x′

2 − x2 ≤ −3 ∧ x′
2 − x′

1 ≤ 1. The check at line 9 of Algorithm
5 succeeds for(b, c) = (1, 1). In order to compute MAX PERIODIC, one needs to
compose parametric difference bound matrices, similarly as in the case of difference
bound relations. Moreover, the tightening step must be performed. Figure 13 shows
the parametric matrixM representing the left-hand side of the equivalence checked
by MAX PERIODIC. The matrix is closed, but not tightly closed. We illustratethe
tightening for the constrainty′′3 −y

′
4, which depends on constraintsy′′3 −y

′′
4 andy′′4 −y

′′
4

and is thus computed as

min{−6k − 3, ⌊
−6k

2
⌋+ ⌊

−6k − 6

2
⌋}

By Lemma 13, we obtain

[[− 6k − 3]]≥0 = L1 ∪ U1 = [[− 12k − 3]]≥0 ∪ [[− 12k − 9]]≥0

[[⌊−6k
2 ⌋]]≥0 = L2 ∪ U2 = [[− 6k]]≥0 ∪ [[− 6k − 3]]≥0

[[⌊−6k−6
2 ⌋]]≥0 = L3 ∪ U3 = [[− 6k − 3]]≥0 ∪ [[− 6k − 6]]≥0

The tightening step splitsM intoML andMU . InML, the tightened constrainty′′3 −y′4
is computed as

min{−12k − 3, (−6k) + (−6k − 3)} = −12k − 3

and similarly inMU , the tightened constrainty′′3 − y′4 is computed as

min{−12k − 9, (−6k − 3) + (−6k − 6)} = −12k − 9

Further checks are similar as in the difference bounds case.Then, Algorithm 5 returns
the following result:

R+ ⇔
b−1∨

i=1

Ri ∨ ∃k ≥ 0 .
c−1∨

i=0

π(k · Λ + σ(R)) ◦Ri

⇔ ∃k ≥ 0 . x′
2≤−3k ∧ x′

1−x1≤−2k−2 ∧ x′
2−x

′
1≤1 ∧ x′

2−x1≤−3k−1 ∧

x′
2−x2≤−3k−3 ∧ x1+x2≤5 ∧ x1+x′

2≤−3k+2 ∧

x′
1+x2≤−2k+3 ∧ x′

1+x′
2≤−5k ∧ x′

2+x2≤−3k+4

After quantifier elimination, we obtain:

R+ ⇔ x′
2≤0 ∧ x′

1−x1≤−2 ∧ x′
2−x1≤−1 ∧ x′

2−x
′
1≤1 ∧

x′
2−x2≤−3 ∧ x1+x2≤5 ∧ x1+x′

2≤2 ∧

x′
1+x2≤3 ∧ x′

1+x′
2≤0 ∧ x2+x′

2≤4

✷
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


y1 y2 y3 y4 y′′1 y′′2 y′′3 y′′4 y′1 y′2 y′3 y′4
y1 0 ∞ ∞ 5 ∞ ∞ ∞ −3k+2 ∞ ∞ ∞ −3k−1
y2 ∞ 0 ∞ ∞ ∞ −2k−2 ∞ −3k−1 ∞ −2k−4 ∞ −3k−4
y3 ∞ 5 0 ∞ ∞ −2k+3 ∞ −3k+4 ∞ −2k+1 ∞ −3k+1
y4 ∞ ∞ ∞ 0 ∞ ∞ ∞ −3k−3 ∞ ∞ ∞ −3k−6
y′′1 −2k−2 ∞ ∞ −2k+3 0 ∞ ∞ −5k ∞ ∞ ∞ −5k−3
y′′2 ∞ ∞ ∞ ∞ ∞ 0 ∞ 1 ∞ −2 ∞ −2
y′′3 −3k−1 −3k+2 −3k−3 −3k+4 1 −5k 0 −6k ∞ −5k−2 ∞ −6k−3
y′′4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ −3
y′1 −2k−4 ∞ ∞ −2k+1 −2 ∞ ∞ −5k−2 0 ∞ ∞ −5k−5
y′2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞ 1
y′3 −3k−4 −3k−1 −3k−6 −3k+1 −2 −5k−3 −3 −6k−3 1 −5k−5 0 −6k−6
y′4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0




Figure 13: Left-hand side before tightening

7.8. Finite Monoid Affine Relations

Recall from Section 6.3 that an affine relationR ∈ ZN ×ZN is defined by a linear
arithmetic constraint of the formx′ = Ax + b, whereA ∈ Z

N×N is a square matrix,
andb ∈ Z

N is a column vector. The relation is said to have the finite monoid property
if the set{A0, A1, . . .} of matrix powers ofA is finite.

It is easy to see thatA is finite monoid if and only if there existsp ≥ 0 andl > 0
such thatAp = Ap+l, i.e. MA = {A0, . . . , Ap, . . . , Ap+l−1}. If A has the finite
monoid property, it can be shown that the transitive closureof T can be defined in
Presburger arithmetic [9, 25]. We achieve the same result below, by showing that the
update of a finite monoid affine relations is a periodic relation. As a consequence, the
closed form of the update can be computed by Algorithm 5. Since the update relation
is ∗-consistent and deterministic, the transitive closure canbe computed by applying
the following lemma.

Lemma 15. Let R(x,x′) ∈ R be a∗-consistent deterministic relation andϕ(x) be
a guard. Then the transitive closure of the relationR ∧ ϕ can be defined as:

(R ∧ ϕ)+(x,x′)⇔ ∃k > 0 . R̂(k,x,x′) ∧ ∀0 ≤ ℓ < k ∃y . R̂(ℓ,x,y) ∧ ϕ(y)

whereR̂ defines the closed form ofR.

Proof: “⇒” Let v,v′ be a pair of valuations ofx andx′, respectively, such thatv,v′ |=
(R ∧ ϕ)+. Then there existsn > 0 such thatv,v′ |= (R ∧ ϕ)n. Consequently, there
exists a sequence of valuationsv = v0,v1, . . . ,vn = v′ such thatvi,vi+1 |= R ∧ ϕ.
By Definition 6, we have that|= R̂(n,v0,vn) and |= R̂(i,v0,vi) ∧ ϕ(vi), for all
i = 0, . . . , n− 1.
”⇐” Let v andv′ be two valuations such that|= R̂(n,v,v′) for somen > 0 and
for all i = 0, . . . , n − 1 we have|= R̂(i,v,vi) and |= ϕ(vi), for some valuation
vi of x. SinceR̂(n) ⇔ Rn, by Definition 6, there exists a sequence of valuations
v = v′

0,v
′
1, . . . ,v

′
n = v′ such thatv′

i,v
′
i+1 |= R. By the fact thatR was assumed
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to be deterministic, we havevi = v′
i for all i = 0, . . . , n − 1, hencev′

i |= ϕ, for all
i = 0, . . . , n− 1. Clearly thenv,v′ |= (R ∧ ϕ)+. ✷

To compute the transitive closure of an affine relation, it isenough to compute the
closed form of its update. This can be computed by Algorithm 5whenever the update
relation is shown to be periodic. In the following, we show that this is indeed the case,
whenA has the finite monoid property. For simplicity reasons, we will work with the
equivalent homogenous form of (4)

Th ⇔ x′
h = Ah × xh ∧ φh(xh) where Ah ⇔

(
A b

0 . . . 0 1

)

wherexh = 〈x1, . . . xN , xN+1〉 with xN+1 6∈ x being a fresh variable andφh(xh)⇔
φ(x) ∧ xN+1 = 1. The encoding of an affine updateTu ⇔ x′

h = Ah × xh is defined
asσ(Tu) = Ah ∈ Z

(N+1)×(N+1)
∞ . Dually, for someM ∈ Z[k]

(N+1)×(N+1)
∞ , we define

π(M)⇔ x′
h = M×xh. With these definitions, we haveσ(T k

u ) = Ah
k, for all k > 0.

The next lemma proves that the class of finite monoid affine updates is periodic.

Lemma 16. LetA ∈ Z
N×N be a finite monoid matrix,b ∈ Z

N be a vector, and let
write the finite monoid generated byA asMA = {A0, . . . , Ap, . . . , Ap+l−1}, where
p ≥ 0, l > 0, andAp = Ap+l. Then, the sequence{Ah

k}∞k=0 is periodic with prefixp
and periodl.

Proof: LetA ∈ Z
N×N be a matrix,b ∈ Z

N be a vector, and

Ah ⇔

(
A b

0 . . . 0 1

)

Then we have, for allk ≥ 0:

(Ah)
k
=

(
Ak

∑k−1
i=0 Ai × b

0 . . . 0 1

)

For i = N +1, 1 ≤ j ≤ N +1, {(Ah
k)ij}

∞
k=0 is trivially periodic. For1 ≤ i, j ≤ N ,

{(Ah
k)ij}

∞
k=0 is periodic due to the fact thatA is finite monoid. It remains to be proven

that, for all1 ≤ j ≤ N , the sequence{(
∑k−1

i=0 Ai × b)j}
∞
k=0 is periodic. Without loss

of generality, assume that the monoid ofA isMA = {A0, A1, . . . , Ap, . . . Ap+l−1},
whereAp = Ap+l. Then, fork ≥ p, we have:

∑k−1
i=0 Ai =

∑p−1
i=0 Ai + ⌊k−p+1

l ⌋ ·
∑p+l−1

i=p Ai +
∑p+((k−p+1) mod l)

i=p Ai.

Hence the sequence{
∑k−1

i=0 Ai}∞k=0 is periodic with prefixp, periodl, and rates

Λj =
∑p+l−1

i=p Ai

for all j = 0, 1, . . . , l − 1. Consequently,Ah is periodic with the same prefix and
period. ✷

As a direct consequence, we have the following theorem.
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Theorem 11. The class of finite monoid affine updates is periodic. Moreover, the tran-
sitive closures of finite monoid affine relations with Presburger definable guards are
effectively Presburger definable.

The implementation of the procedures MAX CONSISTENTand MAX PERIODIC for
finite monoid affine relations is rather simple. Since we run Algorithm 5 for∗-consistent
updates of the formx′

h = Ah × xh only, MAX CONSISTENTneeds to return always
∞. The MAX PERIODIC test can be implemented as an equivalence check between
two homogeneous linear systems with univariate linear coefficients. More precisely,
given a homogeneous transformationx′ = A× x, with A ∈ Z

(N+1)×(N+1) and a ma-
trix Λ ∈ Z

(N+1)×(N+1), we are looking for valuations ofk that satisfy the following
equality

(Ab + k · Λ)×Ac = Ab + (k + 1) · Λ (14)

Both(Ab+k ·Λ)×Ac andAb+(k+1) ·Λ are matrices where each entry is a univariate
linear term. The test on line 9 of the Algorithm 5 guarantees that the above equality
holds for at least k=0 and k=1. Clearly, ift1(0) = t2(0) andt1(1) = t2(1) for two
univariate linear termst1, t2, thent1(k) = t2(k) for all k ≥ 0. Hence, the MaxPeriodic
returns alwaysL =∞. We summarize these observations in the following proposition

Proposition 17. Given a finite monoid matrixA ∈ Z
N×N , integersb ≥ 0, c > 0, and

a matrixΛ ∈ Z(N+1)×(N+1) such thatAb+c
h = Ab

h + Λ andAb+1c
h = Ab+c

h + Λ, the
proceduresMAX CONSISTENTandMAX PERIODIC run in constant time.

Finally, we prove the asymptotic complexity on the running of Algorithm 5 for a fi-
nite monoid affine relationR in terms of its prefix, period, and the number of variables
used to defineR.

Theorem 12. LetR be a difference bounds relation with prefixB and periodC. Then,
Algorithm 5 computes the transitive closure ofR in at mostO((B + C)2 ·N3) time.

Proof: Let R be a finite monoid affine relation and letRu be the update ofR. If
follows from Lemma 16 that asymptotic bound on the time needed to compute the
transitive closure ofR andRu are same. Thus, we consider only an update relation in
a homogenous form encoded as a matrixAh ∈ Z

(N+1)×(N+1)
∞ .

By Theorem 2, Algorithm 5 takes at mostO((B + C)2) iterations of the main
loop and in each iteration and moreover, the algorithm considers a prefix and period
candidatesb andc such that bothb andc are bounded byO((B+C)2). By Proposition
17, procedures MAX CONSISTENTand MAX CONSISTENTrun in constant time. The
test on line 8 amounts to equality of two matrices and can be thus performed inO(N2)
time. The greatest power of a relation that is computed by thealgorithm isRb+2c.
Since the composition of an update in a homogenous form with itself amounts to matrix
multiplication, if follows that these computations are performed inO((B + C) · N3)
time. Hence, the total bound on the running time of Algorithm5 isO((B+C)2 ·N3).

✷

64



8. Complexity of the Transitive Closure Algorithm

This chapter is concerned with the worst-case complexity ofthe transitive closure
algorithm from Chapter?? (Algorithm 5) when applied to difference bounds, octag-
onal, and finite monoid affine relations. For a periodic relation R ⊆ Z

N ×Z
N with

prefix b ≥ 0 and periodc > 0, the asymptotic bound on the running time of Algorithm
5 isO((b + c)8 · ||R||3 · N9) if R is a difference bounds or an octagonal relation (by
Theorem 8 and 10), where||R|| denotes the sum of absolute values of the coefficients
of R. The asymptotic bound isO((b+ c)2 ·N3) if R is a finite monoid affine relation
(by Theorem 12).

The main issue, dealt with in this chapter, is thus the evaluation of the upper bounds
of the prefixb and periodc for each of these classes of relations. We prove that for dif-
ference bounds relations,b is asymptotically bounded by||R|| · 2O(N) andc is bounded
by 2O(N). For octagonal relations, the bound on the period is same as for difference
bounds relations and the prefix is bounded by||R||2 · 2O(N). For finite monoid affine
relations,b + c is the size of the monoid, which in turn is proved to be boundedby
2O(N log10 11). Columns 2 and 3 in Table 1 summarize these results. Combining the
bounds on the size of the prefix and the period with the bounds given by Theorem 8,
10, and 12, we obtain asymptotic bounds on the running time ofAlgorithm 5 in terms
of N and||R|| (the last column in Table 1).

Table 1: Transitive Closure Complexities for Periodic Relations

CLASS PREFIX PERIOD TRANSITIVE CLOSURE

difference bounds ||R|| · 2O(N) 2O(N) ||R||8 · 2O(N)

octagonal ||R||2 · 2O(N) 2O(N) ||R||16 · 2O(N)

finite monoid affine 2O(N log10 11) 2O(N log10 11) 2O(N log10 11)

In all cases, Algorithm 5 runs in EXPTIME in the number of variables, and PTIME
in the sum of absolute values of the coefficients ofR or, equivalently, in EXPTIME in
the size of the binary representation ofR.

8.1. Difference Bounds Relations

Any difference bounds relationR ∈ Rdb is periodic, by Theorem 7. This re-
sult extends to the octagonal classRoct, by Theorem 9. The periodicity of differ-
ence bounds relations is a consequence of the fact that the sequence of tropical matrix
powers{M⊠

i

R }i≥0 whereMR is the incidence matrix of the common transition table
TR = (Q,∆, w) of the zigzag automata defined forR (see Section 6.1.3), is periodic
by Theorem 6. Since each power ofR is encoded by a matrix which is a projection of
a tropical power ofMR, the prefix ofR is not greater than the prefix of{M⊠

i

R }i≥0,
while the period ofR is a divisor of the period of{M⊠

i

R }i≥0. In this section, we prove
a ||R|| · 2O(N) upper bound for the prefix and a2O(N) upper bound for the period of
MR. By the previous arguments, these bounds are also bounds forthe prefix and the
period ofR, respectively.
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In the rest of this section, letx = {x1, . . . , xN} be a set of variables,R(x,x′) be
a difference bounds relation, andTR = (Q,∆, w) be the common transition table of
zigzag automata defined forR.

8.2. Bounding the Prefix

We start by instantiating Lemma 7 for the common transition tableTR = (Q,∆, w)
of zigzag automata defined forR.

Corollary 3. LetTR = (Q,∆, w) be the common transition table of zigzag automata
defined for a difference bounds relationR, andu, v ∈ Q be two control states. Then
for every minimal weight pathρ form u to v, such that|ρ| ≥ ||R|| · ||Q||6, there exists
a pathρ′ fromu to v, such thatw(ρ) = w(ρ′) and |ρ| = |ρ′|, and a basic path scheme
θ = σ · λ∗ · σ′, such thatρ′ = σ · λb · σ′, for someb ≥ 0. Moreover, there exists
c | lcm(1,...,||Q||−1)

|λ| such thatσ · λb+kc · σ′ is a minimal weight path fromu to v, for all
k ≥ 0.

Proof: We obtain the statement of the corollary by instantiating Lemma 7 withTR =
(Q,∆, w), in which caseµ(TR) ≤ ||R||. ✷

Similarly, we instantiate Theorem 6.

Corollary 4. LetTR = (Q,∆, w) be the common transition table of zigzag automata
defined for a difference bounds relationR, and letMR be its incidence matrix. Then,
the sequence{M⊠

i

R }i≥0 is periodic. Moreover, its prefixb is bounded by||R|| · 2O(N),

and its period divideslcm(1, . . . , 5N ) and is bounded by22
O(N)

.

Proof: We obtain the statement of the corollary by instantiating Theorem 6 withTR =
(Q,∆, w), in which caseµ(TR) ≤ ||R|| and||Q|| = 5N . ✷

A direct consequence of Corollary 4 is that the prefix of a difference bounds relation
R is bounded by||R|| · 2O(N).

Corollary 5. Letx = {x1, . . . , xN} be a set of variables. Given a difference bounds
relationR(x,x′), its prefix is bounded by||R|| · 2O(N).

Proof: We distinguish two cases. First, ifR is ∗-consistent, then the bound||R|| ·2O(N)

on the prefix ofTR = (Q,∆, w) that follows from Corollary 4 is also the bound on the
prefix ofR, by Proposition 10.
If R is not∗-consistent, there exists a powerℓ > 0 such thatRℓ ⇔ ⊥. Consequently,
there exists a minimal weight pathρ of length ℓ in the even zigzag automaton for
R, recognizing a negative cycle. By Lemma 6, there exists an equivalent pathρ′ of
the formσ · λk · σ′, where|σ · σ′| < 54N and |λ| < 5N , for somek ≥ 0. We have
ℓ = |σ · σ′|+k|λ|. The prefix ofR is the minimal lengthℓ such thatw(ρ) = w(ρ′) < 0.
If w(σ · σ′) < 0, then this length is|σσ′| < 54N . Otherwise, ifw(σ · σ′) ≥ 0, we have
w(λ) < 0, or elseρ′ could not encode a negative cycle, independently of how large it

is. Thenw(ρ′) < 0 if and only if k > w(σ·σ′)
−w(λ) Since−w(λ) > 0 andw(λ) ∈ Z, we

have−w(λ) ≥ 1. A sufficient condition is thatk > ||R|| · 54N > w(σ · σ′), hence
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ℓ = |ρ′| > 54N + ||R|| · 55N , i.e. the prefix of a∗-inconsistent relationR is also
asymptotically bounded by||R|| · 2O(N). ✷

Similarly, a direct consequence of Corollary 4 is the bound on the period which is
double exponential inN . In the next section, we prove that this bound can be improved
to 2O(N).

Corollary 6. Letx = {x1, . . . , xN} be a set of variables. Given a difference bounds

relationR(x,x′), its period is bounded by22
O(N)

.

Proof: The period of∗-inconsistent relationR is 1, by Definition 5, which is clearly
bounded by22

O(N)

.
Let TR = (Q,∆, w) be the common transition table of zigzag automata of a∗-

consistentR. By Corollary 4, the periodc of TR is bounded by22
O(N)

. Since each
elementMRi , i ≥ 0, of the sequence{MRn}n≥0 of powers ofR is obtained as a pro-
jection ofM⊠

i

R , it follows that the period ofR divides the period ofTR. Thus, the

period ofR is bounded by22
O(N)

too. ✷

8.3. Bounding the Period

In this section, we refine Corollary 6 and show that the periodof difference bounds
relations is bounded by a single exponential. We start by defining several key notions
and giving a high level idea of the proof.

8.3.1. Key Notions and a Proof Idea
Given a difference bounds relationR(x,x′), x = {x1, . . . , xN} and the unfolded

graphGωR, we define the composition, power, relative length, and relative average
weight operators on paths inGωR.

Definition 23. LetR(x,x′), x = {x1, . . . , xN}, be a difference bounds relation and
let

ρ : x
(l0)
i0
−→ x

(l1)
i1
−→ . . . −→ x

(lm)
im

ρ′ : x
(k0)
j0
−→ x

(k1)
j1
−→ . . . −→ x

(kn)
jn

m,n ≥ 1, be two paths inGωR. Therelative path length operatoris defined as||ρ|| =

|lm − l0|. If ||ρ|| > 0, we define therelative average weight operatorw(ρ) = w(ρ)
||ρ|| . If

im = j0, we defineρ.ρ′, thecompositionof ρ with ρ′, as

ρ.ρ′ = x
(l0)
i0
−→ x

(l1)
i1
−→ . . . −→ x

(lm)
im
−→ x

(k1−d)
j1

−→ . . . −→ x
(kn−d)
jn

whered = k0 − lm. Further, if i0 = im, we defineρk, k ≥ 1, thek-th powerof ρ as
k-times composition ofρ with itself.
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(a) Edges (b) Repeating pathρ (c) ρ2

Figure 14: Illustration of repeating path.

Example 8. Consider the edges in Figure 14(a) and build pathsρ1 : x
(0)
4 −→ x

(1)
3 −→

x
(0)
2 −→ x

(1)
1 and ρ2 : x

(0)
1 −→ x

(1)
4 . Their concatenationρ1.ρ2 results in a path

ρ : x
(0)
4 −→ x

(1)
3 −→ x

(0)
2 −→ x

(1)
1 −→ x

(2)
4 depicted in Figure 14(b). Note that||ρ|| = 2.

The second power ofρ, denotedρ2, is depicted in Figure 14(c).

Next, we define several notions characterizing the structure of paths inGωR.

Definition 24. LetR(x,x′), x = {x1, . . . , xN}, be a difference bounds relation and

let ρ = x
(l0)
i0

❀ x
(lm)
im

be a path inGωR. We say thatρ is forward (fw) if and only
if lm > l0. We say thatρ is backward (bw)if and only if lm < l0. We say thatρ
is repeatingif and only if i0 = im. We say thatρ is essentialif and only if for all
1 ≤ j < k ≤ m, ij = ik only if j = 0 andk = m. Pathρ is said to be a cycle if and
only i0 = im andl0 = lm. We say thatρ is cyclic if and only ifρ has a subpath that is
a cycle. A path is acyclic if and only if it is not cyclic.

Intuitively, repeating path can composed with itself arbitrary many times. Note that the
length of an essential pathρ is at mostN , |ρ| ≤ N . Consequently, its relative length is
at mostN too, ||ρ|| ≤ N . Next, we defineGfR, the folded graphof R. Intuitively, GfR
projects all edges onto unprimed variablesx.

Definition 25. LetR(x,x′), x = {x1, . . . , xN}, be a difference bounds relation and
let GR be its graph representation. The folded graph ofGR is defined asGfR = (x, E),
wherexi −→ xj is an edge inE if and only ifxi

c
−→ xj , x′

i
c
−→ x′

j , xi
c
−→ x′

j , or x′
i

c
−→ xj

is an edge ofGR. We writexi ∼ xj if and only ifxi andxj belong to the same strongly
connected component ofGfR. Clearly,∼ is an equivalence relation.

Note that folded graphs are not weighted. Figure 15(b) depicts the folded graphGfR of
GR from Figure 15(a). The folded graph in Figure 15(b) has two strongly connected
components{x1} and{x2, x3}.
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Figure 15: Folded graph. Zigzag automaton with a simple cycle.

Then, we observe that each cycleλ in TR = (Q,∆, w) (a zigzag cycle, for short)
encodes a set of forward∗-acyclic and backward∗-acyclic paths.

Definition 26. A repeating pathρ is ∗-acyclic if and only ifρk is acyclic for allk ≥ 1.

Intuitively, a∗-acyclic path can be composed with itself arbitrary many times without
producing cyclic subpaths. For instance, the pathρ depicted in Figure 14(b) is∗-
acyclic. Note that each essential repeating path is∗-acyclic.

Further, we study the structure of path schemesσ.λ∗.σ′ from Lemma 3 and prove
that one can without loss of generality assume thatλ is simple.

Definition 27. A cycleλ in the transition table of a zigzag automatonTR = (Q,∆, w)
is simpleif and only if it encodes at most one∗-acyclic path per equivalence class of
∼ relation. A basic path schemeθ = σ.λ∗.σ′ is simpleif and only ifλ is simple.

Figure 15(c) illustrates a part of the transition table of the zigzag automaton corre-
sponding to the relation in Figure 15(a). The cycleλ1 depicted in Figure 15(c) is not

simple, since it encodes two∗-acyclic pathsx(0)
2

0
−→ x

(1)
2 andx(0)

3
0
−→ x

(1)
3 from the

same strongly connected component{x2, x3}. On the other hand,λ2 is simple, since

it encodes only one∗-acyclic pathx(0)
2

0
−→ x

(1)
3

−1
−−→ x

(2)
2 depicted in Figure 15(d).

Next, we prove that we can make the statement of Lemma 3 even more accurate
and consider, without loss of generality, only path schemeswith cycles whose length
divideslcm(1, . . . , N). Letµj be a∗-acyclic path of the formµj : xij ❀ xij encoded
in a simple zigzag cycleλ, wherexij ∈ zj for some equivalence classzj ∈ x/∼. We
first observe that there exists an essential∗-acyclic pathµj of the formνj : xkj

❀ xkj
,

wherexkj
∈ zj as well. Supposing thatλ encodesm ∗-acyclic paths, the intuition is to

build a cycleλ′ as follows: lettingL = lcm{||ν1||, . . . , ||νm||}, the cycleλ′ will encode
pathsνdj

j , wheredj = L
||νj ||

. Then, since|λ′| = L and||νj || ≤ N , it follows that the
length ofλ′ divideslcm{1, . . . , N}.

Sinceµj andνj belong to the same equivalence classzj , by the above observations,
it follows that there existessentialpathsξj : xij ❀ xkj

andζ : xkj
❀ xij . These

paths can be used to connectµj with νj and vice versa. The notion of aconnecting
pathcaptures this idea:
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Definition 28. A forward repeating pathτ : xi ❀ xi is called aconnecting pathif it
is of the form

τ = µr . ξ . νs . ζ . µt

where

• µ : xi ❀ xi, ν : xk ❀ xk are forward∗-acyclic paths, and

• ξ : xi ❀ xk, ζ : xk ❀ xi are essential paths.

Note that in a connecting pathτ , the repeating pathsµ andν are allowed to be raised
to a positive powersr, s, t. Figure 16 illustrates a connecting path.

. . .

. . . . . .

. . .
µ µξ

ν ν

ζ

Figure 16: Connecting pathτ .

In order to ensure correctness of the construction, we also need to build two zigzag
pathsπ1 andπ2 that will connectλ with λ′ and vice versa, respectively. In other
words, we need to ensure thatλ.π1.λ

′.π2.λ will form a valid zigzag path. To this end,
we build connecting pathsτ1, . . . , τm. Here we encounter a problem of synchronizing
the positions at whichνj appears for the first time inτj . This problem is due to the fact
that the relative length ofξj may be arbitrary – we only know that its relative length
is bounded byN , sinceξj is essential. Lemma 21 proves that this problem can be
overcome. Finally, we prove in Lemma 22 the desired claim that we can, without loss
of generality, assume path schemesσ.λ∗.σ′ where|λ| divideslcm(1, . . . , N).

Then, we can refine Corollary 6 and establish the upper bound of 2O(n) on the
period for zigzag automata. SinceM∗

Rm , the encoding of them-th power ofR, is
a projection ofM⊠

m

R , the bound on the period of the sequence{M⊠
m

R }m≥0 is a valid
bound on the period of the sequence{M∗

Rm}m≥0 and consequently, it is a bound on
the period of a difference bounds relationR (Theorem 13). In Theorem 14, we show
that this result extends rather easily to the period of octagonal relations. Moreover,
Theorem 14 shows how the bound of||R||2 · 2O(N) on the prefix of and octagonal
relation can be inferred.

8.3.2. Repeating Paths – Decomposition and Optimality
Repeating essential paths can be seen as building blocks of each repeating path,

as the following proposition states. Note that each essential repeating path is either
forward, backward or an elementary cycle.

Proposition 18. Each repeating pathρ can be decomposed into a set of essential re-
peating pathsF(ρ) such that

w(ρ) =
∑

µ∈F✄(ρ) w(µ) +
∑

µ∈F✁(ρ) w(µ) +
∑

µ∈F◦(ρ)
w(µ)
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whereF✄(ρ),F✁(ρ),F◦(ρ) ⊆ F(ρ) are the maximal subset of forward, backward,
and cyclic paths, respectively. Moreover,

||ρ|| =
∑

µ∈F✄(ρ) ||µ|| −
∑

µ∈F✁(ρ) ||µ|| if ρ is forward,
||ρ|| =

∑
µ∈F✁(ρ) ||µ|| −

∑
µ∈F✄(ρ) ||µ|| if ρ is backward,

||ρ|| =
∑

µ∈F✁(ρ) ||µ|| =
∑

µ∈F✄(ρ) ||µ|| = 0 if ρ is a cycle.

Proof: Let ρ be arbitrary path and denoteρ0 = ρ. For eachi ≥ 0, we defineρi+1

inductively as follows. Letµi be an arbitrary essential repeating subpath ofρi, i.e.
ρi = θi.µi.θ

′
i for someθi, θ′i. Then, constructρi+1 by erasingµi from ρi, i.e. ρi+1 =

θi.θ
′
i. Clearly, this decomposition terminates sinceρk+1 is empty for somek ≥ 0.

Then,F(ρ) = {µ0, . . . , µk}. Next, let us defineDi ∈ Z, i = k + 1, . . . , 0 inductively
as follows:Dk+1 = 0 and for eachi = k, . . . , 0, define

Di = Di+1 + ||µi|| if µi is forward,
Di = Di+1 − ||µi|| if µi is backward,
Di = Di+1 if µi is an elementary cycle.

Clearly, for each1 ≤ i ≤ k,

||ρi|| = Di iff ρi is forward iff Di > 0,
||ρi|| = −Di iff ρi is backward iff Di < 0,
||ρi|| = 0 iff ρi is a cycle iff Di = 0.

Recall thatρ = ρ0. Thus, ifρ if forward, then||ρ|| =
∑

µ∈F✄(ρ) ||µ|| −
∑

µ∈F✁(ρ) ||µ||

and if ρ is backward, then||ρ|| =
∑

µ∈F✁(ρ) ||µ|| −
∑

µ∈F✄(ρ) ||µ||. Clearly, if ρ is
a cycle, then||ρ|| =

∑
µ∈F✁(ρ) ||µ|| =

∑
µ∈F✄(ρ) ||µ|| = 0. ✷
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x(0)x(1)x(2)x(3)x(4)x(5)x(6)

x7
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x(0)x(1)x(2)x(3)x(4)

x7

x6

x5

x4

x3

x2

x1

x(0)x(1)x(2)x(3)x(4)

x7

x6

x5

x4

x3

x2

x1

x(0)x(1)x(2)

(a)ρ0 and its subpathµ0 (b) ρ1, µ1 (c) ρ2, µ2 (d) ρ3, µ3

Figure 17: Decomposition of a repeating path to essential repeating paths.

Example 9. Consider a pathρ depicted in Figure 17(a). Figures 17(a-d) illustrate
a decomposition ofρ into a set of essential repeating paths. Essential subpathsF(ρ) =
{µ0, . . . , µ3} selected during the decomposition are dotted.

We next show that the average weight of a repeating pathρ is equal to the average
weight of an arbitrary power ofρ.

Proposition 19. Letρ be a repeating path and letd ≥ 1. Then,w(ρd) = w(ρ).
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Proof: Observe thatw(ρd) = d·w(ρ)
d·||ρ|| = w(ρ)

||ρ|| = w(ρ). ✷

Next, we introduce a notion ofoptimalpath.

Definition 29. Letz ∈ x/∼ be an equivalence class of∼ and letSz

✄
(Sz

✁
) be the set of

all forward (backward) repeating paths inGR of the formxi ❀ xi, for somexi ∈ z.
A pathρ ∈ Sz

✄
is ✄-optimal if and only ifw(ρ) ≤ w(ρ) for all ρ′ ∈ Sz

✄
. Similarly,

a pathρ ∈ Sz

✁
is ✁-optimal if and only ifw(ρ) ≤ w(ρ) for all ρ′ ∈ Sz

✁
.

We next show that the average weight of optimal paths are determined by average
weights ofcritical essential repeating paths. Thus, we first characterize these paths.
For each equivalence classz ∈ x/∼, we define the set of essential repeating forward
pathsP✄(z), minimal average weight of these pathsC✄(z), and a subset offw-critical
pathsP c

✄
(z) as follows. Note that we allow a path to cross nodesx(ℓ), whereℓ < 0,

for notational convenience.

P✄(z) = {ρ : x
(ℓ)
i ❀ x

(ℓ′)
i | ℓ′ > ℓ, ρ is an essential, repeating path inGmR ,m ≥ 0}

C✄(z) = min{||ρ|| | ρ ∈ P✄(z)}
P c
✄
(z) = {ρ ∈ P✄(z) | ||ρ|| = C✄(z)}

Similarly, we defineP✁(z), C✁(z), P
c
✁
(z) for backward paths.

The following lemma gives a precise characterization of optimal paths, based on
properties of critical paths defined above.

Lemma 17. Let z ⊆ x be an equivalence class of∼ and letρ : x ❀ x, x ∈ z, be
a repeating path inGR.

1. If ρ is forward, thenw(ρ) ≥ C✄(z). Moreover,ρ is ✄-optimal if and only if
w(ρ) = C✄(z) if and only if

(a) w(µ) = C✄(z) for each forward pathµ ∈ F(ρ),
(b) w(µ) = −C✄(z) for each backward pathµ ∈ F(ρ),
(c) w(µ) = 0 for each cycleµ ∈ F(ρ).

Moreover, ifF(ρ) contains a backward path andw(ρ) = C✄(z), thenC✄(z) =
−C✁(z).

2. If ρ is backward, thenw(ρ) ≥ C✁(z). Moreover,ρ is ✁-optimal if and only if
w(ρ) = C✁(z) if and only if

(a) w(µ) = −C✁(z) for each forward pathµ ∈ F(ρ),
(b) w(µ) = C✁(z) for each backward pathµ ∈ F(ρ),
(c) w(µ) = 0 for each cycleµ ∈ F(ρ).

Moreover, ifF(ρ) contains a forward path andw(ρ) = C✁(z), thenC✁(z) =
−C✄(z).

3. If ρ is a cycle, thenw(ρ) ≥ 0. Moreover,w(ρ) = 0 if and only if
(a) w(µ) = C✄(z) = −C✁(z) for each forward pathµ ∈ F(ρ),
(b) w(µ) = C✁(z) = −C✄(z) for each backward pathµ ∈ F(ρ),
(c) w(µ) = 0 for each cycleµ ∈ F(ρ).
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Proof: We give the proof for the case whenρ is forward. Proofs for other cases are
similar.

Let S✄, S✁, S◦ ⊆ F(ρ) be the sets of all forward paths, backward paths, and
cycles inF(ρ), respectively. Clearly,w(µ) ≥ C✄(z) for eachµ ∈ S✄. As a corollary
of Lemma 18,C✁(z) + C✄(z) ≥ 0 and thus,w(µ) ≥ C✁(z) ≥ −C✄(z) for each
µ ∈ S✁. SinceR is ∗-consistent, thenw(ν) ≥ 0 for eachµ ∈ S◦. Thus, for each
µ ∈ S✄, there existsdµ ≥ 0 such thatw(µ) = C✄(z) + dµ. Similarly, for each
µ ∈ S✁, there existsdµ ≥ 0 such thatw(µ) = −C✄(z) + dµ. Let us define:

w(S✄) =
∑

µ∈S✄

w(ν) w(S✁) =
∑

µ∈S✁

w(ν) w(S◦) =
∑

µ∈S◦

w(µ)

We derive:

w(S✄) =
∑

µ∈S✄
w(ν) =

∑
µ∈S✄

w(µ)||µ|| =
∑

µ∈S✄
(C✄(z) + dµ)||µ||

= C✄(z)
∑

µ∈S✄
||µ||+

∑
µ∈S✄

dµ||µ||

w(S✁) =
∑

µ∈S✁
w(ν) =

∑
µ∈S✁

w(µ)||µ|| =
∑

µ∈S✁
(−C✄(z) + dµ)||µ||

= −C✄(z)
∑

µ∈S✄
||µ||+

∑
µ∈S✄

dµ||µ||

Observe that:

w(S✄) + w(S✁) = C✄(z)
(∑

µ∈S✄
||µ|| −

∑
µ∈S✁

||µ||
)
+
∑

µ∈S✄∪S✁
dµ||µ||

= C✄(z)||ρ||+
∑

µ∈S✄∪S✁
dµ||µ||

The last equality holds since||ρ|| =
∑

µ∈S✄
||µ||−

∑
µ∈S✁

||µ||. Sincew(ρ) = w(S✄)+

w(S✁) + w(S◦), we infer that

w(ρ) = w(S✄) + w(S✁) + w(S◦)
= C✄(z)||ρ||+

∑
µ∈S✄

dµ||µ||+
∑

µ∈S✁
dµ||µ||+

∑
µ∈S◦

w(µ)

Consequently,

w(ρ) = C✄(z) +
∑

µ∈S✄
dµ||µ||+

∑

µ∈S✁
dµ||µ||+

∑

µ∈S◦
w(µ)

||ρ|| .

Since the fraction in the above equation is non-negative, thenw(ρ) ≥ C✄(z). More-
over,w(ρ) = C✄(z) if and only if dν = 0 for eachν ∈ S✄, dν = 0 for eachν ∈ S✁,
andw(ν) = 0 for eachν ∈ S◦ if and only if w(ν) = C✄(z) for eachν ∈ S✄,
w(ν) = −C✄(z) for eachν ∈ S✁, andw(ν) = 0 for eachν ∈ S◦.

Suppose thatF✁(ρ) 6= ∅ andw(ρ) = C✄(z). Recall thatw(µ) ≥ C✁(z) ≥
−C✄(z) for eachµ ∈ S✁. By the above arguments,w(µ) = −C✄(z). Thus,
−C✄(z) ≥ C✁(z) ≥ −C✄(z) and consequently,C✁(z) = −C✄(z). ✷

The following technical proposition is later used for proving properties of connect-
ing paths.

Proposition 20. Let z ⊆ x be an equivalence class of∼ and letρ : xi ❀ xi, xi ∈ z,
be an optimal forward repeating path inGR. Then, there exist an optimal essential
forward pathρ′ : xj ❀ xj and essential pathsξ : xi ❀ xj , ζ : xj ❀ xi such that
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• w(ξ.ζ) = C✄(z) if ξ.ζ is forward,

• w(ξ.ζ) = −C✄(z) if ξ.ζ is backward,

• w(ξ.ζ) = 0 if ξ.ζ forms a cycle.

Moreover,ρ′ ∈ F(ρ) andF(ξ.ζ) ⊆ F(ρ).

Proof: Letρ0, . . . , ρk andµ0, . . . , µk ⊆ F(ρ) be paths constructed in a decomposition
of ρ into essential repeating paths as in the proof of Proposition 18. Clearly, there
exists0 ≤ m ≤ k such thatµm : xj ❀ xj is forward. Letθ, θ′ be paths such
thatρm = θ.µm.θ′. Let us decomposeθ by erasing its essential repeating subpaths,
obtainingθ0, . . . , θℓ. Similarly, we decomposeθ′ and obtainθ′0, . . . , θ

′
ℓ′ . Note that we

can without loss of generality assume thatρm+n = θn.θ
′ for all 0 ≤ n ≤ ℓ and that

ρm+ℓ+n = θℓ.θ
′
n for all 0 ≤ n ≤ ℓ′. Let ξ = θℓ, ζ = θ′ℓ′ . Sinceρ is fw-optimal,

then clearlyF(ξ.ζ) = F(θℓ.θ′ℓ′) ⊆ F(ρ). Applying Lemma 17, we get the remaining
properties ofθℓ.θ′ℓ′ stated in this proposition. ✷

8.3.3. Anatomy of Zigzag Cycles
We now inspect the structure of cycles in zigzag automata. Inparticular, we show

that each∗-acyclic path encoded in a zigzag cycle is a concatenation ofseveralzigzag-
segments:

Definition 30. Letλ = q0
G1−−→ q1

G2−−→ . . .
Gp
−−→ qp, whereq0 = qp, be a zigzag cycle

of length|λ| = p, whereG1, . . . , Gp are subgraphs ofGR that label edges appearing
in λ. LetG be a subgraph ofGpR constructed asG = G1.G2 . . . Gp. Each pathθ in G
that is maximal in its length is called azigzag-segment.

x9

x8

x7

x6

x5

x4

x3

x2

x1

x(−2)x(−1) x(0) x(1) x(2) x(3) x(4)

Θρ,−1 Θρ,0 Θρ,1

ν1

ν2

ν3

ν4

ν5

x1

x2

x3

x4

x5

x6

x7

x8

x9

q1 q2 q1

r

⊥
⊥
r
r

rl
l
l
⊥

⊥
r
r

⊥
r

l
l
⊥
lr

r

⊥
⊥
r
r

rl
l
l
⊥
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Figure 18: Segmentation of a repeating path to zigzag-segments (a) and construction
of a corresponding zigzag cycle (b).

Given a zigzag cycleλ of length|λ| = p, we write its segments as paths of the form
x
(0)
i ❀ x

(p)
j , x(p)

i ❀ x
(0)
j , x(0)

i ❀ x
(0)
j , orx(p)

i ❀ x
(p)
j .
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Example 10. Consider a zigzag cycleλρ depicted in Figure 18(b).λρ has five zigzag-
segments:

ν1 : x
(0)
1 −→ x

(1)
2 −→ x

(2)
5 ν2 : x

(0)
5 −→ x

(1)
5 −→ x

(2)
6 −→ x

(1)
6 −→ x

(0)
7

ν3 : x
(2)
7 −→ x

(1)
7 −→ x

(0)
8 ν4 : x

(2)
8 −→ x

(1)
9 −→ x

(2)
4 ν5 : x

(0)
4 −→ x

(1)
3 −→ x

(2)
1

✷

Each zigzag cycleλ, |λ| = p, encodes a set of forward∗-acyclic paths of the form
x
(0)
i ❀ x

(p)
i and a set of backward∗-acyclic paths of the formx(p)

i ❀ x
(0)
i . For

simplicity, let us first examine cycles which encode one forward ∗-acyclic pathρ :

x
(ℓ0)
i0
−→ . . . −→ x

(ℓm)
im

, i0 = im, p = ℓm − ℓ0, and no backward path. We will describe

howλρ, a unique zigzag cycle that encodesρ, can be built. We first define:

Lρ = |min{ℓk − ℓ0 | 0 ≤ k ≤ m}| Lρ =
⌈

Lρ

||ρ||

⌉

Rρ = |max{ℓk − ℓ0 | 0 ≤ k ≤ m}| Rρ =
⌈
Rρ

||ρ||

⌉

Intuitively, Lρ (Rρ) is the left (right) extent ofρ relative tox(ℓ0)
i0

.

Example 11. (ctd.) Given a pathρ : x
(0)
1 ❀ x

(2)
1 depicted in Figure 18(a), we com-

pute:
Lρ = |min{−1, . . . , 3}| = 1 Lρ = ⌈ 12⌉ = 1
Rρ = |max{−1, . . . , 3}| = 3 Rρ = ⌈ 32⌉ = 2

✷

Next, let decomposeρ into zigzag segments in the following manner. For each−Lρ ≤
j < Rρ, we defineΘρ,j , the set of maximal (in their length) subpath ofρ which cross
only variables

{x(k) | j · ||ρ|| ≤ k ≤ (j + 1) · ||ρ||}.

Then,λρ consists of zigzag-segments
⋃Rρ−1

k=−Lρ
Θρ,k. Similar definitions can be made

for backward paths. This construction can be generalized for zigzag cycles encoding
a set of forward and backward paths.

Example 12. (ctd.) Given a pathρ : x
(0)
1 ❀ x

(2)
1 depicted in Figure 18(a), we com-

putedLρ = 1,Lρ = 1,Rρ = 3,Rρ = 2. Then,Θρ,−1 is a set of maximal subpaths ofρ
crossing onlyx(−2)∪x(−1)∪x(0), thusΘρ,−1 = {ν4}. Similarly,Θρ,0 is a set of max-
imal subpaths ofρ crossing onlyx(0) ∪ x(1) ∪ x(2), thusΘρ,0 = {ν1, ν3, ν5}. Finally,
Θρ,1 is a set of maximal subpaths ofρ crossing onlyx(2)∪x(3)∪x(4), thusΘρ,1 = {ν2}.
Clearly, the zigzag cycle in Figure 18(b) encodes segmentsΘρ,−1 ∪Θρ,0 ∪Θρ,1. ✷

The following proposition states that the average weight ofa cycleλ in zigzag automa-
ton is the sum of average weight of∗-acyclic paths that are encoded in the label of
λ.

Proposition 21. Letλ be a zigzag cycle that encodes∗-acyclic pathsρ1, . . . , ρn. Then
w(λ) = w(ρ1) + · · ·+ w(ρn).
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Proof: Since|λ| = ||ρ1|| = · · · = ||ρn||, we infer:

w(λ) = w(ρ1)+···+w(ρn)
|λ| =

∑n
i=1

w(ρi)
|λ| =

∑n
i=1

w(ρi)
||ρi||

=
∑n

i=1 w(ρi)

✷

8.3.4. Basic Path Schemes with Simple Zigzag Cycles
This section refines the statement of Lemma 3 by proving that the cycleλ from each

basic path scheme can be assumed to be simple, without loss ofgenerality. The next
lemma proves that the sum of average weights of a forward repeating and a backward
repeating path inGmR , m ≥ 1, from the same equivalence class of the∼ relation is
non-negative, wheneverR is ∗-consistent.

Lemma 18. LetR be a∗-consistent difference bounds relation and letρi = xi ❀ xi

be a forward repeating andρj = xj ❀ xj be a backward repeating path inGR such
thatxi ∼ xj . Then,w(ρi) + w(ρj) ≥ 0.

Proof: Suppose thatw(ρi) + w(ρj) < 0. Let us define:

p = lcm(||ρi||, ||ρj ||), di =
p

||ρi||
, dj =

p

||ρj ||
, γi = (ρi)

di , γj = (ρj)
dj .

By Proposition 19,w(ρi) = w(γi) andw(ρj) = w(γj). Thus,w(γi) + w(γj) < 0.
Furthermore, since||γi|| = ||γj || = p, thenp ·w(γi) + p ·w(γj) = w(γi) +w(γj) < 0.
Sincexi ∼ xj , there exist essential paths

θij = x
(0)
i ❀ x

(q)
j andθji = x

(0)
j ❀ x

(r)
i

where0 ≤ ||Q||, |r| < N . Letn ≥ 0 be a parameter. We build (refer to Figure 19)

ξ = γn
i .θij .γ

2n
j .θji

x
(0)
i x

(np)
i

x
(np+q)
jx

(−np+q)
i

x
(−np+q+r)
i γn

i

θij

γ2n
j

θji

Figure 19: Buildingξ

Clearly, ξ is of the formξ : x
(0)
i ❀ x

(−np+q+r)
i . By choosingn > ⌈ q+r

p ⌉, we

make sure that−np + r + s < 0. We repeat the pathp-times and obtainξp : x
(0)
i ❀

x
(p(−np+q+r))
i . Since|γi| = p andp dividesp(−np+ q+ r), we buildζ = γ

(np−r−s)
i

which is of the formζ : x
(p(−np+q+r))
i ❀ x

(0)
i . Clearly,ξp.ζ forms a cycle with weight

np · w(γi) + p · w(θij) + 2np · w(γj) + p · w(θji) + (np− q − r) · w(γi)
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which simplifies to

2np · (w(γi) + w(γj))− (q + r) · w(γi) + p · (w(θij) + w(θji)).

Since we assumed thatw(γi) + w(γj) < 0, by choosing a sufficiently largen, we
obtain a negative cycle inGωR. Thus,R is not∗-consistent, contradiction. ✷

We continue with a technical lemma.

Lemma 19. LetG = 〈V,E,w〉 be a weighted digraph, andu, v ∈ V be two vertices.
Let θ1 = σ1.λ

∗
1.σ

′
1 be a basic path scheme andρ1 = σ1.λ

b1
1 .σ′

1, b1 ≥ 0 be a minimal
path fromu to v such that|ρ1| ≥ ||V ||

4. Further, letθ2 = σ2λ
∗
2.σ

′
2 be a path scheme

(not necessarily basic), andρ′1 = σ1.λ
b′1
1 .σ′

1 andρ′2 = σ2λ
b′2
2 .σ′

2, whereb′1 > b1 and
b′2 ≥ 0, be paths fromu to v, and letL > 0 be integer such that

|ρ1|+ L = |ρ′1| = |ρ
′
2|,

|λ1| and |λ2| divideL,
w(λ1) = w(λ2),
w(ρ′1) = w(ρ′2).

Then, there exists a basic path schemeθ3 = σ3.λ
∗
2.σ

′
3 and a pathρ3 = σ3.λ

b3
2 .σ′

3,
b3 ≥ 0 fromu to v such thatw(ρ3) = w(ρ1) and|ρ3| = |ρ1|.

Proof: We can use the same techniques as in the proofs of Lemma 6 and 7and for
a given pathρ′2, we construct a basic path schemeθ3 = σ3.λ

∗
2.σ

′
3 and a pathρ′3 =

σ3.λ
b′3
2 .σ′

3, b′3 ≥ 0 from u to v such that|ρ′3| = |ρ
′
2| andw(ρ′3) ≤ w(ρ′2). Thus,

w(ρ′2) = w(ρ′3) +D for someD ≥ 0. Observe that

|σ3.σ
′
3| ≤ ||V ||

4 ≤ |ρ1|.

By requirements of the lemma and by construction ofρ′3, |ρ1|+L = |ρ′1| = |ρ
′
2| = |ρ

′
3|.

Since|λ2| dividesL, there exists a pathρ3 = σ3.λ
b3
2 .σ′

3, whereb3 ≥ 0, such that
|ρ3| = |ρ1|. Furthermore,

w(ρ1) = w(ρ′1)− w(λ1) · L, and
w(ρ3) = w(ρ′3)− w(λ2) · L.

The lemma requires thatw(ρ′1) = w(ρ′2). Combining it withw(ρ′2) = w(ρ′3) +D, we
obtain thatw(ρ′1) = w(ρ′3) +D. The lemma also requires thatw(λ2) = w(λ1). Thus,

w(ρ′1)− w(λ1) · L = w(ρ′3)− w(λ2) · L+D

and consequently,w(ρ1) = w(ρ3) + D. Clearly,D > 0 would contradict thatρ1 is
minimal, thus we conclude thatD = 0 and thusw(ρ1) = w(ρ3). ✷

We finally prove the existence of a basic path scheme where thecycleλ is simple.

Lemma 20. Let TR = (Q,∆, w) be the common transition table of zigzag automata
defined for a difference bounds relationR(x,x′), andu, v ∈ Q be two control states.
Then for every minimal weight pathρ form u to v, such that|ρ| ≥ ||R|| · ||Q||6, there
exists a pathρ′ fromu to v, such thatw(ρ) = w(ρ′) and |ρ| = |ρ′|, and a basic path
schemeθ = σ ·λ∗ ·σ′, such thatλ is simple,ρ′ = σ ·λb ·σ′, for someb ≥ 0. Moreover,
there existsc | lcm(1,...,||Q||−1)

|λ| such thatσ · λb+kc · σ′ is a minimal weight path fromu
to v, for all k ≥ 0.
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Proof: By Lemma 3, there exists a basic path schemeθ1 = σ1λ
∗
1σ

′
1 and a path

ρ1 = σ1λ
b1
1 σ′

1, b1 ≥ 0 fromu to v that have all the properties of this lemma except that
λ1 might not be simple. First, we build a path schemeθ2 = σ2λ

∗
2σ

′
2 which might not

be basic, but whereλ2 is simple,w(λ2) = w(λ1), |λ2| = |λ1|, andw(σ1.λ
b1+q+k
1 ) =

w(σ2.λ
k
2 .σ

′
2) for someq > 0 and for allk ≥ 0. In other words, ifθ1 is followed by

a minimal path of lengthL ≥ |σ2.σ
′
2|, thenθ2 is followed by a minimal path of length

L too.
Let z1, . . . , zm be equivalence classes of∼. Let q be a control state of the zigzag

automaton such thatλ1 is a cycle that starts and ends inq. Let L,R ⊂ {1, . . . , N}
be the set ofl-indices andr-indices ofq, respectively, and partition them according to
equivalence classesz1, . . . , zm, thus obtainingL1, . . . , Lm andR1, . . . , Rm. For each
1 ≤ i ≤ m, let ρi,1, . . . , ρi,mi

denote the set of repeating paths encoded inλ1 that
cross variables inzi. Finally, let Θ′ denote the paths inσ′

1 that connectr-indices
with l-indices andΘ denote the paths inσ1 that connectl-indices with r-indices.
Let Θ(i) ⊆ Θ andΘ′(i) ⊆ Θ′ be paths that cross only variables inzi. We define

p = max
{
⌈ |σ1|
|λ1|
⌉, ⌈ |σ

′
1|

|λ1|
⌉
}

. Let ρi,1 ≺ · · · ≺ ρi,mi
be the order in which subpaths

ρi,1, . . . , ρi,mi
are visited in the path encoded inσ1.λ1.σ

′
1. Then, by construction of

zigzag automata,ρi,j is forward if and only ifρi,j+1 is backward. Figures 20(a) and
(b) illustrate these definitions.

σ1 λ1 σ′
1

Q1

Q2

θ1

θ3

θ5

θ2
θ4

ρ1,1
ρ1,2
ρ1,3

ρ2,1
ρ2,2
ρ2,3

θ0

θ6

Θ′ = {θ1, θ3, θ5}
Θ′(1) = {θ1}
Θ′(2) = {θ5}

Θ = {θ2, θ4}
Θ(1) = {θ2}
Θ(2) = {θ4}

ρ1,1 ≺ ρ1,2 ≺ ρ1,3
ρ2,1 ≺ ρ2,2 ≺ ρ2,3

(a) (b)

γ1 ν1 λ2 ν′1 γ′
1

Q1

Q2

σ2 σ′
2

ρ1,3

ρ2,3

ρ1,3

ρ2,3

ρ1,3

ρ2,3

ρ1,3

ρ2,3

ρ1,3

ρ2,3

θ1

θ3

θ5

θ2
θ4

ρ1,3

ρ2,3

θ0

θ6

(c)

Figure 20: Illustration of a construction of a path scheme with simple cycle.
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Given an equivalence classzi, 1 ≤ i ≤ m, we first give a construction ensuring
that there is at most one repeating path inλ2 that crosses variables inzi.

We next buildγ, ν, λ2, ν
′, γ′, which are initialized as follows:γ = σ1, ν = (λ1)

p,
λ2 = λ1, ν′ = (λ1)

p, γ′ = σ′
1. Further, we erase all paths fromν, λ2, ν′ that cross

some variable inzi. We finish construction ofγ, ν, λ2, ν
′, γ′ for one of the following

cases (note that cases 1 and 2 (3 and 4) are symmetrical):

1. ρi,1 is fw andmi is even.EraseΘ(i) from γ′ and add it toν.
2. ρi,1 is bw andmi is even.EraseΘ′(i) from γ and add it toν′.
3. ρi,1 is fw andmi is odd. Do the actions for Case 1. Further, addρi,mi

to λ2 and
add(ρi,mi

)
p to bothν andν′.

4. ρi,1 is bw and mi is odd. Do the actions for Case 2. Further, addρi,mi
to λ2

and add(ρi,mi
)
p to bothν andν′.

The construction is finished by buildingσ2 = γ.λb1
1 ν andσ′

2 = ν′.γ′. Figure 20(c)
illustrates the construction: Case 3 applies for the equivalence classz1, while the Case
4 applies forz2.

We prove several properties on weights ofσ2, λ2, σ
′
2 for case 3 (proofs for cases 1,

2, and 4 are similar). Let us define

W =
∑

θ∈Θ(i)

w(θ) V =
∑

1≤j<mi

w(ρi,j)

Following equalities follow from the construction:

|σ2.σ
′
2| − |σ1.σ

′
1| = |λ

b1
1 |+ |ν|+ |ν

′| = |λ1| · (b1 + 2p)

w(γ) = w(σ1)
w(ν) = p · (w(λ1)− V ) +W

w(ν′) = p · (w(λ1)− V )
w(γ′) = w(σ′

1)−W

Then,

w(σ2.σ
′
2) = w(γ.λb1

1 .ν.ν′.γ′) = w(σ1) + (b1 + 2p) · w(λ1) + w(σ′
1)− 2pV ,

w(σ1.λ
b1+2p
1 .σ′

1) = w(σ1) + (b1 + 2p) · w(λ1) + w(σ′
1).

For Case 3,mi is odd. Sinceρi,j is fw andρi,j+1 is bw for oddj < mi, by Lemma 18,
w(ρj) + w(ρj+1) ≥ 0 and thusV ≥ 0. By construction,w(λ2) = w(λ1) − V . Since
V > 0 would imply thatw(λ2) < w(λ1) and thus, thatσ1.λ

b1+k
1 .σ′

1 is not minimal for
all k ≥ 0, we infer thatV = 0 and therefore,w(λ2) = w(λ1) and

w(σ2.σ
′
2) = w(σ1.λ

b1+2p
1 .σ′

1).

Note that the above construction ofσ2, λ2, andσ′
2 can be easily extended to deal with

all equivalence classes of∼ at once. Then,λ2 is simple and the above equality still
hold. Note that if the construction steps for Case 3 or Case 4 generate a path (encoded
in ν or ν′) with cycles, we erase all the cycles. Their weights must be non-negative,
since we consider∗-consistent relations. They also cannot be strictly positive since
thenσ1.λ1.σ

′
1 would not be minimal for allk ≥ b1 + 2p, contradiction. Thus erasing
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them changes weight of neitherσ2 norσ′
2 and hence the above equality still hold. Let

us defineb′2 = 0, b′1 = b1 + 2p, ρ′2 = σ2.λ
b′2
2 σ′

2, ρ′1 = σ1.λ
b′1
1 σ′

1 and observe that

L = |ρ′2| − |ρ1| = (|σ2.σ
′
2| − |σ1.σ

′
1|) + |λ

b′2
2 | − |λ

b1
1 |

= |λ1| · (b1 + 2p) + 0− |λ1| · b1
= |λ1| · (b1 + 2p− b1) = |λ1| · 2p

and thus,|λ1| = |λ2| dividesL. Next, we apply Lemma 19 which guarantees exis-
tence of a path schemeθ3 = σ3.λ

∗
2.σ

′
3 and a pathρ3 = σ3.λ

b3
2 .σ′

3, for someb3 ≥ 0,
such thatw(ρ3) = w(ρ1) and|ρ3| = |ρ1|. The existence ofc | lcm 1,...,||V ||

|λ2|
such that

σ3.λ
b3+kc
2 .σ′

3 is minimal for allk ≥ 0 follows from the proof of Lemma 3, since we
can chooseπi.λ

∗
i .π

′
i = θ3. ✷

8.3.5. Basic Path Schemes with Cycles Bounded bylcm(1, . . . , N)

This section refines the statement of Lemma 3 by proving that the length of the
cycleλ from each basic path scheme divideslcm(1, . . . , N). This fact is essential in
proving the single exponential bound on the period of octagonal relations. We begin
with a lemma that is later used to deal with the problem of synchronization of connect-
ing paths which was discussed earlier. Recall that for a pathρ : x

(ℓ0)
i0
−→ . . . −→ x

(ℓm)
im

in GωR such thati0 = im andℓm 6= ℓ0, we defined its left (right) extent relative tox(ℓ0)
i0

as
Lρ = |min{ℓk − ℓ0 | 0 ≤ k ≤ m}| Lρ =

⌈
Lρ

||ρ||

⌉

Rρ = |max{ℓk − ℓ0 | 0 ≤ k ≤ m}| Rρ =
⌈
Rρ

||ρ||

⌉

Lemma 21. Let τ ′ = µr.ξ.νs.ζ.µt be a connecting path such that

r = r1 + r2 s = s1 + · · ·+ s5 t = t1 + t2, where

s1 ≥ Lν +Rµ +N + 1
s5 ≥ Rν + Lµ +N + 1

t1 ≥ Lµ +Rν +N + 1
r2 ≥ Rµ + Lν +N + 1

s2 ≥ Rν − 1
s4 ≥ Lν

s3 ≥ 2N
t2 ≥ 1 +Rν

r1 ≥ 1 + Lν

Let τ be a path built by erasing all cycles fromτ ′ and let

• λµ be a zigzag cycle that encodesµ,

• λν be a zigzag cycle that encodesν,

• λτ be a zigzag cycle that encodesτ .

Then,λτ can be written asλτ = λµ.π1.λ
′
ν
s3−2N

.π2.λµ whereπ1, π2 are some zigzag
paths,|λν | = |λ

′
ν |, w(λν) = w(λ′

ν), and|λµ.π1| = ||µ
r1+r2 ||+ ||νs1+s2 ||+N .
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Proof: Let us denote the subpaths ofτ ′ as

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11

q q q q q q q q q q q

τ ′ = µr1 . µr2 . ξ . νs1 . νs2 . νs3 . νs4 . νs5 . ζ . µt1 . µt2

First, we show that the constraint ons1 ensures that subpathsα1.α2.α3 andα5 do not
share a node. LetM1 = ||α1.α2|| and observe that

vars(α1.α2) ⊆

M1+Rµ⋃

k=−Lµ

x(k), vars(α3) ⊆
M1+N⋃

k=M1−N

x(k).

The property onvars(α1.α2) holds sinceLρk ≤ Lρ andRρk ≤ Rρ for each pathρ
andk ≥ 1. The property onvars(α3) follows from the fact thatξ is essential. Hence,

vars(α1.α2.α3) ⊆

M1+max(Rµ,N)⋃

k=min(−Lµ,−N)

x(k) ⊆

M1+Rµ+N⋃

k=min(−Lµ,−N)

x(k).

Similarly, lettingM2 = M1 + ||α3.α4||, we observe that

vars(α5) ⊆

M2+||α5||+Rν⋃

k=M2−Lν

x(k).

We can now infer a condition that guarantees that subpathsα1.α2.α3 andα5 do not
share a node:

M1 +Rµ +N < M2 − Lν

Rµ +N < ||α3.α4|| − Lν

||α4|| > Lν +Rµ +N − ||α3||
||α4|| ≥ Lν +Rµ +N + 1 (sufficient, since||α3|| ≥ 0)
s1 = Lν +Rµ +N + 1 (sufficient, since||α4|| = ||ν|| · s1)

Similarly, one infers constraints ons5, t1, andr2. These constrains guarantee that all
sharings of nodes (in other words, cycles) may occur only inα2, α4, α8, or α10 and
thus, that no cycle appears inα5.α6.α7, α1 andα11.

Next, we prove an auxiliary statement thatλτ can be written asλτ = λµ.π1.λ
s3
2 .π2.λµ

whereπ1, π2 are some zigzag paths, and|λµ.π1| = ||µ
r1+r2 .ξνs1+s2 ||. Figures 21 and

22 illustrate the proof.
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α1 . . . α4 α5 α6 α7 α8 . . . α11

γ0 γs2
γs2+j−Rν+1

γs2+j
γs2+j+Lν

γs2+s3 γS−1

Hj

. . . . . . . . . . . . . . . . . .

Figure 21:λs3
ν as a subpath ofλτ .
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(a) pathν (b) zigzag cycleλν (c) Hj , γs2+j−1, γs2+j , γs2+j+1

Figure 22: Obtainingλν by iteratingν. Lν = 1, Rν = 2.

Let G0G1 . . . G|λτ |−1 be the labeling ofλτ and letα5.α6.α7 = γ0.γ1 . . . γS−1,
whereS = s2 + s3 + s4 andν = γ0 = γ1 = · · · = γS−1. For each0 ≤ j < s3,
defineKj = ||α1 . . . α5.ν

j ||, Hj = GKj+1 . . . GKj+||ν|| and observe that for each
−Rν < k ≤ Lν , γs2+j+k contributes7 to Hj with Θν,k. Thus,Hj consists of zigzag-
segments

Rν⋃

j=−Lν+1

Θν,j

which are clearly zigzag-segments ofλν . Thus,Hj is the labeling ofλν for each
0 ≤ j < s3 and consequently,λτ can be decomposed intoσ1.λ

s3
ν .σ2 for some paths

σ1, σ2. Moreover, sinceK0 = ||α1 . . . α5|| = ||µ
r1+r2 .ξνs1+s2 ||, then

|σ1| = K0 = ||µr1+r2 .ξνs1+s2 ||.

By a similar argument, one can show thatλτ can be decomposed intoλµ.σ3.λµ

for some pathσ3, by viewing the pathτ ′ = α1 . . . α11 shifted asα6 . . . α11α1 . . . α5.
Combining decompositionsσ1.λ

s3
ν .σ2 andλτ = λµ.σ3.λµ, we obtain the required

decompositionλτ = λµ.π1.λ
s3
2 .π2.λµ for someπ1, π2, where

|λµ.π1| = |σ1| = ||µ
r1+r2 .ξνs1+s2 ||.

7Hence the bounds ons2 ands4: s2 ≥ Rν − 1, s4 ≥ Lν .
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Finally, we prove thatλτ can be written asλτ = λµ.π1.λ
′
ν
s3−2N

.π2.λµ where
π1, π2 are some zigzag paths,|λν | = |λ

′
ν |, w(λν) = w(λ′

ν), and|λµ.π1| = ||µ
r1+r2 ||+

||νs1+s2 ||+N . Let us define

D0 = ||µr1+r2 ||+||νs1+s2 ||, D1 = ||µr1+r2 .ξ.νs1+s2 ||, D2 = ||µr1+r2 ||+||νs1+s2 ||+N .

Sinceξ is essential,D2 ≥ D1 andD0 −N ≤ D1 ≤ D0 +N . Thus, by noticing that
D2 = D0 +N , we infer that0 ≤ D2 −D1 ≤ 2N . Clearly, there exists0 ≤ d < ||ν||
andk ≥ 0 such thatD2 + d = D1 + k||ν||. Thus,k = ⌈D2−D1

||ν|| ⌉. Combining this with
0 ≤ D2 −D1 ≤ 2N , we establish a boundk ≤ 2N .

Next, observe that a decomposition ofλτ intoλµ.π3.λ
s3−k
ν .π4.λµ, where|λµ.π3| =

D2 + d = D1 + k||ν||, is possible by a similar argument as previously. The only dif-
ference is thatj ranges overk ≤ j < s3 instead of0 ≤ j < s3. Thus, we need
to guarantee thats3 − k ≥ 0. This can be achieved by requiring thats3 ≥ 2N ,
since the maximal value ofk is k = 2N . This gives the stricter condition ons3
in this lemma that guarantees the decomposition intoλµ.π3.λ

s3−2N
ν .π4.λµ, where

|λµ.π3| = D2 + d = D1 + k||ν||.
Let G1 . . . Gn be the labeling ofλν . The decomposition in the previous paragraph

implies that the label of(λτ )D2+d...|λτ |−1 has a prefix(G1 . . . Gn)
s3−2N . Further, the

label of (λτ )D1...|λτ |−1 has a prefix(G1 . . . Gn)
s3 . SinceD2 + d − D1 = k||ν||,

it follows that the label of(λτ )D1...D2−1 is (G1 . . . Gn)
k. Furthermore, we infer

that the label of(λτ )D2...|λτ |−1 has a prefix(Gd+1 . . . GnG1 . . . Gd)
s3−2N . Since

G1 . . . Gn is the labeling of the cycleλν : q
G1...Gd−−−−−→ q′

Gd+1...Gn
−−−−−−−→ q, there clearly

exists a cycleλ′
2 : q′

Gd+1...Gn
−−−−−−−→ q

G1...Gd−−−−−→ q′. Thus,λ can be decomposed into

λτ = σ1.(λ
′
ν)

s3−2N .σ2, where|σ1| = D2 = ||µr1+r2 || + ||µs1+s2 || + N . Clearly,
|λν | = |λ

′
ν | andw(λν) = w(λ′

ν). ✷

Informally, the following technical proposition states that the relative lengths of
two repeating paths can be synchronized by iterating each repeating path with itself
several times.

Proposition 22. Let γ1, γ2 be repeating paths and letc1, c2 ≥ 1. Then, there exists

c′1 = c1 · k1, c′2 = c2 · k2 for somek1, k2 ≥ 1 such that||γc′1
1 || = ||γ

c′2
2 ||.

Proof: Let L = lcm(c1 · ||γ1||, c2 · ||γ2||), c′1 = L
||γ1||

, c′2 = L
||γ2||

. Sincec1 · ||γ1||

dividesL, thenc1 divides L
||γ1||

too and thus, there existsk1 ≥ 1 such thatc1 · k = c′1.

Similarly, there existsk2 ≥ 1 such thatc2 · k = c′2. Further,||γc′1
1 || = ||γ

c′2
2 || = L, since

||γ
c′1
1 || = ||γ1|| · c

′
1 = ||γ1|| ·

L
||γ1||

= L and similarly,||γc′2
2 || = L. ✷

We finally prove that we can, without loss of generality, consider basic path schemes
with cycles that are simple and moreover, the length of whichdivideslcm(1, . . . , N).
For the proof of the lemma, we need the notion ofoptimalcycle.

Definition 31. a simple cycleλ is optimal if and only if each forward path encoded in
λ is fw-optimal and each backward path encoded inλ is bw-optimal.
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Lemma 22. Let TR = (Q,∆, w) be the common transition table of zigzag automata
defined for a difference bounds relationR(x,x′), andu, v ∈ Q be two control states.
Then for every minimal weight pathρ form u to v, such that|ρ| ≥ ||R|| · ||V ||6, there
exists a pathρ′ from u to v, such thatw(ρ) = w(ρ′) and |ρ| = |ρ′|, and a basic
path schemeθ = σ · λ∗ · σ′, such thatλ is simple and|λ| divides lcm(1, . . . , N),
ρ′ = σ · λb · σ′, for someb ≥ 0. Moreover, there existsc | lcm(1,...,N)

|λ| such that

σ · λb+kc · σ′ is a minimal weight path fromu to v, for all k ≥ 0.

Proof: By Lemma 20, there exists a basic path schemeθ1 = σ1.λ
∗
1.σ

′
1 whereλ1 is

simple and a pathρ1 = σ1.λ
b1
1 .σ′

1, for someb1 ≥ 0, such thatw(ρ1) = w(ρ) and
|ρ1| = |ρ|. In this proof, we assume thatλ1 encodes two forward pathsµ1, µ2 and no
backward path. The extension to arbitrary number of forwardand backward paths is
straightforward. Letµj be of the formµj : xij ❀ xij for eachj ∈ {1, 2}. and let us
denote the equivalence class ofxij aszj = [xij ]∼.
Case 1:λ1 is optimal. By Proposition 20, givenµj , there existsνj ∈ P c

✄
(zj) of the

form νj : xkj
❀ xkj

and two essential pathsξj : xij ❀ xkj
andζj : xkj

❀ xij . For
eachj ∈ {1, 2}, we build a connecting pathτ ′j as follows:

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11

q q q q q q q q q q q

τ ′1 = µr1
1 . µr2

1 . ξ1 . νs11 . νs21 . νs31 . νs41 . νs51 . ζ1 . µt1
1 . µt2

τ ′2 = µt3
2 . µt4

2 . ξ2 . νw1
2 . νw2

2 . νw3
2 . νw4

2 . νw5
2 . ζ2 . µt1

2 . µt2

q q q q q q q q q q q

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11

In addition to the conditions of Lemma 21, we require that|αk| = |βk| for all k ∈
{1, 2, 4, 5}. These additional constraints can be satisfied too, by Proposition 22. Clearly,
the new coefficients still satisfy the conditions in Lemma 21. Finally, we defines3 =
2N + L

||ν1||
, w3 = 2N + L

||ν2||
, whereL = lcm(||ν1||, ||ν2||).

By Lemma 21, there exists a zigzag cyclesλτ1 andλτ2 that encodeτ1 and τ2
that were obtained by erasing all cycles inτ ′1 and τ ′2, respectively, and that can be
decomposed into

λτ1 = λµ1
.π1.λ

′
ν1

s3−2N
.π2.λµ1

λτ2 = λµ2
.π3.λ

′
ν2

w3−2N
.π4.λµ2

where
|λ′

νj
| = |λνj

| andw(λ′
νj
) = w(λνj

) and

||λµ1
.π1|| = ||α1.α2||+ ||α4.α5||+N and||β1.β2||+ ||β4.β5||+N = ||λµ2

.π3||

Since|αk| = |βk| for all k ∈ {1, 2, 4, 5}, we infer that||λµ1
.π1|| = ||λµ2

.π3||.

84



λµ1 π1 λν1 π2 λµ1

λµ2
π3 λν2

π4 λµ2

||α1.α2||

||β1.β2||

N ||α4.α5||

||β4.β5||

lcm(||ν1||,

||ν2||)

. . .

. . . . . .

. . .
µ1 µ1

ξ1 ζ1

. . .

. . . . . .

. . .
µ2 µ2ξ2 ζ2

Figure 23: Synchronization of connecting pathsτ1 andτ2.

Note that|λτ1 | = |λτ2 | is not true in general. For this reason, we need to make an
extra step. LetM = lcm(|λτ1 |, |λτ2 |), m1 = M

|λτ1
| , m2 = M

|λτ2
| . Since|λm1

τ1 | = |λ
m2
τ2 |,

and since the paths inλτ1 andλτ2 use disjoint variables, we can build a cycleλ by
gluingλm1

τ1 with λm2
τ2 and obtainλ = λ1.π

′
1.λ

′
2.π

′
2.λ1, where

λ1 =

[
λµ1

λµ2

]
π′
1 =

[
π1

π3

]
λ′
2 =

[
λ′
ν1

s3−2N

λ′
ν2

w3−2N

]
π′
2 =

[
π2.λµ1

.(λτ1)
m1−1

π4.λµ2
.(λτ2)

m2−1

]

Note that the construction ofλ′
2 is correct since

|λ′
ν1

s3−2N | = |λs3−2N
ν1

| = ||ν1||(s3 − 2N) = ||ν1||
(

L
||ν1||

+ 2N − 2N
)
= lcm(||ν1||, ||ν2||)

and similarly,|λ′
ν2

w3−2N | = lcm(||ν1||, ||ν2||). Thus,|λ′
2| = lcm(||ν1||, ||ν2||). Note that

λ1 is optimal by assumption. Further,λ2 encodes pathsνs31 andνw3
2 which are optimal,

by the fact thatν1, ν2 are optimal and by Proposition 19. Thus,λ2 is optimal by
construction. Since||ν1||, ||ν1|| ≤ N , then|λ2| divideslcm(1, . . . , N). By Proposition
20, νj ∈ F(µj) andF(ξj .ζj) ⊆ F(µj). Thus,F(τj) ⊆ F(µj). Sinceτj is forward,
thenw(τj) = C✄(zj), by Lemma 17. Consequently,τj is optimal. By Lemma 21,
λτj encodesτ ′j that was obtained fromτ ′j by erasing all its cycles. These cycles are
non-negative, sinceR is ∗-consistent. Next suppose that at least one is strictly positive.
Then,

w(τj) < w(τ ′j) = w(µj) = w(νj) = C✄(zj).

However, by Lemma 17,w(τj) ≥ C✄(zj), contradiction. Thus,w(τj) = C✄(zj) too.
Consequently,λ1, λ2, λ are optimal too, by Definition 31. By Proposition 21,

w(λ1) = w(λ2) = w(λ) = C✄(z1) + C✄(z2).

We next construct a path schemeθ2 = σ2.λ
′
2
∗
.σ′

2, where

σ2 = σ1.λ
b1
1 .λ1.π

′
1 σ′

2 = λ′
2.π

′
2.λ1.λ

(|λ1|·|λ
′
2|−1).σ′

1

85



Next, lettingb′2 = |λ1|, we constructρ′2 = σ2.λ
′
2
b′2 .σ′

2. Recalling thatρ1 = σ1.λ
b1
1 .σ′

1,
we compute

D = |ρ′2| − |ρ1| = |λ1.π
′
1.λ

′
2.π

′
2.λ1.λ

|λ1|·|λ
′
2|−1|+ |λ′

2
|λ1||

= |λ|λ1|·|λ
′
2||+ |λ1| · |λ

′
2|

= |λ1| · |λ
′
2| · (|λ|+ 1)

Letting b′1 = b1 +
D
|λ1|

+ |λ′
2|, we constructρ′1 = σ1.λ

b′1
1 .σ′

1. Clearly,|ρ′1| = |ρ
′
2|. We

infer that

w(ρ′2)− w(ρ1) = |λ1| · |λ
′
2| · |λ| · w(λ) + |λ1| · |λ2| · w(λ2)

= D · (C✄(z1) + C✄(z2))
w(ρ′1)− w(ρ1) = |λ1| · (

D
|λ1|

+ |λ′
2|) · w(λ1)

= D · (C✄(z1) + C✄(z2))

and thus,w(ρ′2) = w(ρ′1). Clearly,|λ1| and|λ′
2| dividesD. We apply Lemma 19 which

guarantees existence of a path schemeθ3 = σ3.λ
′
2
∗
.σ′

3 and a pathρ3 = σ3.λ
′
2
b3 .σ′

3,
for someb3 ≥ 0, such thatw(ρ3) = w(ρ) and|ρ3| = |ρ|. Thus, the lemma holds for
θ = θ3 andρ′ = ρ3.
Case 2: λ1 is not optimal. Sinceµ1 ∈ P✄(z1), thenP c

✄
(z1) 6= ∅. Let choose

ν1 ∈ P c
✄
(z1) and assume its form isµ1 : xk1

❀ xk1
. Further, letξ1 : xi1 ❀ xk1

,
ζ1 : xk1

❀ xi1 be arbitrary essential paths. Similarly forµ2, we constructν2, ξ2, ζ2.
We constructλ, θ2, ρ′1, ρ

′
2 and computeD in the same way as in Case 1. Clearly,λ′

2

is optimal,λ1 is not optimal and thusw(λ1) > w(λ′
2) = C✄(z1) + C✄(z2). Since

|λ1| and |λ′
2| divide |ρ′2| − |ρ1|, thenσ1.λ

b1+ck
1 .σ′

2 is not minimal for somek ≥ 0.
Contradiction with our assumption onθ1 = σ1.λ

∗
1.σ

′
1.

We have proved that Case 2 is not possible, and that for Case 1,there exists a path
ρ3 = σ3.λ

′
2
b3 .σ′

3 wherew(ρ3) = w(ρ), |ρ3| = |ρ|, λ′
2 is optimal and|λ′

2| divides
lcm(1, . . . , N). Let us denoteρ′ = ρ3, σ = σ3, σ′ = σ′

3, λ = λ′
2, b = b3. It re-

mains to prove that there existsc | lcm(1,...,N)
|λ′

2|
such thatσ.λb+kc.σ′ is a minimal path

from u to v for all k ≥ 0. The proof is almost identical to that of Lemma 7. The
only difference is that we can now consider only basic path schemesσ.λ∗.σ′ where
λ is simple and|λ| divides lcm(1, . . . , N). Thus, the proof can uselcm(1, . . . , N)
instead oflcm(1, . . . , ||V || − 1) everywhere. This in turn implies the existence of
c | lcm(1, . . . , N) such thatw(σi.λ

kc.σ′
i) is minimal for allk ≥ 0. ✷

The single exponential bound on the period of difference bounds relations follows
easily from Lemma 22.

Corollary 7. Letx = {x1, . . . , xN} be a set of variables. Given a difference bounds
relationR(x,x′), the period ofR(x,x′) is bounded by2O(N).

Proof: LetTR = (Q,∆, w) be the common transition table of zigzag automata defined
for a difference bounds relationR(x,x′) and letc be the period ofTR. By Lemma 22,
c | lcm(1, . . . , N). Applying Lemma 8, it follows thatc is bounded by2O(N). ✷

We finally summarize the complexity results on difference bounds relations.
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Theorem 13. Letx = {x1, . . . , xN} be a set of variables. Given a difference bounds
relation R(x,x′), its period is bounded by2O(N) and its prefix is bounded by||R|| ·
2O(N).

Proof: Follows from Corollary 5 and Corollary 7. ✷

8.4. Octagonal Relations

Let R(x,x′) be an octagonal relation andR(y,y′) be its difference bounds rep-
resentation. Using the results on bounds on the prefix (Corollary 5) and the period
(Corollary 7) ofR(y,y′), we infer, using Lemma 12, the bounds on the prefix and
period of the relationsR(x,x′) itself.

Theorem 14. Letx = {x1, . . . , xN} be a set of variables. Given a relationR(x,x′) ∈

Roct, its period is bounded by2O(N) and its prefix is bounded by||R||2 · 2O(N).

Proof: LetR(y,y′) be the difference bounds representation ofR(x,x′) and letGR =
〈Q,∆, w〉 be the zigzag automaton ofR(y,y′). It follows immediately from Lemma
22 thatGR has prefixb = µ(GR) · ||Q||

6
= ||R|| · 512N and periodc = lcm(1, . . . , 2N).

Consequently, the prefix and period of{M∗
R

m}m≥0 and ofR are b and c as well,
respectively.

The prefix and the period ofR are defined as the prefix and period of the sequence
{σ(Rm)}m≥0, by Definition 4. By definition ofσ for octagonal relations given in
Section 7.5,{σ(Rm)}m≥0 = {M t

Rm
}m≥0. By Theorem 4,M t

Rm
= M t

R
m for all

m ≥ 0 and

(M t
Rm

)ij = min
{
(M∗

R
m)ij ,

⌊
(M∗

Rm )iı̄
2

⌋
+
⌊
(M∗

Rm )̄j
2

⌋}

for all m ≥ 0 and for all1 ≤ i, j ≤ 4N .
We next prove the asymptotic bound on period ofR. If R is ∗-consistent, its period

is twice the period ofR, by Lemma 12. Thus the period ofR is bounded byc =
2·lcm(1, . . . , 2N) and consequently, it is asymptotically bounded by2O(N), by Lemma
8. If R is not∗-consistent, its period is1 and the same asymptotic bound applies.

Next, we prove the asymptotic bound on the prefix of a∗-consistent octagonal
relationR. Let us define:

{sm}m≥0 =
{
(M∗

R
k)i,j

}
m≥0

{tm}m≥0 =
{⌊ (M∗

Rk )i,̄i

2

⌋
+

⌊ (M∗

Rk )j̄,j

2

⌋}
m≥0

By Lemma 12, the periodic sequence{tm}m≥0 has prefixb and periodc′ = 2c. The
sequence{sm}m≥0 has prefixb and periodc, but we can without loss of generality
assume that its period isc′ = 2c. By Lemma 12, the sequence{min(sm, tm)}m≥0 has
periodc and prefix defined asb′ = b+maxc−1

i=0 Kic
′ where

Ki =
⌈ sb+i−tb+i

λ
(t)
i −λ

(s)
i

⌉
if λ(s)

i < λ
(t)
i andtb+i < sb+i,

Ki =
⌈ tb+i−sb+i

λ
(s)
i −λ

(t)
i

⌉
if λ(t)

i < λ
(s)
i andsb+i < tb+i,

Ki = 0 otherwise.
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Observe that
sb ≥ −b · ||R||,
tb ≤ max{(M∗

R
b)i,̄i, (M

∗

R
b)j̄,j} ≤ b · ||R||.

Thus, ifλ(s)
i > λ

(t)
i andtb+i > sb+i, then

Ki =
⌈ tb+i−sb+i

λ
(s)
i −λ

(t)
i

⌉
≤ tb+i − sb+i ≤ 2 · b · ||R||.

Similarly, we infer thatKi ≤ 2 · b · ||R|| if λ
(s)
i < λ

(t)
i and tb+i < sb+i. Hence,

b′ = b+2 ·b · ||R|| ·c′ is the prefix of{min(sm, tm)}m≥0 and thus ofR. The asymptotic
bound||R||2 · 2O(N) on b′ follows.

Finally, we prove the asymptotic bound on the prefix ofR that is not∗-consistent.
Let b andc be the prefix and period of{M∗

R
m}m≥0 as inferred previously. By The-

orem 3, eitherM∗

R
ℓ is inconsistent or

⌊ (M∗

Rℓ )i,̄i

2

⌋
+

⌊ (M∗

Rℓ )ī,i

2

⌋
< 0 for someℓ ≥ 0,

1 ≤ i ≤ 4N . For the former case,ℓ (and thus the prefix ofR) is bounded by||R||·2O(N),
by Corollary 5. Now consider the latter case. Let us denote

{sm}m≥0 =
{⌊ (M∗

Rm )i,̄i
2

⌋
+
⌊ (M∗

Rm )ī,i
2

⌋}
m≥0

and letℓ ≥ 0 and1 ≤ i ≤ 4N be such thatsℓ < 0. If ℓ ≤ b, we immediately get the
required asymptotic bound. Ifℓ > b, then by Lemma 22, there exist path schemes in
the zigzag automatonσ1.λ

∗
1.σ

′
1 andσ2.λ

∗
2.σ

′
2 such that(M∗

R
ℓ)i,̄i = w(σ1.λ

b1
1 .σ′

1) for

someb1 ≥ 0 and(M∗

R
ℓ)ī,i = w(σ2.λ

b2
2 .σ′

2) for someb2 ≥ 0 and moreover, letting

c1 = c
|λ1|

andc2 = c
|λ2|

, the pathsσ1.λ
b1+kc1
1 .σ′

1 andσ2.λ
b2+kc2
2 .σ′

2 are minimal for
all k ≥ 0. By Lemma 12, the sequence{sm}m≥0 has prefixb and period2c. Moreover,
its rate isw(λc1

1 ) + w(λc2
2 ). Clearly,w(λc1

1 ) + w(λc2
2 ) < 0, since otherwisesℓ < 0

would not be possible. Observe that

sb ≤ max
{
(M∗

R
b)i,̄i, (M

∗

R
b)ī,i

}
≤ b · ||R||.

Then,

ℓ ≤ b · ||R||+

⌈
b·||R||

−
(
w(λ

c1
1 )+w(λ

c2
2 )

)
⌉
· c ≤ b · ||R|| · c.

Thus,ℓ and consequently the prefix ofR are asymptotically bounded by||R||2 · 2O(n).
✷

8.5. Finite Monoid Affine Relations

An affine relationR ∈ Z
N × Z

N is defined by a linear arithmetic constraint of the
form x′ = Ax + b whereA ∈ ZN×N is a square matrix, andb ∈ ZN is a column
vector. The relation is said to have the finite monoid property if the set{A0, A1, . . .}
of matrix powers ofA is finite. The cardinality of this set of called themonoid size of
R, and denoted by[R]. Finite monoid affine relations are periodic, and the prefixb and
periodc of a relationR are such thatb + c = [R]. In this section, we show that the
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monoid size of a finite monoid relation is bounded by2O(N log10 11), in other words, it
is simply exponential in the number of variables. The developments in this section are
closely related to decidability of the finite monoid property as mentioned in Theorem 5.

If R has the finite monoid property, then[R] is the smallest integerp from the above
theorem. This is because, due to the two conditions of Theorem 5, for everyk > 0, we
have thatAkp = Ap. Moreover, ifp is the minimal integer satisfying these conditions,
all powersA0, A1, . . . , Ap−1 are pairwise distinct.

In the rest of this section, we give an upper bound for the smallest integerp that
satisfies the conditions of Theorem 5. Notice first that everyeigenvalue ofAp is of the
form λp whereλ is an eigenvalue ofA. Since, by the first condition,λp is either zero
or one, the only non-zero roots of the characteristic polynomial of A must be roots of
the unity. But thenPA(x) is a product ofxk, for somek < N , and several cyclotomic
polynomials, call themFi1 , . . . , Fim . Clearly, the degrees of these polynomials are
smaller than the degree ofPA, which, in turn, is smaller or equal toN . Let i0 =
lcm(i1, . . . , im). Then every rootλ of PA has the propertyλi0 = 1, i.e. the first
condition from Theorem 5 is met forp = iℓ0, for any integerℓ > 0. Moreover, this
condition does not hold for any0 < q < i0, or iℓ0 < q < iℓ+1

0 , for all ℓ > 0. But then
the second condition of Theorem 5, if it holds for somep which is a multiple ofi0, it
must hold also forp = i0.

The only remaining question is how bigi1, . . . , im are. The idea is that we do
not need to consider cyclotomic polynomials of degree higher than the degree ofPA,
which is turn is at mostN . A tight bound on the degree of a cyclotomic polynomial is
given by the following theorem:

Theorem 15. For every two integersn > 0 andd ≥ 0, such thatn > 210
(

d
48

)log10 11
,

the degree ofFn(x) is higher thand.

Proof: See Theorem 8.46 in [9]. ✷

Since, by Theorem 15, we have0 < i1, . . . , im < 210
(
N
48

)log10 11
, it follows

by Lemma 8 thatlcm(i1, . . . , im), and implicitly, the minimal integerp satisfying
Theorem 5, is bounded by2O(N log10 11). This gives the bound on the size of the monoid
for R, which in turn equals the sumb + c between the prefix and the period ofR. In
conclusion, Algorithm 5 runs in time at most2O(N log10 11).

9. Experiments

In this section, we report on experiments we have performed in order to evaluate
our transitive closure and reachability analysis algorithms.

9.1. Transitive Closure Computation

We have implemented Algorithm 5 for difference bounds and octagonal relations
within the FLATA toolset [37]. We compared the performance of this algorithm with
existing transitive closure computation methods for difference bounds [15] and octag-
onal relations [11].
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Table 2 shows the results of the comparison between the olderalgorithms described
in [15, 11] (denoted asold) and Algorithm 5 for difference bounds relationsd1,...,6 and
octagonal relationso1,...,6. The tests have been performed on bothcompact(minimum
number of constraints) andcanonical(i.e. closed, for difference bounds and tightly
closed, for octagons) relations. Thespeedupcolumn gives the ratio between theold
andnewexecution times. The experiments were performed on a 2.53GHz machine
with 4GB of memory.

Table 2: A comparison with older algorithms on difference bounds and octagons.
Times are in milliseconds.

Relation new
compact canonical

old speedup old speedup

d0 (x− x′ = −1) ∧ (x = y′) 0.18 0.70 3.9 38.77 215.4
d1 (x− x′ = −1) ∧ (x′ = y′) 0.18 18.18 101.0 38.77 215.4
d2 (x− x′ = −1) ∧ (x = y′) ∧ (x− z′ ≤ 5) ∧ (z = z′) 1.20 26.50 22.1 33431.20 27859.3
d3 (x− x′ = −1) ∧ (x = y′) ∧ (x− z ≤ 5) ∧ (z = z′) 0.60 32.70 54.5 33505.50 55841.7
d4 (x− x′ = −1) ∧ (x = y) ∧ (x− z ≤ 5) ∧ (z = z′) 0.50 702.30 1404.6 48913.80 97827.6
d5 (a = c) ∧ (b = a′) ∧ (b = b′) ∧ (c = c′) 1.80 5556.60 3087.00 > 106 ∞

d6

(a− b′ ≤ −1) ∧ (a− e′ ≤ −2) ∧ (b− a′ ≤ −2)

5.6 > 106 ∞ > 106 ∞

∧(b− c′ ≤ −1) ∧ (c− b′ ≤ −2) ∧ (c− d′ ≤ −1)
∧(d− c′ ≤ −2) ∧ (d− e′ ≤ −1 ∧ e− a′ ≤ −1)
∧(e− d′ ≤ −2) ∧ (a′ − b ≤ 4) ∧ (a′ − c ≤ 3)
∧(b′−c ≤ 4 ∧ b′−d ≤ 3) ∧ (c′−d ≤ 4) ∧ (c′−e ≤ 3)
∧(d′−a ≤ 3 ∧ d′−e ≤ 4) ∧ (e′−a ≤ 4) ∧ (e′−b ≤ 3)

o1 (x+ x′ = 1) 0.21 0.91 4.3 0.91 4.3
o2 (x+ y′ ≤ −1) ∧ (−y − x′ ≤ −2) 0.29 0.85 2.9 0.84 2.9
o3 (x ≤ x′) ∧ (x+ y′ ≤ −1) ∧ (−y − x′ ≤ −2) 0.32 0.93 2.9 0.94 2.9
o4 (x+ y ≤ 5) ∧ (−x+ x′ ≤ −2) ∧ (−y + y′ ≤ −3) 0.21 3.67 17.5 13.52 64.4
o5 (x+ y ≤ 1) ∧ (−x ≤ 0) ∧ (−y ≤ 0) 1.20 20050.90 16709.1 > 106 ∞

o6

(x ≥ 0) ∧ (y ≥ 0) ∧ (x′ ≥ 0) ∧ (y′ ≥ 0)
2.5 > 106 ∞ > 106 ∞∧(x+ y ≤ 1) ∧ (x′ + y′ ≤ 1) ∧ (x− 1 ≤ x′)

∧(x′ ≤ x+ 1) ∧ (y − 1 ≤ y′) ∧ (y′ ≤ y + 1)

Table 3: Comparison with FAST (MONA plugin) on deterministic difference bounds.
Times are in seconds.ET : timeout 30 s,EB : BDD too large,EM : out of memory.

vars
FLATA FAST

done av.ET done av.ET EM EB

10 50 1.5 0 49 0.6 0 0 1
15 50 1.6 0 31 10.5 17 0 2
20 50 1.6 0 4 3.4 9 8 29
25 50 1.6 0 2 4.2 2 10 36
50 50 1.6 0 0 - 0 0 50
100 49 7.7 1 0 - 0 0 50

vars
FLATA FAST

done av.ET done av.ET EM EB

10 50 1.5 0 22 6.9 23 1 4
15 50 1.5 0 1 20.6 4 3 42
20 50 1.6 0 0 - 1 0 49
25 43 1.7 7 0 - 0 0 50
50 50 2.3 0 0 - 0 0 50
100 42 5.5 8 0 - 0 0 50

(a) – matrix density 3% (b) – matrix density 10%

As shown in Table 2, the maximum observed speedup is almost105 for difference
bounds (d4 in canonical form) and of the order of four for octagons. For the relations
d5 (canonical form),d6 ando6 the computation using older methods took longer than
106 msec. It is also worth noticing that the highest execution time with the new method
was of 2.5 msec.

Table 3 compares FLATA with the FAST tool [7] on counter systems with one
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self loop labeled with a randomly generated deterministic difference bounds relation.
We generated 50 such relations for each sizeN = 10, 15, 20, 25, 50, 100. Notice that
FAST usually runs out of memory for more than 25 variables, whereas FLATA can
handle 100 variables in reasonable time (less than 8 secondson average).

9.2. Reachability Analysis

We have implemented the reachability analysis based on acceleration and procedure
summaries, described in Section??, in the FLATA verifier [37]. We use algorithms that
are specific to subclasses of integer relations (e.g. difference bounds or octagonal re-
lations) for operations such as composition, satisfiability, and transitive closure. We
resort to an external SMT solver YICES [24] only for checking satisfiability of polyhe-
dra and modulo relations.

Table 4 compares the performance of FLATA with several other reachability analy-
sis tools based on different verification methodologies. The FAST verifier [7] is based
on acceleration of loops labeled with finite monoid affine relations. We have run FAST

with several available plugins for solving Presburger queries: MONA [40] (finite au-
tomata), Prestaf [23] (shared automata), and Omega [49] (quantifier elimination). Ta-
ble 4 reports on PresTaf which outperformed other plugins. The ELDARICA and ARMC

tools [37, 47] use predicate abstraction and interpolation-based abstraction refinement.
The ASPIC tool [30] uses widening-based abstract interpretation.

The benchmarks are all in the Numerical Transition Systems format8 (NTS). We
have considered six sets of examples, extracted automatically from different sources:
(a) C programs with arrays provided as examples of divergence in predicate abstraction
[39], (b) verification conditions for programs with arrays,expressed in the SIL logic
of [12] and translated to NTS, (c) small C programs with challenging loops, (d) NTS
extracted from programs with singly-linked lists by the L2CA tool [10], (e) C pro-
grams with asynchronous procedure calls translated into NTS using the approach of
[28] (the examples with extension .optim are obtained via anoptimized translation
method [27]), and (f) models extracted from VHDL models of circuits following the
method of [53]. Table 4 also reports on the size of NTS models,some of which have
multiple procedures:||x||, ||Q||, and||T || denote the total number of variables, the to-
tal number of control states, and the total number of transitions of all procedures of
the respective model. The platform used for experiments is Intel R© Core

TM
2 Duo CPU

P8700, 2.53GHz with 4GB of RAM.
Next, we briefly describe some of the benchmarks we considered and then comment

on the results of our experiments.

9.2.1. Benchmarks
One of the set of models we considered—denoted (f) in Table 4—istaken from [53]

where an approach for verification of generic VHDL circuit designs based on transla-
tion to counter automata is presented. Traditional verification techniques for hardware
systems usually assume that the state space of these systemsis finite. The approach

8http://richmodels.epfl.ch/ntscomp_ntslib
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Table 4: A comparison of reachability analysis tools. The letter after the model namedistin-
guishesCorrect models from models with a reachableError state. Items with “-”, “d”, and “x”
signify timeout of 300s, “don’t know” answer, and an unsupported class of models, respectively.

Model
Size Time [s]

||x|| ||Q|| ||T || FLATA ELDARICA FAST ARMC ASPIC

(a) Examples from [39]
anubhav (C) 29 20 25 0.8 3.0 49.2 2.6 0.2
copy1 (E) 39 21 24 2.0 7.2 14.5 44.0 d
cousot (C) 29 31 34 0.6 - 35.1 4.0 0.2
loop1 (E) 34 21 24 1.7 7.1 11.6 36.1 d
loop (E) 34 21 24 1.8 5.9 17.3 36.1 d
scan (E) 32 25 29 3.3 - 9.0 - d
string concat1 (E) 40 43 56 5.3 - - - d
string concat (E) 34 39 52 4.9 - - - d
string copy (E) 37 30 36 4.6 - 35.6 - d
substring1 (E) 45 49 61 0.6 9.4 - 0.8 d
substring (E) 33 33 41 2.1 3.3 - 0.4 d
(b) Verification conditions for array programs [12]
rotationvc.1 (C) 11 13 55 0.6 2.0 x 0.6 x
rotationvc.2 (C) 11 20 93 1.6 2.2 x 0.7 x
rotationvc.1 (E) 11 13 56 1.1 1.3 x 0.3 x
split vc.1 (C) 14 32 183 3.9 3.7 x 3.8 x
split vc.2 (C) 14 29 146 3.0 2.3 x 1.1 x
split vc.1 (E) 14 38 276 28.5 2.3 x 1.7 x
(c) Examples from [45]
gopan (C) 25 26 28 0.4 - 0.6 - d
rate limiter (C) 35 25 27 31.7 6.1 x 8.1 x
(d) Examples from L2CA [10]
bubblesort (E) 12 674 791 14.9 9.9 - 0.9 d
insdel (E) 7 28 31 0.1 1.3 1.2 0.1 d
insertsort (E) 13 130 169 2.0 4.2 - 0.3 d
listcounter (C) 4 31 35 0.3 - 14.2 2.3 0.1
listcounter (E) 6 31 34 0.3 1.4 - 0.1 d
listreversal (C) 7 97 107 4.5 3.0 - 47.9 0.1
listreversal (E) 10 99 107 0.8 2.7 - 0.3 d
mergesort (E) 11 544 606 1.2 7.7 - 0.7 d
selectionsort (E) 15 401 459 1.5 8.1 - 0.5 d
(e) Examples from [28]
h1 (E) 28 40 50 - 5.1 x 17.7 x
h1.optim (E) 19 38 39 0.8 2.9 x 0.7 x
h1h2 (E) 29 41 52 - 9.4 x 57.0 x
h1h2.optim (E) 20 39 41 1.1 3.3 x 3.4 x
simple (E) 28 40 50 - 6.4 x 17.2 x
simple.optim (E) 19 38 39 0.8 3.0 x 0.7 x
test0 (C) 28 41 52 - 23.0 x 58.9 x
test0.optim (C) 19 39 40 0.3 3.2 x 4.3 x
test0 (E) 27 39 48 - 5.4 x 17.4 x
test0.optim (E) 19 37 38 0.6 3.0 x 0.6 x
test1.optim (C) 24 58 62 0.9 4.7 x 23.1 x
test1.optim (E) 24 56 60 1.5 4.4 x 10.8 x
test21.optim (E) 22 50 55 1.6 5.2 x 6.0 x
test22.optim (E) 22 51 56 2.9 4.6 x 5.9 x
test2.optim (C) 37 55 78 6.4 27.2 x 93.5 x
wrpc.manual (C) 5 9 13 0.6 1.2 x 47.1 x
wrpc (E) 54 60 89 - 7.9 x 0.3 x
wrpc.optim (E) 34 49 55 - 5.1 x 1.4 x
(f) VHDL models from [53]
counter (C) 2 6 13 0.1 1.6 0.8 0.2 0.1
register (C) 2 10 49 0.2 1.1 0.5 0.2 0.1
synlifo (C) 3 43 1006 16.6 22.1 171.8 52.8 2.6
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presented in [53] aims at verification of parameterized VHDLcomponents with infi-
nite state space. The translation to counter automata described in [53] maps bit vari-
ables to control locations and integer variables to counters. Various safety properties
are encoded as bit variables whose values are equivalent to propositional logic formulae
representing the bad (unsafe) states. For instance, the SYNL IFO is a synchronous LIFO
component with push and pop operations, which implements signals empty and full.
The property checks if these signals are set correctly for a LIFO container of arbitrary
size.

Another set of examples—denoted (b) in Table 4—are counter automata gener-
ated from programs with singly-linked lists, using the approach described in [10]. The
main idea is that the set of heaps generated by a program with afinite number of local
variables can be represented by a finite number of shape graphs, and the (unbounded)
lengths of various list segments can be tracked by counters.The result of the translation
of a program with lists is a counter automaton whose transition semantics is in bisim-
ulation with the original program. For all singly-linked list programs, we check that
there are no null pointer dereferences. For instance, the LISTREVERSAL is a textbook
program that returns a list containing the same elements as the input list in the reversed
order. The reversal is done in place by changing the links between the cells instead of
creating a copy of the input list. Here, we also check that thelengths of the input list
equals the length of the output list.

A next set of counter automata models—denoted (d) in Table 4—are obtained from
the decision procedure of the array logic SIL (Singly Indexed Logic), described in
[32]. The decidability of the satisfiability problem for SILencodes the set of models of
a formula as the union of sets of traces of a set of flat counter automata with difference
bounds constraints, whose emptiness is known to be decidable, e.g., [19, 25]. Since
FLATA is guaranteed to terminate on flat models with periodic relations on loops, we
can use it as a solver for the SIL logic. We report on two SIL formulae which arise as
verification conditions for loop invariants of array manipulating programs. Thearray
rotationprogram rotates an array by one element to the left, and thearray splitprogram
splits an array to negative and non-negative parts.

The (f) benchmarks in Table 4 were generated from C programs with asynchronous
procedure calls. For instance,WRPC is a simplified asynchronous implementation of
windowed RPC, in which a client makesn asynchronous procedure calls in all, of
which at mostw ≤ n are pending at any time.

The (a) models include several tricky numerical puzzles as well well as programs
that manipulate C strings, e.g. programs creating copies orconcatenations of strings.
The translation scheme [29] generates models that detect out-of-bound errors.

9.2.2. Experimental Results
First, consider the tools FLATA and FAST which are both based on precise reach-

ability methods that use acceleration. Table 4 shows that FLATA significantly outper-
forms FAST on a vast majority of benchmarks. Note that we could not make acompar-
ison for (b) and (e) benchmarks since the FAST tool does not support transitions with
non-deterministic updates likex′ ≥ 2. The ASPIC tool manifests strengths and weak-
nesses of abstract interpretation: correctness of models can be usually verified quickly,
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however, absence of abstraction refinement often leads to “don’t know” answers for
models which have an error trace.

ELDARICA and ARMC are tools based on interpolation-based predicate abstraction
and it turns out that they successfully verify almost same models (the sole exception be-
ing COUSOTandLISTCOUNTERmodels). Comparing FLATA with ELDARICA (or with
ARMC), one can observe that the tools behave in a complementary way. In some cases
(examples (a)), the predicate abstraction method fails dueto an unbounded number of
loop unrollings required by refinement. In these cases, acceleration was capable to find
the needed invariant rather quickly. On the other hand (examples (e)), the acceleration
approach was unsuccessful in reducing loops with linear butnon-octagonal relations.
In these cases, the predicate abstraction found the needed Presburger invariants for
proving correctness and error traces for the erroneous examples.
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