Relational Analysis of Integer Programs”

Marius Bozg4, Radu losif, Filip KonetnyP

aVERIMAG, CNRS, 2 av. de Vignate, 3861@1@s, France
PFIT BUT, B&eichova 2, 61266, Brno, Czech Republic

Abstract

Verifying an integer program against safety requiremestgiires, in general, the com-
putation of an invariant of the program, needed to prove tmeachability of one
or several error states. Traditionally, such invarianes@mputed by handling finite
representations of potentially infinite sets of stateshagabstract domains, boolean
combination of predicates, etc. In this paper, we introduogethod of proving safety
properties, that track®lationsinstead of sets of states. As relations store, in general,
more information about the system’s behavior than readihabets, they prove to be a
useful tool in designingnodularverification techniques, in which each function of the
program is analysed separately, and its computed summahygged in at every call
site.

The key to computing accurate relations describing the \behaf a program is
inferring the transitive closures of the relations labglthe control loops of the pro-
gram. We describe an efficient algorithm for computing thensitive closures of
difference boundsoctagonaland finite monoid affine relations On the theoretical
side, this framework provides a common solution to the araébn problem, for all
these classes of relations. In practice, according to operaxents, the new method
performs up to four orders of magnitude better than existiogeleration algorithms,
making it a promising approach for the verification of integegrams. The transitive
closure algorithm has been implemented and integratecbiol &ar the interprocedural
analysis of integer programs.

Keywords: Reachability analysis, Integer programs, Procedure suramdransitive
closures, Periodic relations

1. Introduction

Integer programs (also known as counter automata, couyséerss, or counter
machines) are an infinite-state extension of the model défistatedboolean programs

UThis work is an extended version of a conference paper [1dljghed in Proceedings of CAV'10.

U This work was supported by the French national project AMRSEGI-016 VERIDYC, by the Barrande
programme (MEB021023), the Czech Science Foundation (pisoRt03/10/0306 and 102/09/H042), the
Czech Ministry of Education (projects COST OC10009 and MSM1530528), and the internal FIT BUT
grant FIT-S-10-1.

Preprint submitted to Theoretical Computer Science Septer20, 2012

a model which is extensively used in the area of softwarefigation [? 36]. The
interest for integer programs comes from the fact that tleyencode various classes
of systems with unbounded (or very large) data domains, sgdhardware circuits,
cache memories, or software systems with variables of monitive types, such as
integer arrays, pointers and/or recursive data structurbs comes with no surprise
since, in theory, any Turing-complete class of systems @asiimulated by integer
programs with two variables and increment, decrement anal t&st, as shown by
Minsky [44]. The reduction used in his proof is however toangdex to be used in
practice. For practical purposes, a number of recent waaks hevealed cost-effective
reductions of verification problems, for several classexaiplex systems, to decision
problems, phrased in terms on integer programs. Examplascbfsystems that can be
effectively verified by means of integer programs, inclusigecifications of hardware
components [53], programs with singly-linked lists [10, 28, 16], trees [33], and
integer arrays [34, 32, 12]. Hence the growing interest falysis tools working on
integer programs.

Given an integer program, a set of initial states, and a setrof states, theafety
problemasks whether the program has a computation starting inefstem the initial
set, which leads to a configuration from the error set. To anghis question, one
typically proceeds by evaluating the set of states reaehfibm the initial set, and
checking the emptiness of the intersection with the set frestates. This method
however lacks modularity, which is one of the keys to scéitghji.e., applicability
of such algorithms to large systems). Since larger programaisually organized in
many small functions, a modular verification approach aitmgraning one analysis per
function (in isolation), and combining the results in a fimatification condition. In
order to achieve this goal, one solution is to hardlationsbetween states, instead of
setsof states In this way, each function can be represented iethgon between the
input and output valuations of its parameters. The outcofreefonction at a certain
call site is thus the image of the set of states at that call @4 the function’s summary
relation. A relational domain seems to be therefore the kgyeidient to a modular
verification method.

For the purposes of program verification, we consider a domwfielations which
are definable in Presburger arithmetic. In general, comgadsvo relations reduces to
a quantifier elimination problem, in the underlying the@mwyd can be solved typically
in time polynomial in the sizes of the relations. Computir@nsitive closures, on
the other hand, is a much harder problem, and in general,otimeufa defining the
transitive closure of a linear relation falls outside then decidable fragments of
arithmetic. To this end, it is important to know for which s$&s of arithmetic relations
it is possible to compute the transitive closure preciselg fast. To the best of our
knowledge, the three main classes of integer relations ficwtransitive closures can
be computed effectively and precisely are: (1) differencenuls constraints [19, 15],
(2) octagons [43, 11], and (3) finite monoid affine transfaiores [9, 25]. For these
three classes, the transitive closures can be moreoveedéfifPresburger arithmetic

IHowever, these classes are not closed under transitivereshemselves. As we will show, defining
the transitive closure of a relation belonging to one of éheasses typically requires a combination of linear

The contributions of this paper are two-fold. First, we gavesemi-algorithmic
method for computing the summary relation of an integer g The algorithm
builds the relation incrementally, by eliminating contsthtes and composing incom-
ing with outgoing relations. The main difficulty here is tHarénation of states with
several self-loops, for the following reason. Eliminatagtate with several self-loops
requires computing the transitive closure of a disjunctisdation. Or, if we where
able to define the transitive closure of any disjunction dfiedénce bounds relations
in a decidable logic (such as Presburger arithmetic), wédcsnlve the reachability
problem of any 2-counter machine, a problem which is knowlbetaindecidable [44].
We address this issue by first computing the transitive céssaf the self-loops indi-
vidually, and then exploring all interleavings betweemthentil no new relations are
produced. Obviously, this exploration might not end, inethtase we can either use
an abstraction (overapproximation) domain to ensure teatitn, or stop the algorithm
at a certain depth, and yield an underapproximation of tlaetexansitive closure. The
first approach can be used to produce correctness certifjcatereas the second is
used to find errors in programs.

The main part of this paper is dedicated to presenting a gefrmework for
computing transitive closures of certain relations, chpjeriodic. We define a notion
of periodicity on classes of relations that can be natur@presented as matrices. In
general, a sequence of integers is said topeeiodicif the elements of the sequence
situated at equal distance one from another differ by theesgumantity. This definition
is generalized to matrices of integers, entry-wise. A i@faR is said to be periodic,
if it can be mapped into an integer matd{r, such that the sequen¢@/r:. }3° , of
the matrix representations of the powersifis periodic. For periodic relations, the
sequence of powers can be finitely represented, once thedpenid the rates of the
sequence are known. We study the three classes of arithrekdttions mentioned in
the previous and show that they are periodic. This providesise proofs to the fact
that the transitive closures for these classes can be igéfigctomputed, and that they
are Presburger definable, as initially proved in [19, 11 Fjally, we give EXPTIME
upper bounds for the complexity of computing transitivescies of relations belonging
to these classes.

Roadmap.

1.1. Related Work

Since the result of Minsky [44], proving Turing-completeseof 2-counter ma-
chines with increment, decrement and zero test, researteorerification of integer
programs has been pursued in two orthogonal directions. fif$teone is defining
subclasses of systems for which various decision problemfoand to be decidable.
Examples include Reversal-bounded Counter Machines, PB&Fi Nets and Vector
Addition Systems, [51], or Flat Counter Automata, [41]. it decidability of vari-
ous problems is proved by defining the set of reachable caafigns in a decidable

arithmetic and modulo constraints.

logic, such as Presburger arithmetic [48]. Such definitamestypically precise, i.e. no
information is lost by the use of over-approximation.

A closely related line of work consists in attempts to applgdél Checking [18,
50] techniques to the verification of infinite-state systeBigch techniques consider the
problem of accelerating transition relations by succesaivder-approximations. The
methods based on acceleration are not guaranteed to téemima@eneral. However,
for certain restricted classes of systems, one can prowertation of such verification
methods. These classes are typically equivalent, from astoal point of view, with
flat systems, in which the control loops are executed in a cepiaitial order [6].

For systems with integer variables, the acceleration ofaffelations has been
considered primarily in the works of Annichini et. al [4], Belot [9], and Finkel and
Leroux [25]. Finite monoid affine relations have been firatdgtd by Weber and Seidl
[? 1 and Boigelot [9], who shows that the finite monoid propedydecidable, and
that the transitive closure is definable in Presburger raetit, in this case. On what
concerns non-deterministic transition relations, défeze bounds constraints appear in
the context of the verification of systems modeled using dilmngtomata [1].

The transitive closure of a difference bounds constraishi@wvn to be Presburger
definable first by Comon and Jurski [19]. Their proof was sghsetly simplified and
extended to parametric difference bounds constraintsipyious work [15]. Sub-
sequently, we showed that octagonal relations can be aatsde and that the transitive
closure is also Presburger definable [11] in this case. Toefpof ultimate periodic-
ity from this paper are based on some of our previous reslfits][1]. For difference
bounds constraints, the proof from [15] was simplified usingesult from tropical
semiring theory [52].

Another, orthogonal, direction of work is concerned withdfilg sound (but not
necessarily complete) answers to the decision problemsioned above, in a cost-
effective way. Such approaches, based on the theory of &distiterpretation [21], use
abstract domains (such as e.g., polyhedra [22], octag@}sdtt.) and compute fixed
points of the transfer functions, which are overapproxioret of the sets of reachable
configurations. The drawback of the methods based solelybsiract Interpretation is
the inability to deal with false positives i.e., errors cadiy the use of a too coarse ab-
stract domain. Typically, in these cases, ruling out spugricounterexamples requires
a fair amount of human experience.

The method of Predicate Abstraction [31] combines idea® fAdostract Interpre-
tation and Model Checking in order to compute program imras in a goal-driven
fashion, namely by applying refinement techniques (suchraig thterpolation P]) to
rule out spurious counterexamples. This technique is aisavk as Counter Example-
based Abstraction Refinement (CEGAR) [17]. On one handjnguttdge CEGAR
tools, such as e.g. ARMC [47], BLAST [36] or CPA [8], appeabtoquite effective in
finding bugs and certifying correctness of real-life systédevice drivers, web servers,
operating system kernels). On the other hand, goal-drigarch is not easily amenable
to cope with modular verification, since the reason for spusiy reaching an error state
might reside in the over-approximation of the behavior afiaction call. Since the er-
ror location is typically not part of that function, it is wEly hard to trace the relation
between the cause and effect, in order to refine the abstnactithe right way. A
method that attempts to apply predicate abstraction torang composed of (possi-

bly recursive) functions is the method wésted interpolantf35]. This method lacks
however modularity, as it represents the entire progranssissted word automata [3]
i.e., computation models which are equivalent to the visfnlshdown automata [2].

Our work focuses on modular program verification, by atténgptio compute func-
tion summaries, without regard to the calling context. Or eite, unlike the tech-
nigues based on Abstract Intepretation, we aim at compudiagise summary rela-
tions, that should not require refinement. On the other side,method, although
modular, is computationally more expensive than the afriven search of predicate
abstraction, mostly due to the lack of abstraction (and eefient) in our method. A
future combination of these two (apparently antithetieglproaches to program veri-
fication seems to be the key to a wider application of progranfigation in real-life
software development. The idea of using relations as a dowfgdrogram analysis
has been also exploited in [46], although with the goal of/jjmg program termination,
rather than safety, which is the purpose of the present paper

2. Motivating Example

We start with an example of an integer program for which we@safety (unreach-
ability of the error state) by computing the relation betw#ge values of its variables
at the initial and final control locations. For simplicityasons, we consider that a
program is represented bycantrol flow graph whose vertices are control locations,
and whose edges are labeled with conjunctions of (in)etipglietween linear terms.
Intuitivelly, given an edge of the control flow graph, whighabeled with a statement,
an unprimed variable name represents the value of the la@lihe source location,
while a primed variable name tracks the value of the variabléne destination loca-
tion. Consider, for instance, the program in Figure 1a aecttntrol flow graph of the
f un function, in Figure 1b and 1c.

The function defined in Figure 1a takes two integer pararaeted returns an in-
teger result. The goal of the analysis is to prove that thertiea at line 9 holds,
whenever the control reaches it. A non-modular method wyilidally iterate the loop
at lines 8 and 9 and analyse the behavior offtha function for each different valua-
tion of the formal parameterss andm Our method instead will first infer the transfer
relation for the function, and then will use this relatiorproving all assertions correct
at once.

This method is similar to the classical conversion of finitomata into regular
expressions. We proceed by eliminating the control states the control flow graph
of thef un function (Figure 1b), and recording the result of these iglations on the
remaining edges. We start by first eliminating the statebiawuit self-loops. Each
elimination requires composing all incoming with all ouitggp edge relations — the
edges labeled by inconsistent relations are not added, wieseliminatel; andly, in
Figure 2a, followed bys andis, in Figure 2b. Next, we eliminatlg, which causes, to
have two self-loops, labeled by the relatidRs < = < nAz < mAz' =x+ 1Ay =
y+ 1 (the leftloop in Figure 2c) an@; < 2 <nAxz >mAz =z +1Ay =y—1
(the right loop in Figure 2c).

At this point, we need to eliminate a control locatidp) (vith two self-loops. This
step requires the computation of the transitive closurdeflisjunctive relation corre-

int fun(int x, int m {
10: int y =x, n=2xmx;
11 : while (x <n) {

12 : if (x <m {

13 : X ++;

14

b (b)
void main() {
18: for (int i =0; i < 100; i +4) r=i,i<100,
19: assert(fun(i, 100-i) ==1i); i =i+l
}
r’ =fun(i, 100-i)
(@) (c)

Figure 1: Example of an integer program and its control floapgr

sponding to iterating these loops in any possible orderehmegal, this computation is
not bound to yield a result that can be expressed in linetlmaeitic (or, for that matter,
in any decidable subfragment of first-order arithmetic)néte our method consists of
a semi-algorithm.

We first compute transitive closures of the conjunctivetiets R, and R (Fig-
ure 2e). Then we systematically explore all possible iatarings ofR; and R}, by
building a tree (breadth-first) whose edges are labeledthéttransitive closures dt;
andR;, and each node corresponds to the composition of the tiansiosures on the
path from the root (labeled with the identity relati@hto the node. Before expanding
the tree, the algorithm checks whether the new relatiortliee(i) inconsistent or (ii)
included in the union of the relations labeling the existiugles. If this test succeeds,
the algorithm backtracks, otherwise it adds the new nodbddree. If the transitive
closure(R; V Rp)™ is equivalent to a finite number of interleavings, this counsfon
will terminate, otherwise not. For this example, in Figudg the tree construction ends
after three iterations, with the resul®; v R,)™ = R vV RJ vV R o R}, see Figure
2e. This is because the compositi®j o R is inconsistent. Next, the locatidn
is split into !} and!/ (this time, both locations have no self-loops), and theesfaur
edges betweelf andi/, labelled withZ, R, Ry and R o RJ, see Figure 2f. We
further eliminate the locatiori$ andl{, see Figure 2g. Finally we eliminate variables
not appearing in the signature of the function and obtaintittwesfer relation of the
funfunction:(z >mAy =z)V(e<mAy =2z)=(y =x).

This relation is now used to check the validity of the aseertit line 9, in Figure
1la. Since the call tbun on line 9 can be replaced by the summary relation computed
above, we can represent thai n function by a control flow graph, and apply the
state elimination method in order to establish that therestate (corresponding to a

(d)

RT "=mAn =nAz >SzAz’ —z=y —yAz' <mArz' <n

= m =
R2+ = m'=mAn =nAz>mAz >zAr —z=y—y' Az’ <n
R1+0R2Jr = m’:m/\n:n/\'p <nAz <2n+y z—y ANz’ —x >y —y+2A
-z >y—y +2Az'+x <y—y' +2m Az +x > y—y' +2m A 2|(z' —x+y +y)
(e)
z>mAy =a' =zAm/ =m
(o— = =@
z<mAy =zxA
2/ =n' =2m —zAm' =m
®)
r=i,i<100,
|—|+l f
I—O I"I i=0 i <100
ET’I‘
Cor—=()%
r=i
(h) (i)

Figure 2: Deciding Safety by Elimination of Control Locat®

violation of the assertion) is unreachable. First, we stuistthe the call arguments and
return values to the transfer function, see Figure 2h. Therelminate control state

’I”—’L

I5. Since the composition of the transitiolgs— I;, andi; 7 erris unsatisfiable,

the error state is unreachable (Figure 2i). We can now cdeclhat the program is
safe with respect to the assertion at line 9.

3. Preliminary Definitions

We denote byZ, N and N, the sets of integers, positive (including zero) and
strictly positive integers, respectively. We denoteZby andZ_ , the setZ U {oo}
andZ U {—oo}, respectivelly. In the rest of this paper we will fix the setvafi-
ablesx = {z1,x2,...,zN}, for someN > 0. The set ofprimedvariables isx’ =
{z}, 2}, ..., 2%y }. These variables are assumed to be ranging Ayvanless otherwise

specified. For a sef € Z of integers, we denote hyiax S the largest integem € S,
if one exists. Byup S we denote the smallest value € Z, such thats < m, for all
ses.

A linear termt over a set of variables ir is a linear combination of the foray, +
S, a;xi, whereag, ai, ..., a, € Z. Anatomic propositioris a predicate of the form
eithert < 0, ort =. 0, wheret is a linear term¢ € N, is a strictly positive integer,
and=. is the equivalence relation moduto Presburger arithmetids the first-order
logic over propositions < 0; Presburger arithmetic has quantifier elimination and is
decidable [48]. For simplicity we consider only formulasRresburger arithmetic in
this paper.

For a first-order logical formula, let F'V(y) denote the set of its free variables.
By writing ¢(x) we imply that FV(¢) C x. For a formulap(x), we denote by
plt1/x1, ..., tn/zy] the formula obtained fromp by syntactically replacing each free
occurrence of, ..., zy with the termst, .. ., ty, respectively. We denote b? =
(y1,- .-, yx) an ordered sequence of variables. We denoﬂ@ﬁw k the length ofy.
By Yy = 7, where|y| = | Z| = k, we denote the formulA”_, yx = z. If x is a set
of variables, we writéy’ C x if all elements ofy are inx.

A valuationof x is a functionv : x — Z. The set of all such valuations is denoted
by 7*. If ¥ = (y1,-..,yk) is an ordered sequence of variables, we denote(@)
the sequence of integets(y1),...,v(yx)). If v € Z*, we denote by = ¢ the
fact that the formula obtained fromby replacing each occurrenceofwith v(z;) is
valid. Similarly, an arithmetic formuld&(x, x’) defining a relation? C ZV x Z" is
evaluated with respect to two valuationsandv,. The satisfaction relation is denoted
(v1,12) E R. By = ¢ we denote the fact that is valid i.e., logically equivalent to
true. We say that an arithmetic formulgx) is consistenif there exists a valuation
v such thatr = ¢. We use the symbols>, < to denote logical implication and
equivalence, respectively. The consistency of a formukusually denoted by writing
p <& false.

The composition of two relationB;, R, € ZV x Z" is denoted byR; o Ry =
{(u,v) € ZN xZN | 3t € ZV . (u,t) € Ry and(t,v) € Ra}. Letey be the identity
relation{(u,u) | u € ZV}. For any relationk € ZV x ZV, we defineR’ = ey
andR’ = R'"! o R, for anyi > 0. With these notations?* = | J;=, R’ denotes the
transitive closureof R, andR* = R* U e denotes thereflexive and transitive closure
of R. The pre- and post-images of a setC ZV via a relationR C ZN x ZV are
defined apre(S,R) = {u € ZV | Iv € S . (u,v) € R} andpost(S,R) = {v €
ZN | Ju € S . (u,v) € R}. Theweakest pre-imags the dual of the pre-image
pre(S,R) = {u e ZV |Vv. (u,v) € R = v € S}. We sometimes denote relations
by their defining logical formulae.

An idempotent semirings a set(S, +,-,0,1) equipped with two operations, the
addition+ and the multiplication, such thatS, +, 0) is an idempotent (i.eg+p = p
for all p € §) commutative monoid with neutral elemehtand (S, -, 1) is a monoid
with neutral elemeni. Moreover, multiplication distributes both left and righter
additonand -r=r-0=0,forallr € S.

4. Modular Safety Analysis of Integer Programs

In this section we describe a modular verification technifquenteger programs
consisting of collections of procedures with integer paeters, that call each other.
Our method is able to analyze a function in isolation, ineeemtly of its calling con-
text, and infer a summary relation, between the input anguiwtalues of its param-
eters. On the downside, recursive call schemes are cuyrigeybnd the reach of our
technique, being considered as subject of future research.

In the rest of this section, we simplify the form of integeograms, without loss
of generality, in several ways. First, we consider that #mantics of all statements
of the program are relations that can be encoded in Prestarigiemetic. The idea is
that a program statement which applies multiplication to different variables can be
simulated by a program using only Presburger definablerstattf. Second, we as-
sume that each statement can be encoded using a quanééeseinjunction of atomic
propositions — disjunctive relations can be representatyutifferent transitions be-
tween the same source and destination control locatiorallizive assume that the
transitive closure of each conjunctive relation corresjdog to a cycle in the program
is Presburger definable. As we show in the next section, #ssraption holds for
certain classes of relations, callperiodic. Since each statement on a loop can be sim-
ulated using only increment, decrement and zero test, ameaver, these relations are
all periodic, as it will be shown next, the assumption on thmputability of transitive
closures of cycles loses no generality.

4.1. Syntax

We define integer programs as collections of procedures.bateat from specific
programming language constructs and assume that eachdprecis a control flow
graph whose edges are labeled by Presburger arithmetiorsla In addition, cer-
tain edges correspond to calls between procedures, anéatameters and results are
passed on by values. Formally, emeger programis a tupleP = (x,,{P1,..., P.},
P,,) wherex, areglobalvariables,P;, ..., P, areproceduresP,, is themainproce-
dure, for somen = 1,...,n, and each procedure is a tughe = (x;, ?ﬁ”, Yf“t, Qi
90,i, 4,55 Ge,is DNi), Where:

e x; are thdocal variables ofP;. We require thak; Nx, = () and thatx; Nx,; = ()
for all indicesi # j, i.e. the global variables are the only variables sharedy a
two procedures.

e Xin C x;andX 9" C x; are theinput andoutputvariables ofP;. Intuitively,
input variables are used to pass the arguments, and outpaibies are used to
retrieve the resulting values from a procedure.

e (); are thecontrol statesof P;. We require that the sets of control states are
pairwise disjoint, i.eQ); N Q; = 0, for all i # ;.

2In fact, only increment, decrement and zero test are sufficient

e A, is a set oftransition rulesof the form, either:

R(xiuxg,ngJx;) ;s . .- ’

1. ¢ —————— ¢’ is aninternal transition whereq, ¢’ € Q; are the
source and destination state, aitk; Ux,, x; Ux;) is a Presburger arith-
metic relation

?':callj(?) ;- L. ’
q —— ¢’ is acall transition, wheregq, ¢’ € @, are the source and
destination_c):ontrol states, respectivgly: 1...nis the index of the callee
procedure,t is a sequence of linear terms ov%ru x;, calledparameters
andZ - xg U x; is a sequence of variables, calledurn variables We
require that t | = |X| and|Z| = [X9*, i.e. the numbers of param-
eters and return varlables of the call transition match timabers of input
and output variables of the callee, respectively.

® 40,9t e, € Q; are thenitial, final anderror control states of;. We require
that these states are pairwise disjoint, thathas no incoming transition rules,
and thaiyy ; andg. ; have no outgoing transition rules.

For a progran® = (P, ..., P,,) thecall graphof P, denoted”G(P) = (P, =),
is a graph whose vertices are procedures, and ellges P; represent calls oP; to
P;. The programP is said to berecursiveif and only if CG(P) has cycles. In this
thesis, we proceed under the assumption that the consigesgchm is not recursive.

4.2. Semantics

A configurationof a procedureP; = (x;, X", X% Qy, o.i> qf.ir Ge.is Ai) IS
a pair (¢,v), whereqg € Q; is a control state and : x; Ux, — Z is a valuation
of the variables visible irP;. For each procedur®;, we define the set of valuations
of variables visible inP; asV; = Z*iY*s. Next, we define predicates McHCALL
and MATCHCALL ReT which are later used to define compatibility of valuationeadk
(return) sites with initial (final) valuations of called medures.

o
MATCHCALL (g 7' =cally () g €A, veV, eV =
A v(x) = (z)forallz € x4 (values of global variables match)
v((t),) = ((Ri"),) forall 1 <k < [€| (input values match)
’*ca ’_> €
MATCHCALL RET(¢q M ¢ € Aj,v, v €V v,v0 €V)) dzf
Z'=call; (?) ,
MATCHCALL (g q,v,v1)
AL V(x) =w(z)forallz € x, (values of global variables match)
V(7)) = 1 ((X9™),,)for alll1 <k <|Z| (output values match)
v(z) =v'(z)forallx € x; \ (frame rule)

Informally, MATCHCALL evaluates to true if a valuatiaonat a call site of a procedure
P; is compatible with a valuatiow; of a called proceduré®;. MATCHCALLRET

10

moreover requires that a valuatiohat a return site of a procedufe is compatible
with a valuationv, of a called procedur®; and that the frame rule is respected.

For each procedur®; = (x;, ?ﬁ", ?g’uf, Qi, G0,i» q1,i5 Qe,is Ai), We define the set
of summaries compatible witl; asS; = {5; : Q; x Q; — V; x V;}. Intuitively,
a summaryS; of a procedure’; maps each pair of control stateg ¢’) € Q; x Q; to
arelationS; (¢, ¢') € V; x V; between valuations ipandq’ that are feasible by an exe-
cution of P; that starts iy and ends i’. For a progranP = (xg, {Pi,..., P}, Pn),
the set of summaries compatible withis defined ass = S; x ... x S,.

Given two configurationgq, vy and(¢’,v’) of a procedureP;, the configuration
(¢’, V') is said to be aimmediate successaof (g, v), with respect to a program sum-
mary S = (S1,...,5,) € S, ifand only if either:

o ¢ ¢ e andy,V ER (internal action)

Z=call; (T Z=call; (T
o g 2= e A, and MATCHCALL RET(q —— 0 0/ 0/ o, 1)

for some(v1,v2) € S;(qo.5,45,5) (successful call)

Z=call; (Y
o ¢ =g q ¢" € A; and MATCHCALLRET(q ——18)y o

v,V 11, 1v5) for someg” € Q; and for som&wvy, v2) € S;(qo,5, Ge,;)

Z =call; (?)
EEEE——

(erroneous call)

A run of lengthk of a procedureP; from ¢ to ¢/, under a program summasy e S, is
a finite sequencéyo, o) — {(q1,v1) — ... — (q&, Vk), Such thaty = qo, ¢’ = ¢x, and
(gi+1, vi+1) is an immediate successor @f, v;) with respect toS, forall0 < i < k.

The summary of a procedur®; under a program summaty € S is a mapping
[P]s € S; defined for eacly, ¢’ € Q; as

[Pls(a.q) < {(w,v)) | (q,v)—...—(¢',v/) is arun ofP; of lengthk > 1 underS’}

The summary of a prograr®, denoted by[P], is defined as the least fixpoint of

the function
S - S

SeS = ([Plg,--.,[Pls)

We denote the components of the program sumnfi&lyas[P] = ([Pi],-- -, [Pxn])-
Intuitively, [P;] represents the reachability relation between two arlyitantrol states
of P; in a finite and non-zero number of steps.

Further, we writd P}’ = ([P.]7,...,[P.]’), where[P,]’ = [P:](q0,i-q7,:), to
denote only the summaries from the initial to the final corgtate. Further, we define
thefinal state summargts[[P]]gc = ([[Pl]]§7 ey [Pn]]g) where

2, < 3ux)\ (Rinux L [R]

11

Intuitively, [[P]]§ is computed fron{P]’ by eliminating variables that are not in the
signature ofP;. Similarly, we defind/P]® = ([P1]%,...,[P.]°) and theerror state

summan[P]S = ([P]S, ..., [P.]S), where[P]¢ = = [P:](qo.:, qe.:) @and

def

[PlE = 3xux)\ (XiruX™) . [P]°

4.3. Computing Program Summaries

As we deal only with non-recursive programs in this papeg, ¢hll graph of a
programP = (x4, {P,...,P,}, Py), denotedCG(P) is a dag, and therefore one
can choose a topological ordering of the procedurgs..., P; , such that for all
1 <k < ¥ < n, there is no path fron®;, to P,, in CG(P).

Algorithm 1 computes Presburger formulae defining the sunemaf the proce-
dures, in the given topological order, starting with thegaidures that do not have calls
to other procedures. Since the program is not recursivefixpeint [P] is reached
in at mostn steps because each procedure needs to be evaluated onlyOmethe
summary of a procedure is computed, it is used to replaceathéransitions involv-
ing that procedure in every procedure which is higher in tological order w.r.t.

Algorithm 1 Program Summary Algorithm

input a progran® = (x4, { P, ,..., P, }, P) ordered w.rtCG(P)
output a summary([[73]]5, [P1S) of the program

1: function PROGRAMSUMMARY (P = (x4,{P;,,..., P;, }, Pm))

2. ([PIL,IPIS) + (0,...,0),(0,....0))

3 fork=1,...,ndo

4 ([P,)5, [P,]5) + PROCSUMMARY (P, [P1, [P]5)

5: if V¢ is satisfiableghen

6: report “program is unsafe”

input a procedure® = (x, X", X, Q, q0, 7, ¢e, A), and
a program summar§[P]?, [P]%)
output a summary of? w.r.t. (Vy, V)

1: function PROCSUMMARY (P, (V¢, V))

2 =call; (T
2: for eachg Hi(*) q € Ado
3: Rj < PLUGSUMMARY (i, j, [[P]]a,? Z')
4: R. + PLUGSUMMARY (i, j, [Pi]S, t, Z")
?’:callj(?) , 3 ’ Re
5: A<—(A\{q q})U{q—>q,q—>qe}

6: return PROCSUMMARY NOCALLS (P)

function PLUGSUMMARY (i, /, R, t, Z")

retun R[(€)u/ (X)), _, m[(?) SR Mz

L

12

Algorithm 2 Procedure Summary Algorithm
input a procedure® = (x, X, X Q, g0, qs, ge, A) without call transitions
output The summary relation§ P, [P]5)
1: function PROCSUMMARY NOCALLS(P)

2 changed— true

3 while changedio

4: changed— false

5 foreachq € Q \ {qo, ¢y, ¢} With self-loopsg EizN q,...,q B, g do
6 T < DISJTRANSITIVECLOSURE Ry, ..., Ry)

7 for each ¢; P, g andqg <, g2 such thay; # ¢, g2 # g do

8: it Vg &5 o € A. PoT oQ # R then

9: AeAU{qlwqg}

10: changed— true

11: Q<+ Q\{¢}

12: A+ A\({q RN q,...,q B, qtU{q £, q,q EAN q"1d.q" €Q})

13 return (PROJECTV{R | qo Ly 451, PROJECTV{R | ¢; qc}))

=

: function PROJECT(R)
return 3(x; Ux)) \ (X" U X" R

N

CG(P) (function RROCSUMMARY , lines 3 and 4). Additionally, the algorithm checks
for error traces by also computing the error summary of eacbguure and checking
the resulting formula for satisfiability. The problem is shieduced to computing the
summary of a procedure without call transitions.

Algorithm 2 implements the functionf®cSUMMARY NOCALLS, used to generate
the (error) summary of a procedure without call transitiofise idea of this algorithm
is to eliminate control states which are neither initiatperor final, while introducing
new transitions labeled with compositions of relationsigetn the remaining states.
We iterate the following until no more states can be elingdat~or each control state
with (possibly zero) self-loops labeled with relatiaRs, . . . , Ry, we compute the tran-
sitive closurel’ = (R; V ...V Ry)*. By convention, ifc = 0, thenT is the identity

relation. Then we compose the relation of each incomingsttiam ¢, EiN q with T and

with the relation of each outgoing transitiqn& g2 and replace the pair of incoming

and outgoing transitions with the transitiqp% g2, Which avoids;. Finally, we

eliminateq and all transitions involving it from the procedure. For aample of a run
of this algorithm, the reader may refer to Figure 2 (a), (b), (f), and (9).

The termination of Algorithm 2 is clearly determined by tlgniination of the
transitive closure computation functionTRANSITIVECLOSURESINce at each iter-

13

ation of the main loop, the boolean variableanged is set to true only if at least one
control state is eliminated. Since the set of control stiatésite, this implies the termi-
nation of the main loop provided that the semi-algorithms D RANSITIVECLOSURE
terminates.

4.4, Computing Transitive Closures of Disjunctive Relations

In this section, we present a semi-algorithm for computiaggitive closures of
disjunctive relations. Given a (possibly empty) set of Bueger definable relations
{R1, ..., Ry}, Algorithm 3, if it terminates, returns the reflexive andniéive clo-
sure of the disjunctive relatioR = R; V...V R;. We assume in the following that
the transitive closurér;” of each relation in the set is Presburger definable. The algo-
rithm enumerates all unrollings of the relatioRs, . . . , R, and computes increasingly
larger underapproximations dt*. If two successive such underapproximations are
equivalent, the algorithm terminates and returns the peetcansitive closure.

More precisely, Algorithm 3 builds breadth-first a tree stane in which each edge
corresponds to a relatiaR;, and each node corresponds to the composition of the tran-
sitive closures of all relations along the path from the rmoitself. The algorithm
backtracks either when the composition becomes unsatisfiabwhen it is included
in the union of the relations corresponding to the nodes lwhave been already con-
structed (i.e. if the test on line 7 fails). As an optimizatid a nodeN is obtained from
its parent by composing it with the transitive cIost;é, it is not necessary to add the
child corresponding t®&; to IV since this child would be automatically subsumed\by
(line 9). The result of the algorithm is the disjunction dfralations corresponding to
nodes in the tree (line 11). For an example of a terminatiegeton of this algorithm,
the reader may refer to Figure 2 (d) and (e).

Algorithm 3 Reflexive and Transitive Closure of Disjunctive Relations

input a set of relation$ = {Ry,..., R}
output The reflexive and transitive closuf&; Vv ...V Ry)*
Queue, Tree <+ ()
1: function DISJTRANSITIVECLOSURKEYS)
if S'= 0 then
return Id
Queue.add(Id, 1)
while |Queue.empty() do
(N, P) < Queue.remove()
if IV is satisfiable an&v 4 \/ T'ree then
Tree < Tree U{N}
for each R € S such thatR # P do
Queue.add(N o RT, R)

return \/ T'ree

=
= Q

Theorem 1. LetS = {R;y,..., Ri} be the input to the Algorithm 3. If the algorithm
terminates, then the output (£, V...V Ry)*.

14

Proof. The reflexive and transitive closure of a relatitn= R; V ... V R}, is the
limit of the increasing sequence defined By = L, andS;11 = S; V (S; o R),

i.e. R* = \/;2, 5. LetT,, Ty, T ... be the sequence of trees, as generated by the
algorithm. Clearlyly; C Ty C T, C ..., since the algorithm only adds new nodes, but
never erases existing nodes. We will show that:

1. for eachi > 0, there existg > 0, such thatS; = \/ T}
2. \/T; = R*forallj >0

If the algorithm terminates, the sequerite 71, T, . . . has a maximal elemefit, and
since, by (1), for alk > 0, S; = \/T, we have thatR* = \/T, and therefore
VT = R*, by (2).

To show (1), lets’ = R;, o...o R;, be a maximal satisfiable sequence of com-
positions, in some iteratiof; of the sequence leading ®*. We will exhibit a tree
T~ produced by the algorithm, such that = \/T%. SinceS; has finitely many
compositions?, and since thdT;};>(sequence is strictly increasing, it is enough to
takeT; as the maximal treg€y in the sequence.

Letiy,,...,ix, be the subsequencedf,...,i; obtained by replacing each (stut-
tering) block of consisting of repetitions of the same lelatR;, by R;,. Since
R;, o...o R, is satisfiable, therR o ... o R is satisfiable as well. Notice that
every prefix of this sequence is satlsﬁable Re‘t o...oR; be the maximal prefix of

'S for which there exists some trég, which contams the relat|on corresponding to this
pref|x at the tree positiofy - . .. - i,,. CIearIyRZ ...0 Rj = \/ T;. To find the tree
which subsumes the entire sequence, we iterate the fokpionh = m + 1,...,¢

o if RZ o...0 th # \/ Ty, letQ be the smallest prefix-closed subset of positions
in T, which subsume®; o ...o R}

1h—1"

e let T’ be the tree obtained froffi, by adding to each maximal positigrin @, a
node(p - in, Te(p) o R}), only if Ty(p) o R} # \/ Ty.

e let T, be the next tree in the sequence which contdihs

To prove (2), observe that the summary corresponding to eatthin in some tre&;
generated by the algorithm is subsumediy hence\/, ., T; = R*. a

As previously mentioned, Algorithm 1 computing a programmsuary terminates
for non-recursive programs provided that each call to th®/DRANSITIVECLOSURE
function terminates. In general, this is, however, not ttue to the undecidability of
the safety problem for integer programs [44].

4.4.1. Over- and Underapproximations of Transitive Closures

Termination of the disjunctive closure algorithm can be asgd in two ways, de-
pending on the goal of the analysis. If the goal is provingeuness of the sys-
tem, i.e. unreachability of the error states, one may rasodverapproximation of
the disjunctive loop relation®; Vv ... vV R, by a single, weaker, relatioR? (i.e.
R, V...V R, = RY) whose reflexive and transitive closure is Presburger dana
and can be computed by our methods. If unreachability of esteges in the program
can be proved using the overapproximation instead of trginaii relation, then this

15

constitutes a valid correctness proof, since every tratlesodriginal program is a trace
of the abstract program.

To this end, Algorithm 3 can be modified into Algorithm 4, wiiguarantees ter-
mination, at the expense of giving up precision. The crux lgfofithm 4 is that the
expansion of a tree node situated at a depth beyond a cdmtaghbld is done by com-

position with R#™ (line 14), instead of;" for somei = 1,...,k as in the case of
nodes below the threshold (line 11). SinBg v ...V R, = R, then for any se-
quenceiy, ... i, € {1,...,k}, the relationR; o ... o R/ is subsumed byt ™.

This prevents future descendants of nodes above the thoestze added to the queue
(the test on line 7 will fail for them), causing terminatiohtbe main loop. The re-

turned value in this case is an overapproximation of thexiefeand transitive closure
(Rl V... \/Rk-)*.

Algorithm 4 Abstract Reflexive and Transitive Closure of Disjunctivdd®ens

input a set of relation$ = { Ry, ..., Ry}
output a relationRk such thai{ Ry V...V R)* = R
Queue, Tree < ()

1: function ABSTRANSITIVECLOSURHS)

2: if S =0then

3 return Id

4 Queue.add(Id, L,0)

5: while !|Queue.empty() do

6: (N, P,depth) <+ Queue.remove()

7: if NV is satisfiable and&v % \/ T'ree then

8: Tree < Tree U{N}

9: if depth < Threshold then
10: for each R € S such thatkR # P do
11 Queue.add(N o R, R, depth + 1)
12: else
13: R* < ABSTRACTDISJIRELATION(SS)
14: Queue.add(N o Rﬁ, R, depth + 1)
15: return \/ Tree

On the other hand, if the goal of the analysis is to find ermthé program, the dis-
junctive closure algorithm can be stopped after a given rarmabsteps, the result being
an underapproximation of the transitive closure, i.e. atieh R’ = (R1V...VRp)*.
Even if they cannot be used to certify correctness of systemderapproximations
play an important role in finding errors within complex sysgesince every error trace
found using underapproximations is a valid error trace efgiogram.

A direct consequence of the proof of Theorem 1 is that theidejon of the nodes
in each tree built by the BJTRANSITIVECLOSURE function is an underapproxima-
tion of the transitive closure. Thus the algorithm can besta if, e.g., the number
of nodes reaches a predefined threshold, and the resulterdlirblation stronger than
(Ry V...V Rg)*. This relation can be used in Algorithm 2 to underapproxarthe

16

summary of a procedure and thus the summary of a progransufficient, the under-
approximation can be improved by letting thesDT RANSITIVECLOSURE algorithm
run longer.

5. Computing Transitive Closures of Periodic Relations

In this section, we present a general framework for computinsed formsand
transitive closuresf certain relations, callederiodic. The closed form of a relation
R(x,x’) is arelationR(k, x,x") where substituting the parametewith an integermn
gives a relation equivalent t8™ for eachm > 0. Once the closed form is computed,
the transitive closure aR can be defined ask > 1. R(k, x,x').

We define a notion of periodicity on classes of relations taatbe naturally repre-
sented as matrices. In general, an infinite sequence ofirgég said to beeriodicif
the elements of the sequence situated at equal distanceasneaihother differ by the
same quantity (while admitting some non-periodic initieg¢fix of finite length in the
sequence). This definition is generalized to matrices efjats, entry-wise. Assuming
that each finite poweR* of a relationR is represented by a matrix;,, R is said to be
periodic if the infinite sequenc@\/;, }7° , of matrix representations of powers Bfis
periodic.

Periodicity guarantees that the sequence has an infinisequbnce which can be
captured by an existentially quantified formula, which defiinfinitely many powers
of the relation. Then, the remaining powers can be compugetbmposing the exis-
tentially quantified formula with only finitely many (giverylihe size of the period)
powers of the relation.

For instance, consider the relatidhdefined as’ = y + 1 Ay’ = z. This rela-
tion is periodic, and its odd powerg!, R?, R°, ... can be represented by the formula
A >0.(x' =y+L+1Ay =z +¢). Evenpowersk?, R* RS, ... canthen be rep-
resented by composing this formula with

We show that the closed form of a periodic relation can be ddfiance th@eriod
and theprefix of the relation are known. We present a generic algorithnh finds
a period and a prefix of periodic relations and computes thesed form and transitive
closure.

5.1. Periodic Sequences

We first define the notion of periodic sequences of integelngs definition can be
generalized to arbitrary semirings.

Definition 1. Given an infinite sequende }3°, € Z Of integers, we say that it is
periodicif and only if there exist integefis > 0, ¢ > 0 and \g, ..., Ac_1 € Zs Such
that sy4 (11)c+i = Ai + Sprketi> forallk > 0andi = 0,1,...,c— 1 The smallest
valuesbh € N, ¢ € N, for which the above holds are called theefixand theperiodof
{sk}52o- The values\g, A1, ..., A\c—1 € Z are called theratesof {s;}7° .

Example 1. The sequencéoy }° , whereoy = o1 = 10, o, = 5¢ + 3 for each

k=2¢¢>1,ando, = 3¢ + 1 foreachk = 2¢ + 1, £ > 1, is periodic with
prefixb = 2, periodc = 2 and rates\, = 5, A\; = 3. The sequencér; }7° , where

17

o = T0+ 1foreachk = 3¢,¢ > 0, 0}, = ¢? foreachk = 3¢+ 1,¢ > 0, ando;, = £3
for eachk = 3¢ + 2, £ > 0 is not periodic. |

The notion of periodic sequences extends to sequenceegeinmatrices:

Definition 2. A sequence of integer matricéd,, } 7° , € Z22*™ is said to be periodic
if, for all 1 <, < m, the sequencé(Ayx)i; }7>, is periodic.

The following lemma gives an alternative characterizatibrperiodic sequences of
matrices:

Lemma 1. An infinite sequence of matricgsi;}2, € ZZ*™ is periodic if and
only if there exist integer$ > 0, ¢ > 0 and Ay,...,A.—1 € ZZ*™ such that
Ab+(k+1)c+i =A;, + Apygerir forallk > 0andi =0,1,...,c—1

Proof: According to the definition{ 4;}%2 , is periodic if and only if, for each <

i,j < m there exisb;; > 0, ¢;; > 0 and\;’ € Z,, such that(Ap,, 4 (v 1)es, +1),; =

A+ (Apy, ke, +1);; forallk > 0,1=0,1,...,¢;; — 1. Letc be the least common
multiple of all ¢;;, b be the maximum of alb;; and letA,, ¢ = 0,1,...,¢c — 1 be the

matrix defined as: c

(At)ij = (Azéfbijth) mod cij> ’ a
The condition Ay (i41)e+i = Ai + Apyress is verified for allk > 0 andi =
0,1,...,c— 1, with the above definitions.]

5.2. Periodic Relations

Letx = {z1,...,2n5} be a set of variables. In this section, we consider B
a class of first-order arithmetic formulae with free vareshinx U x’. These formulae
denote integer relation® C Z~ x Z" . We defines-consistenand periodic relations.

Definition 3. A relation R is x-consistent if and only iiR™ is consistent for alh > 0.

Definition 4. A relation R € R is said to beperiodicif and only if, either (1) it is not
x-consistent, or (2) it ix-consistent and there exist two functions:

e 0: R — (ZZ*™). mapping eacltonsistentelation fromR into a matrix, and
each inconsistent relation intb

e p: Z*™— R mapping each matrix into a relation fro® such thap(c(R)) <
R for each consistent relatioR € R

such that the infinite sequence of matri¢esR’)}5°, € Z7*™ is periodic.

If each relationR € R is periodic, then the class of relatiof& is called periodic
as well. The following lemma gives an alternative charazétion of x-consistent
periodic relations.

18

Lemma 2. A x-consistent relatiorR is periodic if and only if there exist integers> 0,
¢ > 0, m > 0and a matrices\y, ..., A._1 € Z*"™ such that

Rnc+b+i PN P(nAz +0_(Rb+i))
foralln > 0andforall0 <: < ec.

Proof. By induction onn > 0, we prove thatr(R"tb+%) = n . A + o(R"*?), for all
n > 0 and for all0 < i < ¢. The base case trivially holds. For the induction step,
observe that

o(RUFFOHD) = A, 4 o(RVTF) = At A+ o(R"™) = (n+1) - A; + o (R”).

The first equality is by Lemma 1, the second is by the indudtigmothesis. m]
Next, we define prefix, period and rates of periodic relations

Definition 5. If R is a x-consistent and periodic relation, we caltefix, periodand
ratesof R the minimal integer$ > 0, ¢ > 0 and matrices\q ..., A._1 € Z*™
satisfying the condition of Lemma 2. Afis not x-consistent, we define its prefix and
period asbh = inf{n > 0 | R™ is inconsisten} andc = 1.

If kis avariable notixUx’, let R [k] be the class of first-order arithmetic formulae
with free variables from the set U x’ U {k}. The variablek is called a parameter,
and these formulae are callpdrametric relationsin the following. The following
definition emphasizes the role of parametric relations.

Definition 6. Let R(x,x’) € R be a relation. Theclosed formof R is the formula
R(k,x,x") € R[k] such thatR(k,x,x")[n/k] < R"(x,x’), forall n > 0.

It follows immediately from the above definition that the séal form of a relation is
unique, up to equivalence. Defining the transitive clostigerelation is closely related
to defining its closed form, sincB* (x,x’) < 3k > 0. R(k,x,x’), forall R € R.

The algorithm presented in this section computes the tre@siosure of a periodic
relation R by computing the closed form of a subsequefieéR’*"¢)},~o for some
b > 0,c > 0 (not necessarily the prefix and the periodR)t

Definition 7. Given a relationR(x, x’) and integers$ > 0, ¢ > 0, theclosed formof
the the infinite sequendg’*"¢},,>¢ is a formulaR,, (¢, x, x") such that

Ry (£, x,x")[n/l] & RV"e
forall n > 0.

Once the closed fornf%b,c(& x,x’) is computed for somé > 0,c¢ > 0, both the
transitive closure and the closed form Bfcan be defined as shown by the following
lemma.

19

Lemma 3. Let R be a relation,b > 0, ¢ > 0 be arbitrary integers an(ﬁb,c(&x,x’)
be the closed form of the infinite sequefé®*"},,>¢. Then, the transitive closure of
R can be defined as:

b—1
Rt & \/RZ)V 30>0. Ryl x,%) \/RJ

=1

and the closed form a® can be defined as

b—1 c—1
R(k,x,x') & (\/(k=)AR") V3 >0.Ry(t,x,x)o(\/ (k =b+lc+j)AR?)
i=1 j=0

Proof. Let ﬁb’c(& x,x’) be the closed form of R*+"},,~ for some integer$ >
0,c¢ > 0. Observe that

Rt & VE R & (Vo RB) Vv (ViZgR™) o (Vs B)
& (VIZIR) Vv 3 >0.Ryo(t,x,x) o (V5Zy BY)

The last equivalence above follows from Definition 7. In aikimway, we infer that
the closed form of a relatioR can be defined as

b—1 c—1

R(k,x,x') & (\/ (k=)AR) V3l >0.Ryo(t,x,x")o(\/ (k= b+lct+j)ART),
i=1 j=0

which completes the proof. |

Next, consider a function : Z[k]Z2*™ — R[k] mapping matrices of linear terms
of the forma - k + 3, with integer coefficients, into parametric relatioRk, x, x'),
such that
m(M)[n/k] < p(M[n]),foralln € Z

forall M € Z[k]2*™. In other wordsr is theparametric counterparf thep function
from Definition 4. Concrete examples of parametric matebations mappings will be
given in Sections 7.2, 7.5, and 7.8.

We next show that the transitive closure and the closed féarperiodic relation?
with prefix b, periodc, and rates\y, ..., A._; can be defined in first order arithmetic.
If R is not«-consistent, then clearlR* < \/'_! Ri and R(k,x,x') < \/'_, (k =
i A RY). If Ris *-consistent, then by Lemma B"“** < p(n - Ay + o(R?)). Then,
we apply the following proposition which shows that the eld$orm of the sequence
{RM7e}, oo can be defined aB, (£, x,x) < m(£ - Ag + o(RY)).

Proposition 1. Let R be arelationp > 0, c > 0 be arbitrary integers, and. € Z7;*™
be a matrix such that, for ak > 0:

1. p(n-A+o(RY) ¢ L,and
2. Rt o p(n- Ag + o(RY)).

Then,R is x-consistent and?b@(k:, x,x') & w(k- A+ o(R?)).

20

Proof. Clearly, if both conditions hold, it follows thaR is x-consistent. The mapping
7 Z[K)2*™ — R[k] satisfies the following equivalence for &f € Z[k]7Z*™ and
foralln € Z

m(M)[n/k] < p(M]n])

Thus, lettingM = k - A 4+ o(R"), it follows that if the two conditions hold, then

Hences (M) = (k- A + o(R?)) is the closed form of of the sequenEB®*"¢},,>,

by Definition 7. R |
Having computed?, (¢, x,x’), we can finally apply Lemma 3 to define the tran-

sitive closure and the closed form Bf

5.3. Transitive Closure Algorithm

The result of this section is a generic algorithm that coraptie transitive closure
of a given periodic relation (Algorithm 5). The algorithmets to be instantiated for
a specific clasfR of periodic relations by providing the corresponding maggio,

p (Definition 4) andr (the parametric counterpart pj as discussed in the previous.
This algorithm can be easily adapted to compute the closwed &6 a relation, instead
of its transitive closure, as we show in the end of this sactidext, in Section 7 we
show how this algorithm can be used with three classes dfoeka difference bounds,
octagons, and finite monoid affine transformations.

The main idea of the algorithm is to discover integers 0 andc > 0 such that
the sequencéo(R"t"¢)},>¢ is periodic. Provided that relatioR is periodic, the
enumeration on lines 2,4,16 is guaranteed to eventuallyefipair (b, ¢) for which the
algorithm terminates at line 7 or 12, as we later prove in Téeo2. For each prefix-
period candidat¢b, ¢), we consider the first three powers supposed to be equitistan
namelyR?, R'*¢ andR**2¢, and we check that all three are consistent (lines 5-6). If at
least one is inconsistent, the relation is satonsistent, and the transitive closure is the
disjunction of all powers up to the first one which is incotesis (line 7). Otherwise,
if R®, R**¢ and R**2¢ are consistent, the algorithm attempts to compute the £itst r
of the sequence (line 8), by comparing the matricéR®), o(R**¢) ando(R*+2°).

If the distance\ betweens(RY+¢) ando(R") equals the one betweer{ R”2¢) and
o(RY*¢), thenA is a potential candidate for the rate of the sequeiad&r’ + nc) },,>o.

The rest of the main loop (lines 8-16) is dedicated to chegkihethern, ¢ andA
constitute a valid prefix, period and rate of the sequenceweps ofR. To this end, it
is sufficient to check whether (i) the sequence of relatigns - A + o(R?))}22 is -
consistent, and (ii) that it follows the pattern of a per@osiequence. The first condition
is checked by the Mx CONSISTENT procedure which returns the largest> 0 for
whichrho(n-A+o(RP)) is consistent, oso, if no suchn exists. The second condition
is checked by the Mx PERIODIC procedure, which returns the largesfor which the
sequencdp(n - A + o(Rb))}2, is compliant withR¢, or oo, if no suchn exists.

Since, by the definition of Mx PERIODIC, eitherL = K = oo, or elseL < K,
the following Lemma 4 ensures that if the test on line 11 sedsdor the choseb, ¢
andA, thenn(k - A + o(R?)) is the closed form of the sequenfe(R*"¢)},,>, and
consequently, the transitive closure can be defined usingnae3 (line 12).

21

Algorithm 5 Transitive Closures of Periodic Relations
input a periodic relatiork
output The transitive closure aRk
1: function TRANSITIVECLOSURER)

2: let P <~ Randb <+ landbjymp =1

3: while true do

4 forall c=1,2,...,bdo

5: forall £=0,1,2do

6: if R+ < | then

7: return R < PV (/57" RY)

8: if IA . o(R®) + A = o(R**°) A o(RP*C) + A = o(R"2¢) then
o: K < MAX CONSISTENT(R, b, A)

10: L + MAXPERIODIC(R, b, A, ¢, K)

11 if L = cothen

12: return PV 3k > 0. 7(k-A+o(RY)o (Vo R)
13: bjump < max{bjymp,b+c- (L+1)}

14: bpest < max{b+1,0ump}

15: P« Pv Vit R

16: b <+ bpext

17: function MAX CONSISTENT(R,b,A)

18: return sup{n € N | p(n- A+ o(R")) & 1}

19: function MAX PERIODIC(R, b, A, ¢, K)

20: return sup{n<K |Y0<l<n . p(t-A+o(RP)) o R® & p(((+1)-A+c(R?))}

Lemma 4. Let R be a periodic relation, let > 0, ¢ > 0 be integers such that’® & L,
andA € Z72*™ be a matrix such that, for abk > 0:

1. p(n-A+co(RY) 4 1, and
2. p((n+1)-A+0(R") < p(n-A+o(R))o R

Then,R is x-consistent and§b7c(/<:, x,x') & w(k- A+ o(R?)).
Proof. It is sufficient to prove that
R < p(n - A + o(RP)) for all n > 0.

For, if the above is true, the statement of this lemma follfnes Proposition 1. The
base case = 0 follows from Definition 4 and the fact thak® is consistent. The
induction step is as follows:

R(n+1)c+b o Rnetb o Re
& p(n-A+o(RY))o R (bythe induction hypothesis)
< p(n+1)-A+o(RY))

22

Suppose now that the test on line 11 fails, i.e. the sequemetations{p(n - A +
o(Rb))}2, is neitherx-consistent, nor periodic. In this case we could start logki
for a new prefix, period and rate, by incrementingettingc to one, and continuing
to look for another candidate rafg which satisfies the test at line 8. This could be
achieved by simply incrementirigoy one, i.e. without the update at line 13. However,
for relations with very long prefixes, this would be quiteffi@ent, as shown by the
following example.

Example 2. Consider, for instance, the relation:
R=a'=2z+1A0<z<10°

The relationR’ is consistent for alll < i < 10° and becomes inconsistent for=
10% + 1. Without line 13, Algorithm 5 would need at Ieéé%ﬁ iterations of the main
loop in order to discover the inconsistency (line 6).

Notice that Max PERIODIC returns the span of the interval in which the relation
is periodic with the current rate. The algorithm optimizkee search by storing the
upper bound of the periodic interval i,,,,,,. If the sequence is periodic for none of
¢ =1,...,b, line 16 update$ with the upper bound of the periodic interval in case
such interval was detected, or otherwise, it incremeitg one as in the unoptimized
case.

Example 3. (contd.) For the relation in the previous example, the prefikis discov-
ered after the first iteration, since the call MAX PERIODIC with b = ¢ = 1 returns
L = 10°. The inconsistency of the sequer{de’}:°, is discovered at the second
iteration of the main loop (line 6).

For efficiency reasons, the algorithm maintains (and ujlaerefix relationP
with the following invariant property:

b
Pe\/ R (1)
=0
By updatingP at line 15, we compute part of the prefix up to the next candiftatb.
Finally, we prove the correctness of Algorithm 5 and givermtgion the number of
iterations of the main loop of Algorithm 5 and on the sizesntégersh, ¢ considered
during any iteration of the main loop, in terms of the prefix &ine period of the input
relation.

Theorem 2. If R is a periodic relation with prefix3 and periodC, then Algorithm
5 eventually terminates after at mag + C)? + C iterations of the main loop at
lines 4-13 and returns the transitive closure ®f Moreover,c < B + C andb <
B+ C + 3C? + 3BC for each prefix and periodec considered by the algorithm.

Proof: Let us first prove that (1) holds whenever the control is & ofthe lines 3-13.
Initially P < R andb = 1, so (1) holds trivially. If (1) holds before executing ling,1
then it will also hold after executing lines 15-16, by the diiibn of MAX PERIODIC.

Let b; (c;, respectively); > 1 be the value ob (c, respectively) during thé-th
iteration of the main loop at line 5. We next make several plagmns:

23

1. By definition of B andC, if b; > B and¢; = kC for somek > 1, then the
algorithm returns at line 12
. The prefix increases with each iteration of the outer |diog (L6)
3. For each considered prefix the algorithm consecutively tests periods in the
rangel,....,b

N

By observation 1, proving termination of Algorithm 5 amasitd showing thak; > B
andc¢; = kC for somei, k > 1. We next prove that the algorithm terminates in
at most(B + C)? + C iterations of the main loop and that < B + C andb; <
B+ C +3C? + 3BC for eachi > 1.

First suppose thak is notx-consistent and henc®&” < 1| andRP~! & L, by
definition of B. The algorithm eventually reaches line 7, sihdacreases with each
iteration of the outer loop, by observation 2. If the testil¢ I8 succeeds duringth
iteration, then definition of MX CONSISTENTprocedure guarantees that+ ¢; K; <
B. SinceL; < K; by definition of MaX PERIODIC procedure, if follows thab; +
¢;L; < B. Consequently;,; < B+ C. If b;11 > B, the algorithm terminates in the
(i + 1)-th iteration at line 7. The algorithm thus terminates adtemost(B — 1) + 1
iterations of the main loop. Clearly; < B + C for eachi > 1 and sincez; < b;, it
follows thatc; < B + C too.

Next, suppose thaR is «-consistent. Let us first consider the unoptimized algo-
rithm without line 13. Then) is incremented by one in each iteration of the outer loop
atline 16. Consequently, the algorithm returns at line 12mih = B+ C andc¢; = C
atthe latest, by observation 3. Clearly, the algorithm teates after at most5 + C)?
iterations of the main loop and in each iteration< b; < B + C.

Next, let us consider &consistent relation and the optimized algorithm with line
13. If the algorithm returns for sonte < B + C, the bounds follow easily. Suppose
that the algorithm has not returned for sompe< B + C and leti > 1 be the unique
index such that; < B + C andb;.1 > B + C. Clearly,¢; = b; andc;; = 1,
by observation 3. Notice that #f;;; = b; + 1, thenb; = B + C and therefore,
the algorithm terminates at line 12 for prefix-period caatéd B + C, C) at the latest.
Thus, if the algorithm does not terminate for a prefix cangidathe rangéd..(B+C),
it cannot be thak, ., = b; + 1. Consequentlyy; 1 > b; + 1 and henceh; 1 = bjump
for someb;ymp > b; + 1. Sinceb,mp > b; + 1, a periodic intervatb;, . .., b; + Lc;)
of the sequencéo(R™)},,>0 must have been detected for sote< L < oo by
the MaxPerioDIC procedure and thus, ;1 = bjump = b; + (L + 1)c;. We now
demonstrate thdt, ; < B+ C +3C? + 3BC. By contradiction, suppose that, ; >
B+ C 4+ 3C? + 3BC. We define (see Figure 3 for illustration):

Q =lem(C,¢;) d= (%W : CQ e=b+c¢d j=(e—B)modC
It follows thate — b; = kQ for somek > 1 ande — (B + C) < Q. Sincec; < b; <
B + C, it follows thatQ < C(B + C) = C? + BC. Since we assume that,; >
B+ C +3C?% + 3BC, it follows thatb; ; — (B + C) > 3Q and thereforé; . ; — e >
2Q. Let Ay, ..., Ac_1 be the rates of the sequenge(R™)},,,>0 corresponding tdB
andC and A be the rate considered by the algorithm in tké iteration. Let denote
M,, = o(R™) for all m > 0. By periodicity of the sequendgr(R™)},,,>0, it follows
thatM, + £A; = M.,q. Recall thab;,; > e +2Q and thae — b; is a multiple ofc;.

24

d-times

A A

D S S S —— S S — 3
~—r— ~—r— ~—r—
A, A,

t t t t t t

b; B+ C e e+ Q e+2Q by

<Q
—
kQ k> 1 Q Q

Figure 3: Bounding the prefik;_, |

It follows that M, + €A = M., . More generallyM,. ¢, +0 = Meiee, + LA for
allo </ < %. Combining this observation with the fact th@t/,,, } ,>o is periodic
with respect taB, C, it follows that

Metire,+1Q = Mg, + k%)\, and
Met(0+1)ei+kQ Meyoy1ye; + k’g)\

forall £ > 0, ¢ > 0. Consequently,

Meyor1yei+6Q — Mettei+kQ = Met(er1)e; — Metee,

forall k£ > 0, ¢ > 0. In other words M. ., = M. + kX for all k > 0. Combining it
with My, 1 ke, = My, + kX forall 0 < k < d, whereb; + dc; = e, we finally infer that
My, 4 ke, = My, + kX forall k£ > 0. This however implies thal; = oo, contradiction.
Thus,c; < b; < B+ C + 3C? + 3BC in each iteration of the main loop. Notice that
if b; < B+ C andb; 11 > B+ C, it takes at mos€' more iterations to return at line
12. Hence, the main loop is iterated at m@8t+ C')? + C times in total.

Combining the bounds inferred in the above three cases, wanothe bounds
stated in this theorem. We finally prove if the algorithm tarates, the returned rela-
tion is indeed the transitive closure.

e R is notx-consistent, then here exists an integer> 0 such thatRX < 1.
Then the algorithm will return at line 7, with the correctuklts

b+le—1 b b+le—1 b+lc—1
Pv \/ Rie \/ R'v \/ R & \/ R
i=b+1 i=1 i=b+1 i=1

e R is x-consistent, then by previous arguments, the algorithrchesthe line 12
after at most B + C)? + C iterations of the main loop and returns the result:

PV3k>0.7(k-A+o(B)o (Vi B) &
(Vimi BV (3k 2 0wk - A+ o(B) o (Vg 7))

which is indeed the transitive closure Bf by Lemma 4 and Lemma 3. a

25

Algorithm 6 Closed Form of Periodic Relations
input a periodic relatiork
output The closed form ofR
1: function CLOSEDFORM(R)

2: let P <~ Rand b« landbjymp =1
3 while true do
4 forall c=1,2,...,bdo
5: forall £=0,1,2do
6: if RPT¢ < 1 then i ’
7: return R(k,x,x') < ;I (k= j) A RI
8: if 3N . o(R") + A = o(R"") Ao (RPT) + A = o(RVF2¢) then
o: K < MAX CONSISTENT(R, b, A)
10: L + MAXPERIODIC(R, b, A, ¢, K)
11: if L = oo then
12: return R(k,x,x')<

v VE k=) AR

3> 1. 7(l-A+0a(RY)o(ViZy(k =b+letj) AR)

13: bjump — Max{bjump,b+c- (L +1)}
14: bpest < max{b+1,0ump}
15: P« PVv\re T (k=i AR
16: b <+ bnext

17: function MAX CONSISTENT(R,b,A)

18: return sup{n € N | p(n- A+ o(RP)) ¢ L}

19: function MAX PERIODIC(R, b, A, ¢, K)

20: return sup{n<K |VO</l<n . p(l-A+0o(R")) o R® & p(({+1)-A+0o(R%))}

Algorithm 6 is a straightforward adaptation of Algorithmiat computes the closed
form of a relation instead of its transitive closure, by nigitig lines 7,12, and 15.
Later, we use Algorithm 6 to compute transitive closuresmfdimonoid affine rela-
tions in Section 7.8.

6. Integer Relations

This section introduces three classes of integer relatiwhgch are shown to be
periodic next, in Section 7. We define fidifference boundeelations, and generalize
them tooctagonal relations The class of octagonal relations is hon-determinist, i.
the next values are not functions of the current values ofvelr@ables. Finally, we
introduce a deterministic class, namaKine relationsand concentrate on a semantic
restriction of it, called thdinite monoid propertyAll results in this section are proved
elsewhere, and recalled here for the sake of self contaihmen

26

6.1. Difference Bounds Relations

Difference bounds constraints are knowrzasesn the context of timed automata
verification [1] and abstract interpretation [43]. They dedined syntactically as con-
junctions of atomic propositions of the form-y < ¢, wherex andy are variables and
c is an integer constant. Difference bounds constraints eaefresented as matrices
and graphs. Moreover, their canonical form, useful for effitinclusion checks, can
be computed by the classical Floyd-Warshall algorithm. @fgort on these results in
Section 6.1.1.

Difference bounds relations are defined as difference b®wodstraints where
variables can be also primed (e.g.— ' < 0). The problem of computing transi-
tive closures of difference bounds relations has beenexdun Comon and Jurski [19]
who showed that the transitive closure of a difference bewethtion is Presburger
definable. Their proof was subsequently simplified in [15jng the notion okigzag
automata. Intuitively, zigzag automaton corresponding ttifference bounds relation
R is a finite weighted automaton that encodegh power of R by minimal runs of
lengthm + 2. Zigzag automata are also a reasoning tool use in See®do prove
periodicity of difference bounds relations. Furthermdiney also play a crucial role in
deriving EXPTIME complexity upper bounds for Algorithm Syrfthe class of differ-
ence bounds relations (Section 8).

We give the definitions of difference bounds relations agdag automata in Sec-
tion 6.1.2 and Section 6.1.3, respectively. In the restisfdaction, lek = {1, z2,...,xn}
be a set of variables ranging ov&r

6.1.1. Difference Bounds Constraints
The following definition formalizes the notion of a diffemmbounds constraint.

Definition 8. A formula¢(x) is a difference bounds constraiiftit is equivalent to
a finite conjunction of atomic propositions of the form— z; < a;;, 1 < 4,j <
N,i # j, wherea;; € Z.

For instancex — y = 5 is a difference bounds constraint, as it is equivalent to
xr—y <5 A y—x < -5.Inpractice, difference bounds constraints are represgent
either as matrices or as graphs:

Definition 9. Letx = {z1, 22, ...,z } be a set of variables ranging ov&rand ¢(x)
be a difference bounds constraint. Thedifierence bounds matri(DBM) represent-
ing ¢ isanN x N matrix M, such that:

iy i (2 —x; < oiy) € AP(¢)
00 otherwise

(Mg)i; = {

Definition 10. Letx = {z1,x2,...,xx} be a set of variables ranging ovet and
¢(x) be a difference bounds constraint. Thércan be represented as a weighted
graphG, = (x,—), where each vertex corresponds to a variable, and there isdge

z; =y x; in G, if and only if there exists a constraint — «; < a;; in ¢. This graph
is also called aconstraint graph

27

Clearly, M, is the incidence matrix of,. If M € ZJ*" is a DBM, the corre-
sponding difference bounds constraint is define@as< A,/ .z — z; < M;.
We denote byo = > ... <a..)ear(s) [ai;] the sum of absolute values of all coef-
ficients of¢. The restriction of a DBM\/,, to variablesz C x, denoted agMy) ,,
is a matrix obtained by erasing the rows and columni/gfwhich encode constraints
that involve variablez \ x. For two difference bounds matricéd;, M>, we write
My = M, ifand only if (M,);; = (Ms);; forall1 <4,j < N andM; < M, if and

A DBM M is said to beconsistenif and only if its corresponding constraitit,
is consistent. The following proposition relates the cstasicy ofy to the existence of
an elementary negative weight cycle@f.

Proposition 2. Let¢ be a difference bounds constraint aigl be the constraint graph
of ¢. Then, the following statements are equivalent:

e ¢ is consistent

e G, contains an elementary negative weight cycle

Proof. See e.g. [20]§25.5. a
The next definition gives a canonical form for consistent DBM

Definition 11. A consistent DBMV € ZY < is said to beclosedif and only if M;; =
OandM;; < My, + My, forall 1 <4,j,k < N.

Given a consistent DBMV € Z" x Z, we denote the (unique) closed DBM by
M*. Itis well-known that, ifM is consistent, theA/* is unique, and can be computed
from M intime O(N?3), by the classical Floyd-Warshall algorithm [20]. Consistgof
M can be checked by the Floyd-Warshall algorithm too. By Psijmm 2, it amounts
to checking whethen/; < 0 for somel < ¢ < N. The closed form is needed to
check the equivalence and entailment of two difference tswonstraints.

Proposition 3 ([43]). Let¢, and¢, be consistent difference bounds constraints. Then,
e ¢ & ¢pifandonly ifMy; = M;,,
e ¢1 = ¢ ifandonly ifM; < M7 .

The following proposition shows that given a difference ha& constraint(x),
the formuladz;.¢ is a difference bounds constraint as well, and its closed D8M
effectively computable from/;.

Proposition 4. Let ¢(x), x = {z1,...,zn}, be a consistent difference bounds con-
straint. Further, letl < k& < N and M’ be the restriction of\/} tox\ {z}. Then,M’

is closed andb(M') < Jxj.4(x). Moreover, the constraint grapi’ corresponding
to ®(M’) is obtained by erasing the vertex together with the incident arcs from the

graphGo(ar;)-

28

Proof. We use the following notation: for & x N DBM M we denote byy(M) =
{veZN |v; —v; <m,;,1<i,j < N} the set oconcretization®f M. Notice that
a DBM M is consistent if and only iy (M) # 0.

Clearly, M’ is the incidence matrix of’. Without loss of generality, we assume
thatk = N. Itis sufficient to show that:

V(M) = {(v1,v2,. .., un-1) | (v1,02,...,on-1,0) € y(M) for somev € Z}

The “D” direction is obvious, sincé/’ is the restriction OM; to{z1,22,...,xN_1}.

For the “C” direction, we must show that there existg Z such that;, —v < (M;)

andv —v; < (M;)NJ,, forall1 < 4,7 < N. But this amounts t@; — (M*) in S
(M;) +w;, foralll < 4,5 < N. Since(vy,vs,...,vn—1) € v(M') we have

v; — v] < (M), . foralll <i,j <n. SinceMj is closed,(M7), = < (M), .

(M), N wh|ch Ieads to the conclusion. DBI)W’ is closed as a d|rect consequence
of the fact that\/; is closed. O

6.1.2. Difference Bounds Relations and Their Powers
We first define difference bounds relations.

Definition 12. Letx = {x1,...,zx} be a set of variables. A relatioR € Z x Z
is a difference bounds relatioif it can be defined by a difference bounds constraint
R(x,x').

The class of relations defined by difference bounds comsgraver the variables
x U x’ is denotedRy, in the following. A consequence of Proposition 4 is tiRaf, is
closed under composition.

Proposition 5. R4 is closed under intersection and composition.

Proof. Let R;(x,x’), Ra(x,x’) be difference bounds constraints defining difference
bounds relations. By Definition 8, the conjuncti®i (x,x’) A Ro(x,x’) is a differ-
ence bounds constraint too. The composition of relatidns R, can be defined as
Ix" . (R1(x,x") A Ra(x”,x")) which is again a difference bounds constraint, by Def-
inition 8 and Proposition 4.]

Example4 LetR(z1,mo, 2, 25) & x1—a) <1Azp—ah < 1Az —2) < —=2A
xe — 2 < 2 be a difference bounds relation. Figure 4a shows the graplesentation
Ggr and Figure 4b the closed DBM representation/of |

Given a difference bounds relatid®(x, x’), we define then-times concatenation
of Gg with itself.

Definition 13. Let R(x,x’), z = {z1,...,zn}, be a difference bounds relation and
Gr be its constraint graph. The:-times unfoldingof Gr, is defined as
N
— (U X(k), _>),
k=0

wherex®) = {z*) |0 <i < N} andforall0 < k < N,

29

1 xro 3?1

1 0 oo 1
T2 oo 0 =2
T’l oo oo O

[e.SluNNe oliNe o}

(b) M, © op

Figure 4: Graph and matrix representation of a relation p&rafolding.

o (z{" % 2lFy e ifand only if(x; — z; < ¢) € AP(¢)

(k) e, (k+1)

o (z;7 =y) e~ifandonlyif(z; — 2} < c) € AP(¢)

. (xgk“) = x§.k)) e—ifandonly if(z} — z; < c) € AP(¢)

o (zV 5 2Dy e ifand only if(«] — o, < ¢) € AP(¢)

Each constraint itk corresponds to a path between extremal poinggin Notice
that, sinceR 4, is closed under relational composition, thRft € R, for anym > 0.
Then we have:

R™ < Nicijeny @i— 15 < min{z? — x?} A xp — 2 <min{z]" = 27} A

z; — o <minfa) — 27"} A 2f — z; < min{z]" — 29}

wheremin{z? — x?} is the minimal weight between all paths among the extremal
verticesz} andzf in G, for p, g € {0,m}.

Example 5. Figure 4c depicts then-times unfolding o i for the relationR < =1 —
) <1IAz —azh < —1Axs—2) < —2Azy—ah <2.]

The set of paths between any two extremal poinigjihcan be seen as words over
the finite alphabet of subgraphs@f' that are accepted by a finite weighted automaton
calledzigzag automatofil5]. In the following section, we give the definition of tlees
automata.

6.1.3. Zigzag Automata

This section defines zigzag automata, which can seen asmieeogjof powers of
difference bounds relations. Intuitively, a zigzag auttomacorresponding to a differ-
ence bounds relatioR is a finite weighted automaton that encodegh power of R
by minimal runs of lengtm + 2.

30

6.1.4. Alphabet and Words

Without losing generality, in the following we work with ansplified (yet equiv-
alent) form of difference bounds relations: all constrsiot the formz — y < « are
replaced byr — ¢’ < o A ¢’ —y < 0, and all constraints of the formd — ¢’ < « are
replaced by’ —t < a A t —y’ < 0, by introducing fresh variables¢ x. In other
words, we can assume that the constraint g@pleorresponding td is bipartite, i.e.
it does only contain edges fromto x’ and vice versa.

A pathr in G between, say? andy™, with =,y € x is represented by a word
w = wi ... wy, of lengthm, as follows: thew; symbol representsimultaneouslll
edges ofr that involve only nodes from?~! Ux?, 1 < i < m. Since we assumed that
g is bipartite, it is easy to see that, for a path frefto y™, coded by a wordv, the
number of times tha); symbol is traversed by the path is odd, whereas for a path from
20 to 3%, or from 2™ to y™, this number is even. Hence the nameswénandodd
automata

Given a difference bounds relatidp, the even alphabebf R, denoted a& ¢, is
the set of all graphs satisfying the following conditiors, €achG € X5;:

1. the set of nodes @ is x U x’

2. foranyz,y € x U x/, there is an edge labeled withe Z from z to y, only if
the constraint: — y < « occurs ing

3. the in-degree and out-degree of each node are at most one

4. the number of edges fromto x’ equals the number of edges frachto x

Notice that the number of edges in all symbols¥jf is even.
The odd alphabebf R, denoted by%, is defined in the same way, with the ex-
ception of the last condition, which becomes:

4. the difference between the number of edges fsoto x’ and the number of
edges fromx’ to x is either 1 or—1

Notice that the number of edges in all symbolsf is odd.

LetXr = X% UX% U{e} be the alphabet of the zigzag automaton®owheree is
a special symbol of weiglit The weight of any symba¥ € X% UX%, denotedv(G),
is the sum of the weights that occur on its edges. For a wotdw,ws ... w, € ¥},
we define its weight as(w) = >~ w(w;).

6.1.5. Construction of Zigzag Automata

We are now ready for the definition of automata recognizingdsahat represent
encodings of paths froi};. Theeven automatorecognizes paths that start and end
on the same side ¢f}; i.e., either paths from? to x? or fromz}™ toz7", for somel <
i,j < N, respectively. We call the automata recognizing paths frfrto x? forward
even automata, and the ones recognizing paths fforto =" backwardeven automata
(Figure 5 (a)). Thedd automataecognize paths from one side@j}; to another. The
automata recognizing paths frarfl to z7" are calledforward odd automata, whereas
the ones recognizing paths frorii* to xg? are calledbackwardodd automata (Figure 5

(b))-

31

Figure 5: Runs of Even and Odd Automata

The even and odd automata share the same alphabet anddratatite, while the
differences are in the sets of initial and final states. Tharoon transition table is
defined ad'r = (Q, A, w), whereQ is the set of control states defined as:

Q = QyUUici,<n(Q7UQLUQY UQY) where
Qy = {L,r,Ir,rl, LI
ijf = {[;f7F€f} ¢ = (I Fg
Qj = .F no= A E

The{l,r,Ir,rl, L} components of states if}, capture the direction of incoming and
outgoing edges (for a path traversing from right to left, for a path traversing from
left to right, Ir for a right incoming and right outgoing pathj for a left incoming
and left outgoing path, and when there are no incoming nor outgoing edges from
that node.). Giverl < 4,j < N, the setsQ5/,Qs?, Q;/, Q¢ contain the initial and
the final state in even forwara f), even backwardep), odd forward 6f), and odd
backward ¢b) zigzag automaton correspondingitg, respectively. The four automata
recognize paths from” to «'”) (ef), from z* to =\ (ev), from z{” to «'™ (o),
and fromxgm) to x§0) (ob) in G, respectively.

The set of transitiona is defined as:

A = AUA U (AT UuAPUAT UAY)

1<i,j<N
There is a transition
G / /
<(11-~-QN> — <Q17~-~7QN>

in A, if and only if the following conditions hold, for all <4 < V:

32

e ¢; = | iff G has one edge whose destination:jsand no other edge involving
Z;.

e ¢; = [iff G has one edge whose sourcejsand no other edge involvingj.
e ¢; = riff G has one edge whose source:jsand no other edge involving.

e ¢, = riff G has one edge whose destination:jsand no other edge involving
!

;.
e ¢; = Ilr iff G has exactly two edges involving, one havingr; as source, and
another as destination.

e ¢, = rliff G has exactly two edges involving, one havinge; as source, and
another as destination.

e ¢} € {lr, L} iff G has no edge involving..
e ¢; € {rl, L} iff G has no edge involving;.

Some even paths iy may be of length strictly less than. Since we want to
recognize these path by runs of lengtht+ 2, we need several zero weight self-loop
transitions:

A= {Fef 5 Fel 10 5 by

Finally, we define for each < i,57 < N and each of the four zigzag automata
(ef,eb,of,0b), the set of transitions that are incident with an initialaofinal control
state of the respective automaton:

(I Sqla=rigg=Lane{lr, L}, 1<h<N,hg{ij}} ifi#]

ASf — . .
I {Ifjf—>q|qi:qj:lr,qhE{lr,i},lghSN,h;ﬁi} ifi=jy
U{e= F [qe{rl, L}V}
Aeb {q;erjb|qZ:l!q]:quhe{lrvl}!lghéN’hg{LJ}} If?’#]
ij

{¢= Fa=q;=1r,qn€{lr, L}, 1 <h < N,h+#i} ifi =
U{I® = qlqe{rl, L}V}

A = {17 S qlg=randg, € {Ir,L},1 <h< N, h#i}
Ufe S FY gy =randg, € {rl, L}, 1<h < N, h#j}

A? = {I?* S q|g =landg, € {Ir, L}, 1 <h < N,h#i}
Ufe= F" g =landg, € {rl, L}, 1 <h < N,h#j}

33

The weight functionv maps each transition % ¢’ € A, ¢,¢' € Q,a € Xy to
w(a).
Finally, for eachl <i,5 < N, we define four zigzag automata

AT = QA w I FY) A = Q8w FY)

17 7, 1T
eb _ eg eb ob _ ob ob
A7) = QA w, [P, FFY) Ay = QA w, I F7)
Notice that these automata share the same states anditmrasséind the number of
states is at mostY + 2N2 + 4N + 2, whereN is the number of variables ix.

6.1.6. Language of Zigzag Automata

Recall thatGy denotes the constraint graph correspondingd?t, obtained by
concatenating the constraint graph®to itself m > 0 times. We say that a path in
G stretches betweekh and/{, for somek < [, if the path contains at least one node
fromx?, for eachk < i < and contains no node frosd, for eachi such that < k or
i > [. Intuitively, all paths fromz? to x? in G are recognized by the automatﬂ@jf,

paths fromz;" to =’ by Afjl? (Figure 5 (a)), paths from? to =" by Afjf , and paths
from z]* to a:? by A;’;? (Figure 5 (b)). The following lemma makes the relationship

between between paths@}; and runs in zigzag automata of length+ 2 precise.

Lemma 5 ([15]). Suppose tha}; does not have cycles of negative weight, for some
m > 0. Then, foranyl <i,j < N, i # j, the following hold:

1. Afjf has an accepting run of length + 2 if and only if there exists a path i@,
fromz? to 2, that stretches betweenandn, for some) < n < m. Moreover,
the minimal weight among all paths fran to xg-’ in G, stretching fron0 to n,
for some0 < n < m, equals the minimal weight among all accepting runs of
Af]f of lengthm + 2.

2. Afjl? has an accepting run of length + 2 if and only if there exists a path @Gy,
fromz7" toz7", that stretches betweenandm, for some) < n < m. Moreover,
the minimal weight among all paths franj* to 27" in G, stretching fromn to
m, for some) < n < m, equals the minimal weight among all accepting runs
of A¢?, of lengthm + 2.

3. Afjf has an accepting run of length + 2 if and only if there exists a path in
gn, froma! to z7". Moreover, the minimal weight among all paths frathto
=" in G equals the minimal weight among all accepting runs of lengti 2.

4, A;?J’? has an accepting run of length + 2 if and only if there exists a path Gy,
fromz]" to rg) Moreover, the minimal weight among all paths freffi to x? in
G equals the minimal weight among all accepting runs of lengti 2.

Proof See [15], Lemmas 4.3, 4.4, 4.6 and 4.7.]
Example 6. Let us show the construction of the zigzag automaton fordiation R <

xp—2) <1TAzp—ah < —1Axs—2) < —2Ax9 —2f < 2. Figures 5(a) and
(b) depictGr and M},. Notice that there are only forward odd paths, i.e. pathsriro

34

Xo t0 X, in G for anym > 1. The transition tablel'r = (Q, A, w) of the zigzag
automaton is depicted in Figure 6 (isolated states, suchrag, have been removed).
For instance, the automatoAs] = (Tx, 12/, F27) recognizes a run of lengtin +2
with weightw if and only if there is a path from, to 2™ in G of lengthm and with
weightw. There are four such paths @@, and the Figure 7 shows the corresponding
runs of the zigzag automaton. The second and the third rums lenimal weight. O

(@9r (b) Tr

@) O
= =
~)
O
N
O @)

o (e
CONGCD
GD

|
GD
€3
o™

Figure 7: Runs

6.2. Octagonal Relations

Octagonal constraints (also known as Unit Two Variablediaguality or UTVPI,
for short) appear in the context of abstract interpretatitvere they have been exten-
sively studied as an abstract domain [43]. They are definethstically as a conjunc-
tions of atomic propositions of the forthz +y < ¢, wherez andy are variables and
is an integer constant. Thus, they can be seen as a gentoaliabdifference bounds

35

constraints. We adopt the classical representation ofjoot constraints (or octagons,
for short)¢(xy, ..., 2 N) as difference bounds constraigtg,y, . . . , yan), Whereys; 1
stands for-x; andys; stands for-z; with an implicit conditionys; 1 = —y5»;, for each

1 <4 < N. With this convention, [5] provides an algorithm for comipgtthe canon-
ical form of an octagon, by first computing the canonical farhthe corresponding
difference bounds constraint and subsequetiglyteningthe difference bounds con-
straintsy; — y; < c¢. We present these results in Section 6.2.1.

Octagonal relations are defined as octagonal constrairgeamariables can be also
primed. Octagonal relations were studied in [11] where & glaown that the transitive
closure is Presburger definable. The core result of [11}asttie canonical form of the
m-th power of an octagonal relatid® can be computed directly from the-th power
of a difference bounds relation that represeRtsWe present these results in Section
6.2.2.

6.2.1. Octagonal Constraints
Letx = {z1,z, ...,z } be a set of variables ranging ov&r The class of integer
octagonal constraints is defined as follows:

Definition 14. A formulag(x) is anoctagonal constrainf it is equivalent to a finite
conjunction of terms of the formy — z; < a;5, z; +2; < by or —z; —x; < ¢;; where
a;j, bij,cij € Z,forall1 <i,j < N.

We represent octagons as difference bounds constraintstrerelual set of vari-
ablesy = {y1,v2,...,y2n}, with the convention thaj,; 1 stands forz; andys; for
—x;, respectively. For example, the octagonal constrajint zo = 3 is represented
asy; —ys < 3 Ay —ys < —3. In order to handle thg variables in the following,
we definer = ¢ — 1, if 7 is even, and = i + 1 if 4 is odd. Obviously, we have= i,
foralli € Z, i > 0. We denote by)(y) the difference bounds constraint oyethat
represents(x) and which is defined as follows:

Definition 15. Given an octagonal constraimt(x), x = {z1,...,zn}, its difference
bounds representation(y), y = {y1,...,y2n} iS @ conjunction of the following
difference bounds constraints whdreC i £ j < N, c € Z.

x; —xj <c) € AP(¢)
i +x; <c)e€ AP(¢)
z;—x; <c)e€ AP(¢)

(Y2i—1 — Y2j-1 < ¢), (Y2 —y2: < ¢) € AP
(- (

(-

(xi+2; <c)e AP(9)

(

(-

()

(Y251 — Y2i—1 <€), (Yoi —y2j < ¢) € AP
(Y2i —y2j—1 <€), (Y25 — Y2i—1 < c) € AP
(Y2i—1 — Y25 <€), (y2j-1 — Y2 < ¢) € AP
(
(

SR

2z; < c) € AP(9)
2x; < c¢) € AP(¢)

teeoe

(

(
Y2i— 1_y2z§C)EAP()
Yoi — Y2i_1 < ¢) € AP(9)
The following equivalence relatesand :

N

d(x) & (y2,Y4, -+ Yan - P A /\ Y2ic1 = —Y2i)[@i/y2i—1]iey 2
i=1

36

An octagonal constrainp is equivalently represented by the DBM; € Z21**Y,
corresponding t@. We sometimes writél/,, instead ofMg. We say that a DBM
M e 72*2N is coherentiff M;; = My forall 1 < i,j < 2N. This property
is needed since e.g. an atomic propositign- =; < a;;, 1 < ¢,7 < N, can be
represented as both; 1 — y2;—1 < ai; andyz; —y2; < ay5. Dually, a coherent DBM
M € 72V>2N corresponds to the octagonal constraint:

Qp & /\ (xi—x; < Mayi—19j—1Azi+x; < M1 0jA—2— x5 < Mo a5-1)
1<i,j<N
3)

A coherent DBMM is said to beoctagonal-consistent and only if 2, is consistent.

Similar to the case of difference bounds constraints, foo@agonal constraint, we

define|¢| as|¢| = |#], where|| is the maximal absolute value of all coefficients

of ¢ defined in Section 6.1.

Definition 16. An octagonal-consistent coherent DBM € Z2Y*2V s said to be
tightly closedif and only if the following hold, forall <, j,k < 2N:

1. M;; =0 3. M;; < My, + My

2. M, is even 4. My < |Ma| 4 | M)

Given an octagonal-consistent coherent DBM ¢ 72V x 72N, we denote the
(unique) tightly closed DBM byt . The following theorem from [5] provides an
effective way of testing octagonal-consistency and comguhe tight closure of a co-
herent DBM. Moreover, it shows that the tight closure of aegihDBM is unique and
can also be computed in ting@(N?3).

Theorem 3. [5] Let M € Z2N*2N be a coherent DBM. Thell is octagonal-consistent
if and only if M is consistent an@%] + L%J >0, forall1 <¢ < 2N. Moreover, if
M is octagonal-consistent, the tight closureMdfis the DBMM* ¢ Z2V*2N defined

as. M e
ML = min{M;;-, { 2J + {Q“J}

forall 1 <i,j < 2N whereM* € Z2V*2N is the closure of\/.

The tight closure of DBMs is needed for checking equivalesmog entailment be-
tween octagonal constraints.

Proposition 6 ([43]). Let ¢; and ¢, be octagonal-consistent octagonal constraints.
Then,

o 1 < ¢y ifandonlyif M; = M ,
e ¢ = ¢ if and only iqug1 < MéQ.
It has been shown in [11] that octagonal constraints areedlesder existential

guantification.

37

Y1oY2 Y3 Ya Y1 Yh Y3 Y4
Y1 0 oo oo 5 o0 o0 oo 2
Y2 co 0 o0 o0 oo —2 oo -1
ys | oo 5 0 o0 o 3 o 4
yp | co co oo 0 oo oo oo —3
yi -2 o0 oo 3 0 o oo 0
Yp| 00 0 00 00 0 0 oo 1
vil-1 2 =3 4 1 0 0 0
yp | o0 o0 o0 00 o0 oo oo 0

Gr Mp,
Figure 8: Graph and matrix representation of a relation.
Proposition 7. Let ¢(x), x = {z1,...,zn}, be an octagonal-consistent octagonal

constraint. Further, letl < k£ < 2N and M’ be the restriction ofM% toy \
{y2k—1, y2r }- Then, M’ is tightly closed, and}(M') < Jzy.¢(x).

Proof. See [11], Theorem 2.]

6.2.2. Octagonal Relations and Their Powers
Definition 17. Letx = {x1,...,xx} be a set of variables. A relatioR € Z~ x Z
is anoctagonal relatioif it can be defined by an octagonal constraiitx, x’).

The class of relations defined by octagonal constraintsristed byR,.; in the
following.

Example 7. Consider the octagonal relatioR(x1, zo, 27, 24) < x1 + 22 < 5Ax) —

x1 < =2Az2h —xe < =3 ANzh —) < 1. Its difference bounds representation is
Rly,y) oy —ya <B5Ays—y2 <B5Ayp —y1 < —2Ay2 —yo < —2Ay3 —y3 <
=3Ays—yy < =3Ay;—y; < 1Ays—yy <1, wherey = {yi,...,ys}. Figure
8a shows the graph representatiGz. Note that the implicit constraing; — v < 1
(represented by a dashed edge in Figure 8a) is not tight. tening step replaces
the bound1 (crossed in Figure 8a) witld. Figure 8b shows the tightly closed DBM

representation of?, denoted\/};. O
A consequence of Proposition 7 is thag.; is closed under composition.
Proposition 8. R, is closed under intersection and composition.

Proof. Let R;(x,x’), R2(x,x’) be octagonal constraints defining octagonal relations.
By Definition 14,R; (x, x’) A R2(x,x’) is an octagonal constraints to. The composition
of relationsR; o Ry can be defined asx” . (R:1(x,x”) A Ra(x”,x’)) which is again
an octagonal constraint, by Definition 14 and Proposition 7.]

We rely in the following chapters on the main result of [11high establishes the
following relation betweer/L__ (the tightly closed octagonal DBM corresponding to
them-th iteration ofRR) andM%m (the closed DBM corresponding to theth iteration

of the difference bounds relatidr), for all m > 0:

38

Theorem 4. [11] Let R(x,x’), x = {z1,..., 2N}, be ax-consistent octagonal rela-
tion. Then M+ = M. for all m > 0. Consequently,

. * (Mgm)iz (MEm) 35
(M) = i { (M)iy, | S | 4 | i |}

forall 1 <i,j <4N.

This relation is in fact a generalization of the tight clasdefinition from Theorem 3,
fromm = 1to anym > 0.

6.3. Finite Monoid Affine Relations

Sections 6.1 and 6.2 presented two classes of non-detstimirglations. In this
section, we present linear affine relations which are a geémeodel of deterministic
transition relations. Linear affine relations are relasiaf the formx’ = A x x +
b A ¢(x), wherex’ = A x x + b is an affine transformation ant(x) is a Presburger
guard. We present two subclasses of linear affine relat@alledfinite monoid affine
relationsandpolynomially bounded affine relations

The class of finite monoid affine relations was the first cldsmteger relations
for which the transitive closure has been shown to be Prgsbdefinable by Boigelot
[9]. Informally, an affine relation is a finite monoid relatidaf the set of powers of
its transformation matrix is finite. Originally, Boigeloharacterized this class by two
decidable conditions in [9] (we report on these conditionsémma 5). Later, Finkel
and Leroux noticed in [25] that Boigelot's conditions capend to the finite monoid
property, which is also known to be decidable [42].

The second subclass of polynomially bounded relationsfineby dropping one
of the Boigelot's conditions and by requiring that the guafda relation is linear.
We study this subclass in Chapte®? which presents a method for computation of
termination preconditions for this class.

Definition 18. Letx = (x1,...,zy) be a vector of variables ranging ovét. A
relation R € ZV x Z is anaffine relationf it can be defined by a formul&(x, x’)
of the form

R(x,x') & X' =Axx+b A ¢(x) 4)

whereA € ZV*N b € ZN, and¢ is a Presburger formula over unprimed variables
only, called theguard The formulax’ = A x x + b, defining a linear transformation,
is called theupdate

The affine transformation is said to have firdte monoid property9, 25] if the
monoid of powers of4, denoted agM 4, x), whereM 4 = {A | i > 0}, is finite. In
this case, we also say thathas the finite monoid property. Her = Iy andA* =
Ax A1 fori > 0. Intuitively, the finite monoid property is equivalent teetfact that
A has finitely many powers (considering the standard integgtipfication). A linear
affine relation has the finite monoid property if and only i¢ tmatrix A defining the
update has the finite monoid property.

It has been shown in [25] that finite monoid property can bevadgntly character-
ized by a pair of conditions. Before presenting this chandzation, we recall several
notions of linear algebra.

39

If A € Z"*™ is a square matrix, and € Z™ is a column vector of integer con-
stants, then any complex numbee C such thatAv = Av, for some complex vector
v € C", is called areigenvalueof A. The vectorv in this case is called aeigen-
vectorof A. It is known that the eigenvalues df are the roots of theharacteristic
polynomialP, (z) = det(A — xI,,) = 0, which is an effectively computable univariate
polynomial. Theminimal polynomiabf A is the polynomia}: 4 of lowest degree such
thatpa(A) = 0. By the Cayley-Hamilton Theorem, the minimal polynomiakays
divides the characteristic polynomial, i.e. the roots effbrmer are root of the latter.

If \i,..., A\, are the eigenvalues oA, then\,... A2 are the eigenvalues of
AP, for all integersp > 0. A matrix is said to beliagonalizableif and only if there
exists a non-singular matri¥ € CN* and a diagonal matrix with the eigenvalues
A1, ..., Am OcCcurring on the main diagonal, such thit= U x D x U~'. This is the
case if and only ifu 4 has only roots of multiplicity one (see e.g. Thm 8.47 in [9]).

A complex number- is said to be aoot of the unityif »¢ = 1 for some integer
d > 0. Thecyclotomic polynomiaF,(x) is the product of all monomialér — w),
wherew? = 1, andw® # 1, forall 0 < e < d. It is known that a polynomial has only
roots which are roots of unity if and only if it is a product gfototomic polynomials.

With these notions, the finite monoid property is defined ey fiillowing equiva-
lent conditions.

Theorem 5. [Thm 8.42 and 8.44 in [9] and Prop 2 in [25]] a relatio® = A x x+ b,
whereA € ZV*N andb € Z" has the finite monoid condition if and only if there
existsp > 0 such that the following hold:

1. every eigenvalue of? belongs to the s€i0, 1},
2. the minimal polynomiaf 4» (x) of AP belongs to the s€i0, z,z — 1, z(z — 1)}
(or, equivalently,A? is diagonalizable).

Both conditions in Theorem are decidable [9, 42].

In Chapter??, we study another subclass of affine relations with lineardsi and
transformation matrix whose eigenvalues are either zeroais of the unity.

Definition 19. If x = (x4, ...,z x) is a vector of variables ranging ové, a polyno-
mially bounded affine relatiois a relation of the form

R(x,x') & X =Axx+b A Cx>d (5)

whereA € Z"*", C € ZP*™ are matrices, and € Z", d € Z” are column vectors
of integer constants and moreover, all eigenvalued afre either zero or roots of the
unity.

Note that if A is a finite monoid matrix, then all eigenvalues 4fare either zero
or roots of the unity. Thus, the condition ohis weaker for polynomially bounded
affine relations. However, since the guard of finite monoldtiens is more general
(Presburger), the two classes are incomparable.

40

7. Periodicity of Integer Relations

This section is dedicated to instantiations of Algorithnréni Chaptef??to three
classes of arithmetic relations for which the transitivesadre is known to be defin-
able in Presburger arithmetic: difference bounds relatiattagonal relations, and
finite monoid affine transformations. To compute the tréwesitlosure of these rela-
tions using Algorithm 5, one first needs to prove that thedlhsiasses are periodic,
otherwise termination of Algorithm 5 is not guaranteed. @toofs rely mostly on
a fact that any matrix is periodic when its powers are contpinte¢he tropical semiring
(Z oo, min, +, 00, 0). The intuition behind periodicity of difference boundsaténs is
that thek-th power of a relation from this class can be encoded by n@himns of
lengthk in zigzag automatavhich in turn can be computed as theh tropical power
of the incidence matrix of the automaton. Thus, periodioityhe sequence of tropi-
cal powers of the incidence matrix entails periodicity ofiffiedence bounds relation.
Periodicity of the three classes thus provides common gi®tothe acceleration prob-
lem and also gives shorter proofs for the fact that the ttiwestlosures of these three
classes are definable in Presburger arithmetic.

The efficiency of Algorithm 5 depends on two factors. Giverlation with prefix
b and period:, Theorem 2 proves that Algorithm 5 makeg$(b + ¢)?) iterations of the
main loop. Thus, the prefik and the period are important complexity parameters,
and we give asymptotic bounds for them in Chag@r For difference bounds and
octagonal relations, these bounds are closely relatedundsoon the prefix and the
period of the incidence matrix of zigzag automata. This tdafherefore gives an
alternative proof to the fact that each matrix is periodithia tropical semiring which
moreover gives asymptotic bounds.

Another important efficiency factor is the complexity of fmocedures Mx CoN-
SISTENTand Max PERIODIC, which are called by Algorithm 5 to detect the maximal
interval that is periodic with respect to the current prefind geriod candidates. In
general, for all three classes of relations we considesetipeocedures can be imple-
mented using Presburger arithmetic queries. However,dntjge, one would like to
avoid as much as possible using Presburger solvers, duagone of high complexity
of decision procedures for Presburger arithmetic. In thipter, we give direct deci-
sion methods which avoid calls to external Presburger or SMers completely and
which are of polynomial time complexity in the size of thefpteperiod, | R||, and N,
where| R| denotes the sum of absolute values of the coefficients oatiorlR and N
denotes the number of variables used to define a given nel&tio

Roadmap..In Section 7.1, we prove that every matrix is periodic in ttepical semir-
ing and establish asymptotic bounds on the size of its prefixperiod. Next, Sections
7.2, 7.5, and 7.8 study the classes of difference boundagogal, and finite monoid
affine relations, respectively. In each of these sectiorgspwove that the respective
class is periodic, present implementations of theXMCoNSISTENTand Max PERI-
oDIC procedures, and study their complexity. We defer all expenits with Algorithm
5 to Chaptef?.

41

7.1. Periodicity of Matrices

In this section, we prove that each matrix is periodic whepdwers are computed
in thetropical semiringwhich is defined as follows.

An idempotent semirings a set(S,+, -, 0,1) equipped with two operations, the
addition+ and the multiplication, such thatS, +, 0) is an idempotent (i.eg+p = p
for all p € §) commutative monoid with neutral elemehtand (S, -, 1) is a monoid
with neutral elemeni. Moreover, multiplication distributes both left and righter
addition andd -~ = r - 0 = 0, for all » € S. Thetropical semiring is an idempotent
semiring(Z«, min, +, 0o, 0) [52] with the extended arithmetic operatians co = oo,
andmin(z, c0) = z, for all z € Z, wheremin(z, y) denotes the minimum between
the values: andy.

If Sis a set, letS™*™ denote the set of square matrices of sizewith entries in

S. For two matricesA, B € Z2.*™, we define the surA + B);; = A;; + B;;. The
classical product is defined fof, B € Z™*™ as(A x B);; = > -, (aix - bj). The
tropical productis defined ford, B € Z2*™ as(AX B);; = minj_, (a;x + by;). Let
I, € Z™*™ be the identity matrix, i.el;; = 1 andL;; = 0, forall1 < 4,5 < m,
i # 7, andl,, € Z2*™ be the tropical identity matrix, i.el;; = 0 andl;; = oo, for
alll <i,j < m,i+# j. Then we defined® = I, 4AZ° = T andA* = AF-1 x A,
AR — AR R A, forall k> 0.

With these notions, a periodic matrix can be defined as falow

Definition 20. A matrix A € Z7*™ is called periodic if the sequence of tropical
powers{ A" 12 _ is periodic.

Intuitively, if A is the incidence matrix of a weighted digraph, then the secgie
{AW}ZOZ1 of tropical powers ofA gives the minimal weight paths of lengtihs=
1,2,... between any two vertices of the graph. It has been proved2htfat every
matrix A € Z22*™ is periodic. We define the prefix (period) of a matdxas the pre-
fix (period) of the sequenc{eAW}gczl. We will often refer to periodicity (or prefix,
period) of graphs, by which we mean periodicity (or prefixjipe, respectively) of the
corresponding incidence matrix.

We have argued that the complexity of the transitive clogigerithm depends on
the size of the prefix and the period of the input relationdctvivill be later (in Section
7.2) shown to be bounded by the size of the prefix and the pefiadcertain kind of
graphs, for difference bounds and octagonal relations. rékelt of [52] is however
not suitable to establish bounds on the prefix and period odjalg In this section, we
therefore give an alternative proof of periodicity of meés that moreover establishes
bounds on sizes of their prefix and period.

Recall from Sectior?? that given a pathr, we denote byw () its weight and that
w(m) denotes its average weight.\f, ..., A, are pairwise distinct elementary cycles,
the expressiofl = g1 - A} -2 ... 05 - A} - 0,41 is called gpath scheme of size A path
schemd = o;.\}.05 such thato;.0o| < |V|* is calledbasic A path scheme encodes

3Actually, the dual structuréZ _ ., max, +, —oo, 0) is also known as the tropical semiring in the liter-
ature.

42

the infinite set of path§d] = {01 - A\]* - 02... 0% - A% - Opq1 | na,...,np € NL
Given a weighted digrapy = (V, E, w), we denote by\/ its incidence matrix.

The first observation is that, for every minimal weight pathaiweighted graph,
there is an equivalent path following a path scheme whose isibounded by the
square of the size of the graph.

Proposition 9. LetG = (V, E, w) be a weighted digraph andbe a minimal weight
path inG. Then there exists a path schethe: o1 - A} - ... 0 - A} - 0441 iN G, such
thatoy, ..., o4 are acyclic andk < |V|?, and a pathy’ € [6] starting and ending
in the same vertices as such thalp| = |p’| andw(p) = w(p’).

Proof. For each vertew € V, we partition the set of elementary cycles that start
and end irw, according to their length. The representative of eachvatpnce class is
chosen to be a cycle of minimal weight in the class. Sinceghgth of each elementary
cycle is at mos{V'|, there are at mog#/|* such equivalence classes.

Let p be any path of minimal weight iv'. First, notice thap can be factorized as:

P=01 A" ... Ok At Okt1

whereoy, ..., 0,41 are elementary acyclic paths, aig, ..., \; are elementary cy-

cles. This factorization can be achieved by a traversalwfile collecting the vertices

along the way in a bag. The first vertex which is already in thg tmarks the first ele-

mentary cycle. Then we empty the bag and continue until thieegmath is traversed.
Next, we repeat the following two steps until nothing change

1. Foralli =1,...,k — 1 move all cycles\;, j > i, starting and ending with the
same vertex a;, next to)\;, in the ascending order of their lengths. The result
is a pathy’ of the same length and weight as

2. Factorize any remaining non-elementary acyclic patho; 1 - ... o;4; asin
the previous.

The loop above is shown to terminate, since the sum of thehsmgf the remaining
acyclic paths decreases with every iteration. The resalpiath of the same length and
weight asp, which starts and ends in the same verticep,dn which all elementary
cycles of the same length are grouped together. Sir(gg is minimal for |p|, same
holds forp’, and moreover, all elementary cycles can be replaced bydhaivalence
class representatives, without changing neither the hemgtr the weight of the path.
The result is a path which belongs to a scheme with at ifiokt cycles. ad

Second, for every minimal weight path in the graph, therstexdn equivalent path
which follows a basic path scheme.

Lemma 6. LetG = (V, E, w) be a weighted digraph andbe a minimal weight path.
Then there exists a paftl, starting and ending in the same verticesgasuch that
w(p) = w(p') and|p| = |p'|, and a basic path scheme = o - * - ¢’ such that
p €[]

Proof. By Proposition 9, for any path in G there exists a path scherfie= o; - A} -
Oy...0k - AL - 0t1, SUCh thaty, ..., 044, are acyclic and: < |V, and a path

43

P, starting and ending in the same verticespasf the same weight and length as
such thatp’ = o1 - AT - o2...0k - AL* - 041 fOr someny, ..., n, > 0. Suppose
that \; is a cycle with minimal average weight among all cycles in sbheme, i.e.
“’I(AA‘) < “"(Q?‘) forall1 < j < k. For eachn; there exisp; > 0 and0 < ¢; < |\,
suchthat; = p; - |\;| + ¢;. Letp’ be the path:

o1 A oy oy /\7#2;;1 IR PYIES DN TRV i1 O A o
It is easy to check thap'| = |p| andw(p’) < w(p).
Clearly o’ follows the path scheme, - \; - p2, wherep; = o1\ -02... 0,1 and
p2 = 0iy1-...0k AP - op41. SinceAq, ..., \; are elementary paths, all their lengths
are strictly smaller thati’|. Sinceq; < |\;| < [V, andk < |V|*, by Proposition 9,
we have thatp; - po| < |[V|*. Thus,p; - A7 - p, is basic. O
The following lemma shows that, for a sufficiently long migimveight path, there
exists an equivalent path which follows a basic path schemdengoreover, this path
scheme is followed by infinitely many minimal paths. Redaditt

w(G) = max{|n| | u = vin G}
denotes the maximum absolute value of all weight§'in

Lemma?. LetG = (V, E, w) be a weighted digraph, and, v € V' be two vertices.
Then for every minimal weight paghform u to v, such thatp| > u(G) - [V[°, there

exists a pathp’ fromw to v, such thatw(p) = w(p’) and|p| = |¢’|, and a basic path
schemd® = o - *-¢’, such thap’ = o - *- ¢/, for someb > 0. Moreover, there exists

c| lcrn(l‘w such thatr - A**%¢ . ¢/ is a minimal weight path from to v, for all
k>0.

Proof By Lemma 6, every minimal weight path fromto v follows a basic path
scheme. LeL > 0 be an integer, and let; - A} - o ando; “Aj o; be two possible path
schemes such that = 07;-/\?i 0%, pj =0 ~>\?j -0; are two paths of length, for some
b;,b; > 0. We assume without loss of generality thathas smaller average weight,
i.e.w(\;) < w(A;). We first prove that, i > u(G) - [V I°, thenw(p;) < w(p;). We
have:

by
iSO TINT
and
w(p) = w(oi-ol)+ HEw(n),
w(p;) = w(Uj'0§)+7L_|‘;j{0;‘w()\j)-

Thenw(p;) < w(p;) if and only if

s IXill\jl(w(ai - f) —w(oj - a5)) + [Nilloy - oflw(Ng) = [Ajlloi - oflw(N)
- w(Aj)|Ai] — w(Xi)| A

44

Since \; has a strictly smaller average weight thaj we have thato(\;)| ;|
w(A;)|Aj] > 0 and sincew(\;),w(A;), |\, |A\;| € Z, we have thato();)|As]
w(A;)[A;| > 1. By Lemma 6, we havér; - o;l,[0; - 07| < IV|*, andw(o; - o) —
w(o; - a4) < u(G) - [V]". We compute:

6
L w(G) - V]
[Ail[Aj[(w(os - o) —w(oj - o)) + [Ailloj - o lw(A;) — [Aslloi - offw(N)
INillAj|(w(oi-07)—w(o;-05))+|Aillo;-05lw(X;)=|\jl|os-0f [w(Xs)
w(A;) A [—w(X)[As]

vV IV IV

Since the choice g; andp; was arbitrary, for each > ;(G) - |V]°, the path scheme
with minimal average weight cycle is chosen by the minimaighepath of lengthl..

Second, we show that this happens periodically. For twospath= o; - /\f - o}
andp; = o; -)\;’ﬂ' - o; of equal lengths, as before, k&t = lem(|\if,|A)]), ¢ = 52

P
andc; = ‘C"'-?". We have thaf\"“/| = |>\§cj\ = kc,;, for all k > 0. Moreover, since
J

A
w(A;) <w(\;), we have thatu()\fci) < w()\fcj

). It follows that

wlog N o) Sw(og - AP o)

forall k > 0. Finally, sincg\;|, |A;| < |V, we have that;; | iem(1,...,|V|—-1) and
thusc; | W Since the choice afdoes not change this fact, it is enough to
takec = w andb = b; to obtain thaw; - A\’** . 5/ has minimal weight
among all paths from to v of the same length, for all > 0. m]
The following lemma is essential to prove an upper bound em#riod of weighed

digraphs.
Lemma 8. For eachn > 1, lem(1, ..., n) is bounded bp® ™),

Proof. We know thatlem(1,...,n) = [],<, pl'°9 ") where the product is taken

only over primew. Obviously, for every prime we have thaplios»(")] < plegs(n) —
n. HenceJem(1,...,n) <[],<,n =n""), wherer(n) denotes the prime-counting
function (which gives the number of primes less than or etual, for every natural
numbern). Using the prime number theorem which states that, ... nfl(:()n) =1
we can effectively boundr(n). That is, for anye > 0, there exists:. such that

nfl(n"({l) < (1+¢)foralln > n. . Consequently,™™ < pltean/in(n) — (d+en —

olog2(e)(1+e)n — 90(n) for all n, > n., and completes the proof.]
The following theorem gives asymptotic bounds on the sizhefprefix and the
period of a weighted digrap& = (V, E, w), in terms ofu(G) and|V].

Theorem 6. LetG = (V, E,w) be a digraph, and/¢ € Zl1*IV1 pe its incidence
matrix. Then, the sequen¢@/% },-, is periodic. Moreover, its prefikis bounded by
u(G)-0(|V]°), and its period divide&m(1, ..., |V|—1) and is bounded by® IV,

Proof. A direct consequence of Lemma 7 is that each minimal weigth pin G of
length at leasp(G) - |V|° must be of the fornp = & - A’ - ¢/, and moreover, for

45

somec | % we have that - \>*%¢ . ¢/ is a minimal weight path, for all

k > 0. Hence, for eachh < ¢,5 < |V, the sequence(MEk)ij},;";O is periodic with
prefix at mostu(G) - [V|® and period which divide&m(1,..., V| — 1). The prefix
b of M¢ is the maximum of all prefixes, and the periot the least common multiple
of the periods of the sequenc{e@wgi)ij}gozo, respectively. Hencé is bounded by
u(G)-0(|V]®) ande divideslem(1, . . ., [V —1). By Lemma8jcm(1, ..., |V]—1)
is bounded by2®UVD . Sincec divideslem(1, ..., |V| — 1), the same bound far
follows immediately. |

7.2. Difference Bounds Relations

Recall from Section 6.1 that a difference bounds relafio ZV x ZY can be
equivalently represented as a difference bounds matrixMPB{r. Similarly, for
each DBMM there is a corresponding difference bounds relafign. Furthermore,
difference bounds relations can be represented canonimalDBMs M7;.

The first step to proving that the clagyy, is periodic is defining the mappings
between relations and matrices (Definition 4). Given a «test difference bounds
relationR € Ry, we defineo(R) = M}, € Z2)*2N to be the closed characteristic
DBM of R. Dually, for any DBMM € Z2N*2N let p(M) = @, € Rap, be the
difference bounds relation correspondingito We clearly havey(o(R)) < R, for all
consistent relation®, as required by Definition 4.

In order to define a functiom : Z[k]*™ — R[k] mapping matrices of lin-
ear terms of the forma - & + 3, with integer coefficients, into parametric relations
R(k,x,x"), we define the class glarametricdifference bounds relations.

Definition 21. A formula¢(x, k) is a parametric difference bounds constrafrit is
equivalent to a finite conjunction of atomic propositionstaf formz; — x; < t,5, for
somel <i,j < N,i# j, wheret;; are univariate linear terms itk.

The class of parametric difference bounds relations wittapaterk is denoted as
Rap[k]. Similar to the non-parametric case (Definition 8), a patamelifference
bounds constraing(k) can be represented by a matrix,[k] € Z[k]X*N of uni-
variate linear terms, wher@/,[k]);; = t;; if ; — x; < t;; occurs ing, andoo oth-
erwise. Dually, a matrixd/[k] of linear terms corresponds to the formdla, (k) <
/\Mk]iﬁé(>O x; —x; < MIk];;. With these considerations, we definé)M [k]) =
(k) to be the parametric counterpart of théunction from Definition 4. Clearly,
for each matrixd € Z[k]™*™, the mappingr satisfies the required property that
7(M)[n/k] & p(M|n]) forall n € Z.

7.3. Proving Periodicity

In this section, we prove that all relations defined usindediince bounds con-
straints are periodic in the sense of Definition 4. A direatsamjuence is that these
relations are also periodic, which ensures the terminagfohlgorithm 5 on theR 4
class.

Let R € Ry, be an arbitrary difference bounds relation for the rest if $lkection.

If Ris notx-consistent, then by Definition & is periodic. We consider from now on

46

that R is -consistent and prove that the sequefie€R?) }2°, is periodic in this case.
We haver (R') = M, for anyi > 0.

The proof idea is that the entries of the sequefib€};; }°, represent minimal
weight paths in the graph corresponding to themes “unfolding” of R, for anyi >
0. These paths form a regular language recognized by a finiighteel automaton.
Consequently, the minimal weights for= 0,1, 2, ... are entries in the sequence of
tropical powers of the incidence matrix of this automatount en they form periodic
sequences, according to Theorem 6.

Foralll <i,j < N, we obtain the following equalities:

[U(Rm)]i7j = min{z) — x?}

[U(Rm)}i+N7j+N = min{a]" — ;p;"}

[U(Rm)hﬁ]\/ = min{2? — z} (6)
[J(Rm)h.:,.zvd = min{a]" — x?}

Recall the definition of theigzag automatfrom Section 6.1.3 that recognize paths
within constraint graphs. In the following, we view theseamata as reasoning tools,
needed to prove the periodicity of the difference boundstaimts. Recall thaf’y =
(Q, A, w) is the common transition table of all zigzag automata®oe R,,. Let

My, € 7181120 pe the incidence matrix ofy, where| Q| is the number of control
states ifl'z. Without loss of generality, we assume that stateg ire both reachable
and co-reachabfe For each pair of variables;, z;, there are eight indices, denoted
asIfl, Fel 10, Feb, 197 F9T It Feb e {1,...|Q|} corresponding to the initial
and final states of the four 2|gzag automata respectlvetty;ommg to Lemma 5, the
minimal weight path of lengthn + 2 from Ifd to */ matches the minimal weight

path between the extremal point$ and m? of G, Similarly for paths from/<® to

Fet, from 177 to Fy7, and fromI¢® to F?°. However the weights of the paths in the
zigzag automata are captured by the tropical powerstgf, as follows:

. m+2
min{z) — 29} = [MRg ch pes

. m—42
mln{x;n - x;n} = [MRg }[cb Fet

. 0 m ®m+2 (7)

min{z; — 27"} = [Mp Lor JFo

. m-+2
min{z!" — xg} = [MRg Lgb_Fob

i 0y

By Theorem 6, the tropical powers @#1r form a periodic sequence, therefore
the sequencé M ™"}, is periodic. By equating the equivalences (6) and (7)
from the previous, we obtain that the sequefie€R™)},,,> is periodic as well. The
following theorem summarizes the above arguments.

Theorem 7. The class of difference bounds relations is periodic.

4A state is said to beeachableif there exists a path from an initial state to it, aratreachablef there
exists a path from it to a final state.

47

Moreover, sincéll g~ is a projection of/\/lj%m+2 forallm > 0if Risx-consistent,
the prefix of ax-consistent relatiorR is bounded by the prefix dfz. Similar claim
can be made for the period &

Proposition 10. Let Tr = (Q, A, w) be the common transition table of zigzag au-
tomata defined for &-consistent difference bounds relatidh Then, the size of the
prefix of R is bounded by the size of the prefixigf and the period of? divides the
period of T's.

Proof. The proof of Lemma 1 shows that 8, (c;;) is the prefix (period) of the
sequencd (MB™);; >0 forall 1 < i, j < |Q], then the sequendeMy " },,>¢ has
the prefix defined ab = max;;{b;;} and the period defined as= lcm,;{c;;}. Since
R is *-consistent My~ is a projection ofMZ™ " for all m > 0. Then the bounds
stated in this proposition follow from the definition @andc. |

In conclusion, Algorithm 5 will terminate on difference buais relations. More-
over, the result is formula definable in Presburger aritiundn particular, this also
simplifies the proof that transitive closures of differedmunds relations are Pres-
burger definable, from [15]. The following result is neededhe following section to
design a cost-effective implementation of Algorithm 5.

Corollary 1. If R € Ry, be a difference bounds relation, the rateof the periodic
sequencdo(R')}%°, is a closed DBM.

Proof. Sinces(R™) = M}, forallm > 0, o(R™) is closed and thus we have for all
1<4,j,k<2N andm > 0:

[o(R™)],; < [o(B™)], , + [o(R™)],,

Since{c(R™)}_, is periodic, there exists > 0, ¢ > 0 andA € Z2Y*2N such that:
(R = o(R®) +n-A
for all n > 0. Consequently, we have, for dll< i, j, kK < 2N and alln > 0:
[O—(Rb)}i,j tno Ay < [U(Rb)]i,k + [U(Rb)}k,j e (Aig 4 Agj)
We obtain:

n-(Aij — Ay, — Agy) < [U(Rb)]i’k + [o(RY)], . — [U(Rb)}m, Yn >0

5]

Suppose thah is not closed i.e., there exi$t< i, j, k < 2N such thatA;; > A, +
Ay;, we get a contradiction with the above. O

7.4. Checking:-consistency and Periodicity

In this section, we describe cost-effective ways to implentee Max CONSIS
TENT and Max PerIoDIC procedures from Algorithm 5 for difference bounds rela-
tions.

48

First, we need to introduce several technical notionsundvariate linear termis
a term of the formx - k& + 3, wherea, 8 € Z are integer constants. LE{k] denote
the set of all univariate linear terms with varialile For two setsS, T C Z[k], we
defineS & T = {(041+Oé2)',l€+ﬂ1+,62|0[1'k+ﬂ1 € S, ag‘k+52 € T}
For two linear termg; = a7 - k + 81 andty = a3 - k + (B2, we define the partial
orderonterms; <ty & a3 < as A B; < B2. We denote the strict inequality
onterms byt; <ty < t; = ta A to A t;. For afinite set of linear term§, we
denote by MNTERMS(S) = {t € S| Vs € S . s A t} the set of minimal terms in
S, with respect to this order. For a set of integer constéais. . . , a,, }, we denote by
MAXxMiN{a;}?, the positive valuenax{a;}? ; — min{a;}? ;.

Proposition 11. LetS = {«; - k + 5;}7~, be a set of univariate linear terms. Then
IMINTERMS(S) | < min(MAXMIN{a; }72;, MAXMIN{3;}72 ;)

Proof: Aterma -k + 8 corresponds to the poifit, 3) in the 2-dimensional space. All
terms fromS are points in the rectangle defined by the bottom left cofmen{c; } 7 ;,
min{3;}* ;) and the upper right corné¢max{a; }7.;, max{j;}}.,). Since all terms
in MINTERMS(S) are incomparable w.r.tz, there can be at mostin(max{a;}7., —
min{a; }7 |, max{3;}7, —min{f;}7",) such terms. Hence the result. 0

Given alinear term = «-k+3, we denote by(n) the valuen-n+4, foranyn € N.
The set of valuations of a termwith respect to the thresholds [t]., = {t(n) | n >
£}. These notations are naturally lifted to sets of terms,T.e2) = {t(n) |t € T'}.
and[T]., = User [t]5,-

Unlike DBMs with constant entries, parametric DBMs do notéha closed form,
since in general, the minimum of two univariate linear teoasnot be defined again as
a linear term. A way around this problem is using matriceseté f univariate linear
terms, with the convention that a SBt= {¢1(k), ..., t,(k)} of univariate linear terms
denotes the functiok — min{t,...,t,}, andmin()) = co. The Floyd-Warshall
algorithm for computing closed forms of DBMs with constantrées can be easily
adapted to parametric DBMs.

Algorithm 7 takes as input a matrix of univariate linear teriand produces a matrix
of sets of such terms (each set of teffhis interpreted amin(7")). Lines 2-7 initialize
the output matrix with sets of terms. Lines 8-14 correspanthe classical Floyd-
Warshall iteration.

Proposition 12. Let M € Z2*™ k] be a parametric DBM, such that;; = «;; - k +
Bij, forall 1 < i, j < m. Then, Algorithm 7 runs in at mo&(x.* - m%) time where

po=min(max {ois|}, max {|Bi;]})
Moreover, we havéM,;| < 2m - p.

Proof. Each termu - k + 5 € M[i][j] is a sum of at most: termsc;; - k + ;. We
have:

—m-maxi<ij<mi{loil} < a <m-maxicj<om{|os)}, and
—m-maxi<;j<m{|Bil} < B < m-maxicij<m{lBil}-

49

Algorithm 7 Closure Algorithm for Parametric DBMs
1: procedure PARAMETRICFW (M)

2: forall i =0,...,m—1do

3 forall j=0,...,m—1do

4: if M[i][j] = oo then

5: Mi][i] < 0

6: else

7 Mi][j] < {MTi][5]}

8: forall k=0,...,m —1do

9 forall i =0,...,m—1do
10: forall j =0,...,m—1do
11 Ty + M(i][s]

12: Ty + M(i][k]

13: Ty < MIE|[]

14: Mi][j] <~ MINTERMS (T U (T & T2))
15: return Mi[J]

16: procedure MINTERMS(S)
17: return {t € S |Vse S.s At}

By an argument similar to the one used in Proposition 11, we itaat| M [:][j]] <
2m - p, whereyp is defined ag: = min(maxi<; j<m{|oi;|}, maxi<i j<m{|5ij|}).
Therefore, each call to MTERMS takes at mos(m? -) time. Since the classical
Floyd-Warshall algorithm (i.e. Algorithm 7 in which we cader that MNTERMS
needs constant time) runs in tildgm?), we obtain the result. |

MAX CONSISTENT. Given a difference bounds relatiaR, integersb > 0,¢ > 0
such thatR**2¢ is consistent, and a matrix € Z2Y*2N, let us denoteV g » =
k- A+ o(Rb) € Z[k]2Y 2N With this notation, we have:

MAXCONSISTENT(R, b, A) = sup{n € N | Mg A[n] is consistent.

Since R¥*%¢ is consistent, it follows that Mx CONSISTENT R, b, A) > 2 and hence,
we can define MX CONSISTENT(R, b, A) equivalently as

MAXCONSISTENT(R, b, A) = inf{n € N | Mg, a[n] is inconsistert — 1.

In analogy to the non-parametric case, the inconsistency pdrametric difference
bounds constraint amounts to the existence of a strictlatiegelementary cycle in
the constraint graph correspondingfy, ; » [n] for some valuatiom € N of k. The
MAx CONsISTENTprocedure can be implemented as follows. Let

M = PARAMETRICFW(MEg 5 A)

as returned by Algorithm 7. ObviouslW r » o[n] is not consistent if and only if

min(M,;[n]) < 0 for some: = 1,...,2N. The minimal value of: for which this
is the case i’ = min{T'(M,;)}2Y,, wherel is a constant defined in the following

lemma. Then, MxPERIODIC returns intege defined as’ = K’ — 1.

50

Lemma9. LetT = {«; - k + 5;}7*, be a set of univariate linear terms afde N
be a constant. Themin,>,7T'(n) < 0 if and only if there existd < ¢ < m such
that eithera; < 0, or «; - £ + B8; < 0. Moreover the smallest value such that
ming,>¢{a; -n+ B}t < 0is(T) = minj’, v; where:

max(é, |22 +1) ifa; <0
Vi = € ifOéjZO/\Oéj'€+6j<0
00 otherwise

Proof. min,>,T(n) < 0iff there existsl < i < m such thai; - n + 5; < 0. Let us
fix ¢ for the rest of the proof. There are three cases:

o if a; < Owe haven > [—2] + 1, hencen > v; = max(, |- 2] +1).
e if o; > 0anda;-¢+5; > 0, we haven;-n+8; > 0, foralln > ¢, contradiction.

e else, we havey; > 0 anda; - £ + 5; < 0, in which case we have > ~; = /.

O

Proposition 13. For a difference bounds relatioR, integersb > 0,¢ > 0 such that
R? is consistent and a matrix € Z2Y*2N MAX CONSISTENT(R, b, A) runs in time

atmostO((b+ ¢)® - |R| - N9).

Proof. Computing M requires one application of Algorithm 7. By Proposition &
call to Algorithm 7 requires time at mo&(n? - N°), where:
pr— 3 .. b ..

p=min(_max Ayl max {|(o(R")y]))
Since the constraint gragh, has(b+1)- N nodes, any minimal path between extremes
may not exceed weightb + 1) - N - |R|. This is becausé’ is consistent, i.e. there
are no negative cycles @, and a path going through a positive cycle is not minimal.
Since the rate\ is computed a8 = o(R"¢) — o(R"), we similarly infer that,;; <
(b+c+1)-N-|R|forall1 <i,j <2N.Henceu < (b+c+1)- N -|R]|, which
gives the result.]

MaxPeRIODIC.. Given a difference bounds relatid?) integersK € N, b > 0 and
¢ > 0, such thatR? is consistent, and a matrix € Z2V*2N | the procedure

MAXPERIODIC(R, b, A, ¢, K)
returns the maximal intege® < n < K such that:

VO<l<n.pl-A+0c(RY))oR® e p(({+1)-A+o(R)

5The successful test at line 8 of Algorithm 5 implies that 2.

51

or oo, if K = oo and the above equivalence holds forallThe left-hand side of the
equivalence can be encoded by a matrix of terms of the foin{¢,}7* ,, wheret; are
univariate linear terms, and can be computed by Algorithifiié DBM corresponding
to the right-hand side is shown to be closed for all valuatioik, which means that the
relation on the right-hand side of the equivalence can baeg&imply by a parametric
DBM, instead of a matrix of min-terms, which is the case fa lft-hand side.

Lemma 10. Let R € R4 be a difference bounds relation, ardbe the rate of the
periodic sequencéo(R?)}22,. Then, for allb > 0 andn > 0, the DBMn - A + o (R?)
is closed.

Proof: A direct consequence of the fact thatR”) is closed by definition, and that
is also closed, by Corollary 1.]

We need thus to check equivalence (forial 0) between a matrix of minima of
sets of linear terms ik and a parametric DBM. By Proposition 3, equivalence of two
difference bounds constraints amounts to the equalityeif ttiosed DBMs. In order
to find the maximal intervad, ..., n in which min{a; - & + 8;}"; = ao -k + Bo
holds, for allk = 0,...,n, we apply the following lemma to each entry in the left
and right-hand side of the above equivalence, and returmthignal value among all
entries, for which the equivalence holds, incremented t&f.on

Lemma1l. LetT = {«;-k+ 3;}7*, be a set of univariate linear term& = o -k +
Bo € Z[k] be aterm, and € N be a constant. Then there exists an integer ¢+ 1
such thatmin T'(n) = to(n), for all £ < n < k, if and only if the following hold:

L Vi (i = a0 ABi = Bo) A ALy Ni—olaw - (€+3) + Bo < o (€+5) + Bi]
2. /{<m1n{vjl ﬁoj |1<i<m, ap # a, ng i"] >0+ 1}
Proof. We assume without loss of generality that> 2 and that all termsy; - k +
Bi, 1 =1,...,m are distinct.
="If minT'(n) = to(n), foralll < n < kandx > ¢(+1, thenclearly\" , /\3:0[040'
(+7)+ Bo < a; - (£ +7)+ pi], i.e. the second conjunct of the first point is valid.
To show the validity of the first conjunct of the first point,ppose without loss of
generality that:
to (£) = 10 < ta(0)
to(l+1) = t(0+1) < t1(+1)
to(l+2) < t1({+2)
to(l+2) < ta(l+2)

The choice oft; andts is not important. We obtain a contradiction in the following
way:

¢ — bBi=Bo ~ B2=fo
%O gl - apg—a2

— 2—F0 1—F0

é + 1 - apg—a2 Z apg—Q]

6SinceV0 < ¢ < k.¢ifandonlyifV0 <l < k+1.¢.

52

To show the second point, assume by contradictionshat| ﬁ; iﬂj > ¢+ 1 for
somei = 1,...,m, such that the termy; - k + 3; is distinct fromay - k& + 3,. Since,
by the first pomt we havg, < §;, andZ=2> > 0, thenag > a;. It follows that
ook > ;- K+ B;, which contradicts the fact th&t is minimal in the interval, . . ., k.
<" By the first point,to(n) = t;(n), for all n, andmin T'(n) = to(n), forn = é,E +
1,¢+ 2. To prove thainin T'(n) = to(n) for all £ < n < k, assume by contradiction,
thatmin T'(p) = t;(p) < to(p) for somep = ¢,...,x and some = 1,...,m, such
that ¢, is distinct from¢y. But then we havéa; — ap) - p < Bo — 5; < 0. The
last inequality is due to the first point. Sinpe> 0, we have thaty; < «p, hence
k> p > | 2=Le |, contradiction. O

Proposition 14. For a difference bounds relatioR, and integer$ > 0,c¢ > 0 such
that RV*< is consistent and a matrig € Z2Y*2N MAXPERIODIC runs in time at

mostO((b + ¢)? - |R|* - N?).

Proof. We apply Algorithm 7 to compose the parametric DBM A + o(R®) with
o(R®), which requires time) (3 - N), cf. Proposition 12. By an argument similar
to the one used in the proof of Proposition 13, we objaid (b+c+ 1) - N - |R|.
The result of Max PERIODICIS thex bound from Lemma 11, which can be established
during the computation of the min-sets using Algorithm 7n&fethe result followsd
Finally, we prove the asymptotic complexity on the runnirfgAtgorithm 5 for
a difference bounds relatioR in terms of its prefix, period, the number of variables
used to defing?, and the sum of absolute values of coefficient&of

Theorem 8. Let R be a difference bounds relation with prefixand periodC'. Then,
Algorithm 5 computes the transitive closureffn at mostO((B + C)% - |R|® - N9)
time.

Proof: By Theorem 2, Algorithm 5 takes at ma8{((B + C)?) iterations of the main
loop and in each iteration and moreover, the algorithm dmrsia prefix and period
candidate$ andc such that botth andc are bounded by ((B + C)?). By Proposition
13, Procedure Mx CONSISTENTrUNS in time at mos®((b + ¢)3 - | R|* - N?). Com-
bining this bound with the bound dnandc, if follows that MAX CONSISTENTruns in
time at most((B + C)S - |R|* - N?). We obtain the same bound on running time
of MAXPERIODIC, by Proposition 14. The test on line 8 can be performe®{iv?)
time, by Proposition 3. The greatest power of a relation ithabmputed by the algo-
rithm is R¥+2¢, Since the composition of difference bounds relations eodmputed
in O(N?3) time, if follows that these computations are performe®i{B + C) - N3)
time. Since the algorithm takes at m@3t(B + C)?) iterations, we finally infer that
the total running time of Algorithm 5 is bounded BY((B + C)® - |R|* - N?). 0

Running Example.We demonstrate the main steps of Algorithm 5 applied to the di
ference boundsrelatioR < x1 —) < 1Az —ah < —1Azo—z) < —2Azo—ah < 2.
The first valid guess fofb, ¢) = (2, 2), for which the test on line 9 succeeds, leads to
the candidate rat& (Figure 9). The M\X CONSISTENT procedure first computes the
parametric DBM corresponding gk - A + o(R")), shown in Figure 10a. The DBM

53

0 oo =3 0 0 oo —6 3 0 oo -3 -3

| o 0 -1 =3 | | oo 0 -4 -6 | oo 0 -3 -3

My = Mpe = 00 oo 0 o Mpeve = 0 oo 0 o A= o oo 0 o
oo oo oo 0 o oo oo 0 oo oo oo 0

Figure 9: Candidate ratk for (b, c) = (2,2).

0 00
00 0

—
888
888

(=3-3k) -3k
(—1-3k) (=3 3k))

@k A+ Mg

(0) Go (k-nt-) (c) Gre

Figure 10: Left-hand side of the MK PERIODIC equivalence test

is already closed and thus, application of Algorithm 5 ddedrange its entries. Next,
Lemma 9 is applied to compute the vallie= oo that MAX CONSISTENTreturns.
The MaxPerIoDIC procedure checks that

plk-A+0(R"))oR < p((k+1) A+ a(R))

for all k > 0. The parametric DBMy((k + 1) - A + o (R")) representing the right-hand
side of the equivalence is shown in Figure 11. The left-hadd s equivalent to the
composition ofo(k - A + Mps) (Figures 10a and 10b) witRe (Figure 10c). This

amounts to the computation of shortest paths between eatrartices of the graph in
Figure 12 which results in a graph identical to the one in Fégll. Since this graph

represents the right-hand side, the above equivalence lotcall £ > 0 and thus,
MAXPERIODIC returnsL = oo.

Then, a test on line 12 succeeds and Algorithm 5 returns émsitive closure:
Rt VIR Vv 3k>0.Vink-A+0(R?))oR &
(=2 <TAz—25 <1 ANz—2) <2ANz—axb<-2)VIL>0.
(r1—2) <-3k—-3ANx1—ahb<-3kANxo—2]|<-3k—1Axo—2,<-3k—3)V
(x1—2] <=3k—2Az1—25<-3k—4ANxog—2) <-3k—5ANxe—x,<—-3k—2)

88=8
T
QN
w
= =~
T
o w
w w
Zz==
N—

888

@(k+1)- A+ Mgy

(0) Go ((k+1)-A+21p,)

Figure 11: Right-hand side of the M PERIODIC equivalence test

54

Figure 12: Computing parametric compositiotk - A + Mps) o R°.

After the elimination of the existential quantifier, we dbta

Rt & (01— <1A2—25<—1A20—2) < 2N 20—25<-2) V
(11— <3Nz —25<0Nz2—2) <—1Amy—25<—-3) V
(x1—2]<-2Az1—25 <-4 ANxy—2) <—D5ANxy—25,<—2)

7.5. Octagonal Relations

Recall from Section 6.2 that an octagonal relatRnC Z x Z" defined by a
formula R(x, x’) can be represented as a difference bounds reldtigny’) defined
over the dual set of variables with the convention that ; stands forx; andys,; for
—x;. Then, an octagonal relatiadR can be represented by a difference bounds matrix
M. Similarly, for each DBMM, there is a corresponding octagonal relatiogy.
Furthermore, octagonal relations can be represented icatiygroy DBMs ML.

We start by defining the mappings between octagonal retonl their matrix
encodings required by Definition 4. Given a consistent antagrelationR(x, x’) let
o(R) = ML. Dually, for any coherent DBM/ € Z2)"**N, letp(M) = Q. Clearly,
p(c(R)) & R as required by Definition 4. In order to define the mappingve first
define the class gfarametricoctagonal relations.

Definition 22. A formula¢(x, k) is aparametric octagonal constraifitt is equivalent
to a finite conjunction of terms of the fortp—x; < u;j;, zi+x; < vy Or a+x; > ti),
whereu;;, v;; andt;; are univariate linear terms ik, forall 1 <4, j < V.

A parametric octagom(x, k) is represented by a matriX/z[k]| € Z[k]2N*2N of
univariate linear terms. Vice versa, a mati%[k] € Z[k]2Y*2N encodes a para-
metric octagonal relation, denoted Qs, (k). With these considerations, we define
m(M[k]) = Qs (k) to be the parametric counterpart of théunction from Definition
4.

7.6. Proving Periodicity

In order to prove that the clags,.; of octagonal relations is periodic, we need to
prove that the sequende (R™)}>°_, is periodic, for an arbitrary relatioR € R;. It
is sufficient to consider only the case whétés x-consistenti.eqg(R™) = M%, for
aII m > 0. We rely in the following on Theorem 4 which gives a method ampute
Rm, the tightly closed DBM representation &, from M., the closed DBM

representation oR "

55

We have previously shown, in Section 7.2, that differencenids relations are
periodic. In particular, this means that the sequeine.... }7°_, corresponding to the

iteration of the difference bounds relatid) is periodic. To prove that the sequence
{ML_1}>_ is also periodic, it is sufficient to show that (i) the minimumd (ii)

the sum of two periodic sequences are periodic, and alsdithahe integer half of
a periodic sequence is also periodic.

Lemma 12. Let {s,,}55_, and {t,, }>°_, be two periodic sequences. Then the se-
quences{min (s, tm)}55_g, {Sm + tm}os_o and { |2 |} *°_ are periodic as well.
Let b, (cs) be the prefix (period) ofs,, }c_o, let b; (c;) be the prefix (period) of
{tm}55_y, and let definé = max(bs, b;), ¢ = lem(cs, ¢;), andb,, = b+maxi_) Kc,
where

{M—I if)\Eé) <)\Et) andtb+i < Sp+i

AL AL
J— tysi—) i B t
Ki= H&_i\b(?) | if MY <A andsy i <ty
0 otherwise

foreachi =0,...,c—1and Where\ff), o Agsfl ()\f)t), oy /\@1) are rates of{ s,,, }°_,
({tm}2o_,) with respect to the common prefixand periode. Then, the prefix and the
period of the above sequences are:

| prefix period

{8m +tm}0, b c
{15} zo b 2¢
{min(sm,, tm) }oo_, b, c

Proof. We can show that the sum sequeesg, + t.,}>°_, is periodic as well, with

prefix b, periodc and ratesk((f) + Aét), s Ag‘?l +)\gl. In fact, for everyk > 0 and

i =0, ...,c — 1 we have successively:

(8 + Dptr(ht1)etri = Sb(htDeti T bot(kt1)eti (8)
=)\gs) + Sptketi +)\Et) + totketi 9)
= A+ sy hepi + ket (10)
= ()‘z('S) + /\§t)) + (8 + O)ptheti (1)

For the min sequencémin(s,,tm)}5°_,, it can be shown that, for each =
0,...,c¢ — 1 precisely one of the following assertions hold:

LA < AP or AY = A" and s,y < tyy) andVk > 0. spykerkers <
Lot Kictheti

2. ()\Et) <)\Es) or)\Es) =)\Et) andtyy; < spri) andVk > 0. toikeiketri <
Sb+-K;ctketi

Intuitively, starting from the position + K¢, on every period:, the minimum
amongst the two sequences is always defined by the same sedugenthe one having

56

the minimal rate on indexk or if the rates are equal, the one having the smaller startin
value.

We can show now that the min sequeRe&in(s,,, t,)}5o_, is periodic starting at
bm = b+ maxf;é K e, with periode and rateSrnin()\és), /\ét)), iy min()\gs_)l, /\Ql).
That is, we have successively, for evéry> 0 andi = 0,...,c — 1, and whenever
1 satisfies the condition (1) above (the case wheatisfies the condition (2) being
similar):

MIN(8y, 4 (k4+1)ctis Lo+ (k+1)eti) = Sbyy+(k+1)eti

MY+ 8y, ket

min(/\z('S)’)‘Et)) + min(sbm,-‘rkcﬁ-i’ tbm +k‘c+i)

For the sequencg| | } ~_ , assume that the sequer{ag, }55_, is periodic with
prefixb, periodc and rates\, ..., A._1. It can be easily shown that the sequeh&g |
is periodic as well with prefix, period2c, and rates\g, ..., Ac—1, Ag, -+-; Ae—1-

We have successively for aky> 0, and for anyi = 0, ...,c — 1:

{3b+(k+1)20+iJ _ V&' +5b+k~20+iJ g {Sb+k~-2c+z'J
2 2 t 2

Similarly, for anyk > 0 and for anyi = 0, ..., ¢ — 1, we have:

{S(b+k+1)zc+c+iJ | 2M F Soqkeocteti | A\ {Sb+k-zc+c+iJ
- — — i + - -
2 2 2
a
The theorem below is an immediate consequence of Theorem Beanma 12.

Theorem 9. The class of octagonal relations is periodic.

Corollary 2. If R € R, is an octagonal relation, the rat& of the periodic sequence
{o(R")}2, is tightly closed.

Proof. On one handg(R?) = M}, is tightly closed, by definition. By Theorem 9,
there exisb > 0, ¢ > 0 andA € Z2V>4N foralln > 0:

o(R™t) =n- A+ o(R)

The first two points of Definition 16 are immediate. The cles(point 3 of Definition
16) is by Corollary 1. We are left with proving the last poinamely that for all
1<i,j <4N:
Az Az
Aij < LfJ + L%J 12)
Sinces (R *?) is tightly closed, for all > 0, we have, for alll <i,j < 4N:

n-NizT+0 b - 7L~A7' o b -
PRt | | PRt

2 2
iz Az o(R%) a(R");
ne (] + A)) 4 | B ey 4 | B) 2

The last inequality holds because, forally € Z andn > 0:

n-Aij + U(Rb)ij

<
<

57

o U< 150+ 1B+
o [BE] =n-|5]ifxiseven,

andA;; andA;; are both even. We calculate:

Mo Ay 0B, oy
(A — - < @ - o >
n-(Ay = L5l - 157D s I=5 =5 = o(®);; +2, ¥n 20
Then the condition (12) follows. a

7.7. Checking:-consistency and Periodicity

Similar to the case of difference bounds relations, in thidion we give efficient
ways to implement the Mx CoNsiSTENTand Max PERIODIC procedures from Algo-
rithm 5. In the rest of this sectiom, univariate linear half-ternis a term of the form
L%J, where the mapping — | 3| denotes the integer division by two.

Unlike the case of octagonal constraints with constantfficmmts, the matrices
representing parametric octagons do not have a tightledloanonical form. To over-
come this problem, one can use Algorithm 7 and Theorem 3 toal#fie tight closure
of a parametric octagonal matrix as a matrix whose entriee#herco or terms of
the formmin{¢;(k)}7,, wheret;(k) are either univariate linear terms or sums of half-
terms.

MAXCONSISTENT.. Given an octagonal relatioR, integersb > 0,c > 0 such that
RP2¢is consistent, and a matrix € ZY <4V letus denoté/r , o = k-A+o(R’) €
Z[K)ANV>4N - Similarly as in the difference bounds case, we have:

MAXCONSISTENT(R, b, A) = sup{n € N| Mg a[n] is octagonal-consisteht
= inf{n € N| Mg a[n] is octagonal-inconsistejt- 1

According to Theorem 3} g A[n] iS octagonal-inconsistent for some valuation
n € N of k, if either

(i) Mn]gp,a isinconsistent, or

(”) L(]V[[n]};%,b,A)ﬁJ + I—(Af[n]*];h,A)“J < 0 for somel < i < AN,

Let M = PARAMETRICFW(MR 5 A), as returned by Algorithm 7. Checking for the
case (i) can be done in a similar way as for difference bouadstcaints (Section 7.2).
The condition of case (ii) is equivalent to the following:

t
min H{Lij + ng |t € Miz,u € My, <0, forsomel <i <4N (13)

The following lemma shows that a set of sums of univariatéteams is semantically

equivalent to the union of two sets of univariate linear term

Lemma 13. LetT = {t; + 7", [5]}/, wheret; = ;- k+ Bi, uij = i - k+0ij
are univariate linear terms. Then there exist two st/ of univariate linear terms
such that for allk > 0:

min{L(k)}
min{l/(k)}

Moreover|L| < |T| and|U| < |7

min{T'(2k)}
min{7T(2k + 1)}

58

Proof. For a univariate linear term- k + ¢ € Z[k], we have:

2 g =y k4 (o Ul k4 1150

o

Let

{20 + 7% vig) - b+ B+ S [% and

{20 + 37 vig) - b4 i+ B+ Sy | B .
Clearly [T]., = [£]sq U [U]s¢, min{L(k)} = min{T(2k)}, andmin{l/(k)} =
min{7T(2k + 1)} for all £ > 0. Itis easy to see thdrZ| < |T'| and || < |T. O

Letus denotd; = {[£] + 4| [t € My, u € My}. Then, the condition (13) can
be rewritten as

I

min [[72]]20 < 0, forsomel < ¢ < 4N.
By Lemma 13, foreach=1,...,4N there exist sets of univariate linear terfisand
U; such thainin{L;(k)} = min{7;(2k)} andmin{¥;(k)} = min{7;(2k + 1)} for all
k > 0. Therefore, for alll < i < 4N, we have
(min [7;]5o < 0) & (min [£;]5 < 0) V (min U], < 0).

With these considerations, theAM CONSISTENT procedure can be implemented
as follows. We define

Kap = min{T'(M;)}2],
Ky, = min{[(L) ;“Vl,
Ky = min{TU)},

where given a set of univariate linear terfisl'(7) is a constant defined in the Lemma
9. Note that/(4, is the minimal integer. € N such thatM [n|r 5 A iS inconsistent. By
Lemma 13min{2 - K.,2 - K;; — 1} is the minimal integer for which (13) holds, or

equivalently, the minimal integer € N such thal{(M["]’;)i]+ L(M["H;“b”‘)“J <0,

for somel < i < 4N. Consequently, the WX CoONSISTENTprocedure returns:
MAXCONSISTENT(R,b,A) = min{Ky,2 - K;,2- Ky —1} —1.

Proposition 15. For an octagonal relationR, an integerb > 0 such thatR? is consis-
tent and a matrixA € Z4V*4N Max CONSISTENTruns in time at mos((b + ¢)? -

IRI” - N9).
Proof. ComputingM requires one application of Algorithm 7. By Proposition i
call to Algorithm 7 requires time at mo&}(n? - N°), where:

p=min(_max {|Ail}, max {|(o (R"))i;1})

1< 1<i,j<2N

Moreover, the size aM;; is bounded b8V - 11, by Proposition 12. By an argument
similar to the one in the proof of Proposition 12, one inféitt: < (b+c+1)-2N-|R].
ConsequentlyM takes at most)((b+ ¢)? - | R|* - N?) time and|M,;] is bounded by
O((b+¢) - |R| - N?).

Hence, computing’; and/; can be done in time at mo&(N? - (b + ¢) - |R|).
By Lemma 13,|£;| < |M;;], and|U;| < |M;;| and consequentlyiXy,, K., an
K can be computed i@ ((b + ¢) - |R] - N3) time for eachl < i < 4N. Hence,
MAXx CONSISTENTprocedure runs in time at mo$((b + ¢)® - |R|® - N?). O

59

MAxPERIODIC.. Given an octagonal relatioR, two integersh > 0 andc > 0, such
that R” is consistent, a constaif € N, and a matrixA € Z*V*4N the procedure
MAXPERIODIC(R, b, A, ¢, K) returns the maximal positive integer< K such that
the equivalence(¢- A+ (Rb))o R < p((¢+1)-A+0o(R")) holds forallo < ¢ < n,
or oo if the above holds for all positivé

The left-hand side of the equivalence can be encoded by axnidir of terms of
the formmin{¢;}*,, wheret; are either univariate linear terms or sums of univariate
half-terms, and can be computed by Algorithm 7. We show thatDBM M, that
encodes the right-hand side relation is tightly closed albwaluation ofk, meaning
that the right-hand side can be simply represented by a gdarenDBM, under the
octagonal interpretation.

Lemma 14. Let R € R, be an octagonal relation, and be the rate of the periodic
sequencgo(RY)}22,. Then, for allb,n > 0, the DBM(n + 1) - A + o(R?) is tightly
closed.

Proof. As a direct consequence of the fact thdf®) is tightly closed, by definition,
and thatA is tightly closed, by Corollary 2. |
Two octagonal relations are equivalent whenever theitliighosed DBM encod-
ings are equal (Proposition 6). Hence we need to check foal#yginside some
interval) between min-sets of univariate linear terms andsof half-terms (the left-
hand side matri¥/;) and univariate linear terms (the right-hand side matfiy). Here
again Lemma 13 comes to rescue. We computeusing Algorithm 7 and Theorem 4.
Using Lemma 13, we split/; to M, ;, andM; 7, whereM; 1, M iy are matrices with
sets of univariate terms as entries such that{(M; 1.);;(k)} = min{M;;(2k)} and
min{(M) (k)} = min{M,;(2k+1)} forall k > 0. Similarly, we splitA/s to My 1,
andMs ;. Then, we apply Lemma 11 to compute the upper babindP;;) of the in-
terval in whichM; ;, and M, 1 (M, andMs ;) are equal. Finally, the upper bound
of the interval in which\/; and M/, are equal is computed asn{2- Py, 2-Py—1}+1.

Proposition 16. For a difference bounds relatioR, and integer$ > 0,c¢ > 0 such
that R°*¢ is consistent and a matrid € Z2Y>*2N MaxPERIODIC runs in time at
mostO((b + ¢)? - |R|* - N?).

Proof. By an argument similar to the one used in the proof of Prajmsi5, Algorithm

7 computes the matrid1 of sets representing the parametric compositiok of\ +

o(R?) with o(R¢) in time O((b + ¢)? - |R|® - N?). Moreover the size of each entry

M, is bounded bYO((b+¢) - | R| - N*). Computing the minimal bound from Lemma

11 requires the®((b + ¢) - |R| - N*) time. Hence the result. O
Finally, we prove the asymptotic complexity on the runnirfgAtgorithm 5 for

an octagonal relatio® in terms of its prefix, period, the number of variables used to

defineR, and the sum of absolute values of coefficient&of

Theorem 10. Let R be an octagonal relation with prefi® and periodC. Then, Al-
gorithm 5 computes the transitive closure®®fin at mostO((B + C)® - |R|* - N?)
time.

60

Proof. The bounds on the running time of procedures NCONSISTENT (Proposi-
tions 15) and MXx PERIODIC (Proposition 16) for octagonal relations are same as for
difference bounds relations (Propositions 13 and 14, ctisedy). Similarly, relational
composition of octagons has the same asymptotic bdid?) as difference bounds
constraints. Hence, we obtain the same bound as in Theorem 8. m]

Running Example Consider the octagonal relatid®(z, z2,), 25) < x1 + 29 <
SAx) —x < —2Aah — a9 < -3 Axh—12) <1. The check at line 9 of Algorithm

5 succeeds fofb,c¢) = (1,1). In order to compute MxPERIODIC, one needs to
compose parametric difference bound matrices, similalinahe case of difference
bound relations. Moreover, the tightening step must beopexdd. Figure 13 shows
the parametric matriX\/ representing the left-hand side of the equivalence checked
by MAXPERIODIC. The matrix is closed, but not tightly closed. We illustréte
tightening for the constraint/ — v, which depends on constraint$— v} andyj — v/

and is thus computed as

min{—6k — 3, L_6kJ + L_Gk — 6J}
2 2
By Lemma 13, we obtain
[[—6]6—3]]20 = LLUulU; = [[—12]6—3]]20 U [[—12k—9]]20
HL%%JHZO = LUU; = [[_6k]]20 U [[_6]‘3_3]]20
[H#Jﬂzo = L3UUs = [[_Gk_3]]zo U [[‘6k—6]]20

The tightening step splitd/ into M, andMy . In M, the tightened constraint — v}
is computed as
min{—12k — 3, (—6k) + (—6k — 3)} = —12k — 3
and similarly inMy, the tightened constraingt — v} is computed as
min{—12k — 9, (—6k — 3) + (—6k — 6)} = —12k — 9
Further checks are similar as in the difference bounds ddwn, Algorithm 5 returns
the following result:
b—1) c—1 .
R" & \/R' Vv3k>0.\/n(k-A+0(R)oR
=1 =0
& Fk>0.05<-3kANa]—21<-2k-2Axh—2) <1 Azh—121<-3k—1A
rh—29<—3k—3ANx14+22<H AN T1+25<—3k+2 A
T2y < —2k+3 A 2 +ah < -5k A xh+xe < —3k+4

After quantifier elimination, we obtain:

Rt & zh<0Anzj—z1<-2A2h—1<—1Azh—2)<1A
Th—2o <=3 ANT1+12 <5 AT +T5<2 A
Ty +22 <3N +25 <0 A o t25 <4

61

!

v1 Y2 Y3 O A S L S R/
" 0 00 00 5 9 %) oo Bk+2 oo o0 oo —3k—1
Y2 00 0 00 00 oo 2k—2 oo -Bk—1 oo 2k—4 oo -3k—4
Y3 00 5 0 o0 o —2k+3 oo Bk+4 oo 2k+1 oo 3k+1
Ya 00 00 00 0 00 %) oo Bk—3 00 oo —3k—6
yi | 2k-2 00 00 —2k+3 0 00 oo bk oo 00 oo —Hk—3
yy 00 00 00 00 00 0 00 1 00 -2 -2
yy | 3k—1 -3k+2 -3k-3 -3k+4 1 -5k 0 —6k oo —Hk—2 oo —6k—3
vy 00 00 0 00 00 00 6] 0) 00 00 -3
v | 2k—4 00 00 —2k+1 -2 00 oo —Hk—2 0 00 oo —bHk—5
vh 00 00 00 00 00 00 00 00 00 0 00 1
ys | 3k—-4 3k-1 -3k—-6 -3k+1 -2 -Hk-3 -3 —6k-3 1 -DHk—-5 0 —6k—6
n 00 00 00 00 00) 00) 00 00 00 0

Figure 13: Left-hand side before tightening

7.8. Finite Monoid Affine Relations

Recall from Section 6.3 that an affine relatiine Z" x Z" is defined by a linear
arithmetic constraint of the form’ = Ax + b, whereA € ZV¥*V is a square matrix,
andb € Z" is a column vector. The relation is said to have the finite nipeooperty
if the set{ A°, A', ...} of matrix powers of4 is finite.

It is easy to see that is finite monoid if and only if there exists > 0 andl > 0
such thatA? = AP je. My = {A% ... AP ... APH=11 If A has the finite
monoid property, it can be shown that the transitive cloxfré can be defined in
Presburger arithmetic [9, 25]. We achieve the same resldivbbey showing that the
update of a finite monoid affine relations is a periodic relatiAs a consequence, the
closed form of the update can be computed by Algorithm 5. é&sthe update relation
is x-consistent and deterministic, the transitive closure lmamcomputed by applying
the following lemma.

Lemma 15. Let R(x,x’) € R be ax-consistent deterministic relation ane(x) be
a guard. Then the transitive closure of the relatiBm ¢ can be defined as:

(RA@)T(x,x") & 3k >0.R(k,x,x) AVO< £ < k3y.R(,x,y) A ply)
whereR defines the closed form &,

Proof. “=" Let v, v’ be a pair of valuations of andx’, respectively, such that v’ =

(R A)T. Then there exista > 0 such thatv, v/ = (R A ¢)". Consequently, there
exists a sequence of valuations= vg, vy,...,v, = v/ such thatv;,v,y; = R A ¢.

By Definition 6, we have thal= R(n,vo,v,) andl= R(i,vo,v;) A ¢(v;), for all
i=0,...,n—1.

"<" Let v andv’ be two valuations such that R(n,v,v’) for somen > 0 and
foralli = 0,...,n — 1 we havel= ﬁ(@mvi) and = ¢(v;), for some valuation

v; of x. Sinceﬁ(n) < R™, by Definition 6, there exists a sequence of valuations
v = v(,Vi,..., v, = v such thatv;,v;, , = R. By the fact thatR was assumed

n

62

to be deterministic, we have, = v/, foralli = 0,...,n — 1, hencev, = ¢, for all
i=0,...,n— 1. Clearly thenv,v' = (R A p)*. O

To compute the transitive closure of an affine relation, @nsugh to compute the
closed form of its update. This can be computed by Algorithwh&never the update
relation is shown to be periodic. In the following, we showttthis is indeed the case,
when A has the finite monoid property. For simplicity reasons, wikwiark with the
equivalent homogenous form of (4)

T, & x'y, = A, xxp, A gbh(xh) where A, < < 0 A 0 tl) >
wherexy, = (z1,...xn,xn+1) With 21 & x being a fresh variable angl, (x;,) <
¢(x) A zny41 = 1. The encoding of an affine upddie < x';, = Ay, x xy, is defined
aso(T,) = Ay € ZS TN pually, for somels € Z[k]S TN we define

(M) < x';, = M x x;,. With these definitions, we havd %) = A4,,%, forall & > 0.
The next lemma proves that the class of finite monoid affinetgsdis periodic.

Lemma 16. Let A € ZN*N be a finite monoid matrixp € Z~ be a vector, and let
write the finite monoid generated byas M 4 = {A°,... AP ... AP+l=11 where
p>0,1>0,andA? = AP+l Then, the sequen({eﬂlh’“},;“;o is periodic with prefixp
and period!.

Proof Let A € ZV*N pe a matrixb € Z¥ be a vector, and

A |b
Ah@(0.0 1)

Then we have, for alt > 0:

) = (A B A)
0...0\ 1

Fori=N+1,1<j< N+1, {(Ah’“)ij}zozo is trivially periodic. Forl <i,j < N,
{(An")i; 132, is periodic due to the fact that is finite monoid. It remains to be proven
that, for all1 < j < N, the sequencg(>"") A% x b);}32, is periodic. Without loss
of generality, assume that the monoidfs M4 = {A% Al ... AP . . APTI=1}
whereAP = AP*!, Then, fork > p, we have:

SiTe Al = YTy Al B | TR A g AR med) g,
Hence the sequenc{{jk ! A'}pe is periodic with prefixp, period!, and rates
A _ EP-H 1Az
forall ; = 0,1,...,1 — 1. ConsequentlyA,, is periodic with the same prefix and

period.]
As a direct consequence, we have the following theorem.

63

Theorem 11. The class of finite monoid affine updates is periodic. Mongtive tran-
sitive closures of finite monoid affine relations with Pregleu definable guards are
effectively Presburger definable.

The implementation of the proceduressKICoNsISTENTand MAX PERIODIC for
finite monoid affine relations is rather simple. Since we rigoAithm 5 forx-consistent
updates of the forrx’;, = A;, x x5, only, MAX CONSISTENTNeeds to return always
oco. The MaXPERIODIC test can be implemented as an equivalence check between
two homogeneous linear systems with univariate linearfwberfits. More precisely,
given a homogeneous transformation= A x z, with A € Z(N+D*(N+1) and a ma-
trix A € ZWW+Dx(N+1) "we are looking for valuations df that satisfy the following
equality

(AP + k- A)x A=A+ (k+1)-A (14)

Both (A +k-A) x A°andA® + (k+1)- A are matrices where each entry is a univariate
linear term. The test on line 9 of the Algorithm 5 guarantdes the above equality
holds for at least k=0 and k=1. Clearly,#f(0) = t2(0) andt;(1) = (1) for two
univariate linear terms, ¢, thent, (k) = t2(k) forall k > 0. Hence, the MaxPeriodic
returns alwayd. = co. We summarize these observations in the following projmosit

Proposition 17. Given a finite monoid matrix € Z¥*¥ integersb > 0, ¢ > 0, and
amatrixA € ZWN+HDx(VHD guch thatdhte = A% + A and A)Te = Abte + A, the
proceduredVl AX CONSISTENTand MAX PERIODIC run in constant time.

Finally, we prove the asymptotic complexity on the runnifid\igorithm 5 for a fi-
nite monoid affine relatioi® in terms of its prefix, period, and the number of variables
used to defingv.

Theorem 12. Let R be a difference bounds relation with prefsxand periodC. Then,
Algorithm 5 computes the transitive closurefdfn at mostO((B + C)? - N3) time.

Proof. Let R be a finite monoid affine relation and I&, be the update oR. If
follows from Lemma 16 that asymptotic bound on the time ndedecompute the
transitive closure oz and R,, are same. Thus, we consider only an update relation in
a homogenous form encoded as a mattjxe & >N+,

By Theorem 2, Algorithm 5 takes at mo&t((B + C)?) iterations of the main
loop and in each iteration and moreover, the algorithm dmrsia prefix and period
candidate$ andc such that botth andc are bounded by ((B + C)?). By Proposition
17, procedures Mx CoNsISTENTand MaX CONSISTENTrun in constant time. The
test on line 8 amounts to equality of two matrices and can e plerformed irO(N?)
time. The greatest power of a relation that is computed byatherithm is R*+2¢.
Since the composition of an update in a homogenous form tgigf amounts to matrix
multiplication, if follows that these computations arefpemed inO((B + C) - N3)
time. Hence, the total bound on the running time of Algorithis O((B + C)?- N3).

O

64

8. Complexity of the Transitive Closure Algorithm

This chapter is concerned with the worst-case complexityheftransitive closure
algorithm from ChapteP? (Algorithm 5) when applied to difference bounds, octag-
onal, and finite monoid affine relations. For a periodic ietatR C Z~ x Z~ with
prefixb > 0 and period: > 0, the asymptotic bound on the running time of Algorithm
5isO((b+¢)® - |R|* - N?) if R is a difference bounds or an octagonal relation (by
Theorem 8 and 10), whellg?| denotes the sum of absolute values of the coefficients
of R. The asymptotic bound i©((b + ¢)? - N3) if R is a finite monoid affine relation
(by Theorem 12).

The main issue, dealt with in this chapter, is thus the evamlnaf the upper bounds
of the prefixb and period: for each of these classes of relations. We prove that for dif-
ference bounds relationsjs asymptotically bounded Gy - 2°N) andc is bounded
by 2°0(V) For octagonal relations, the bound on the period is sameratifference
bounds relations and the prefix is bounded| B} - 2°¥). For finite monoid affine
relations,b + c is the size of the monoid, which in turn is proved to be bounied
20(N"#101Y) " Columns 2 and 3 in Table 1 summarize these results. Congpthia
bounds on the size of the prefix and the period with the boundsdy Theorem 8,
10, and 12, we obtain asymptotic bounds on the running tirddgdrithm 5 in terms
of N and|R)| (the last column in Table 1).

Table 1: Transitive Closure Complexities for Periodic Rielas

CLASS PREFIX PERIOD | TRANSITIVE CLOSURE
difference bounds| |R]| - 20 20(N) |R|® - 20M)
octagonal |R|? - 20(N) 20(N) IR - 20(M)
finite monoid affine| 20101 | gO(EI0 M) QO M)

In all cases, Algorithm 5 runs in EXPTIME in the number of adnfies, and PTIME
in the sum of absolute values of the coefficient®Rodr, equivalently, in EXPTIME in
the size of the binary representationff

8.1. Difference Bounds Relations

Any difference bounds relatio® € Ry, is periodic, by Theorem 7. This re-
sult extends to the octagonal claBs.;, by Theorem 9. The periodicity of differ-
ence bounds relations is a consequence of the fact thatdliersee of tropical matrix
powers{M%l}izo where My is the incidence matrix of the common transition table
Tr = (Q, A, w) of the zigzag automata defined f&r(see Section 6.1.3), is periodic
by Theorem 6. Since each power®fis encoded by a matrix which is a projection of
a tropical power ofM g, the prefix of R is not greater than the prefix Qf/\/l%}izo,
while the period ofR is a divisor of the period o{M%l }i>o. In this section, we prove
a|R| - 2°) upper bound for the prefix and2¢ ™) upper bound for the period of
Mpg. By the previous arguments, these bounds are also bountisefprefix and the
period of R, respectively.

65

In the rest of this section, let = {z1,...,2 5} be a set of variables(x, x’) be
a difference bounds relation, afi; = (Q, A, w) be the common transition table of
zigzag automata defined fai.

8.2. Bounding the Prefix

We start by instantiating Lemma 7 for the common transitand 7z = (Q, A, w)
of zigzag automata defined fdt.

Corollary 3. LetTr = (Q, A, w) be the common transition table of zigzag automata
defined for a difference bounds relatidt) andu, v € @) be two control states. Then
for every minimal weight patp form v to v, such thatp| > |R] - |Q|°, there exists

a pathp’ fromw to v, such thatw(p) = w(p’) and|p| = |p’|, and a basic path scheme
6 = o\ -0, suchthaty = o -\ - ¢, for someb > 0. Moreover, there exists
c| w such thatr - **%¢ . 5’ is a minimal weight path from to v, for all

k> 0.

Proof. We obtain the statement of the corollary by instantiatimgrima 7 withT'z =
(Q, A, w), in which caseu(Tr) < |R|. O
Similarly, we instantiate Theorem 6.

Corollary 4. LetTr = (Q, A, w) be the common transition table of zigzag automata
defined for a difference bounds relatidt) and letM g be its incidence matrix. Then,
the sequencéM%i}iZO is periodic. Moreover, its prefiiis bounded by R| - 2°(V),
and its period dividegem(1, . .., 5%) and is bounded bg?”"".

Proof. We obtain the statement of the corollary by instantiatigdrem 6 withl'r =
(Q, A, w), in which caseu(Tr) < |R| and|Q| = 5" . |

A direct consequence of Corollary 4 is that the prefix of aadéhce bounds relation
Ris bounded by R| - 2°(V),

Corollary 5. Letx = {z1,...,2x} be a set of variables. Given a difference bounds
relation R(x, x'), its prefix is bounded byR| - 20,

Proof. We distinguish two cases. First,Afis x-consistent, then the boutj&| - 2€ (V)

on the prefix ofl' r = (@, A, w) that follows from Corollary 4 is also the bound on the
prefix of R, by Proposition 10.

If R is notx-consistent, there exists a power- 0 such thatk’ < L. Consequently,
there exists a minimal weight pathof length ¢ in the even zigzag automaton for
R, recognizing a negative cycle. By Lemma 6, there exists anvalgnt pathp’ of
the formo - A* - o/, where|o - o/| < 5*¥ and|\| < 5%, for somek > 0. We have

¢ = |o - o'|+k|A|. The prefix ofR is the minimal lengtlf such thatuv(p) = w(p’) < 0.

If w(o-o’) < 0, then this length isoo’| < 5V, Otherwise, ifw(o - o’) > 0, we have
w(\) < 0, or elsep’ could not encode a negative cycle, independently of hoveldrg

w(o-a’)

is. Thenw(p') < 0ifand only if & > — (N Since—w(A) > 0 andw(X) € Z, we
have—w()\) > 1. A sufficient condition is that > |R| - 5 > w(o - ¢’), hence

66

¢ = |p/| > 5™ + |R| - 5%V, i.e. the prefix of a«-inconsistent relatio? is also
asymptotically bounded bjR| - 20V, i
Similarly, a direct consequence of Corollary 4 is the boundhe period which is

double exponential itV. In the next section, we prove that this bound can be improved
to 20V,

Corollary 6. Letx = {z1,...,zn} be a set of variables. Given a difference bounds
O(N)

relation R(x, x'), its period is bounded b3? .
Proof. The period of«-inconsistent relatiorR is 1, by Definition 5, which is clearly
bounded by2”" .

Let Tr = (Q,A,w) be the common transition table of zigzag automata ef a
consistent?. By Corollary 4, the period of T is bounded b322O<N). Since each
elementMg:, i > 0, of the sequencéMg- },,>o of powers ofR is obtained as a pro-
jection of M%', it follows that the period of divides the period off . Thus, the
period of R is bounded by2°"" too. O

8.3. Bounding the Period

In this section, we refine Corollary 6 and show that the pevitdifference bounds
relations is bounded by a single exponential. We start byhohgfiseveral key notions
and giving a high level idea of the proof.

8.3.1. Key Notions and a Proof Idea

Given a difference bounds relatid®(x,x’), x = {z1,...,zy} and the unfolded
graph Gy, we define the composition, power, relative length, andtiveleaverage
weight operators on paths gi;.

Definition 23. Let R(x,x’), x = {z1,...,2zn}, be a difference bounds relation and
let

(lo) (

prx” = ! g ko) (kn)

l1) (Um) (k1)
B RS iy plia st =

m,n > 1, be two paths irG%. Therelative path length operatis defined agp| =
|l — lo|. If |p] > 0, we define theelative average weigloperatorw(p) = %. If
im = Jjo, we defing.p’, thecompositionof p with p’, as

:L'Ell) Sl kD g lRemd)
1 Tm J1 In

pp =) —

whered = kg — l,,. Further, ifig = i,,, we defing®, k > 1, thek-th powerof p as
k-times composition gf with itself.

67

(ONGY <0 (D 5@ <0 (D @ xB) @

X1 e} I
Hi) o T2
I3 o I3
Ty Ty
(a) Edges (b) Repeating path (c) p?

Figure 14: lllustration of repeating path.

Example 8. Consider the edges in Figure 14(a) and build paths: x&o) — xél) —

xéo) — acgl) and ps : 13(10) — xfll).
(0) () Oy 2 5 2 depicted in Figure 14(b). Note thép| = 2.

p Ty — T3 — Ty
The second power @f denotedy?, is depicted in Figure 14(c).

Their concatenatiorp;.p2 results in a path

Next, we define several notions characterizing the straatfipaths inGs.

Definition 24. Let R(x,x’), x = {z1,...,zn}, be a difference bounds relation and
let p = :L'E(l)”) ~ xz(.f:“) be a path inG%. We say thap is forward (fw) if and only

if I,, > lop. We say thap is backward (bw)if and only ifl,,, < lg. We say thap

is repeatingif and only ifig = i,,,. We say thap is essentiaif and only if for all
1<j<k<m,i; =1igonlyifj =0andk = m. Pathp is said to be a cycle if and
onlyig = i,, andly = l,,,. We say thap is cyclic if and only ifp has a subpath that is
a cycle. A path is acyclic if and only if it is not cyclic.

Intuitively, repeating path can composed with itself adyiy many times. Note that the
length of an essential pathis at mostV, |p| < N. Consequently, its relative length is
at mostN too, |p| < N. Next, we defin@};, thefolded graphof R. Intuitively, g;;
projects all edges onto unprimed variables

Definition 25. Let R(x,x’), x = {z1,...,zn}, be a difference bounds relation and
let Gr be its graph representation. The folded graplgafis defined a§}; = (x, E),
wherez; — z; is an edge in& if and only ifz; = z;, 2} = o, z; = 2, oz} = x;

is an edge ofir. We writez; ~ x; if and only ifz; andx; belong to the same strongly
connected component@ﬁ. Clearly, ~ is an equivalence relation.

Note that folded graphs are not weighted. Figure 15(b) defhe folded grap@}; of
Gr from Figure 15(a). The folded graph in Figure 15(b) has tworsily connected
component§z; } and{xs, z3}.

68

T

g m N <0 51 %@

xh T2 @ 1
- r
l

"
T3 T3

T2

E==
S
8 8

[\) [y

o

o o

o

>
(@) 3Gr (b) g;; (c) Tr with a simple cycle\s (d) The label ofA,

Figure 15: Folded graph. Zigzag automaton with a simpleecycl

Then, we observe that each cydlén T = (Q, A, w) (azigzag cyclefor short)
encodes a set of forwardacyclic and backward-acyclic paths.

Definition 26. A repeating pattp is +-acyclicif and only if p* is acyclic for allk > 1.

Intuitively, ax-acyclic path can be composed with itself arbitrary manyesrwithout
producing cyclic subpaths. For instance, the pattiepicted in Figure 14(b) is-
acyclic. Note that each essential repeating pathasyclic.

Further, we study the structure of path schemes.c’ from Lemma 3 and prove
that one can without loss of generality assume thiatsimple

Definition 27. A cycle) in the transition table of a zigzag automatdh = (Q, A, w)
is simpleif and only if it encodes at most oneacyclic path per equivalence class of
~ relation. A basic path schenfe= . *.c" is simpleif and only if \ is simple.

Figure 15(c) illustrates a part of the transition table of #igzag automaton corre-
sponding to the relation in Figure 15(a). The cyaledepicted in Figure 15(c) is not

simple, since it encodes tweacyclic pathst’” % z{" and2{” % z{" from the

same strongly connected componéns, x3}. On the other hand), is simple, since
it encodes only one-acyclic pathr(zo) KN zg” -4 x§2) depicted in Figure 15(d).

Next, we prove that we can make the statement of Lemma 3 evea accurate
and consider, without loss of generality, only path schewiéts cycles whose length
divideslem(1,..., N). Letu; be as-acyclic path of the formy; : x;, ~ x;; encoded
in a simple zigzag cyclg, wherez;, € z; for some equivalence clags € x,.. We
first observe that there exists an essenrtiatyclic pathu; of the formv; : xy, ~ i,
wherex,,; € z; as well. Supposing thatencodesn *-acyclic paths, the intuition is to
build a cycle)’ as follows: lettingL. = lem{|v1],. .., |vm |}, the cycle)’ will encode
pathsy® whered; = m Then, sincg\’'| = L and|v;| < N, it follows that the
length of \’ divideslem{1,..., N}.

Sincey; andy; belong to the same equivalence clagsby the above observations,
it follows that there exisessentiapathsg; : x;, ~ xy, and¢ : @y, ~ z;,. These
paths can be used to connegtwith »; and vice versa. The notion of@nnecting
pathcaptures this idea:

69

Definition 28. A forward repeating path : z; ~ x; is called aconnecting patfif it

is of the form
t

T o= u . & v . (. op
where

o 1 :x;~ xy, VT~ Xy are forwardx-acyclic paths, and
o £z~ xyp, (: xp ~ x; are essential paths.

Note that in a connecting path the repeating paths andv are allowed to be raised
to a positive powers, s, t. Figure 16 illustrates a connecting path.
1% 14

In order to ensure correctness of the construction, we aed to build two zigzag
pathsm; andm, that will connecth with)" and vice versa, respectively. In other
words, we need to ensure thatr; .\ .7m2.\ will form a valid zigzag path. To this end,
we build connecting paths, ..., 7,,. Here we encounter a problem of synchronizing
the positions at whicl; appears for the first time iry. This problem is due to the fact
that the relative length of; may be arbitrary — we only know that its relative length
is bounded byN, since¢; is essential. Lemma 21 proves that this problem can be
overcome. Finally, we prove in Lemma 22 the desired claimhweacan, without loss
of generality, assume path schemes*.c’ where|)\| divideslem(1, ..., N).

Then, we can refine Corollary 6 and establish the upper botm}?@) on the
period for zigzag automata. Sindd},., the encoding of then-th power of R, is
a projection ofM%™, the bound on the period of the sequefigd® ™ },,.~, is a valid
bound on the period of the sequend¥ ;.. }.»>0 and consequently, it is a bound on
the period of a difference bounds relatih(Theorem 13). In Theorem 14, we show
that this result extends rather easily to the period of amtagrelations. Moreover,
Theorem 14 shows how the bound] - 2°(™) on the prefix of and octagonal
relation can be inferred.

Figure 16: Connecting path

8.3.2. Repeating Paths — Decomposition and Optimality

Repeating essential paths can be seen as building blockachfrepeating path,
as the following proposition states. Note that each essemrpeating path is either
forward, backward or an elementary cycle.

Proposition 18. Each repeating patl» can be decomposed into a set of essential re-
peating pathsF(p) such that

w(p) - Z/Lefb(p) w(:u) + Z,U,E]’-q(p) w(,u) + Zuefo(p) w(ﬂ)

70

where F. (p), F«(p), Fo(p) C F(p) are the maximal subset of forward, backward,
and cyclic paths, respectively. Moreover,

lol = Xuere o Il = X er_p 11l if pis forward,
lol = Xuera bl = Xuer o 11l if p is backward,
lol = Xuera il =2 uer o Inl =0 if pisacycle.

Proof. Let p be arbitrary path and denotg = p. For eachi > 0, we definep;
inductively as follows. Letu; be an arbitrary essential repeating subpath;ofi.e.
pi = 0;.u;.0; for somed;, 0;. Then, construcp; 1 by erasingu; from p;, i.e. p;y1 =
0;.9.. Clearly, this decomposition terminates singg., is empty for some: > 0.
Then,F(p) = {uo, .-, pr - Next, letus defind; € Z,i = k + 1,...,0 inductively

as follows: D11 = 0 and for each = &, ..., 0, define

D; = D11+ || if p is forward,
D; = Diy1 — |pi| if s is backward,
D; =D if u; is an elementary cycle.

Clearly, foreach <i <k,
lpil = D; iff p;isforward iff D; >0,
lpil = —D; iff p,;isbackward iff D; <0,
lpil =0 iff piisacycle iff D;=0.

Recall thatp = po. Thus, ifp if forward, then|p| = > =) I8l = X7) [
and if p is backward, thedp| = >_) |6l = 2 ,.cx. () Iul- Clearly, if p is

x(0) (1) 5 (2) (3) 5 (4) % (5) (6) x(0)x (1) x(2) x(3) % (4) x(0) 5 (1) x(2)x(3) x(4) x(0) (1) x(2)
1 © o0 4@ o o o o 1 e o o o o 1 e o o o o X1 o o o
T2 o o o o o o T2 0 g o o o a3 o © o o o T2 o o o
T3 o o o\ o o o r3 o oo'f o o T3 © © o o o T3 o o o
T4 o o o o o o Ty © 0 %0 ,,o o ry © © © o o T4y o o o
Ts5 o o o o o Ts o %ﬁ\o I5 © 0 .@, o o Ty o o o
Tg © o o o o Te © o o Te o o - o Te © P, ©
T7 4/';/,0 o o ;\o x7 o/,o o o Yo €7 /Z °);\o z7 o o o
(@) po and its subpatiu) p1, 11 (€) p2, p2 (d) ps, 13

Figure 17: Decomposition of a repeating path to essenti@ating paths.

Example 9. Consider a pathp depicted in Figure 17(a). Figures 17(a-d) illustrate
a decomposition gf into a set of essential repeating paths. Essential subpaths =
{po, ..., ps} selected during the decomposition are dotted.

We next show that the average weight of a repeating pathequal to the average
weight of an arbitrary power gf.

Proposition 19. Letp be a repeating path and let> 1. Then,w(p?) = w(p).

71

Proof Observe thati(p?) = dﬁ;’ﬁ) = ﬁ =w(p). O

Next, we introduce a notion aptimal path.

Definition 29. Letz € x,. be an equivalence class efand letSZ (5%) be the set of
all forward (backward) repeating paths iz of the formz; ~» z;, for somez; € z.
A pathp € SZ is >-optimalif and only ifw(p) < w(p) for all p’ € SZ. Similarly,
a pathp € 5% is <-optimalif and only ifw(p) < w(p) forall p’ € S%.

We next show that the average weight of optimal paths arerdated by average
weights ofcritical essential repeating paths. Thus, we first characterize thaths.
For each equivalence clagsc x/,., we define the set of essential repeating forward
pathsP. (z), minimal average weight of these pattis (z), and a subset dfv-critical
pathsP¢ (z) as follows. Note that we allow a path to cross nos€s, where? < 0,
for notational convenience.

Po(z) = {p: mﬁg) ~ x§"> | ¢ > ¢, pis an essential, repeating pathdi’, m > 0}
Ci(2) min{||p| | p € Ps(z)}
PE(z) {pe P(2) | o] = Cs(2)}

Similarly, we defineP4(z), C4(z), PS(z) for backward paths.
The following lemma gives a precise characterization ofrogt paths, based on
properties of critical paths defined above.

Lemma 17. Letz C x be an equivalence class ef and letp : x ~ x, x € z, be
a repeating path irgg.

1. If p is forward, themw(p) > Ci.(z). Moreover,p is >-optimal if and only if
w(p) = Cx(z) if and only if
(@) w(p) = Ci (=) for each forward path: € F(p),
(b) w(p) = —Cr(z) for each backward path € F(p),
(c) w(u) = 0 for each cyclew € F(p).
Moreover, if 7(p) contains a backward path and(p) = Ci.(z), thenCy.(z) =
—Cy(z).
2. If p is backward, thenw(p) > C4(z). Moreover,p is <-optimal if and only if
w(p) = C4(z) if and only if
(@) w(p) = —C4(z) for each forward path: € F(p),
(b) w(p) = C4(z) for each backward patp € F(p),
(c) w(u) = 0 for each cycleu € F(p).
Moreover, if 7(p) contains a forward path an@i(p) = C4(z), thenC4(z) =
—Ci(2).
3. If pis a cycle, thefw(p) > 0. Moreoverw(p) = 0 if and only if
(@) w(u) = C(z) = —C4(z) for each forward path: € F(p),
(b) w(pn) = C4(z) = —C(z) for each backward patp € F(p),
(c) w(u) = 0 for each cyclew € F(p).

72

Proof. We give the proof for the case whenis forward. Proofs for other cases are
similar.
Let S..,54,S, C F(p) be the sets of all forward paths, backward paths, and
cycles inF(p), respectively. Clearlyig(i) > Ci (z) for eachu € S... As a corollary
of Lemma 18,C4(z) + C(z) > 0 and thusw(u) > C4(z) > —C(z) for each
pw € Sq. SinceR is x-consistent, themw(r) > 0 for eachy € S,. Thus, for each
p € Sy, there existsl, > 0 such thatw(p) = Ci(z) + d,. Similarly, for each
p € Sq, there existsl, > 0 such thatw(n) = —C..(z) + d,,. Let us define:

w(Se) = Y w) w(Sq) =Y w) w(Se) = Y w(p)

HESH HESG HESo
We derive:
w(Ss) = Yes. W) =2 e Wlul =3 s (Co(2) + dy)| 1l
= Co(2) Xyes. Iul + X ,cs. dulrd
w(Saq) = Yes,wW) =3 cq Wl = cs, (=Cx(2) + dp)|ul
= —Cp(2) X es. 0l + 22 ,cs. dulul
Observe that:

w(Se) +w(Sa) = Co(@) (Lues, Il = Spes.) + X pesvs. dulid
= Co@ol+ Zesous., dulul

The last equality holds sinde| = > . [ul—2>_,.cs_ l1l- Sincew(p) = w(Ss)+
w(Sq) +w(S,), we infer that

w(p) = w(Sp)+w(Sq)+w(So)
= Co@)lol+ X pes. dulpl + 2 s, dullnl + 22 ,es, wln)
Consequently,
— Tuesy dulbl+ T s dulbil+ X, s, wk)
W(p) = Cp(z)+ =i mnepa il nese 10

Since the fraction in the above equation is non-negativen @p) > Ci.(z). More-
over,w(p) = C(z) if and only if d,, = 0 for eachv € S, d, = 0 for eachv € S,
andw(v) = 0 for eachr € S, if and only if w(v) = C(z) for eachrv € S,
w(v) = —C(z) for eachv € S, andw(v) = 0 for eachw € S..

Suppose thafF_(p) # 0 and@(p) = Cw(z). Recall thatw(p) > Ca(z) >
—Cx(z) for eachy € S,. By the above argumentsy(y) = —Ci(z). Thus,
—Cr(z) > C4(z) > —Cx(z) and consequently,),(z) = —C.(z). O

The following technical proposition is later used for prayiproperties of connect-
ing paths.

Proposition 20. Letz C x be an equivalence class efand letp : x; ~ z;, z; € z,
be an optimal forward repeating path iGz. Then, there exist an optimal essential
forward pathy’ : z; ~ z; and essential path&: z; ~ z;, (: ; ~ z; such that

73

e W(£.L) = Cu(z) if £.¢ is forward,

e W(£.() = —C(z) if £.¢ is backward,

e w(£.() =0if £.¢ forms a cycle.
Moreover,p’ € F(p) andF(£.¢) C F(p).

Proof. Letpo,...,pr @anduy,. .., ur C F(p) be paths constructed in a decomposition
of p into essential repeating paths as in the proof of Proposit®. Clearly, there
exists0 < m < k such thatu,, : z; ~ z; is forward. Let6,6 be paths such
thatp,, = 0.u,,.0". Let us decomposeé by erasing its essential repeating subpaths,
obtainingfy, . . ., 8,. Similarly, we decompos€ and obtairdy, .. ., 6},. Note that we
can without loss of generality assume that,,, = 0,,.6' for all 0 < n < ¢ and that
Prti4n = 0.0, forall 0 < n < 0. Let§ = 60y, = 6),. Sincep is fw-optimal,
then clearlyF(£.¢) = F(0,.6;,) C F(p). Applying Lemma 17, we get the remaining
properties ob,.60}, stated in this proposition. a

8.3.3. Anatomy of Zigzag Cycles

We now inspect the structure of cycles in zigzag automatatticular, we show
that eachk-acyclic path encoded in a zigzag cycle is a concatenatisewdralzigzag-
segments

_— €] .
Definition 30. Let A = ¢q G, q1 N N qp, Wheregqy = ¢, be a zigzag cycle

of length|\| = p, whereGy, ..., G, are subgraphs o that label edges appearing
in A. LetG be a subgraph of%, constructed a&¥ = G1.G> ... G,. Each path¥ in G
that is maximal in its length is calledzagzag-segment

(=2 (1) 5(0) (1) 5(2) x(3) x(4) e, y

1 r T\
T o Vlo o To n \ r L
T2 o o r3 i r 1
xs3 o Vs 1) Ty ir / | r
Ty o o Uy © T5 | e—e|r T
T5 ° ° Te il l i
Te ° © ;‘;ﬁ 7] ? I ik
L7 © A bt T8 l L |
Ts ofV4 o o Tg n & ‘/ 1
-/ / N
v ° ° iq a2 i
=41 1:
@/,7_1 @p,o @/hl . :

(a) pathp (b) zigzag cycle\,

Figure 18: Segmentation of a repeating path to zigzag-setyna) and construction
of a corresponding zigzag cycle (b).

Given a zigzag cycle of length|A\| = p, we write its segments as paths of the form
() (») 0 .0 (0 @, @
1 J *

(p)
NPT T T X N T ,orx,”" ~

74

Example 10. Consider a zigzag cyclg, depicted in Figure 18(b)A, has five zigzag-
segments:

v J:go) — xél) — xéz) vy xg)) — xél) — xé2> — xél) — :1:(70)
2% x(72) — x(71) — xéo) vy ng) — azél) — :L'ff) Us : :L'flo) — :rgl) — acgg)

O

Each zigzag cycle\, |\| = p, encodes a set of forwargacyclic paths of the form

x§.°> ~ a;gm and a set of backward-acyclic paths of the forrrmf.p) ~ xEO). For
simplicity, let us first examine cycles which encode one fmdw-acyclic pathp :

xﬁgO) = ... = xfe’"), 10 = im, p = {m — £y, and no backward path. We will describe
0 bm,

how)\, a unique zigzag cycle that encogdesan be built. We first define:

L,=|min{f; — 4y |0 <k <m} ZP:["LTfﬂ
R, = |max{l;, — ly |0 < k < m}| Ep:[%-‘

(bo)

0

Intuitively, L, (R,) is the left (right) extent op relative tox

Example 11. (ctd.) Given a patlp : z§°> ~ x§2) depicted in Figure 18(a), we com-
pute:
L,=|min{-1,...,3}=1 L,=[%
R, =|max{-1,...,3}|=3 R,=[3

O

Next, let decomposg into zigzag segments in the following manner. For eadh), <
Jj < R,, we defineo,, ;, the set of maximal (in their length) subpathivhich cross
only variables

=M ol <k <G +1)-lol}-

Then,)\, consists of zigzag—segmer[t}fiilf O,,%- Similar definitions can be made

for backward paths. This construction can be generalizedifizag cycles encoding
a set of forward and backward paths.

Example 12. (ctd.) Given a patlp : x§°> ~ x§2) depicted in Figure 18(a), we com-
putedL, =1,L,=1,R, =3,R, = 2. Then®, _; is a set of maximal subpaths of
crossing onlyx (=2 ux(= Ux(©), thus®, _; = {v4}. Similarly,0, ¢ is a set of max-
imal subpaths op crossing onlyx () U (D U x(?), thus®, o = {v1,vs,vs}. Finally,
0,1 is a set of maximal subpaths@érossing only 2 Ux) ux™®), thusO, 1 = {vs}.
Clearly, the zigzag cycle in Figure 18(b) encodes segnmepts; U0, U0, . O

The following proposition states that the average weiglat ofcle) in zigzag automa-
ton is the sum of average weight efacyclic paths that are encoded in the label of
A

Proposi@n 21. Let) bE a zigzag cycle that encodescyclic paths, ..., p,. Then
wWA) =w(p1) + - +W(pyp).

75

Proof. Since|A| = [p1]| = --- = [pn|, we infer:

w(y) = wekboiule.) v) sl 5 W(o)

8.3.4. Basic Path Schemes with Simple Zigzag Cycles

This section refines the statement of Lemma 3 by proving ieatycle) from each
basic path scheme can be assumed to be simple, without lgesnefality. The next
lemma proves that the sum of average weights of a forwardatayeand a backward
repeating path iy, m > 1, from the same equivalence class of thaelation is
non-negative, whenevet is x-consistent.

Lemma 18. Let R be ax-consistent difference bounds relation anddet= x; ~ x;
be a forward repeating ang; = x; ~ z; be a backward repeating path @ such
thatz; ~ Tj. Then,ﬁ(pz) +ﬁ(p]) > 0.

Proof. Suppose that(p;) + w(p,) < 0. Let us define:

p p d; d;
= , dy =) ’Y’L:(pl) Y Vz(p)J
Lol lpsl T

p=lem(lpil, lpjl), ds

By Proposition 1975(p;) = w(v;) andw(p;) = w(v;). Thus,w(vy;) + w(v;) < 0.
Furthermore, sincgy; | = |v;| = p, thenp - @(v;) +p - w(vy;) = w(v) +w(v;) <O.
Sincez; ~ x;, there exist essential paths

0;j = J:Z(.O) ~ x§q> andf;; = 58;0) ~ %(‘T)

where0 < |Q|, |r| < N. Letn > 0 be a parameter. We build (refer to Figure 19)
§ =7 0i5.7" 05

) (0)

[] Z.—) 9)
ij
ej;\A \

xl(—np+q) xgnp-HZ)

o xgnp)
g

Figure 19: Building

Clearly, ¢ is of the form¢ : 2! ~ 2{7"PT4*") By choosingn > [, we
make sure thatnp + r + s < 0. We repeat the patprtimes and obtaig? : x§.°>
2P Tatr) sincely;| = p andp dividesp(—np + ¢ +), we build¢ = 4?77

which is of the form¢ : PP+t ., 20 Clearly,¢r ¢ forms a cycle with weight

N

np-w(yi) +p-w(li;) + 2np - w(vy;) +p-w@) + (np—q—r) - w(v)

76

which simplifies to
2np - (w(y) + w(v;)) = (@ +7) - wlv) +p - (w(bi5) + w(bi)).

Since we assumed that(v;) + w(vy;) < 0, by choosing a sufficiently large, we
obtain a negative cycle ifi}. Thus,R is notx-consistent, contradiction.]
We continue with a technical lemma.

Lemma 19. LetG = (V, E, w) be a weighted digraph, and v € V' be two vertices.
Letd; = o1.)\}.07 be a basic path scheme apd = o;.)\lfl o1, by > 0 be a minimal
path fromu to v such thatjp;| > |V||*. Further, letf, = 0‘2)\2 o4 be a path scheme
(not necessarily basic), and = o;. >\1 .o andph, = 02/\2 .05, whereb; > b; and
b, > 0, be paths fromu to v, and letL > 0 be integer such that

o1l + L = |ph| =[5l w(A1) = w(A2),
|A1]| and|\q| divide L, w(p)) = w(ph).

Then, there exists a basic path schefipe= 03.)5.0% and a pathps = 03.)\’2’3.ag,
bs > 0 fromwu to v such thatw(ps) = w(p1) and|ps| = |p1].

Proof. We can use the same techniques as in the proofs of Lemma 6 and for
a g|ven pathy,, we construct a basic path schefie= o03.\5.0% and a pattp; =

03.)\ ’ .05, b5 > 0 from u to v such that|p;| = |ps| andw(ps) < w(ph). Thus,
(p2) = w(pg) + D for someD > 0. Observe that

4
|os.o5] < V" < pal.

By requirements of the lemma and by constructiopigfip: |+ L = |p| = |p5] = |p4]-
Since|)\;| divides L, there exists a path; = 03.)*2’3.ag, wherebs > 0, such that
|ps| = |p1|. Furthermore,

wipr) = w(p}) —w(A) - L, and
wips) = w(ph) ~(A) - L.

The lemma requires that(p]) = w(p,). Combining it withw(p}) = w(p}) + D, we
obtain thatw(p}) = w(ps) + D. The lemma also requires thaf\2) = w(A1). Thus,

w(ph) = w(A1) - L=w(ps) —w(A2) - L+ D

and consequentlyy(p1) = w(ps) + D. Clearly,D > 0 would contradict thap, is
minimal, thus we conclude thd@ = 0 and thusw(p;) = w(ps). ad
We finally prove the existence of a basic path scheme whereyttie \ is simple.

Lemma 20. LetTr = (Q, A, w) be the common transition table of zigzag automata
defined for a difference bounds relatidtix, x’), andu,v € @ be two control states.
Then for every minimal weight paghform u to v, such thatip| > |R| - |Q|°, there
exists a pathy’ fromw to v, such thatw(p) = w(p’) and|p| = |p'|, i
schemé = o - * - ¢/, such that\ is simple’ = o - A\ - o, for someb > 0. Moreover,
there exists: | % such thatr - \b*#¢ . ¢’ is a minimal weight path from
towv, forall k£ > 0.

77

Proof. By Lemma 3, there exists a basic path scheime= o;\jc] and a path
pL = al)\lfla’l, b1 > 0 fromw to v that have all the properties of this lemma except that
A1 might not be simple. First, we build a path schefge= o2 \3c% which might not
be basic, but whera, is simple,w(X2) = w(Ay), |A2| = |A1], andw(o; A0 Ty =
w(oa.\5.0%) for someq > 0 and for allk > 0. In other words, iff; is followed by
a minimal path of lengtl > |o4.05|, thenés is followed by a minimal path of length
L too.

Letz,...,z,, be equivalence classesof Letq be a control state of the zigzag
automaton such tha; is a cycle that starts and endsgnLet L, R C {1,...,N}
be the set of-indices and-indices ofg, respectively, and partition them according to
equivalence classes, . . ., z,,, thus obtaining’+, ..., L,, andR4, ..., R,,. For each
1 <i<m,letp;1,...,pim; denote the set of repeating paths encoded;ithat
cross variables ir;. Finally, let ©' denote the paths ia} that connect-indices
with [-indices and® denote the paths ia; that connect-indices with r-indices.
Let ©(:) C © and®’(i) C ©' be paths that cross only variableszn We define

p = maX{HiiH? Hii“} Letpi1 < --- < pim, be the order in which subpaths

Pils---,Pim, are visited in the path encodeddn.\;.07. Then, by construction of
zigzag automatey; ; is forward if and only ifp; ;1 is backward. Figures 20(a) and
(b) illustrate these definitions.

O = {01,05,05}
e'(1) = {6}
0'(2) = {65}
0 = {0204}
(1) = {0:}
0(2) = {0

P11 < P12 =< pP1,3
P21 < P22 < P23

Figure 20: lllustration of a construction of a path schemihwimple cycle.

78

Given an equivalence clags, 1 < i < m, we first give a construction ensuring
that there is at most one repeating path\irthat crosses variables 3.

We next buildy, v, Ao, ', ~/, which are initialized as followsy = o1, v = (A\1)P,
A2 = A1, vV = (\)P,+ = of. Further, we erase all paths from \,, /' that cross
some variable irz;. We finish construction of,, v, Ao, ’,’ for one of the following
cases (note that cases 1 and 2 (3 and 4) are symmetrical):

1. p; 1 is fwandm; is even.EraseO(i) from~+’ and add it ta.

2. p;1is bw andm; is even.Erase©’ (i) from v and add it ta/’.

3. pi,1 is fwandm; is odd. Do the actions for Case 1. Further, gdd,,, to A, and
add(p; m,)" to bothv andv/’.

4. p;1 is bw and m; is odd. Do the actions for Case 2. Further, agd,,, to A2
and addp; ,,,,)” to bothr andv’.

The construction is finished by building, = v.A\" v ando}, = v/.v/. Figure 20(c)
illustrates the construction: Case 3 applies for the edgive clasz, while the Case
4 applies forz,.

We prove several properties on weightsref A5, o, for case 3 (proofs for cases 1,
2, and 4 are similar). Let us define

W= w(®) V=" wlpy)

0€0(i) 1< <m;
Following equalities follow from the construction:

|o2-05] = o101] = AT + [v] + '] = [\ - (b1 +2p)

w(y) = w(ow) w') = p-(w(h)=V)
ww) = p-(wh)-V)+W w(y) = wloy) -W
Then,
w(og.05) = wy A v/ y) = w(or) + (b +2p) - w(hy) +w(a}) — 2pV,
w(op NP ot = w(oy) + (b1 + 2p) - w(A) + w(c?}).

For Case 3in; is odd. Since; ; is fw andp; ;11 is bw for odd;j < m;, by Lemma 18,
w(p;) +w(p;+1) > 0 and thusy” > 0. By constructionw(As) = w(A) — V. Since
V > 0 would imply thatw(\y) < w(A;) and thus, tha; . A2 % ¢/ is not minimal for
all k > 0, we infer thatl” = 0 and thereforew(A\2) = w(\;) and

w(og.0%) = w(op AP T2P.0%).

Note that the above construction®f, A2, ando’, can be easily extended to deal with
all equivalence classes ef at once. Then), is simple and the above equality still
hold. Note that if the construction steps for Case 3 or Casenégte a path (encoded
in v or v’) with cycles, we erase all the cycles. Their weights must dre megative,
since we consideg-consistent relations. They also cannot be strictly peesisince
thenc; .\ .0 would not be minimal for alk > b, + 2p, contradiction. Thus erasing

79

them changes weight of neithes nor ¢/, and hence the above equality still hold. Let
us define, = 0, b] = b1 + 2p, ph = 02.A22 ob, ph = al.All’loi and observe that

b/
L=1psl = lp1l = (lo2.03] = lov.0h]) + A — [AT']
= A1 (b1 +2p)+0—|A1]| - by
= Ml (br+2p—b1) = [M]-2p
and thus,|A;| = |Az| dividesL. Next, we apply Lemma 19 which guarantees exis-

tence of a path schentg = o3.15.04 and a pattp; = 03.)\33.0—5, for somebs > 0,
such thatw(ps) = w(p;1) and|ps| = |p1|. The existence of | W such that

o3.2\5*¢ o1 is minimal for allk > 0 follows from the proof of Lemma 3, since we
can chooser; . \f.7r} = 0. O

8.3.5. Basic Path Schemes with Cycles Boundddibyl, ..., N)

This section refines the statement of Lemma 3 by proving tetdength of the
cycle A from each basic path scheme divides\(1,..., N). This fact is essential in
proving the single exponential bound on the period of oatatjeelations. We begin
with a lemma that is later used to deal with the problem of bymigization of connect-
ing paths which was discussed earlier. Recall that for apaﬂagf(’) =gt

im

in G§ such thaty = 4, and/,, # ¢y, we defined its left (right) extent relative mﬁf")
as

Ly, =|min{fy — £y | 0 < k < m}| Lp:[ﬁw

Rp:|max{€k—€0|0§k§m}| E/):’Vﬁ-‘

Lemma 21. Letr’ = u".£.v%.¢.ut be a connecting path such that

r=1r1+7g s=81+--+5;5 t = t1 + t9, Where

S1 2 LV+R/J,+N+1 tl Z LM+Ru+N+1
S5 > Ru+L;L+N+1 T2 > RM+Lu+N+1
ss > R,—1 ta > 1+R,

_ > _
S4 > LV %= 2N 1 > 1+Ll/

Let T be a path built by erasing all cycles from and let
e), be azigzag cycle that encodes
e)\, be azigzag cycle that encodes
e). be azigzag cycle that encodes

Then,\,; can be written as\, = /\#.wl.)\’ysi"w.vm.)\# wherer, mo are some zigzag
paths, [\, | = [\, [, w(Ay) = w(X,), and|A,.m1| = [772 + [v=1+52] 4 N.

80

Proof. Let us denote the subpathsdfas

Qa3 a4 s g Qg Qg (g 011
I I 1 I I I I I I I 1
e 7L S S V2 S I VI Vo R 7 B G 71 S 1

First, we show that the constraint en ensures that subpaths.«s.a3 andas do not
share a node. Le¥/; = |«a;.az| and observe that

Mi+R, Mi+N
vars(ay.ag) C U x| vars(as) C U x(k),
k=—L, k=M, —N

The property onvars(a;.az) holds sincel » < L, andR,» < R, for each pattp
andk > 1. The property onvars(as) follows from the fact that is essential. Hence,

Mi+max(R, ,N) Mi+R,+N
vars(ay.as.az) C U x(®) U (k)
k=min(—L,,—N) k=min(—L,,—N)

Similarly, letting My = M, + |az.a4], we observe that

Ma+|as|+Ry
vars(as) C U x(
k=My—L,

k).

We can now infer a condition that guarantees that subpaths,.a3 andas do not
share a node:

Ml + RM + N < M2 — Ly
R;L + N < ”()63.04” — LV
los| > Lo+ Ry+ N —|os|
lea] > Lo+ R,+N+1 (sufficient, sincdas| > 0)
s1 = L,+R,+N+1 (sufficient, sincday| = |v| - s1)

Similarly, one infers constraints af3, t;, andr,. These constrains guarantee that all
sharings of nodes (in other words, cycles) may occur onlygny,, ag, or a1y and
thus, that no cycle appearsdi.ag.a7, a; andayy.

Next, we prove an auxiliary statement thatcan be written ag, = A,.m1.A5%.m2. A,
wherer, 7o are some zigzag paths, apd,.m | = | t2.£v° 42|, Figures 21 and
22 illustrate the proof.

81

1 ...04 (67%:3 Qg (%4 ag...011

E’YO E’YSQ Vso+i Vsa+s3 '75’—1;
: b Yeptj—Ro+1 Vsoti+L., :
§ § R R : :

: : L Lo e
TSSO B
: : : o : :
= L f é
H;

T o O T T
xo o /7Q T2 X9
Ts g o I3 Ts
Xy o o Ty T4
Ts5 o 0 5 X5
Xe oc< o Te Xe
Ty o o X7 T7

(a) pathV (b) Zigzag CyCIQ\V (C) Hj, Vso+j—1s Vsa+js Vso+j+1
Figure 22: Obtaining\, by iteratingv. L, = 1, R, = 2.

Let GoGy ... G|y, -1 be the labeling of\; and letas.ag.a7 = Y071 .- Vs5-1,
whereS = so + s3+sgandv =y =y, = -+ = y5_1. Foreach) < j < s,
defineK; = |ai...a5.07|, Hj = Gg,41...Gk, 4y and observe that for each
—R, <k < Ly, vs,+j+k contribute$ to H; with ©,, ;. Thus,H; consists of zigzag-
segments

EV
U 6w
j=—L,+1
which are clearly zigzag-segments »f. Thus, H; is the labeling of), for each

0 < j < sz and consequentlyy, can be decomposed intq.\J?.0, for some paths
o1,02. Moreover, sincéy = |y ...as| = |p 1 12.£v51752|, then

|0.1| =Ky = |‘MT1+T2-£V51+52 ”

By a similar argument, one can show thagt can be decomposed infg,.03.),
for some pathrs, by viewing the path”’ = a1 ... a1 shifted asog ... a0 . .. as.
Combining decompositions;.Aj?.0o and A, = X,.03.),, we obtain the required
decompositiom\, = X,,.m1.A3%.m2.,, for somerny, 72, where

Apmi| = lo1] = ||M7‘1+7"2.§V81+82 .

"Hence the bounds osy andss: so > Ry, — 1, 54 > L.

82

Finally, we prove that\, can be written as\, = X\,.m.\,* >~ .my.\,, where

T, T2 are some zigzag pathsy, | = [\, |, w(\,) = w(X,), and|\,.m1| = |p 2| +
|v*1ts2| + N. Let us define

Do = |u"* 72|+ [p 2], Dy = a2 Dy = [o 2 4N

Since¢ is essentialD, > D, andDy, — N < Dy < Dy + N. Thus, by noticing that
Dy = Dy + N, weinfer thatd < Dy — D; < 2N. Clearly, there existe < d < |v|
andk > 0 such thatD, + d = Dy + k|v|. Thus,k = fDﬁ‘;”Dﬂ. Combining this with
0 < Dy — Dy < 2N, we establish a bound < 2N.

Next, observe that a decomposition\gfinto A ,.73. A5 ~*.14.\,, where|\,.m3| =
Dy + d = Dy + k|v|, is possible by a similar argument as previously. The oty di
ference is thayj ranges ovek < j < sz instead of0 < j < s3. Thus, we need
to guarantee that; — k£ > 0. This can be achieved by requiring that > 2NV,
since the maximal value o is ¥ = 2N. This gives the stricter condition osy
in this lemma that guarantees the decomposition jars. A5 2V .70, where
|>\P«'7T3| = D2 + d = D1 —+ k”V“

LetG, ... G, be the labeling of\,. The decomposition in the previous paragraph
implies that the label of\;) ,, , ; |,.|_, has a prefiXG: ... G,,)* V. Further, the
label of (A+)p, |\, -1 has a prefix(Gy...G,)*. SinceD; +d — Dy = k|v|,
it follows that the label of(\;), . _, is (Gi...Gyn)*. Furthermore, we infer
that the label of(\;),, |y.|_; has a prefix(Gai1...GnG1...Gq)» V. Since
G1...Gq J Gayr...Gr,

G1...G, is the labeling of the cycle,,

q, there clearly

Gat1...Gp q G1..Gg4

exists a cycle\, : ¢ q’. Thus, X can be decomposed into

Ar = 01.(\,)3 N gy, where|oy| = Dy = |um*72| + |pus1+52| + N. Clearly,
[Av] = ALl andw(A,) = w(Al). O

Informally, the following technical proposition statesttthe relative lengths of
two repeating paths can be synchronized by iterating eguating path with itself
several times.

Proposition 22. Let ~y;, v, be repeating paths and lef, C2 > 1. Then there exists
¢y =c1 k1, y = co- ko for someky, ks > 1 such thalﬂwllu = ”722 [

Proof. LetL = lem(ey - |y, c2 - |2l). ¢4 = "TLlH’ m. Sincecy - |

dividesL, thenc; leldes"f—l” too and thus, there exisks > 1 such that; - k = ¢}.

ch =

Similarly, there existé, > 1 such that, - k = c,. Further |\yf/l | = ||7§/2 | = L, since

it =il - ¢ = |l - 2 = L and similarly,|5*| = O
We finally prove that we can, without loss of generahty, ddasbasic path schemes
with cycles that are simple and moreover, the length of whigfdeslem(1, ..., N).

For the proof of the lemma, we need the notioropfimalcycle.

Definition 31. a simple cycle\ is optimalif and only if each forward path encoded in
A is fw-optimal and each backward path encoded iis bw-optimal.

83

Lemma 22. LetTgr = (Q, A, w) be the common transition table of zigzag automata
defined for a difference bounds relatidt{x,x’), andu, v € @ be two control states.
Then for every minimal weight paghform u to v, such thatp| > |R| - [V|°, there
exists a pathp’ from u to v, such thatw(p) = w(p’) and|p| = |p’|, and a basic
path schem& = o - * - ¢/, such that) is simple and)| divideslem(1,...,N),

p = o- Ao, for someb > 0. Moreover, there exists | W such that

o - \btke . o’ is a minimal weight path from to v, for all & > 0.

Proof. By Lemma 20, there exists a basic path schéme- o1.\7.0] where); is
simple and a path; = o1.\.07, for someb; > 0, such thatw(p;) = w(p) and
|p1] = |p|. In this proof, we assume thag encodes two forward paths, 2 and no
backward path. The extension to arbitrary number of forveard backward paths is
straightforward. Lej:; be of the formy; : x;; ~ x;, for eachj € {1,2}. and let us
denote the equivalence classigf asz; = [z;;]~.

Case 1:) is optimal. By Proposition 20, givem;, there exists/; € PZ(z;) of the
formv; @ xp, ~ 3, and two essential patlgs : x;, ~ z, and(; : xy, ~ ;. For
eachj € {1,2}, we build a connecting patH as follows:

51 Q2 Q3 Oy Qs Qg ar Qg g Q10 Q11
I " I I I I I I I " I
/ T1 T2 51 52 53 84 S5 (31 t
T = ,u% . u% ST 2SN Z-E N VA e S G T u} T
! 3 L4 wi w2 w3 w4 Ws L1 t
To = Ks® . gt o & L ovyt L vyt Ly Lyt Ly s G gt

B B2 Pz Ba Bs Be Bz Bs Bo B Bu

In addition to the conditions of Lemma 21, we require that| = |5x| for all k €
{1,2,4,5}. These additional constraints can be satisfied too, by Bitpo22. Clearly,
the new coefficients still satisfy the conditions in Lemma Einally, we defines; =
2N + ﬁ, wy = 2N + m, whereL = lem(||v1 |, |v2])-

By Lemma 21, there exists a zigzag cycles and A,, that encoder; and
that were obtained by erasing all cycles7ihand 73, respectively, and that can be
decomposed into

! 8372N
’)\Vl '7T2')‘I—t1

7 w3—2N
X,

)\7'1 =)\#1.71'1

Ay = Au,.T3 T4 Ay

where
1A = 1Al andw();,) = w(),,) and

A mill = ool + |as.as| + Nand| 1.5z + [8a-Bs| + N = [Ay, 3]
Since|ay| = |Bx| forall k € {1,2,4,5}, we infer that|A,, .71 | = | A, 73]

84

lovoo] N losas] ctem(inll
T T T

81821 IB4-Bs 21
H2i : ‘ fho
: H 2 : CQ
H H H |

PSS
... ;'..........>'................................. RS
s i

>‘#2 3 >‘V2 4)‘#2

Figure 23: Synchronization of connecting pathandr.

Note that|A,,| = |\, | is not true in general. For this reason, we need to make an
extra step. Lef = lem(|\,, |, [\,]), m1 = % my = i Since| A = A2,
T1 T2
and since the paths ik, and A, use disjoint variables, we can build a cycleby

gluing A7t with A”*2 and obtaim\ = A;.7}.A5.75. A1, where
)\1 — >\/41 7_[_/ _ T)\l — /\/VlSS—QN 71_/ — 7T2'Al¢1'()‘7'1)m1_1
)\'u2 1 T3 2 /\1/2w372N 2 7r4'>\“2.()\7_2)m271
Note that the construction o, is correct since

—2N
|>\i/1 %

= X572V = [l (ss — 2N) = [l (7 + 2N = 2N) = lem(Jua |, vel)

V1 (22

and similarly,\)\j,sz_QN\ = lem(||v1], Jv2]). Thus,|A;| = lem (|1], |v2|). Note that

A1 is optimal by assumption. Further, encodes paths® andv;y’ which are optimal,
by the fact that,, v, are optimal and by Proposition 19. Thus; is optimal by
construction. Sincér, |, 1] < N, then|\z| divideslem(1, ..., N). By Proposition
20,v; € F(u;) andF(&;.¢5) € F(u;). Thus,F(r;) € F(u,). Sincer; is forward,
thenw(r;) = Cx(z;), by Lemma 17. Consequently; is optimal. By Lemma 21,
Ar; encodesr; that was obtained from by erasing all its cycles. These cycles are
non-negative, sinc® is x-consistent. Next suppose that at least one is strictlytigesi
Then,
W(ry) < W(r)) = W) = W(v;) = Co(2;).

However, by Lemma 175 (7;) > Ci.(z,), contradiction. Thusy(r;) = Cr(z;) too.
ConsequentlyA;, A2, A are optimal too, by Definition 31. By Proposition 21,

W(AL) = W(A2) = W(A) = Cx(21) + Ci (22).
We next construct a path scheme= 0,.)\,".0%, where

!
oy = o1 A AT o = Ny.h A Al Rel=1) 57

85

Next, lettingb, = |\1|, we construcp,, = 02.)\’2““.05. Recalling thap; = 01.0" .04,

we compute

D= lpsl = lprl = it Xy A AT g
= |,\M1\~|>\2|| + | A1) - |AS)
Pl (A + 1)

Letting b} = by + 1327 + | X3, we construcp; = o1\ 0. Clearly, || = |p,]. We
infer that

/

w(ph) —w(pr)

(Al [[AL- @A) + [Aa] - [Ae] - W(A2)
= D-(Cp(21) + Cr(22))

w(py) —w(pr) = [l (o7 + al) - @A)
= D (Cx(z1)+ Cx(2z2))

and thusw(pf) = w(p}). Clearly,|A;| and|\,| dividesD. We apply Lemma 19 which
guarantees existence of a path schéine= o3.)\,".0% and a pattps = o3.1," .03,
for somebs > 0, such thatw(ps) = w(p) and|ps| = |p|. Thus, the lemma holds for
0 =03 andp’ = pP3.

Case 2: \; is not optimal. Sincep, € P.(z1), thenPS(z,) # (. Let choose
vy € PS(z1) and assume its form ig; : xy, ~ xy,. Further, let, : z;, ~ 4,
(1 xg, ~ x;, be arbitrary essential paths. Similarly f@s, we construcizs, &, Co.
We constructh, 0, pf, p5 and computeD in the same way as in Case 1. Clearly,
is optimal, A; is not optimal and thusi(A\;) > wW(\;) = Cx(z1) + C(22). Since
|A1] and|\,| divide [p4| — |p1], thena; A3 T o, is not minimal for some: > 0.
Contradiction with our assumption ¢ = 0.} .07.

We have proved that Case 2 is not possible, and that for Cdkerg, exists a path
ps = 03.\,".0% wherew(ps) = w(p), |ps| = |p|, A, is optimal and|\,| divides
lem(1,...,N). Let us denotey/ = p3, 0 = 03, 0’ = o§, A = N\,, b = bs. Itre-
mains to prove that there existg W such thatr. *+*¢ ¢’ is a minimal path
from u to v for all & > 0. The proof is almost identical to that of Lemma 7. The
only difference is that we can now consider only basic pattesess.*.o’ where
A is simple and \| divideslem(1,...,N). Thus, the proof can usem(1,...,N)
instead oflem(1,...,|V| — 1) everywhere. This in turn implies the existence of
c| lem(1,..., N) such thatv(o;.A*¢.0") is minimal for allk > 0. O

The single exponential bound on the period of differencendsurelations follows
easily from Lemma 22.

Corollary 7. Letx = {z1,...,zn} be a set of variables. Given a difference bounds
relation R(x, x'), the period ofR(x, x’) is bounded bp® ™).

Proof: LetTr = (@, A, w) be the common transition table of zigzag automata defined
for a difference bounds relatiaR(x, x’) and letc be the period of'z. By Lemma 22,
c|lem(1,...,N). Applying Lemma 8, it follows that is bounded by2®), |

We finally summarize the complexity results on differencars relations.

86

Theorem 13. Letx = {x1,...,2x} be a set of variables. Given a difference bounds

relation R(x,x’), its period is bounded bg°") and its prefix is bounded bjR| -
20(N),

Proof. Follows from Corollary 5 and Corollary 7. a

8.4. Octagonal Relations

Let R(x,x’) be an octagonal relation anél(y,y’) be its difference bounds rep-
resentation. Using the results on bounds on the prefix (Goyob) and the period
(Corollary 7) of R(y,y’), we infer, using Lemma 12, the bounds on the prefix and
period of the relation®(x, x') itself.

Theorem 14. Letx = {z1, ..., 2y} be a set of variables. Given a relatidt(x, x’) €
Reoet, its period is bounded b3°™) and its prefix is bounded Hyz|* - 20V,

Proof Let R(y,y’) be the difference bounds representatiom¢k, x') and letgs =
(@, A, w) be the zigzag automaton &f(y,y’). It follows immediately from Lemma
22 thatGy has prefixo = u(G5) - |Q|° = |R| - 5'2 and period: = lem(1, . .., 2N).
Consequently, the prefix and period {M%m}mzo and of R areb and ¢ as well,
respectively.

The prefix and the period dt are defined as the prefix and period of the sequence
{o(R™)}m>0, by Definition 4. By definition ofs for octagonal relations given in
Section 7.5{c(R™)}m>0 = {M&}m>o. By Theorem 4,ML_ = ML, for all
m > 0 and

(M%)z] = min {(M%m)z], \‘(Mﬁz’m)”J + \\(MEQM)HJ}

forallm > 0andforalll <i,j7 <4N.

We next prove the asymptotic bound on periodiofif R is x-consistent, its period
is twice the period ofR, by Lemma 12. Thus the period @t is bounded by =
2.lem(1, . ..,2N) and consequently, it is asymptotically bounde@B§"), by Lemma
8. If R is notx-consistent, its period is and the same asymptotic bound applies.

Next, we prove the asymptotic bound on the prefix of-eonsistent octagonal
relationR. Let us define:

* (M%k)zi (]W%k)i,j
{Sm}mZO = {(Mﬁk)i-j}mzo {tm}mZO = {L 2 J + L 2 J}mzo

By Lemma 12, the periodic sequenfg, }..>o has prefixb and period:’ = 2¢. The
sequence s, },>0 has prefixb and periode, but we can without loss of generality
assume that its period i$ = 2c. By Lemma 12, the sequenéein(s,,,, t,) }m>0 has
periodc and prefix defined as = b + maxf;(} K;c where

— [Sbti—tots iy (s) (t)
K= (;;)_;(F)W AT <A andiyg; < sy,
K = Vi@i?&ﬂ if)‘z@ < /\ES) andspyi < tpti,
K;=0 otherwise.

87

Observe that o
s > —b-|Rl, B
ty < max{(M2,)5 (M2,);,} < b |R].

Thus, ifAEs) >)\,@ andt,,; > sy, then

K; = (%] <topi — sp4 < 2-0-|R|.

Similarly, we infer thatk; < 2-b - |R| if Ags) < /\Et) andtyy; < sy Hence,
b =b+2-b-|R|- is the prefix of{min(s,,, tm) }m>0 and thus of?. The asymptotic
bound|R|? - 2°(™) on¥’ follows.

Finally, we prove the asymptotic bound on the prefixbthat is notx-consistent.
Let b andc be the prefix and period o[fM%m}mZO as inferred previously. By The-

. .. . Mz iy Mi, i,
orem 3, elthelM%e is inconsistent Ott(R;) =+ L(R;) = | < 0 for somel > 0,

1 <i < 4N. For the former casé,(and thus the prefix aR) is bounded by R|-2°(N),
by Corollary 5. Now consider the latter case. Let us denote

(Afimr)i 7 (]\/Iim)I i
{sm}m>o = {| =] + [5= J}mZO

and let/ > 0 and1 < i < 4N be such that, < 0. If £ < b, we immediately get the
required asymptotic bound. > b, then by Lemma 22, there exist path schemes in
the zigzag automatom, .\}.0", anda,.\j.0% such that M=), ; = w(o1. A0 .o)) for

R)

someb; > 0 and(M%g);yi = w(ag./\g2.o§) for someb, > 0 and moreover, letting
¢1 = o7 ande; = iy, the pathsr; Ao 5 o7 and oy A52 752 o) are minimal for
all k > 0. By Lemma 12, the sequenge,, }.,,>o has prefixb and period2c. Moreover,
its rate isw(A') + w(A5?). Clearly,w(A]") + w(A5?) < 0, since otherwise, < 0
would not be possible. Observe that

v < mac { (My)i, (M) | < b IRI.

Then,

(<b-|R|+ b'||R||-‘ c<b-|R|-ec.
IR+ | s IR
Thus,? and consequently the prefix &f are asymptotically bounded Hyz|* - 20(™).
O

8.5. Finite Monoid Affine Relations

An affine relationR € Z" x Z" is defined by a linear arithmetic constraint of the
formx’ = Ax + b whereA € ZV*V is a square matrix, and € Z" is a column
vector. The relation is said to have the finite monoid propiithe set{A°, A!,...}
of matrix powers of4 is finite. The cardinality of this set of called tineonoid size of
R, and denoted bR]. Finite monoid affine relations are periodic, and the prefixd
periodc of a relationR are such thab + ¢ = [R]. In this section, we show that the

88

monoid size of a finite monoid relation is bounded2/~'**** ") in other words, it
is simply exponential in the number of variables. The dgwelents in this section are
closely related to decidability of the finite monoid progeas mentioned in Theorem 5.

If R has the finite monoid property, théR] is the smallest integerfrom the above
theorem. This is because, due to the two conditions of Tine&rgfor everyk > 0, we
have thatd*? = AP. Moreover, ifp is the minimal integer satisfying these conditions,
all powersA® Al ... AP~! are pairwise distinct.

In the rest of this section, we give an upper bound for the kesiaintegerp that
satisfies the conditions of Theorem 5. Notice first that eegggnvalue ofA? is of the
form AP where)\ is an eigenvalue ofi. Since, by the first conditior\? is either zero
or one, the only non-zero roots of the characteristic patyiabof A must be roots of
the unity. But thenP,4(z) is a product of:*, for somek < IV, and several cyclotomic
polynomials, call then¥;,, ..., F; . Clearly, the degrees of these polynomials are
smaller than the degree @t4, which, in turn, is smaller or equal t&y. Leti, =
lem(iy,...,im). Then every root of P4 has the propertp = 1, i.e. the first
condition from Theorem 5 is met for = if, for any integer > 0. Moreover, this
condition does not hold for arty < ¢ < g, ori§ < q < 5™, for all £ > 0. But then
the second condition of Theorem 5, if it holds for somehich is a multiple ofi, it
must hold also fop = 1.

The only remaining question is how big,...,7,, are. The idea is that we do
not need to consider cyclotomic polynomials of degree highan the degree aP4,
which is turn is at mosiV. A tight bound on the degree of a cyclotomic polynomial is
given by the following theorem:

Theorem 15. For every two integers > 0 andd > 0, such that, > 210(%)1%“ "
the degree of’, (x) is higher thand.

Proof. See Theorem 8.46 in [9]. m]
Since, by Theorem 15, we have < i1,...,i, < 210(%)10&011, it follows

by Lemma 8 thatcm(iq,...,im,), and implicitly, the minimal integep satisfying

Theorem 5, is bounded B ¥'**** ') This gives the bound on the size of the monoid

for R, which in turn equals the suin+ c between the prefix and the period Bf In

Nloglo 11)

conclusion, Algorithm 5 runs in time at ma?' .

9. Experiments

In this section, we report on experiments we have performeutder to evaluate
our transitive closure and reachability analysis algaomngh

9.1. Transitive Closure Computation

We have implemented Algorithm 5 for difference bounds andganal relations
within the FLATA toolset [37]. We compared the performanéehis algorithm with
existing transitive closure computation methods for défee bounds [15] and octag-
onal relations [11].

89

Table 2 shows the results of the comparison between the aligierithms described
in [15, 11] (denoted asld) and Algorithm 5 for difference bounds relatioshs . ¢ and
octagonal relations; .. ¢. The tests have been performed on bagmpactminimum
number of constraints) anchnonical(i.e. closed, for difference bounds and tightly
closed, for octagons) relations. Thpeedupolumn gives the ratio between tioé
and new execution times. The experiments were performed on a 2.33@&thine
with 4GB of memory.

Table 2: A comparison with older algorithms on differenceubds and octagons.
Times are in milliseconds.

’ compact canonical
Relation ’new ‘ old \pspeedup\‘ old [speedup|

dy[lz—2"=-1)A(x=1y) 0.18 0.70 3.9 38.77 215.4
di[z—2"=-1)A (@ =4 0.18 18.18 101.0 38.77 215.4
dllz—2"=-1DA@=y)A(z—2"<5)A(z=2") [1.20 26.50 22.1 |33431.20]27859.3
dsllz—2'=—-1DA@=y)A(z—2<>5)A(z=2")]0.60 32.70 54.5 | 33505.50 | 55841.7
dilflz —2"'=-DA@=y)A(z—2<5)A(z=2) 0.50 702.30 | 1404.6 [48913.80|97827.6
dslla=c)Ab=d)Nb=b)N(c=C) 1.80 | 5556.60 | 3087.00 > 10° o

(a—b <-1DAa—€e <-2)A0b—ad <-2)

A(b—c’<—1)A(c—b’ —2)A(c—d < -1)

I

<
ANd—c <-2)A(d—e' <—1Ae—a

<
dﬁA(e_d,< 2)/\(a—b§ A —c<3 5.6 > 10° oo | >108 oo
AV —c<ANY —d<3)A(c d<4)/\(c/—c§3)
/\(d'7a<3/\d'76<4)/\(e7a<4)/\(—b < 3)
o1 [z +2"=1) 0.21 0.91 4.3 0.91 4.3
@ty < DAy —o <9 0.29 0.85 2.9 0.84 2.9
03 (@A @Iy < DAy —o <9 032 0.03 2.9 0.04 2.9
os[z+y<5)A(—z+2" <-2)A(—y+y <-3) 0.21 3.67 17.5 13.52 64.4
o5 [(x+y<1A(—z<0)A(-y <0) 1.20 [20050.90 | 16709.1| > 10° 00
G0 A=A A =0)
s Nz+y<1A(@+y <1)A(z—-1<1d) 25 > 106 00 > 106 [e's)
Ne' Sz +DAY-1<y)AW <y+1)

Table 3: Comparison with FAST (MONA plugin) on deterministiifference bounds.
Times are in secondsr: timeout 30 sEg: BDD too large,F;,: out of memory.

vars FLATA FAST vars FLATA FAST
done av.Er|done av.Er En Ep done av.Er|done av.Er En Ep

10 5015 0] 49 06 0O O 1 10 5015 0] 22 69 23 1 4
15 5016 0O/ 31105 17 0 2 15 5015 0 1206 4 3 42
20 5016 O 4 34 9 8 29 20 5016 O 0O - 1 0 49
25 501.6 0O 2 42 2 10 36 25 4317 7 0 - 0 0 50
50 501.6 O 0 - 0 0 50 50 5023 0 0 - 0 0 50
100 4977 1 0O - 0 0 50 100 4255 8 0 - 0 0 50

(a) — matrix density 3% (b) — matrix density 10%

As shown in Table 2, the maximum observed speedup is alhfosor difference
bounds {4 in canonical form) and of the order of four for octagons. Far telations
ds (canonical form)ds andog the computation using older methods took longer than
108 msec. Itis also worth noticing that the highest executioretivith the new method
was of 2.5 msec.

Table 3 compares FLATA with the FAST tool [7] on counter syssewith one

90

self loop labeled with a randomly generated determinisfference bounds relation.
We generated 50 such relations for each $ize- 10, 15, 20, 25, 50, 100. Notice that

FAST usually runs out of memory for more than 25 variablesenghs FLATA can

handle 100 variables in reasonable time (less than 8 seconalgerage).

9.2. Reachability Analysis

We have implemented the reachability analysis based oemation and procedure
summaries, described in Secti@® in the FLATA verifier [37]. We use algorithms that
are specific to subclasses of integer relations (e.g. diffee bounds or octagonal re-
lations) for operations such as composition, satisfighifihd transitive closure. We
resort to an external SMT solven&es[24] only for checking satisfiability of polyhe-
dra and modulo relations.

Table 4 compares the performance aifFA with several other reachability analy-
sis tools based on different verification methodologiese WhsT verifier [7] is based
on acceleration of loops labeled with finite monoid affinatiehs. We have runAsT
with several available plugins for solving Presburger tqgeerMONA [40] (finite au-
tomata), Prestaf [23] (shared automata), and Omega [49h(dier elimination). Ta-
ble 4 reports on PresTaf which outperformed other plugihe BHL.DARICA and ARMC
tools [37, 47] use predicate abstraction and interpolabiased abstraction refinement.
The Aspictool [30] uses widening-based abstract interpretation.

The benchmarks are all in the Numerical Transition Systemsdt (NTS). We
have considered six sets of examples, extracted autorhafican different sources:
(a) C programs with arrays provided as examples of diverganpredicate abstraction
[39], (b) verification conditions for programs with arragspressed in the SIL logic
of [12] and translated to NTS, (c) small C programs with avading loops, (d) NTS
extracted from programs with singly-linked lists by the L2@ol [10], (e) C pro-
grams with asynchronous procedure calls translated int8 NJing the approach of
[28] (the examples with extension .optim are obtained vieoptimized translation
method [27]), and (f) models extracted from VHDL models atuaits following the
method of [53]. Table 4 also reports on the size of NTS modais)e of which have
multiple proceduresix|, |@|, and|T| denote the total number of variables, the to-
tal number of control states, and the total number of traomstof all procedures of
the respective model. The platform used for experimentste® Core "2 Duo CPU
P8700, 2.53GHz with 4GB of RAM.

Next, we briefly describe some of the benchmarks we congiderd then comment
on the results of our experiments.

9.2.1. Benchmarks

One of the set of models we considered—denoted (f) in Table 4akén from [53]
where an approach for verification of generic VHDL circuisims based on transla-
tion to counter automata is presented. Traditional vetifioatechniques for hardware
systems usually assume that the state space of these systénite. The approach

8http://richnodel s. epfl.ch/ntsconp_ntslib

91

Table 4: A comparison of reachability analysis tools. The letter after the model rhstia-
guishesCorrect models from models with a reachaBleor state. Items with “-”, “d”, and “X”
signify timeout of 300s, “don’t know” answer, and an unsupportadsof models, respectively.

Model Size Time [s]

=l QI |T| | FLATA ELDARICA FAST ARMC ASPIC
(a) Examples from [39]
anubhav (C) 29 20 25 0.8 3.0 49.2 2.6 0.2
copyl (E) 39 21 24 2.0 7.2 145 44.0 d
cousot (C) 29 31 34 0.6 - 35.1 4.0 0.2
loop1 (E) 34 21 24 1.7 7.1 11.6 36.1 d
loop (E) 34 21 24 1.8 5.9 17.3 36.1 d
scan (E) 32 25 29 33 - 9.0 - d
string.concatl (E) 40 43 56 5.3 - - - d
string.concat (E) 34 39 52 4.9 - - - d
string.copy (E) 37 30 36 4.6 - 35.6 - d
substringl (E) 45 49 61 0.6 9.4 - 0.8 d
substring (E) 33 33 41 2.1 3.3 - 0.4 d
(b) Verification conditions for array programs [12]
rotationvc.1 (C) 11 13 55 0.6 2.0 X 0.6 X
rotationvc.2 (C) 11 20 93 1.6 2.2 X 0.7 X
rotationvc.1 (E) 11 13 56 1.1 1.3 X 0.3 X
split.ve.1 (C) 14 32 183 3.9 3.7 X 3.8 X
splitve.2 (C) 14 29 146 3.0 2.3 X 1.1 X
splitve.1 (E) 14 38 276 28.5 2.3 X 1.7 X
(c) Examples from [45]
gopan (C) 25 26 28 0.4 - 0.6 - d
ratelimiter (C) 35 25 27 31.7 6.1 X 8.1 X
(d) Examples from L2CA [10]
bubblesort (E) 12 674 791 14.9 9.9 - 0.9 d
insdel (E) 7 28 31 0.1 1.3 1.2 0.1 d
insertsort (E) 13 130 169 2.0 4.2 - 0.3 d
listcounter (C) 4 31 35 0.3 - 14.2 2.3 0.1
listcounter (E) 6 31 34 0.3 1.4 - 0.1 d
listreversal (C) 7 97 107 45 3.0 - 47.9 0.1
listreversal (E) 10 99 107 0.8 2.7 - 0.3 d
mergesort (E) 11 544 606 1.2 7.7 - 0.7 d
selectionsort (E) 15 401 459 15 8.1 - 0.5 d
(e) Examples from [28]
h1 (E) 28 40 50 - 5.1 X 17.7 X
h1.optim (E) 19 38 39 0.8 2.9 X 0.7 X
h1h2 (E) 29 41 52 - 9.4 X 57.0 X
h1h2.optim (E) 20 39 41 1.1 3.3 X 34 X
simple (E) 28 40 50 - 6.4 X 17.2 X
simple.optim (E) 19 38 39 0.8 3.0 X 0.7 X
test0 (C) 28 41 52 - 23.0 X 58.9 X
test0.optim (C) 19 39 40 0.3 3.2 X 4.3 X
testO (E) 27 39 48 - 5.4 X 17.4 X
test0.optim (E) 19 37 38 0.6 3.0 X 0.6 X
testl.optim (C) 24 58 62 0.9 4.7 X 231 X
testl.optim (E) 24 56 60 15 4.4 X 10.8 X
test21.optim (E) 22 50 55 1.6 5.2 X 6.0 X
test22.optim (E) 22 51 56 2.9 4.6 X 5.9 X
test2.optim (C) 37 55 78 6.4 27.2 X 93.5 X
wrpc.manual (C) 5 9 13 0.6 1.2 X 47.1 X
wrpc (E) 54 60 89 - 7.9 X 0.3 X
wrpc.optim (E) 34 49 55 - 5.1 X 1.4 X
(f) VHDL models from [53]
counter (C) 2 6 13 0.1 1.6 0.8 0.2 0.1
register (C) 2 10 49 0.2 11 0.5 0.2 0.1
synlifo (C) 3 43 1006 16.6 221 1718 52.8 2.6

presented in [53] aims at verification of parameterized VHiaimponents with infi-

nite state space. The translation to counter automataideddn [53] maps bit vari-

ables to control locations and integer variables to cosnt¥arious safety properties
are encoded as bit variables whose values are equivalerggogitional logic formulae

representing the bad (unsafe) states. For instance ythe 180 is a synchronous LIFO
component with push and pop operations, which implementsats empty and full.

The property checks if these signals are set correctly fdF®Lcontainer of arbitrary

size.

Another set of examples—denoted (b) in Table 4—are countemzath gener-
ated from programs with singly-linked lists, using the aggwh described in [10]. The
main idea is that the set of heaps generated by a program Witlieenumber of local
variables can be represented by a finite number of shapegrapt the (unbounded)
lengths of various list segments can be tracked by couriféesresult of the translation
of a program with lists is a counter automaton whose trawsgemantics is in bisim-
ulation with the original program. For all singly-linkedstiprograms, we check that
there are no null pointer dereferences. For instance, tReREVERSAL is a textbook
program that returns a list containing the same elementsedgput list in the reversed
order. The reversal is done in place by changing the linksdent the cells instead of
creating a copy of the input list. Here, we also check thale¢hgths of the input list
equals the length of the output list.

A next set of counter automata models—denoted (d) in Table ¢-elatained from
the decision procedure of the array logic SIL (Singly Indkxsgic), described in
[32]. The decidability of the satisfiability problem for Sincodes the set of models of
a formula as the union of sets of traces of a set of flat countengata with difference
bounds constraints, whose emptiness is known to be deeidelg., [19, 25]. Since
FLATA is guaranteed to terminate on flat models with periodic i@aton loops, we
can use it as a solver for the SIL logic. We report on two Sllofolae which arise as
verification conditions for loop invariants of array marlgting programs. Tharray
rotation program rotates an array by one element to the left, andrtiag splitprogram
splits an array to negative and non-negative parts.

The (f) benchmarks in Table 4 were generated from C prograithsasynchronous
procedure calls. For instanc&rPCis a simplified asynchronous implementation of
windowed RPC, in which a client makesasynchronous procedure calls in all, of
which at mostw < n are pending at any time.

The (a) models include several tricky numerical puzzles el well as programs
that manipulate C strings, e.g. programs creating copiesicatenations of strings.
The translation scheme [29] generates models that deteof-dnound errors.

9.2.2. Experimental Results

First, consider the toolsU/ATA and FAST which are both based on precise reach-
ability methods that use acceleration. Table 4 shows that4 significantly outper-
forms FAST on a vast majority of benchmarks. Note that we could not mat@@par-
ison for (b) and (e) benchmarks since thesk tool does not support transitions with
non-deterministic updates liké > 2. The Aspictool manifests strengths and weak-
nesses of abstract interpretation: correctness of modalb& usually verified quickly,

93

however, absence of abstraction refinement often leadsao't‘@now” answers for
models which have an error trace.

ELDARICA and ARMC are tools based on interpolation-based predicate alistract
and it turns out that they successfully verify almost samdeis(the sole exception be-
ing cousoTandLISTCOUNTERMOodels). Comparing lEATA with ELDARICA (or with
ARMC), one can observe that the tools behave in a complementaryinveome cases
(examples (a)), the predicate abstraction method failgaaa unbounded number of
loop unrollings required by refinement. In these cases Ja@t®n was capable to find
the needed invariant rather quickly. On the other hand (gkasr(e)), the acceleration
approach was unsuccessful in reducing loops with lineanbatoctagonal relations.
In these cases, the predicate abstraction found the neadsHurger invariants for
proving correctness and error traces for the erroneous @ram

References

[1] R. Alurand D. L. Dill. The theory of timed automata. jmoc. of REX Workshqgp
volume 600 ofLNCS pages 4573, Berlin, Heidelberg, 1991. Springer Verlag.

[2] R. Alur and P. Madhusudan. Visibly pushdown languagesProc. of STOC
pages 202-211, New York, NY, USA, 2004. ACM.

[3] R. Alur and P. Madhusudan. Adding nesting structure todsoInProc. of DLT,
pages 1-13, Berlin, Heidelberg, 2006. Springer-Verlag.

[4] A. Annichini, E. Asarin, and A. Bouajjani. Symbolic tealgues for parametric
reasoning about counter and clock systems.Pioc. of CAV volume 1855 of
LNCS pages 419-434, Berlin, Heidelberg, 2000. Springer Verlag

[5] R.Bagnara, P. M. Hill, and E. Zaffanella. An improvedhiglosure algorithm for
integer octagonal constraints. froc. of VMCA] volume 4905 oL NCS pages
8-21, Berlin, Heidelberg, 2008. Springer Verlag.

[6] S.Bardin, A. Finkel, J. Leroux, and P. Schnoebelen. &tatleration in symbolic
model checking. IProc. of ATVAvolume 3707 o NCS pages 474—488, Berlin,
Heidelberg, 2005. Springer Verlag.

[7] S.Bardin, J. Leroux, and G. Point. Fast extended reldag&roc. of CAV volume
4144 ofLNCS pages 63-66, Berlin, Heidelberg, 2006. Springer Verlag.

[8] D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configble software
verification. InProc. of CAVY volume 6806 ofLNCS pages 184-190, Berlin,
Heidelberg, 2011. Springer Verlag.

[9] B. Boigelot. Symbolic Methods for Exploring Infinite State SpadelsD Thesis.
Universi€ de Lege, 1999.

[10] A.Bouajjani, M. Bozga, P. Habermehl, R. losif, P. Moamd T. Vojnar. Programs
with lists are counter automata. Rroc. of CAV volume 4144 oL.NCS pages
517-531, Berlin, Heidelberg, 2006. Springer Verlag.

94

[11] M. Bozga, C. Grlea, and R. losif. Iterating octagons. Pmoc. of TACASvolume
5505 ofLNCS pages 337-351, Berlin, Heidelberg, 2009. Springer Verlag

[12] M. Bozga, P. Habermehl, R. losif, F. Kotg/, and T. Vojnar. Automatic verifi-
cation of integer array programs. Rroc. of CAV volume 5643 o NCS pages
157-172, Berlin, Heidelberg, 2009. Springer Verlag.

[13] M. Bozga and R. losif. On flat programs with lists. Pnoc. of VMCA] volume
4349 of LNCS pages 122-136, Berlin, Heidelberg, 2007. Springer Verlag

[14] M. Bozga, R. losif, and F. Kor@y. Fast acceleration of ultimately periodic rela-
tions. InProc. of CAVvolume 6174 of NCS pages 227-242, Berlin, Heidelberg,
2010. Springer Verlag.

[15] M. Bozga, R. losif, and Y. Lakhnech. Flat parametric otmur automataFunda-
menta Informaticagd1(2):275-303, 2009.

[16] M. Bozga, R. losif, and S. Perarnau. Quantitative safiam logic and programs
with lists. InProc. of IJCAR volume 5195 oLNCS pages 34-49, Berlin, Hei-
delberg, 2008. Springer Verlag.

[17] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. @Gmuexample-
guided abstraction refinement for symbolic model checkdogrnal of the ACM
50(5):752-794, 2003.

[18] E.M. Clarke and E.A. Emerson. Design and synthesis n€Bronization skele-
tons using branching-time temporal logic.Proc. of Logic of Programsvolume
131 of LNCS pages 52—-71, Berlin, Heidelberg, 1982. Springer Verlag.

[19] H. Comon and Y. Jurski. Multiple counters automataggafnalysis and pres-
burger arithmetic. IfProc. of CAV volume 1427 of NCS pages 268—279, Berlin,
Heidelberg, 1998. Springer Verlag.

[20] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leisersimtroduction to Algo-
rithms McGraw-Hill Higher Education, 2nd edition, 2001.

[21] P. Cousot and R. Cousot. Abstract interpretation: Aiedilattice model for static
analysis of programs by construction or approximation gdirts. InProc. of
POPL, pages 238-252, New York, NY, USA, 1977. ACM.

[22] P. Cousotand N. Halbwachs. Automatic discovery ofdinestraints among vari-
ables of a program. I€onference Record of the Fifth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languapeges 84-97,
Tucson, Arizona, 1978. ACM Press, New York, NY.

[23] J.M. Couvreur. PresTAF. http://altarica.labri.fr/forge/
proj ects/ 3/ wi ki / PresTAF.

[24] B. Dutertre and L. de Moura. The YICES SMT Solvhkt.t p: // yi ces. csl .
sri.com .

95

[25] A. Finkel and J. Leroux. How to compose presburger-caéons: Applications
to broadcast protocols. Rroc. of FST TCSvolume 2556 oL NCS pages 145—
156, Berlin, Heidelberg, 2002. Springer Verlag.

[26] A. Finkel, E. Lozes, and A. Sangnier. Towards modeletireg programs with
lists. InProc. of ILC volume 5489 ol.NCS pages 56—-86, Berlin, Heidelberg,
2007. Springer Verlag.

[27] P. Ganty. Personal communication, 2012.

[28] P. Ganty and R. Majumdar. Algorithmic verification ofyashronous programs.
ACM Trans. Program. Lang. SysB4(1):6:1-6:48, 2012.

[29] F. Garnier and R. losif. Personal communication, 2012.

[30] L. Gonnord. ASPIC. http://1 aure.gonnord. org/ pro/aspic/
aspic. htnm .

[31] S. Graf and H. S@i. Construction of abstract state graphs with PVSPtac.
of CAV, volume 1254 oL NCS pages 72-83, Berlin, Heidelberg, 1997. Springer
Verlag.

[32] P.Habermehl, Radu l., and T. Vojnar. A logic of singlgéxed arrays. IRroc. of
LPAR volume 5330 of NCS pages 558-573, Berlin, Heidelberg, 2008. Springer
Verlag.

[33] P. Habermehl, R. losif, A. Rogalewicz, and T. Vojnaro®ng termination of tree
manipulating programs. IRroc. of ATVAvolume 4762 of NCS pages 145-161,
Berlin, Heidelberg, 2007. Springer Verlag.

[34] P. Habermehl, R. losif, and T. Vojnar. What else is delsid@about integer arrays?
In Proc. of FoSSaCSolume 4962 of NCS pages 474-489, Berlin, Heidelberg,
2008. Springer Verlag.

[35] M. Heizmann, J. Hoenicke, and A. Podelski. Nested pua&nts. InProc. of
POPL, pages 471-482, New York, NY, USA, 2010. ACM.

[36] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. hgafe verification
with BLAST. In Proc. of SPIN volume 2648 oLLNCS pages 235-239, Berlin,
Heidelberg, 2003. Springer Verlag.

[37] H. Hojjat, R. losif, F. Garnier, F. Kor@y, V. Kuncak, and P. Bmmer. A verifi-
cation toolkit for numerical transition systems. Prnoc. of FM, 2012. To appear.

[38] O. H. Ibarra. Reversal-bounded multicounter machaeas their decision prob-
lems. Journal of the ACM25(1):116-133, January 1978.

[39] R. Jhala and K. L. McMillan. A practical and complete apgch to predicate
refinement. InProc. of TACASvolume 3920 olLNCS pages 459-473, Berlin,
Heidelberg, 2006. Springer Verlag.

96

[40] Nils Klarlund and Anders Mgller. MONAt t p: / / www. bri cs. dk/ nona/ .

[41] J. Leroux and G. Sutre. Flat counter automata almostyeteere! InProc. of
ATVA volume 3707 ofNCS pages 489-503, Berlin, Heidelberg, 2005. Springer
Verlag.

[42] A.Mandel and I. Simon. On finite semigroups of matricBseoretical Computer
Science5(2):101-111, 1977.

[43] A. Miné. The octagon abstract domaiHigher-Order and Symbolic Computa-
tion, 19(1):31-100, 2006.

[44] M. Minsky. Computation: Finite and Infinite Machine®rentice-Hall, 1967.
[45] D. Monniaux. Personal Communication, 2012.

[46] A. Podelski and A. Rybalchenko. Transition predicétsteaction and fair termi-
nation. InProc. of POPL. pages 132-144, New York, NY, USA, 2005. ACM.

[47] A. Podelski and A. Rybalchenko. ARMC: The logical chefor software model
checking with abstraction refinement. Pnoc. of PADL, volume 4354 oL NCS
pages 245-259. Springer Verlag, Berlin, Heidelberg, 2007.

[48] M. Presburger. Uber die \Vollséndigkeit eines gewissen Systems der Arith-
metik ganzer Zahlen, in welchem die Addition als einzige K&pen hervortritt.
Comptes rendus du | Coneg des Pays Slavgsage 92101, 1929.

[49] W. Pugh, E. Rosser, W. Kelly, D. Wonnacott, and T. Shpeis. Omegaht t p:
/I www. cs. und. edu/ pr oj ect s/ omegal/ .

[50] J.-P. Queille and J. Sifakis. Specification and verifaraof concurrent systems
in cesar. IrProc. of the 5th Colloquium on International Symposium cogeam-
ming, volume 137 ofLNCS pages 337-351, Berlin, Heidelberg, 1982. Springer
Verlag.

[51] C. ReutenaueiThe mathematics of Petri netBrentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1990.

[52] B. De Schutter. On the ultimate behavior of the sequeficensecutive powers of
a matrix in the max-plus algebr&inear Algebra and its Application807:103—
117, 2000.

[53] A. Smrcka and T. Vojnar. Verifying parametrised hardevdesigns via counter
automata. IrProc. of HVG volume 4899 of. NCS pages 51-68, Berlin, Heidel-
berg, 2007. Springer Verlag.

97

