
On Universal Search Strategies for
Multi-Criteria Optimization Using

Weighted Sums

Julien Legriel, Scott Cotton, Oded Maler

Verimag Research Report no TR-2011-7

March 2011

Reports are downloadable at the following address
http://www-verimag.imag.fr
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1 Introduction

The design of complex systems involves numerous optimization problems, where design choices are en-
coded as valuations of decision variables and the relative merits of each choice are expressed via a util-
ity/cost function over these variables. In many real-life situations one has to deal with cost functions which
are multi-dimensional. For example, a cellular phone that we want to purchase or develop can be evaluated
according to its cost, screen size, power consumption and performance. A configuration swhich dominates
s′ according to one criterium, can be worse according to another. In the absence of a linear ordering of the
alternatives, there is no unique optimal solution but rather a set of efficient solutions, also known as Pareto
solutions [Par12]. Such solutions are characterized by the property that their cost cannot be improved in
one dimension without being worsened in another. The set of all Pareto solutions, the Pareto front, repre-
sents the problem trade-offs, and being able to sample this set in a representative manner is a very useful
aid in decision making.

In this paper we study the adaptation of stochastic local search (SLS) algorithms, used extensively in
(single-objective) optimization and constraint satisfaction problems, to the multi-objective setting. SLS
algorithms perform a guided probabilistic exploration of the decision space where at each time instance,
a successor is selected among the neighbors of a given point, with higher probability for locally-optimal
points. SLS algorithms can be occasionally restarted, where restart mean abandoning the current point and
starting from scratch. It has been observed (and proved) [LSZ93] that in the absence of a priori knowledge
about the cost landscape, scheduling such restarts according to a specific pattern boosts the performance
of such algorithm in terms of expected time to find a solution. This has led to successful algorithms for
several problems, including SAT [PD07].

One popular approach for handling multi-objective problems is based on optimizing a one-dimensional
cost function defined as a weighted sum of the individual costs according to a weight vector λ. Repeating
the process with different values of λ leads to a good approximation of the Pareto front. Our major con-
tribution is an algorithmic scheme for distributing the optimization effort among different values of λ. To
this end we adapt the ideas of [LSZ93] to the multi-objective setting and obtain an algorithm which is very
efficient in practice.

The rest of this paper is organized as follows. In Section 2, we introduce an abstract view of randomized
optimizers and recall the problematics of multicriteria optimization. Section 3 discusses the role of restarts
in randomized optimization. Section 4 presents our algorithm and proves its properties. Section 5 provides
experimental results and Section 6 concludes.

2 Background

2.1 SLS Optimization

Randomization has long been a useful tool in optimization, taking quite a variety of forms, amongst which
we find such different ideas as [Mat65, KGV83, AC91]. In this paper, we are concerned with optimization
over finite domain functions by means of stochastic local search (SLS), in the style of such tools as Walk-
SAT [SKC93], UBCSAT [TH05] or LKH [Hel09], and well-documented in [HS04]. Here we provide a
simplified overview in which we consider only a minimal characterization of SLS necessary for the paper
as a whole.

We assume a finite set X called the decision space whose elements are called points. We assume some
metric ρ on X which in a combinatorial setting corresponds to a kind of Hamming distance where ρ(s, s′)
characterizes the number of modifications needed to transform s to s′. The neighborhood of s is the set
N (s) = {s′ : ρ(s, s′) = 1}. A cost (objective) function f : X → R is defined over X and is the subject
of the optimization effort. We call the range of f the cost space and say that a cost o is feasible if there
is s ∈ X such that f(s) = o. A random walk is a process which explores X starting from an initial
randomly-chosen point s by repeatedly stepping from s to a neighboring point s′, computing f(s′) and
storing the best point visited so far. In each step, the next point s′ is selected according to some probability
distributionDs overX which we assume to be specific to point s. Typically, Ds gives non-zero probability
to a small portion of X , included in N (s).
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While the particular probability distributions vary a great deal such processes, including [SKC93,
TH05, Hel09], also share many properties. Some such properties are crucial to performance of SLS op-
timization algorithms. For example, all processes we are aware of favor local optima in the probability
distributions from which next states are selected. The efficiency of such processes depends on structural
features of the the decision space such as the size of a typical neighborhood and the maximal distance
between any pair of points, as well as on the cost landscape. In particular, cost landscapes admitting vast
quantities of local optima and very few global optima and where the distances between local and global
optima are high, tend to be difficult for random walk algorithms [HS04, Ch. 5].

Of particular interest to this paper, a simple and common practice exploited by SLS based optimization
tools is restarting. In our simplified model of random walk processes, a restart simply chooses a next state
as a sample from a constant initial probability distribution rather than the next-state probability distribution.
Typically the process may start over from a randomly generated solution or from a constant one which was
computed off-line. Restarting can be an effective means of combating problematics associated with the cost
landscape. It is particularly efficient to avoid stagnation of the algorithm and escape a region with local
optimas. Most search methods feature a mechanism to thwart this behavior, but this might be insufficient
sometimes. For instance a tabu search process may be trapped inside a long cycle that it fails to detect.
Another aspect in which restarts may help is to limit the influence of the random generator. Random
choices partly determine the quality of the output and starting from scratch is a fast way to cancel bad
random decisions that were early made. As we will argue, restarting can also be effectively exploited for
multi-criteria problems.

2.2 Multicriteria Optimization
Multi-criteria optimization problems seek to optimize a multi-valued objective f : X → Rd which we can
think of as a vector of costs (f1, f2, . . . , fd). When d > 1 the cost space is not linearly-ordered and there
is typically no single optimal point, but rather a set of efficient points known as the Pareto front, consisting
of non-dominated feasible costs. We recall some basic vocabulary related to multi-objective optimization.
The reader is referred to [Ehr05, Deb01] for a general introduction to the topic.

Definition 1 (Domination) Let o and o′ be points in the cost space. We say that o dominates o′, written
o < o′, if for every i ∈ [1..d], oi ≤ o′i and o 6= o′.

Definition 2 (Pareto Front) The Pareto front associated with a multi-objective optimization problem is
the set O∗ consisting of all feasible costs which are not dominated by other feasible costs.

A popular approach to tackle multi-objective optimization problems is to reduce them to several single-
objective ones.

Definition 3 (λ-Aggregation) Let f = (f1, . . . , fd) be a d-dimensional function and let λ = (λ1, λ2, . . . λd)
be a vector such that

1. ∀j ∈ [1..d], λj > 0

2.
∑d
j=1 λ

j = 1; and

The λ-aggregation of f is the function fλ =
d∑
j=1

λjf j .

Intuitively, the components of λ represent the relative importance (weight) one associates with each ob-
jective. A point which is optimal with respect to fλ is also a Pareto point for the original cost function.
Conversely, when the Pareto front is convex in the cost space, every Pareto solution corresponds to an opti-
mal point for some fλ. At this point of discourse it is also important to explain why we choose to optimize
weighted sums of the objectives when we are aware of one major drawback of this technique : the impos-
sibility to reach Pareto points on concave parts of the front. Actually negative results [Geo67, Ehr05] only
state that some solutions are not optimum under any combination of the objectives. This does not mean
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that they are unreachable with a local search algorithm because we may encounter them while making
steps in the decision space. As our algorithm utilizes a Pareto filter and keeps track of the non dominated
set of all the points it came accross, it is theoretically able to find any Pareto point if random choices are
allowed. Given the graph induced on X by the neighborhood relation, this amounts to say that any node
in the graph has a non zero probability of being visited. This fact was also confirmed experimentally (see
section 5.1), as we found the whole Pareto front (including non-supported solutions) for small instances
where it is known.

2.3 Related Work

Stochastic local search methods are used extensively for solving hard combinatorial optimization problems
for which exact methods do not scale [HS04]. Among the well known techniques we find simulated
annealing [KGV83], tabu search [GM06], ant colony optimization [AC91] and evolutionary algorithms
[Mit98, Deb01] each of which has been applied to hard combinatorial optimization problems such as the
traveling salesman, scheduling or assignment problems.

Many state-of-the-art local search algorithms have their multi-objective version [PS06]. For instance,
there exists multi-objective extensions of simulated annealing [CJ98, BSMD08] and tabu search [GMF97].
A typical way of treating several objectives in that context is to optimize a predefined or dynamically
updated series of linear combinations of the cost functions. A possible option is to pick a representative set
of weight vectors a priori and run the algorithm for each scalarization successively. This has been done in
[UTFT99] using simulated annealing as backbone. More sophisticated methods have also emerged where
the runs are made in parallel and the weight vector is adjusted during the search [CJ98, Han97] in order to
improve the diversity in the population. Weight vectors are thus modified such that the different runs are
guided towards distinct unexplored parts of the cost space.

One of the main issue faced with the weighted sum method is therefore to share the time between
different promising search directions (weight vectors) appropriately. Generally deterministic strategies are
used: weight vectors are predetermined, and they may be modified dynamically according to a determin-
istic heuristic. However, unless some knowledge on the cost space has been previously acquired, one may
only speculate on the directions which are worth exploring. This is why we study in this work a completely
stochastic approach, starting from the assumption that every search direction has equal potential in improv-
ing the final result. The goal we seek is therefore to come up with a scheme ensuring a fair time sharing
between different weight vectors.

Also related to this work are population-based genetic algorithms which do naturally handle several
objectives as they work on several individual solutions that are mutated and recombined. They are vastly
used due to their wide applicability and good performance and at the same time they also benefit from
combination with specialized local search algorithms. Indeed some of the top performing algorithms for
solving combinatorial problems are hybrid, in the sense that they mix evolutionary principles with local
search. This led to the class of so called memetic algorithms [KC05]. It is common that scalarizations of
the objectives are used inside them for guiding the search, and choosing a good scheme to adapt weight
vectors dynamically is also an interesting issue.

The work presented in this paper began from the will to combine two ingredients used for solving
combinatorial problems : scalarization of the objectives which we just discussed and restarts. Restarts have
been used extensively in stochastic local search since they usually bring a non negligible improvement in
the results. For instance Greedy Randomized Adaptive Search Procedures (GRASP) [FR95] or iterated
local search [LMS03] are well-known methods which run successive local search processes starting from
different initial solutions. In [HS04, Ch. 4] restarts in the context of single-criteria SLS are studied. Their
technique is based on an empirical evaluation of run-time distributions for some classes of problems. In
this work, we devise multi-criteria restarting strategies which perform reasonably well no matter what the
problem or structure of the cost space happens to be. The main novelty is a formalization of the notion of
a universal multicriteria restart strategy: every restart is coupled with a change in the direction and restarts
are scheduled in such a way that work is balanced across directions and run times. This is achieved by
adapting the ideas of [LSZ93] (which we present in the next section) to the multiobjective optimization
setting.
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3 Restarting Single Criteria SLS Optimizers

This practice of restarting in SLS optimization has been in use at least since [SKC93]. At the same time,
there is a theory of restarts formulated in [LSZ93] which applies to Las Vegas algorithms which are defined
for decision problems rather than optimization. Such algorithms are characterized by the fact that their run-
time until giving a correct answer to the decision problem is a random variable. In the following we recall
the results of [LSZ93] and analyze their applicability to optimization using SLS. We begin by defining
properly what a strategy for restarting is.

Definition 4 (Restart Strategy) A restart strategy S is an infinite sequence of positive integers t1, t2, t3, . . ..
The t time prefix of a restart strategy S, denoted S[t] is the maximal sequence t1, t2, . . . , tk such that
Σki=1ti ≤ t.

Running a Las Vegas algorithm according to strategy S means running it for t1 units of time, restarting it
and running it for t2 units of time and so on.

3.1 The Luby Strategy

A strategy is called constantly repeating if it takes the form c, c, c, c, . . . for some positive integer c. As
shown in [LSZ93] every Las Vegas algorithm admits an optimal restart strategy which is constantly repeat-
ing (the case of infinite c is interpreted as no restarting). However, this fact is not of much use because
typically one has no clue for finding the right c. For these reasons, [LSZ93] introduced the idea of universal
strategies that “efficiently simulate” every constantly repeating strategy. To get the intuition for this notion
of simulation and its efficiency consider first the periodic strategy S = c, c′, c, c′, c, c′, . . . with c < c′.
Since resets are considered independent, following this strategy for m(c + c′) steps amounts to spending
mc time according to the constant strategy c and mc′ time according to strategy c′.1 Putting it the other
way round, we can say that in order to achieve (expected) performance as good as running strategy c′ for t
time, it is sufficient to run S for time t + c(t/c′). The function f(t) = t + c(t/c′) is the delay associated
with the simulation of c′ by S.2 It is natural to assume that a strategy which simulates numerous other
strategies (i.e has sub-sequences that fit each of the simulated strategies) admits some positive delay.

Definition 5 (Delay Function) A monotonic non-dec-
reasing function δ : N → N, satisfying δ(x) ≥ x is called a delay function. We say that S simulates S′

with delay bounded by δ if running S′ for t time is not better than running S for δ(t) time.

It turns out that a fairly simple strategy, which has become known as the Luby strategy, is universally
efficient.

Definition 6 (The Luby Strategy) The Luby Strategy is the sequence

c1, c2, c3, . . .

where

ci
.=
{

2k−1 if i = 2k − 1
ti−2k−1+1 if 2k−1 ≤ i < 2k − 1

which gives
1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . .

We denote this strategy by L.

1In fact, since running an SLS process for c′ is at least as good as running it for c time, running S form(c+ c′) is at least as good
as running c for m(c+ c) time.

2For simplicity here we consider the definition of the delay only at time instants t = kc′, k ∈ N. In the case where t = kc′ + x,
where x is an integer such that 0 < x < c′, the delay function would be δ(t) = bt/c′cc+ t.
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A key property of this strategy is that it naturally multiplexes different constant strategies. For instance
the prefix of definition 6 contains eight ones, four twos, two fours and one eight, and the total time dedicated
to each strategy 1,2,4 and 8 is the same. More formally, letA denote a Las Vegas algorithm andA(c) denote
the algorithm which runs A for c time units. Then, the sum of the execution times spent on A(2i) is equal
for all 1 ≤ i < 2k−1 over a 2k − 1 length prefix of the series. As a result, every constant restart strategy
where the constant is a power of 2 is given an equal time budget. This can also be phrased in terms of
delay.

Proposition 1 (Delay of L ) Strategy L simulates any
power of two constant strategy c with delay δ(t) ≤ t(blog tc+ 1).

Proof 1 (Sketch) Consider a constant strategy c = 2a and a time t = kc, k ∈ N. At the moment where
the kth value of c appears in L, the previous ones in the sequence are all of the form 2i for some i ∈
{0..blog tc}. This is because the series is built such that time is doubled before any new power of two is
introduced. Furthermore after the execution of the kth c, every 2i constant with i ≤ a has been run for
exactly t time, and every 2i constant with i > a (if it exists in the prefix) has been executed less than t time.
This leads to δ(t) ≤ t(blog tc+ 1).

[Sketch]
This property implies that restarting according to L incurs a logarithmic delay over using the opti-

mum constant restart strategy (that we may not know) of a particular problem instance. Additionally the
strategy is optimal in the sense that it is not possible to have better than logarithmic delay if we seek to
design a strategy simulating all constant restart strategies [LSZ93]. The next section investigates how these
fundamental results can be useful in the context of optimization using stochastic local search.

3.2 SLS optimizers
An SLS optimizer is an algorithm whose run-time distribution for finding a particular cost o is a random-
variable.

Definition 7 (Expected Time) Given an SLS process and a cost o, the random variable Θo indicates the
time until the algorithm outputs a value at least as good as o.

There are some informal reasons suggesting that using strategy L in the context of optimization would
boost the performance. First a straightforward extension of results of 3.1 to SLS optimizers can be made.

Corollary 1 Restarting an SLS process according to strategy L gives minimum expected run-time to reach
any cost o for which Θo is unknown.

The corollary follows directly because the program that runs the SLS process and stops when the cost is
at least as good as o is a Las Vegas algorithm whose run-time distribution is Θo. In particular using strategy
L in that context gives a minimal expected time to reach the optimum o∗. Still, finding the optimum is too
ambitious for many problems and in general we would like to run the process for a fixed time t and obtain
the best approximation possible within that time. A priori there is no reason for which minimizing the
expected time to reach the optimum would also maximize the approximation quality at a particular time t.

On the contrary for each value of o we have more or less chances to find a cost at least as good as
o within time t depending on the probability P (Θo ≤ t).3 Knowing the distributions one could decide
which o is more likely to be found before t and invest more time for the associated optimal constant restart
strategies. But without that knowledge every constant restart strategy might be useful for converging to a
good approximation of o∗. Therefore whereas Las Vegas algorithms run different constant restart strategies
because it is impossible to know the optimal c∗, an SLS process runs them because it does not know which
approximation o is reachable within a fixed time t, and every such o might be associated to a different
optimal constant restart strategy. This remark further motivates the use of strategy L for restarting an SLS
optimizer.

3Note that these probabilities are nondecreasing with o since the best cost value encountered can only improve over time.
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4 Multicriteria Strategies
In this section we extend strategyL to become a multi-criteria strategy, that is, a restart strategy which spec-
ifies what combination of criteria to optimize and for how long. We assume throughout a d-dimensional
cost function f = (f1, . . . , fd) convertible into a one-dimensional function fλ associated with a weight
vector λ ranging over a bounded set Λ of a total volume V .

Definition 8 (Multicriteria Strategy) A multi-criteria search strategy is an infinite sequence of pairs

S = (t(1), λ(1)), (t(2), λ(2)), . . .

where for every i, t(i) is a positive integer and λ(i) ∈ Λ is a weight vector.

The intended meaning of such a strategy is to run an SLS process to optimize fλ(1) for t(1) steps, then
fλ(2) for t(2) and so on. Following such a strategy and maintaining the set of non-dominated solutions
encountered along the way yields an approximation of the Pareto front of f .

Had Λ been a finite set, one could easily adapt the notion of simulation from the previous section and
devise a strategy which simulates with a reasonable delay any constant strategy (λ, c) for any λ ∈ Λ.
However since Λ is infinite we need a notion of approximation. Looking at two optimization processes,
one for fλ and one for fλ′ where λ and λ′ are close to each other, we observe that the functions may not be
very different and the effort spent in optimizing fλ is almost in the same direction as optimizing fλ′ . This
motivates the following definition.

Definition 9 (ε-Approximation) A strategy S ε-approxi- mates a strategy S′ if for every i, t(i) = t′(i)
and |λ(i)− λ′(i)| < ε.

From now on we are interested in finding a strategy which simulates with good delay an ε-approximation
of any constant strategy (λ, c). To build such a ε-universal strategy we construct an ε-net Dε for Λ, that
is, a minimal subset of Λ such that for every λ ∈ Λ there is some µ ∈ Dε satisfying |λ − µ| < ε. In
other words, Dε consists of ε-representatives of all possible optimization directions. The cardinality of Dε

depends on the metric used and we take it to be4 mε = V (1/ε)d. Given Dε we can create a strategy which
is a cross product of L with Dε, essentially interleaving mε instances of L. Clearly, every λ ∈ Λ will have
at least 1/mε of the elements in the sequence populated with ε-close values.

Definition 10 (Strategy LDε ) LetD be a finite subset of Λ admittingm elements. StrategyLD = ((t(1), λ(1)), . . .
is defined for every i as

1. λ(i) = λ(i mod m)

2. t(i) = L(d ime)

Proposition 2 (LDε delay) Let Dε be an ε-net for Λ. Then LDε simulates an ε-approximation of any
constant strategy (λ, c) with delay δ(t) ≤ tmε(blog tc+ 1).

Proof 2 (Sketch) [Sketch] For any constant (λ, c) there is an ε-close µ ∈ Dε which repeats everymth
ε time

in LDε . Hence the delay of LDε with respect to L is at mostmεt and combined with the delay t(blog tc+1)
of L wrt any constant strategy we obtain the result.

For a given ε, LDε is optimal as the following result shows.

Proposition 3 (LDε Optimality) Any strategy that ε-simu
lates every constant strategy has delay δ(t) ≥ mεt/2(blog tc/2 + 1) with respect to each of those.

Proof 3 (Sketch) Consider such a multicriteria strategy and t steps spent in that strategy. Let Si,j denote
the multicriteria constant strategy (λi, 2j), (λi, 2j) . . . for all λi ∈ Dε and j ∈ {0..blog tc}. The minimum
delay when simulating all Si,j for a fixed i is t/2(blog tc/2 + 1) (see proposition 5 in appendix). Because
any two λi, λ′i ∈ Dε do not approximate each other, the delays for simulating constant strategies associated
with different directions just accumulate. Hence δ(t) ≥ mεt/2(blog tc/2 + 1).

4Using other metrics the cardinality may be related to lower powers of 1/ε but the growth is at least linear.
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Despite these results, the algorithm has several drawbacks. First computing and storing elements of
an ε-net in high dimension is not straightforward. Secondly, multi-dimensional functions of different cost
landscapes may require different values of ε in order to explore their Pareto fronts effectively and such an
ε cannot be known in advance. In contrast, strategy LD needs a different Dε for each ε with Dε growing
as ε decreases. In fact, the only strategy that can be universal for every ε is a strategy where D is the set of
all rational elements of Λ. While such a strategy can be written, its delay is, of course, unbounded.

For this reason, we propose a stochastic restart strategy which, for any ε, ε-simulates all constant multi-
criteria strategies with a good expected delay.Our stochastic strategy Lr is based on the fixed sequence of
durations L and on random sequences of uniformly-drawn elements of Λ.

Definition 11 (Strategy Lr)

• A stochastic multi-criteria strategy is a probability distribution over multi-criteria strategies;

• Stochastic strategy Lr generates strategies of the form

(t(1), λ(1)), (t(2), λ(2)), . . .

where t(1), t(2), . . . is L and each λ(i) is drawn uniformly from Λ.

Note that for any ε and λ the probability of an element in the sequence to be ε-close to λ is 1/mε. Let
us try to give the intuition why for any ε > 0 and constant strategy (λ, c), Lr probabilistically behaves
as LDε in the limit. Because each λ(i) is drawn uniformly, for any ε > 0 the expected number of times
λ(i) is ε-close to λ is the same for any λ ∈ Λ. So the time is equally shared for ε-simulating different
directions. Moreover the same time is spent on each constant c as we make use of the time sequence L.
Consequently Lr should ε-simulate fairly every strategy (λ, c). We have not yet computed the expected
delay with which a given multicriteria strategy is simulated by Lr.5 Nonetheless a weaker reciprocal result
directly follows: on a prefix of Lr of length tmε(blog tc+logmε+1), the expected amount of time ε-spent
on any multi-criteria constant strategy (λ, c) is t.

Proposition 4 (Lr Expected Efficiency) for all ε > 0, after a time T = tmε(blog tc + logmε + 1) in
strategy Lr, the random variable wλ,c(T ) of the time spent on ε-simulating any constant strategy (λ, c)
verifies E[wλ,c(T )] = t.

Proof 4 (Sketch) [Sketch] In time T , Lr executes tmε times any constant c (proposition 1). On the other
hand the expected fraction of that time spent for a particular λ is 1/mε.

5 Experiments

5.1 Quadratic Assignment Problem
The quadratic assignment problem (QAP) introduced in [KB57] is a hard unconstrained combinatorial op-
timization problem with many real-life applications related to the spatial layout of hospitals, factories or
electrical circuits. An instance of the problem consists of n facilities whose mutual interaction is repre-
sented by an n × n matrix F with Fij characterizing the quantity of material flow from facility i to j. In
addition there are n locations with mutual distances represented by an n × n matrix D. A solution is a
bijection from facilities to locations whose cost corresponds to the total amount of operational work, which
for every pair of facilities is the product of their flow with the distance between their respective locations.
Viewing a solution as a permutation π on {1, . . . , n} the cost is formalized as

C(π) =
n∑
i=1

n∑
j=1

Fij ·Dπ(i),π(j).

The problem is NP-complete, and even approximating the minimal cost within some constant factor is
NP-hard [SG76].

5It involves computing the expectation of the delay of L applied to a random variable with negative binomial distribution.

Verimag Research Report no TR-2011-7 7/15



Julien Legriel, Scott Cotton, Oded Maler Universal Search Strategies for Multi-Criteria Optimization

5.1.1 QAP SLS Design

We implemented an SLS-based solver for the QAP, as well as multi-criteria versions described in the
preceding section. The search space for the solver on a problem of size n is the set of permutations of
[1..n]. We take the neighborhood of a solution π to be the set of solutions π′ that can be obtained by
swapping two elements. This the kind of move is quite common when solving QAP problems with a local
search algorithm. Our implementation also makes use of a standard incremental algorithm [Tai91] for
maintaining the costs of all neighbors of the current point, which we briefly recall here. Given an initial
point, we compute (in cubic time) and store the cost of all its neighbors . After swapping two elements
(i, j) of the permutation, we compute the effect of swapping i with j on all costs in the neighborhood.
Since we have stored the previous costs, adding the effect of a given swap to the cost of another swap
gives a new cost which is valid under the new permutation. This incremental operation can be performed
in amortized constant time for each swap, and there are quadratically many possible swaps, resulting in a
quadratic algorithm for finding an optimal neighbor.

Algorithm 1 Greedy Randomized Local Search
if rnd() ≥ p then
optimal move()

else
rnd move()

end if

Concerning the search method, we choose to use a simple greedy selection randomized by noise (algo-
rithm 1). This algorithm is very simple but, as will be shown in the sequel, is quite competitive in practice.
The selection mechanism works as follows: with probability 1 − p the algorithm makes an optimal step
(ties between equivalent neighbors are broken at random), otherwise it goes to a randomly selected neigh-
bor. Probability p can be set to adjust the noise during the search. Note that we have concentrated our
effort on the comparison of different adaptive strategies for the weight vector rather than on the perfor-
mance comparison of algorithm 1 with the others classical local search methods (simulated annealing, tabu
search).

5.1.2 Experimental Results on QAP library

The QAPLIB[BKR97] is a standard set of benchmarks of one dimensional quadratic assignment problems.
Each problem in the set comes with an optimal or best known value. We ran algorithm 1 (implemented
in C) using various constant restart strategies and the Luby strategy L on each of the 134 instances of the
library. The machine used for the experiments has an Intel Xeon 3.2GHz processor. Complete results of the
simulations reported in table 1. Within a time limit of 500 seconds (for each instance) the algorithm finds
the best known value for 93 out of 134 instances. On the remaining problems the average error percentage
is of 0.8 %. Also the convergence is fast on small instances (n ≤ 20) as most of them are brought to
optimality in less than 1 second of computation.

Figure 1 plots the number of problems brought to optimal or best-known values as a function of time
for each strategy. Among all constant restart values we tried (including infinity) none of them is able to get
a better score than strategy L (at least with a time bound of 500 seconds). This fact corroborates the idea
that strategy L is universal, in the sense that the multiplexing of several constant restart values makes it
possible to solve (slightly) more instances. This is however done with some delay as observed on Figure 1
where strategy L is outperformed by big constant restarts (1024,10000,∞) at the begining.

5.2 Multi-objective QAP

The multiobjective QAP (mQAP), introduced in [KC03a] allows for multiple flow matrices F1, F2, . . . Fd.
Each pair (Fi, D) for i in {1..d} defines a cost function as presented in 5.1, what renders the problem
multiobjective.
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Figure 1: Results of different restart strategies on the 134 QAPLIB problems with optimal or best known
results available. Strategy L solves more instances than the constant restart strategies, supporting the idea
that it is efficient in the absence of inside knowledge.

We have developed an extension of algorithm 1 where multiple costs are agglomerated with weighted
sums and the set of all non-dominated points encountered during the search is stored in an appropriate
structure.

In order to implement strategy L one also need to generate d-dimensional random weight vectors which
are uniformly distributed. Actually, generating random weight vectors is equivalent to sampling uniformly
random points on a unit simplex. But, sampling from the d-dimensional unit simplex is also equivalent to
sampling from a Dirichlet distribution where every parameter is equal to one. The procedure for generating
random weight vectors is therefore the following : 1. Generate d IID random samples (a1, . . . , ad) from a
unit-exponential distribution (which is done by sampling ai from (0,1] uniformly, and returning−log(ai)).
2. Normalize the vector thus obtained by dividing each coordinate by the sum S =

∑d
i=0 ai.

Multi-criteria strategies Lr and LDε have been tested and compared on the benchmarks of the mQAP
library, which includes 2-dimensional problems of size n = 10 and n = 20, and 3-dimensional problems
of size n = 30 [KC03b]. The library contains both instances generated uniformly at random, and instances
generated according to flow and distance parameters which reflects the probability distributions found in
real situations. Also, pre-computed Pareto sets are provided for all 10-facility instances. We should note
that our algorithm found over 99% of all Pareto points from all eight 10-facility problems, within a total
computation time of under 1 second.

For the remaining problems where the actual Pareto set is unknown, we resort to comparing perfor-
mance against the non-dominated union of solutions found with any configuration. As a quality indicator
we use the ε-approximation concept [ZKT08] which indicates the largest increase in cost of a solution in
the reference set, when compared to its best approximation in the set to evaluate. The errors are normalized
with respect to the difference between the maximal and minimal costs in each dimension over all samples
of restart strategies leading to a number α ∈ [0, 1] indicating the error with respect to the set of all found
solutions.6

Figures 2, 3 and 4 depict the results of the multi-criteria experiments. We compared Lr against constant
restarts combined with randomly chosen directions and strategy LDε for different values of ε. Despite its
theoretical properties LDε does not perform so good for the ε values that we chose. This corroborates the
fact that it is hard to guess a good ε value beforehand. Constantly restarting works good but the appropriate
constant has to be carefully chosen. At the end strategy Lr gives decidedly better performance amongst all

6In the future we also intend to use techniques which can formally validate the quality of a Pareto set approximation [LGCM10]
in order to assess the efficiency of this algorithm.
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Figure 2: Performance of various constant multi-criteria strategies against Lr on the 1rl and 1uni 20-
facility problems. The metric used is the normalized ε-indicator, the reference set being the union of
all solutions found. In these experiments constant restarts values c = 10, 100, 1000 are combined with
randomly generated directions.
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Figure 3: Performance of LDε multi-criteria strategies against Lr on the 1rl and 1uni 20-facility problems
for ε = 0.1, 0.01, 0.001, mesured by the ε-indicator metric.
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Figure 4: Examples of approximations of the Pareto front for two 30-facility, 3-flow QAP problems. KC30-
3fl-2uni was generated uniformly at random while KC30-3fl-2rl was generated at random with distribution
parameters, such as variance, set to reflect real instances. The approximations above are a result of 1 minute
of computation using Lr as multi-criteria strategy.

the strategies we tried. It is worth noting that we also tried using the weighted infinity norm maxi λif i as a
measure of cost but, unless the theoretical interest (Pareto points on concave parts of the front are optimal
for some valuation of the weights), the method did perform worse than the weighted sum approach on our
experiments.

6 Conclusion
We have demonstrated how efficient universal strategies can accelerate SLS-based optimization, at least in
the absence of knowledge of good restart constants. In the multi-criteria case, our approximating universal
strategy is efficient, both theoretically and experimentally and gives a thorough and balanced coverage of
the Pareto front. After having demonstrated the strength of our algorithm on the QAP benchmarks, we are
now working on two extensions of this work. First, we are planning to use strategy Lr with other efficient
local search techniques, starting with tabu search [Tai91]. Secondly we intend to move on to problems
associated with mapping and scheduling of programs on multi-processor architectures and see how useful
this algorithmics can be for those problems.
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Appendix

Optimality of L
The optimality of L is proved in [LSZ93]. We reformulate it using the notion of delay introduced in this
paper and give a sketch of proof.

Proposition 5 (L Optimality) Any time strategy which simulates every constant time strategy does it with
delay δ(t) ≥ t/2(blog tc/2 + 1).

Proof 5 (Sketch) let S be such a strategy and t a time. Consider the constant restart strategies {Si =
2i, 2i . . .}blogtc0 . Each t-prefix of these strategies must be simulated by a δ(t)-prefix of S. In particular the
t-prefix of Sblogtc which is 2blogtc has to be simulated. So the δ(t)-prefix of S needs an element bigger than
or equal to 2blogtc. Also the t-prefix of Sblogtc−1 which is 2blogtc−1, 2blogtc−1 must be simulated. One of
the two values can be mapped to the value greater than 2blogtc, but there should be another value greater
than 2blogtc−1. From the previous observations we have that δ(t) ≥ 2blogtc + 2blogtc−1. If we denote Ni
the minimum number of 2i values that must be present in the δ(t)-prefix of S we can formulate this as 1.
Nblogtc = 1 and 2. ∀i ≤ blogtc − 1, Ni = 2blogtc−i −

∑blogtc−1
j=i+1 Nj − 1 (i.e for each i values bigger

than 2i can be used to simulate a 2i). By recursion we can show that ∀i ≤ blogtc − 1, Ni = 2blogtc−i−1.
We therefore get δ(t) ≥ 2blogtc +

∑blogtc−1
i=0 2blogtc−1−i 2i. After simplifying the sum we obtain δ(t) ≥

t/2(blog tc/2 + 1).

Single-criterium QAP Results
Table 1 shows the results and execution times obtained by our SLS algorithm on QAPLIB problems, com-
pared to the best known results.
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name size best value mqap best steps time name size best value mqap best steps time
bur26a 26 5426670 5426670 87333 10.16 bur26b 26 3817852 3817852 25874 3.00
bur26c 26 5426795 5426795 52541 6.10 bur26d 26 3821225 3821225 4146 0.49
bur26e 26 5386879 5386879 26507 3.12 bur26f 26 3782044 3782044 9485 1.14
bur26g 26 10117172 10117172 26016 3.03 bur26h 26 7098658 7098658 9363 1.09
chr12a 12 9552 9552 10134 0.23 chr12b 12 9742 9742 1782 0.04
chr12c 12 11156 11156 19000 0.43 chr15a 15 9896 9896 5924 0.22
chr15b 15 7990 7990 91494 3.36 chr15c 15 9504 9504 88003 3.23
chr18a 18 11098 11098 196208 10.53 chr18b 18 1534 1534 5654 0.31
chr20a 20 2192 2192 3650116 245.31 chr20b 20 2298 2298 2154279 144.99
chr20c 20 14142 14142 205534 13.76 chr22a 22 6156 6156 2624486 212.39
chr22b 22 6194 6272 6182333 500.00 chr25a 25 3796 3822 4671871 500.00
esc128 128 64 64 937 3.44 esc16a 16 68 68 122 0.00
esc16b 16 292 292 40 0.00 esc16c 16 160 160 154 0.00
esc16d 16 16 16 43 0.00 esc16e 16 28 28 112 0.00
esc16f 16 0 0 1 0.00 esc16g 16 26 26 47 0.00
esc16h 16 996 996 42 0.00 esc16i 16 14 14 16 0.00
esc16j 16 8 8 16 0.00 esc32a 32 130 130 169182 30.31
esc32b 32 168 168 5063 0.95 esc32c 32 642 642 242 0.04
esc32d 32 200 200 1144 0.20 esc32e 32 2 2 11 0.00
esc32f 32 2 2 11 0.00 esc32g 32 6 6 14 0.00
esc32h 32 438 438 894 0.17 esc64a 64 116 116 110 0.10
had12 12 1652 1652 383 0.00 had14 14 2724 2724 1065 0.04
had16 16 3720 3720 702 0.03 had18 18 5358 5358 2975 0.16
had20 20 6922 6922 1477 0.10 kra30a 30 88900 88900 685946 106.45
kra30b 30 91420 91420 2981280 461.82 kra32 32 88900 26604 1 0.00
lipa20a 20 3683 3683 7321 0.50 lipa20b 20 27076 27076 1162 0.08
lipa30a 30 13178 13178 144126 22.49 lipa30b 30 151426 151426 11909 1.91
lipa40a 40 31538 31538 376838 108.15 lipa40b 40 476581 476581 15751 4.56
lipa50a 50 62093 62684 1087569 500.00 lipa50b 50 1210244 1210244 44406 20.99
lipa60a 60 107218 108152 738889 500.00 lipa60b 60 2520135 2520135 58474 39.91
lipa70a 70 169755 171057 524491 500.00 lipa70b 70 4603200 4603200 232953 218.46
lipa80a 80 253195 254942 398776 500.00 lipa80b 80 7763962 7763962 264266 325.77
lipa90a 90 360630 362964 314604 500.00 lipa90b 90 12490441 12490441 89043 144.09
nug12 12 578 578 126 0.00 nug14 14 1014 1014 14557 0.46
nug15 15 1150 1150 2120 0.08 nug16a 16 1610 1610 30191 1.29

nug16b 16 1240 1240 1984 0.08 nug17 17 1732 1732 16209 0.76
nug18 18 1930 1930 118373 6.39 nug20 20 2570 2570 8685 0.58
nug21 21 2438 2438 47793 3.59 nug22 22 3596 3596 1696 0.14
nug24 24 3488 3488 16016 1.58 nug25 25 3744 3744 81772 8.84
nug27 27 5234 5234 275874 34.38 nug28 28 5166 5166 26105 3.61
nug30 30 6124 6124 1093652 169.83 rou12 12 235528 235528 3259 0.07
rou15 15 354210 354210 4021 0.15 rou20 20 725522 725522 264911 17.90
scr12 12 31410 31410 2145 0.04 scr15 15 51140 51140 3511 0.13
scr20 20 110030 110030 14984 1.02 sko100a 100 152002 152696 250279 500.00

sko100b 100 153890 154890 253747 500.00 sko100c 100 147862 148614 253422 500.00
sko100d 100 149576 150634 253601 500.00 sko100e 100 149150 150004 253401 500.00
sko100f 100 149036 150032 254968 500.00 sko42 42 15812 15852 1552963 500.00
sko49 49 23386 23474 1146362 500.00 sko56 56 34458 34602 856498 500.00
sko64 64 48498 48648 631733 500.00 sko72 72 66256 66504 500701 500.00
sko81 81 90998 91286 391585 500.00 sko90 90 115534 116192 309691 500.00
ste36a 36 9526 9586 2163008 500.00 ste36b 36 15852 15852 494591 115.02
ste36c 36 8239110 8249952 2195600 500.00 tai100a 100 21125314 21591086 255199 500.00
tai100b 100 1185996137 1193503855 254527 500.00 tai12a 12 224416 224416 45 0.00
tai12b 12 39464925 39464925 2496 0.06 tai150b 150 498896643 507195710 101380 500.00
tai15a 15 388214 388214 1136 0.04 tai15b 15 51765268 51765268 438 0.02
tai17a 17 491812 491812 76666 3.68 tai20a 20 703482 703482 960799 63.94
tai20b 20 122455319 122455319 8079 0.56 tai256c 256 44759294 44866220 28941 500.00
tai25a 25 1167256 1171944 4729773 500.00 tai25b 25 344355646 344355646 285069 30.29
tai30a 30 1818146 1828398 3236381 500.00 tai30b 30 637117113 637117113 1722202 267.30
tai35a 35 2422002 2462770 2334384 500.00 tai35b 35 283315445 283315445 571374 125.05
tai40a 40 3139370 3190650 1763043 500.00 tai40b 40 637250948 637250948 56899 16.74
tai50a 50 4941410 5067502 1083719 500.00 tai50b 50 458821517 458966955 1048395 500.00
tai60a 60 7208572 7392986 739306 500.00 tai60b 60 608215054 608758153 742214 500.00
tai64c 64 1855928 1855928 3636 3.02 tai80a 80 13557864 13846852 407800 500.00
tai80b 80 818415043 825511580 404012 500.00 tho150 150 8133398 8215216 101551 500.00
tho30 30 149936 149936 2396680 371.55 tho40 40 240516 241598 1729732 500.00

wil100 100 273038 273854 253337 500.00 wil50 50 48816 48862 1071145 500.00

Table 1: Results of running algorithm 1 on the QAP library instances. Each row shows the best value
obtained within a time limit of 500 seconds, compared to the best known or optimal value.
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