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Abstract

This paper deals with program verification and more precisely with the question of how to
provide verifiable evidence that a program verifies certain semantics properties. Program pro-
cessing tools such as compiler or static analyzers are complex pieces of software which may
contain errors. The idea of using analyzers as guessing algorithms and proving the discovered
properties by independent means has been proposed a decade ago. However, automatically
generating the proofs without user interaction is still a major challenge. We present a method-
ology of instrumentation of existing static analyzers based on abstract interpretation to make
them produce certificates of their results. We apply our methodology on an existing static
analyzer that discovers invariants of array-processing programs which can be expressed in
first-order logic. Certificates are provided as COQ proofs based on Floyd-Hoare’s method for
proving program invariants.
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1 Certifying the verdict of validation tools

Program processing tools (compilers, validation tools) are the cornerstones on which the safety of software
is built. At the same time these tools are based on subtle algorithms and complex theoretical background.
This raises the problem of proving the correctness of the implementation of such a tool. This is hard to
achieve in practice. Therefore, in a certification process the validation tool is assumed unsafe and its verdict
is considered no more trustable than a “guess”. A high-level of confidence in the accuracy of the “guess”
can be reached by providing a certificate for each particular verdict of the tool and checking it using a
trusted certificate checker [23, 17]. Clearly, we don’t want to build the certificate by hand for each run of
the tool ; the goal is to extend the validation tool so that it produces the certificate by instrumentation of its
computations.

1.1 Automatic generation of proofs by instrumentation

In this paper we consider certificates in the form of foundational proofs for which exist trustable proof-
checkers (e.g. LF, COQ, HOL) [1, 19]. It is very unlikely that when provided with the “guess”, a standard
theorem prover will automatically produce a proof of the verdict: the strategy of the validation tool would
have to be provided to the theorem provers as proof tactics which means re-implementing a large part of
the validation tool in the prover. Moreover, verdicts of a validation tool can be considered as certificates if
the validation tool has been certified. Besson, Jensen and Pichardie [4] have proposed to use the fixpoint
generated by a certified abstract interpreter as a certificate. Unfortunately their approach based on certified
abstract interpretation which is a technique for extracting a static analyzer from the constructive proof of
its soundness doesn’t work on existing tools implemented with standard programming languages.

We investigate a more practical approach that consists in instrumenting an existing tool so that it au-
tomatically builds a certificate of its verdict in the form of a foundational proof. To do so, we distinguish
functions that implement the heuristics of the tool (they are responsible for precision, termination) from the
semantic functions which are accountable for correctness. Only latter need to be instrumented to generate
proof-terms.

An instrumented function is said to be certifying (instead of certified) as it generates proof-terms to
justify its computations but there is no guarantee that it will produce a valid proof-term for all possible
inputs. The term certified is reserved for functions whose correctness has been established on all their
input domain.

The semantic function of the tools are instrumented as follows: First, the correctness of a function f
is stated as a property relating its input and its result. It corresponds to a (partial) specification Q of the
function f as pre and post conditions. Second, a certifying function, denoted by fπ, is created that must
return justified results in the form of a pair made of the result of the original function f and a proof that
this result meets the specification. Intuitively, a certifying function builds a specialization of a general
correctness proof for the particular entry of the call using a proof pattern. The general form of a certifying
function is fπ(x)

def
= let r = f(x) in (r, πpre(x)⇒post(r)). We use πf to denote proof patterns, π to denote the

corresponding proof-terms generated at execution and πϕ to point out that it is a proof of the property ϕ.
Next, each computation r := f(i) is replaced by (r, π) := fπ(i). When the computation of a function f

involves results of other function calls, the associated proof-term πϕ is built from the proofs πϕ1
, . . . , πϕn

provided by the call of certifying functions. All the instrumentation efforts of a function then lie in com-
bining the subproofs using appropriate rules of the deduction system to demonstrate ϕ from ϕ1 ∧ . . .∧ϕn.

This can hardly be achieved for large and complex functions such as the abstract transfer function
which represents a great amount of code of an analyzer. In general it contains many case distinctions in
order to recognize the situation where a very specific treatment can increase the precision of the analysis.
In such case, it is hard to find a general proof pattern in this large collection of tricky situations. Therefore,
instead of generating a proof that follows the computations we use weakest precondition calculus to obtain
a logical implication in first order logic. Then, we prove that implication using the certifying version of the
abstraction mapping α and the certifying version of the comparison operator v of the abstract lattice.
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Figure 1: instrumentation of the function f using the proof pattern πf

1.2 Experimentation on an existing analyzer

We conduct an experimentation on a static analyzer, ENKIDU [16] which discovers invariant properties of
array-processing programs. Running ENKIDU on the insertion-sort algorithm below, the analyzer automat-
ically associates an inductive assertion to each program location. The discovered assertion Φ9 on the exit
point says that the array A[2..n] is sorted, that is, ∀`, 2 < ` ≤ n⇒ A[`− 1] ≤ A[`].

1:i := 2 ;
2:while(i ≤ n) do
3: v := A[i] ; j := i ;
4: while(1 < j ∧ v < A[j− 1]) do
5: A[j] := A[j− 1] ; j := j− 1

6: od Φ6
def
= {A[j − 1] ≤ v

∧
∀`, 1 < ` ≤ j − 1⇒ A[`− 1] < A[`]}

7: A[j] := v ;
Φ7

def
= {∀`, 1 < ` ≤ j ⇒ A[`− 1] < A[`]}

8: i := i + 1

9:od Φ9
def
= {∀`, 1 < ` ≤ n⇒ A[`− 1] ≤ A[`]}

The justified version of the analyzer automatically generates the proofs of the discovered assertions in
the COQ syntax. These proofs are conducted in three steps: the pre- and post conditions of an instruc-
tion are combined into a Hoare triple, for instance {Φ6} A[j] := v {Φ7} for the assignment at line 7.
Next, using weakest precondition calculus, the triple is then changed into an equivalent logical formula,
Φ6 ⇒ wp(A[j] := v,Φ7), which is then established using the proof-term generated by the analyzer while
processing the assignment at line 7.

Certifying array-processing programs involve dealing with array aliases. The naive definition of wp for
assignment, wp(A[j] := v,Φ)

def
= Φ[A[j]/v], is unsound and incomplete for programs dealing with objects,

pointers or arrays, as noticed in [6]. For instance, assume that the assertion Φ bears on a cell A[`] while
the cell A[j] is assigned, and ` = j, then the syntactic substitution ignores the alias between A[j] and A[`].
To address that issue, [6] that represents the array A as a function fA from indices to values. Then, the
assignment A[j] := v updates the function fA which becomes (λi. if (i = j) then v else A[i]) and the
Hoare substitution does not apply to the cellA[j] but to the arrayA: {Φ[A/fA]} A[j] := v {Φ} This idea can
be rephrased using the store/select axioms for arrays [22]. We implemented a similar solution proposed
that avoids dealing with λ-abstraction and store/select axioms. It consists in expliciting all the potential
aliases in the assertion according to the assigned array cell, prior to the substitution. In the example, the
subterms A[` − 1] and A[`] of Φ7 can potentially be in alias with the assigned cell A[j]. Our weakest
precondition calculus produces the formula below where the aliases with A[j] are made explicit:
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wpA[j]:=v(Φ7) = ∀`, 1 ≤ ` ≤ j ⇒
∧ ` 6= j ⇒

(∧ `− 1 6= j ⇒ A[`− 1] ≤ A[`]
`− 1 = j ⇒ A[j] ≤ A[j + 1]

)
` = j ⇒

(∧ j − 1 6= j ⇒ A[j − 1] ≤ A[j]
j − 1 = j ⇒ A[j] ≤ A[j]

)
This formula is equivalent to:

wp(A[j] := v,Φ7) = ∀`,
∧


1 ≤ ` ≤ j ∧ ` 6= j ∧ `− 1 6= j ⇒ A[`− 1] ≤ A[`] (1)
1 ≤ ` ≤ j ∧ ` 6= j ∧ `− 1 = j ⇒ A[j] ≤ A[j + 1] (2)
1 ≤ ` ≤ j ∧ ` = j ∧ j − 1 6= j ⇒ A[j − 1] ≤ A[j] (3)
1 ≤ ` ≤ j ∧ ` = j ∧ j − 1 = j ⇒ A[j] ≤ A[j] (4)

The validity of the property discovered by ENKIDU are established with respect to the semantics of
guards and assignments defined by the wp calculus. No user-interaction is required: when the analyzer
discovers a valid property, the instrumented version produces a proof of it.

1.3 Contributions
Our instrumentation method can be applied to a large class of static analyzers based on fixpoint computation
and abstraction. We show that when an untrusted tool produces a valid verdict then the instrumentation
produces a valid proof of the verdict. We also address the challenge of producing foundational proofs for
trusted proof-checkers where each evidence must be provided in terms of very basic deduction rules (or
lemmata themselves based on these rules).

Inspired by initial works of Pnueli [26] and Necula [25] in the area of compilation, then following
previous works about proof-producing static analysis [7, 27], we investigate a novel instrumentation tech-
nique that (1) applies to existing static analyzers which have not been developed with the goal of producing
proofs ; (2) that uses proof patterns instead of proof searching algorithm. The whole proof is produced
automatically as the combination – directed by computations – of these basic justifications. And (3) as far
as we know, our instrumentation is the lightest one that automatically produces certificates from a fixpoint
computation: Indeed, it avoids the instrumentation of the abstract transfer function and therefore it is ro-
bust to changes in the heuritics of the analyzer. Instead the instrumentation effort is concentrated on the
operators of the abstract domains that are usually implemented as libraries shared among several analysis.

1.4 Related work
Ideally, one would like to be provided with a proof of correctness of the validation tool. If the verification
algorithm was proved in the COQ proof assistant, then the implementation of the validation tool could be
obtained by extraction from the proof. This specific COQ feature guarantees a tool implementation correct
by extraction. The WHY tool and its successors [13] for the analysis of imperative programs implement a
calculus of the weakest precondition in COQ. It is proved correct with respect to an operational semantics
but he does not provide an automatic technique to generate COQ certificates. These certificates are required
since WHY uses uncertified external tools to annoted programs. This extraction approach is also promoted
in [4] for the development of static analysis using abstract interpretation. Unfortunately, it does not provide
a solution for the many valuable existing tools not developed in COQ. Therefore, in the case of an existing
analyzer, instrumentation seems a more practical approach. In contrast to [4], instrumentation does not
produce a certified analyzer which has been proved once and for all. Instead it generates a dedicated proof
for each run of the analyzer.

The idea of adding certificates to verdicts of validation tools was introduced by Namjoshi [23] for
model-checkers of temporal formulæ. The basis for producing evidence is provided (invariants for safety
properties and ranking functions for liveness properties). Certificates take the form of deductive proofs in a
high-level proof-system where uninteresting deduction steps are skipped. Other forms of certificates have
been proposed for model-checking [17, 28]. Meanwhile it has been recognized in the proof-carrying code
community that foundational proof-checkers are more reliable [2] than type-specialized checkers. In the
foundational framework, a proof-term is a combination of deduction rules from higher-order logic. Proof-
checking then consists of a recursive traversal of the proof-term to check that each step obeys the syntactic
constraint of the deduction schemes of the proof system. The LF and COQ foundational proof-systems are
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based on a few deduction rules and come with very small, simple and trusted1 proof-checkers [1, 3]. Such
proof-checkers provide a high-level of confidence. A challenge is to automatically produce foundational
proofs from validation tool. Indeed, each evidence must be provided in terms of very basic deduction rules
(or lemmata based on these rules). In a similar philosophy as PCC [24], our approach, by generating proofs
from a static verification performed on the untrusted code, can also be used to provide guarantees to the
user of dowloaded code.

Works closely related to ours [7, 27] provide syntax directed strategies to prove the correctness of
the result of an abstract interpretation. This approach stricly follows computations of static analyzers
and some part of that are very complicated and not realistic in practice (as instrumenting the abstract
transfer functions). The final proof also refers to the abstract domain and exploits some property of the
concretization function. Hence, the proof must maintain a relation between the logic of the proof-checker
and the abstract domain, meaning that a translation of each abstract value into the logic of the proof-checker
must be provided and proved correct. Our justification technique avoids some of these difficult part and
greatly reduces the instrumentation work: the proof only refers to the original program and assertions
expressed in first order logic; it does not mention the abstract domain neither the abstract semantics. This
is an advantage for a certification process where the evaluators must understand and agree on the semantics
axiom.

Overview. The remainder of this paper is structured as follows: Section 2 recalls the principle of abstract
interpretation and presents the typical architecture of a static analyzer. Then, Section 3 is dedicated to
the instrumentation of a generic analyzer with proof patterns so that it produces justifications, in the COQ
syntax, of the properties discovered by the abstract interpretation. We apply our technique to an existing
static analyzer (ENKIDU [16]) in section 4: we detail the instrumentation of some operators of the abstract
domain and report experimental results. Finally, we draw a conclusion and present some directions for
future work in section 5.

2 Architecture of a static analyzer
For the needs of the following presentation, we start with a brief summary of what is common to a large
class of static analyzers: the principle of abstract interpretation and fixpoint computation [10].

Without loss of generality, a program can be seen as a control flow graph (i.e. a transition system)
where each edge (i.e. a transition τqq′ ) between two program locations q and q′ is annotated by a guard
g, or an assignment v := e. A program state is a couple (q, σ) made of a program point q and a mapping
σ of variables to values, which represents a memory state. The goal of a static analysis is to associate an
assertion (i.e. an invariant property) to each node of the program. Invariant properties are not computable
in general, thus, a static analyzer focuses on a well-chosen class of properties for which invariants can
be obtained by fixpoint computation on an abstract lattice (A,v,t,u,⊥,>). The abstract domain A
represents the target class of properties. It has a least and a greatest element (resp. ⊥ and >), a partial
orderv and two operators t and u that respectively computes the least upper bound and the greatest lower
bound of two abstract values. The domain A is also chosen to have efficient algorithms for t and u and
a decision procedure for v. An abstract program property is represented as a tuple a def

= (aentry, . . . , aexit)
that associates an abstract value to each program node.

In order to conduct proofs based on the Floyd-Hoare method in a deductive system for first order logic
(FOL), an abstract value (which is a assertion associated to a program node) must be expressible in first
order logic. A large class of abstract domains hold this condition, as polyhedras, octogons, intervals,
difference bound matrices, quantified domains,...

Before presenting the instrumentation of the static analyzer ENKIDU, we specify the general archi-
tecture of such a tool. A static analyzer computes an abstract program property that is the fixpoint of
the abstract transfer function associated to the program which merges the effect of each transition of
the program. Formally, the abstract semantics of a program P is the least solution a of the equation

1The COQ environment has recently been accepted by governmental authorities in a certification at the highest level of assurance
of the Common Criteria for Security [8].
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(†) a = a0
⊔

τqq′∈P
fτqq′ (a) where a0 denotes the initial conditions of the program, and fτqq′ is the transfer

function associated to the transition τqq′ . fτqq′ computes the abstract value associated to location q′ from
the abstract value at location q and lets the other values unchanged (it can be seen as a predicate transformer
that captures the effect of transition τqq′ ).

We now give a typical implementation of an analyzer that computes a solution of Equation (†) in an
iterative way. Starting from the initial program property a0 the analyzer builds a more precise property by
computing the sequence (ai)i∈N defined by{

ai = SearchFixPoint([a0, . . . , ai−1])

ai+1 = Step(P, ai) def
= ai

⊔
τqq′∈P

fτqq′ (ai)

until it reaches stability, that is, a rank n such that the predicate

Stability(an+1, an)
def
=

∧
q∈1..|a|

an+1
q v anq

returns true meaning that an is a fixpoint of Equation (†) (where anq is the assertion from abstract program
property an at node q).

Usually, the least solution of the equation is not computable and analyzers uses widening operators to
reach a post-fixpoint of Equation (†). This feature of the analyzers is part of the function SearchFixPoint,
that controls termination but it is not relevant for correctness. Therefore, only the Stability predicate and
the Step function must be instrumented to obtain certificates. In order to obtain inductive invariants, it
is sufficient to reach a rank n such that an+1 v an, meaning that the property an is preserved by the
transitions. This abstract inclusion is guaranteed when the analyzer stops, no matter if it reaches a fixpoint
or a post-fixpoint [10].

3 A generic instrumentation of a static analyzer
For the sake of clarity, the certifying functions are given in a pseudo-programming language which we
expect to be self-explanatory.

3.1 Instrumentation of the fixpoint computation

Imagine that the analyzer is called on the program P with a0 as initial condition. It computes the sequence
(ai)i∈N of properties until a fixpoint, say an, is reached and returns it as an inductive program property. The
certifying analyzer, Analyzerπ runs the uncertifying one to get an. Next, it replays only the last iteration
that led to stability using the certifying version of the functions Step and Stability (denoted by Stepπ and
Stabilityπ). Hence, the overhead of proof-generation is very limited. The extra computations provide the
evidences needed for building the certificate.

Analyzerπ(P, a0)
def
= let an = Analyzer(P, a0)

and (an+1, π1) = Stepπ(P, an)

and (-, π2) = Stabilityπ(an+1, an)

and π =
π1 π2

{an} P {an}
consequence in (an, π)

Let us temporarily assume that Stepπ and Stabilityπ are available and instrumented to generate the proofs
that their results satisfy their correctness property. Here is the goal of the extra computations: Stepπ(P, an)
computes an+1 and provides the proof π1 of the Hoare triple {an} P {an+1}. Of course, Stabilityπ called
with (an+1, an) returns true since stability was reached with an and it provides a proof π2 of the implica-
tion an+1 ⇒ an. These proofs are then combined using the consequence (which extends the transitivity of
the implication to Hoare triple) into the final certificate:
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Stabilityπ(a, a′) def
= let (bq, πq) = aq vπ a′q for each q ∈ 1..|a| in (

∧
q∈1..|a|

bq, π)

where π =


πq

aq ⇒ a′q
. . .

}
for each
q ∈ 1..|a|∧

q∈1..|a| aq ⇒ a′q
∧intro

a⇒ a′
tuple

Stepπ(P, a)
def
= let (a′q′ , πτ ) = fπτ(aq) for each q τ−→ q′ ∈ P and a′ = a

⊔
q

τ−→ q′∈P
a′q′

in (a′, π)

where π =



πτ
aq ⇒ wp(τ, a′q′)

{aq} τ {a′q′}
sem2 . . .

 for each
q
τ−→ q′ ∈ P∧

q
τ−→ q′∈P {aq} τ {a′q′}

∧intro

{a} P {a′}
sem1

Figure 2: The certifying versions of Step and Stability

π1︷ ︸︸ ︷
{an}P {an+1}

π2︷ ︸︸ ︷
an+1 ⇒ an

{an} P {an}
consequence

The certifying functions Stepπ and Stabilityπ are presented in Figure 2. Again, the instrumentation
consists in short proof patterns that simply combine subproofs provided by more fundamental certifying
functions: fπ and vπ. The two algorithms consist in collecting the results and the proofs returned by
distinct computations (the application of fπ to all transitions of the program for Stepπ, and the evaluation
of vπ component by component for Stabilityπ) and then, to compute the main result and to separately
combine the subproofs using deduction and semantics rules.

The proofs are provided in an intermediate format that is then automatically translated into COQ syntax.
A proof is a deduction tree represented by an OCAML data structure. It consists of a combination of
deduction rules which capture logical deduction, semantic reasoning, rewriting and provide the ability to
use mathematical axioms or lemmata as long as they are available in the target proof-checker. Logical
connectors and quantifiers are handled by the rules of the natural deduction. The semantics steps are
performed using the following deduction rules:∧

τqq′∈P
{aq} τqq′ {aq′}

{a} P {a}
(sem1 )

a⇒ wp(τ, a′)

{a} τ {a′}
(sem2 )

with wp(g, a)
def
= g ⇒ a and wp(v := e, a)

def
= a[v/e]

The rule (sem1) is used to split the proof of the global abstract invariant a def
= (aentry, aq, aq′ . . . , aexit)

into the proofs of one Hoare triple for each transition of the program. Rule (sem2) relates the validity
of a triple to Dijkstra’s calculus of the weakest precondition guaranteeing a property after execution of a
transition, denoted by wp [12].

The proof pattern of Stabilityπ is generic, in the sense that it will work for any analyzer if the abstract
comparison operator is instrumented. Indeed, the proof only relies on the correctness property of v: It
exactly uses the fact a ⇒ a′ that must hold if a v a′ [10], since a, a′ ∈ FOL. Concerning the certifying
version of v we cannot reason any further on a generic analyzer. Each analyzer is based on an abstract
domain with a specific comparison operator. We give an example of the instrumentation of v in section 4
in the particular case of ENKIDU, an analyzer for array-processing programs.

We now come to the generation of the proof (πτ in Figure 2) of the Hoare triple {aq} τ {a′q′} for
each transition τ of the program. In previous works [7, 27], this was done by instrumenting the abstract
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transfer functions of the static analyzers. But, the transfer function represents a great amount of code that
is specific to each static analyzer. It is usually implemented as a large case analysis – the heuristics –
to choose the treatment that gives the most precise result. Avoiding the instrumentation of each of these
special treatments is worth the game. In this section we explain how the proof generation can be done
without modifying the transfer function fτ ; instead, we instrument some operators of the abstract domain.
The effort of instrumentation is amortized since the abstract domains are usually defined as libraries shared
by many analyzers.

3.2 Instrumentation of the transfer function
The key idea to obtain an instrumented version fπτ of the transfer function fτ is to insert the assertion
aq vπA wp(τ, a′q′) after the computation a′q′ = fτ (aq). If the analysis is correct, the verification of the
assertion must succeed and produce the proof πτ of the implication aq ⇒ wp(τ, a′q′) required by the
function Stepπ of Figure 2. This way we avoid the study of the code of fτ . Instead we provide in Figure 3
a generic instrumentation of the transfer function that reuses fτ and then selects among three proof-patterns
depending on the type of the transition q τ−→ q′ (a guard or an assignment) and the form of wp(τ, a′q′). The
rest of this section focuses on this instrumentation, it has been designed to ensure the completeness of the
proof-generation in the following sense: When the analyzer discovers a valid property, we are guaranteed
that its instrumented version will generate a valid proof that the program satisfies the property.

3.2.1 Guarded transitions.

The weakest precondition calculus for a guarded transition q
g−→ q′ rewrites the proof obligation aq ⇒

wp(τ, a′q′) into aq ⇒ (g ⇒ a′q′) which is equivalent to aq ∧ g ⇒ a′q′ . We can take advantage of this
reformulation since the abstract domain is closed under conjunction. Indeed, the proof of the implication
is mainly built on the sub-proof π1 provided by aq ∧ N (g) vπA a′q′ where N denotes the normalization
function associated to the abstract domain that transforms guards of the program into their abs-tact rep-
resentations. The normalization function must be instrumented to establish (sub-proof π2) that N (g) is
a safe approximation of g, that is g ⇒ N (g). The proof-pattern of Figure 3 for guarded transition is a
combination of the sub-proofs π1 and π2.

3.2.2 Assignment transitions.

We distinguish two cases according to whether the weakest precondition wp(τ, a′q′) belongs to the abstract
domain A or not.

1a. The propitious case: Whenwp(a′q′ , τ) ∈ A, the premise and the conclusion of the implication belong
to abstract domain so the proof of the implication is provided by the computation aq vπAwp(a′q′ , τ)
with the instrumented operator vπA.

1b. The common case: Most of the time wp(a′q′ , τ) 6∈ A – meaning that the formula produced by wp is
not in the form required by the abstract domain – but it can be expressed inA by means of a normali-
sation step. This can be illustrated on the domain of interval constraints: the weakest precondition of
x ∈ [minx,maxx] for the statement x:=x+k (where k is an integer constant) replaces x by x+ k,
that leads to a constraint x+k ∈ [minx,maxx] bearing on an expression, not on a variable. However
the normalization is straightforward that leads to x ∈ [minx − k,maxx − k] which belongs to the
domain of intervals. Actually, we are brought back to the previous case by systematically applying
the normalization functionN to wp(a′q′ , τ). Note that when the normalization produces a equivalent
form of a formula φ, its instrumented version N π outputs a proof of the implication N (φ) ⇒ φ
(accuracy) in addition to that of the implication φ⇒ N (φ) (safe approximation).

2. The worst case appears when wp(a′q′ , τ) 6∈ A and it cannot be expressed in the abstract domain.
For instance, the effect of the assignment x:=y+z on the constraint y ∈ [miny,maxy] ∧ z ∈
[minz,maxz] is captured by the post-condition x ∈ [miny + minz,maxy + maxz]. In the other
direction, wp leads to y + z ∈ [minx,maxx] where minx and maxx are values and this cannot
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fπτ(aq)
def
= let a′q′ = fτ (aq) in

match τ with
| (q

guard g−−−−−→ q′)→ let (-, π1) = aq ∧N (g) vπA a′q′ and (-, π2, -) = N π(g) in (a′q′ , πτ )

where πτ =



H1︷︸︸︷
aq

H2︷︸︸︷
g

π2

g ⇒ N(g)

N(g)
⇒elim

aq ∧ N(g)
∧intro

π1

aq ∧ N(g) ⇒ a′
q′

a′
q′

⇒elim

aq ⇒ (g ⇒ a′
q′ )

⇒introH1
,⇒introH2

aq ⇒ wp(g, a′
q′ )

def. wp

| (q
t:=e−−−→ q′)→ try let (ã, -, π1) = N π(wp(τ, aq)) and (-, π2) = aq vπA ã in (a′q′ , πτ )

where πτ =

{ π2

aq ⇒ N(wp(τ, a′
q′ ))

π1

N(wp(τ, a′
q′ )) ⇒ wp(τ, a′

q′ )

aq ⇒ wp(τ, a′
q′ )

with Fail(N π)→ let (a′q′ [t/e], π1) = evalπ(e, aq) in (a′q′ , πτ )

where πτ =

{ π1

aq ⇒ a′
q′ [t/e]

aq ⇒ wp(t := e, a′
q′ )

def. wp

Figure 3: The generic instrumentation of a transfer function fτ

be in the form of conjunction of interval constraints, unless we knew how to split back minx and
maxx. Therefore, the vπA operator cannot be used to prove the implication y ∈ [miny,maxy]∧ z ∈
[minz,maxz] ⇒ y + z ∈ [minx,maxx]. To solve that case we need to look back at the gen-
eral treatment of an assignment, say x:=y+z, in abstract interpretation: The assigned variable
is set to the abstract value of the right-hand side expression which is evaluated in the abstract
context aq , that is, using the current abstract values of y, z and the abstract operator +̂ defined
as [miny,maxy] +̂[minz + maxz]

def
= [miny + minz,maxy + maxz]. The missing justifica-

tion is obtained by instrumenting the +̂ operator to produce a proof of its correctness property
which is exactly the needed implication: y ∈ [miny,maxy] ∧ z ∈ [minz,maxz] ⇒ y + z ∈
[miny +minz,maxy +maxz].

The completeness of the proof generation is guaranteed at the price of the instrumentation of the nor-
malization function, the vA operator and the arithmetic operators of the abstract domain. Compared with
previous work [7, 27] our instrumentation is (1) lighter since it avoids the instrumentation of the most
complex and specific part of an analyzer – its transfer function and (2) it is rapidly amortized since the
instrumentation concerns the (reusable) abstract domain and is not specific to the analyzer.

Finally, the trusted computing base (TCB) of our certifying analyzer consists in the COQ proof-checker
and the definition of the semantics of guards and assignments as a weakest precondition calculus in COQ.
Note that the proof patterns used in the instrumentation do not have to be trusted: If they contain logical
bugs then the certifying static analyzer will produce non-valid deduction trees which will be rejected by
the proof-checker.

4 Application to an existing static analyzer

We applied our instrumentation principle to an existing static analyzer, ENKIDU [16], which discovers
properties of array-processing programs using an abstract interpretation based on a lattice defined on a
quantified logical domain [15]. ENKIDU determines a symbolic division S (a partition) of the array in-
dexes into a finite number of slices ϕ1, . . . , ϕN and then uses this fixed division as a basis for an abstract
interpretation of the program. The main abstract domain A used in ENKIDU is the class of first order logic
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H ` φ
hyp

πφ⇒φ′

H ` φ′
⇒elim

H′ ` ϕk
hyp

H′ ` ∀`, ϕk ⇒ ψk
hyp

H′ ` ϕk ⇒ ψk
∀elim [`/`′]

H′ ` ψk
⇒elim

πψk⇒ψ′
k

H′ def
= H ∪ {ϕk} ` ψ′

k

⇒elim

H ` ϕk ⇒ ψ′
k

⇒intro

. . .


for
each
k ∈ S

H `
(∧

k∈S ϕk ⇒ ψ′
k

)
[`/`′]

∧intro

H ` ∀`,
∧
k∈S ϕk ⇒ ψ′

k

∀intro(`
′ is a fresh symbol)

H def
= {φ, ∀`, ϕk ⇒ ψk | k ∈ S } ` φ′ ∧ ∀`,

∧
k∈S ϕk ⇒ ψ′

k

∧intro(
φ ∧ ∀`,

∧
k∈S ϕk ⇒ ψk

)
⇒
(
φ′ ∧ ∀`,

∧
k∈S ϕk ⇒ ψ′

k

) ⇒intro

Figure 4: The proof scheme for the certifying version of vA

array content properties of the form

φ ∧ ∀`,
∧
k∈S

ϕk ⇒ ψk

where the constraints φ, ϕk and ψk are elements of the zone abstract domain by Miné [21], that are
conjunctions of constraints of the form x − y ≤ k where x, y are integer variables and k is a constant,
implemented as difference bound matrices (DBM for short). Formula φ captures unquantified constraints
on variables of the program e.g. j > 1, ϕk uses the logical variable ` to define a slice of the array
e.g. ` ≤ j − 1, and ψk is a property on array cells e.g. A[`] ≤ A[` + 1]. The array content property,
j > 1 ∧ ∀`, (` ≤ j − 1⇒ A[`] ≤ A[`+ 1]), means that the array A is sorted until index j.

4.1 The instrumentation of ENKIDU

Satisfiability/unsatisfiability of a DBM is decidable as well as the implication between two DBM, using a
normalization function based on the Floyd-Warshall algorithm. The implication criteria is used to compare
the strength of DBM constraints and provides an ordering on DBM. Therefore, the DBM (resp. the array
properties) forms a lattice of formulæ ordered byvD (resp. vA) that corresponds to the logical implication
on this subset of FOL. However we keep the symbols vD and vA to stress that each one corresponds to a
specialized strategy for deciding implication on a specific class of properties (DBM and array properties).

The lattice of array properties (A,vA,tA,uA,>A,⊥A) is built on top of the DBM lattice. The opera-
tors tA and uA which are intensively used during the fixpoint computation are meaningless for justification
; only the ordering operator vA matters. It is used to detect stability of the program property (see section
3.1), that is an+1

q vA anq for each node q of the program, and must produce the proof of an+1
q ⇒ anq . The

predicate vA on array properties is implemented using the comparison operator vD on DBM: For a fixed
partition S ,

(
φ ∧ ∀`,

∧
S ϕk ⇒ ψk

)
vπA
(
φ′ ∧ ∀`,

∧
S ϕk ⇒ ψ′k

)
holds if the following conditions on

DBM are satisfied: φ vD φ′ and
∧
k∈S ψk vD ψ′k. The ϕk’s can be ignored as the partition is fixed for all

array properties during an execution of ENKIDU. As an example of justification, the certifying version of
vA is presented in Figure 4 where

• the proof πφ⇒φ′ comes from the evaluation of φ vπDφ′

• all the proofs πψk⇒ψ′
k

are collected during the evaluation of
∧
k∈S ψk vπDψ′k.

The proof pattern can seem technical but it was not difficult to find: it is almost directed by the structure of
the formula. In the current version, the instrumentation ofvD is just a call to the omega tactic that decides
Presburger arithmetic. Specific and optimized proof patterns for vD are available in [14] (page 103) but
have not yet been implemented. We guess that they could significantly speed up certificate checking in
COQ since all the time spent by omega would be transferred at certificate generation and would be done
by specialized algorithm developed in a more efficient language.
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4.2 Dealing with array aliases
In order to prove properties of array-processing program in a proof system based on the calculus of the
weakest precondition, one must take care of the aliases between indexes of array cells. Indeed, Hoare
assignment rule {Φ[t/e]} t:=e {Φ} is unsound for array assignments. Indeed, consider an assertion about
the cell A[l], the assignment A[e] := r must be treated carefully due to potential aliasing between A[e]
and A[l] when l = e. For example, it does not handle aliases between indexes of arrays. Indeed, it can
demonstrate the incorrect triple

{}A[i]:=0; j:=i; A[j]:=1 {A[i] = 0 }

and fails to prove the following valid triple, see Figure 5 for details

{} i:=j; T[j]:=1 {T [i] = 1}.

Morris [22] shows that the alias problem can be solved if all the potential aliases are made explicit
in the assertion. It provides a new set of rules that can correctly deal with aliases for non nested array
references, meaning that expressions like A[A[i]] are forbidden. A sound and complete solution has been
proposed by Hoare and Wirth [18] and McCarthy and Painter [20], that is implemented in the CADUCEUS
tool [13] of the WHY plateform for proving properties of imperative programs in COQ using a wp calculus.
Consider the assignment A[e] := r and a property Φ(A[l]). The idea is to represent the array A as a
function2, initially denoted by the λ-term (λi0.A[i0]). Then, instead of modifying the cellA[e] through the
substitution [A[e]/r], the array itself is modified. Its definition as a function is updated into (λi1. if (i1 =
e) then r else ((λi0.A0[i0])i1), which reduces to (λi1. if (i1 = e) then r else A[i1]). Then, the value of
A[l] in the property Φ(A[l]) is the result of the function applied to l that is Φ(if (l = e) then r else A[l]).
The alias problem is solved by explicitly testing the equality between i1 and the modified cell at index
e. Computing the abstraction of Φ(A[l]) mean processing the β-reductions and then using a case analysis
to change the previous expression into an equivalent statement in FOL (l = e) ⇒ Φ(r)

∧
¬(l = e) ⇒

Φ(A[l]) before applying the abstraction function α. We implement this solution in our framework allowing
the justify version of ENKIDU to certify array-processing programs.

4.3 Implementation and experimentation
At the starting point of this work we have a prototype implementation of the ENKIDU analyzer. The code
of the analyzer consists of about 200 functions (7000 lines of Ocaml) ; five of those were instrumented:
Analyzer,Step,Stability, and the comparison operatorsvA andvD of the two lattices (of array properties
and DBM) used in the abstract interpretation. The current version of the certifying analyzer is also at
prototype stage, totally unoptimized and produces certificates which combine tactics and proof terms. The
instrumentation resulted in less than 1200 additional lines which mainly corresponds to the proof patterns.
We still need some experimentation to find the good trade-off between proof size and checking time. Above
all, it depends on the use of certificate: in a certification process (of an application for smart cards for
instance [8]), the certificate is checked once and not sent over the Internet; whereas in a PCC architecture
both time and size matter and the checker must be provided only with the evidences which cannot be
discovered by an automatic theorem prover. In the context of PCC, it would probably be preferable to
provide the user with the program, the property and the justified analyzer, instead of the proof since that one
can be quickly regenerated by the justified analyzer from the already discovered property. This experiment
convince us of the feasibility of instrumenting an existing validation tool (even at prototype stage) so that it
automatically builds certificates of its verdicts in the form of foundational proofs. The most important for
us was to be able to generate machine-checkable foundational proofs on non-trivial program properties. To
achieve this as soon as possible we used tactics of the COQ system every time it was possible. Using COQ
tactics drastically reduces proof size at the price of an increase of proof-checking time. Indeed, a tactic is
the name of a proof-search algorithm that is run by the proof-assistant, producing a proof term which is
then checked by the proof-checker.

2The same idea can be rephrased using the store/select axioms for arrays.
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Hoare’s rule for assignment {φ[v/e]} v:=e {φ} is not sound in the presence of alias. Indeed, it can demonstrate the
incorrect triple {}A[i]:=0; j:=i; A[j]:=1 {A[i] = 0 }

{(A[i] = 0)[A[j]/1]} A[j]:=1 {A[i] = 0}

{(A[i] = 0)[j/i]} j:=i {A[i] = 0}

{(A[i] = 0)[A[i]/0]} A[i]:=0 {A[i] = 0}

{0 = 0} ≡ {}

However Hoare’s rule is sound for formulæ with explicit alias. We then use the sound assignment rule
{Æv(φ)[v/e]} v:=e {φ} where the function Æ transforms a formula into an equivalent formula with explicit alias
before we apply Hoare’s substitution.

{
(
ÆA[j](A[i] = 0)

)
[A[j]/1]} A[j]:=1 {A[i] = 0}

{(i = j ⇒ A[j] = 0 ∧ i 6= j ⇒ A[i] = 0)[A[j]/1]}

{(i = j ⇒ 1 = 0) ∧ (i 6= j ⇒ A[i] = 0)} ≡(1)

{(i 6= j) ∧ (i 6= j ⇒ A[i] = 0)} ≡(2)

{(i 6= j ∧ . . .)[i/j]} j:=i {i 6= j ∧A[i] = 0}

{i 6= i ∧ . . . } ≡(3) {false}

Hoare’s assignment rule is incomplete in presence of alias. For instance, it fails to prove the triple
{} i:=j; T[j]:=1 {T [i] = 1}

{(T [i] = 1)[T [j]/1]} T[j]:=1 {T [i] = 1}

{(T [i] = 1)[i/j]} i:=j {T [i] = 1}

{T [j] = 1} 6≡ {}

However the assignment rule is complete for formulæ with explicit alias.

{ÆT [j](T [i] = 1)[T [j]/1]} T[j]:=1 {T [i] = 1}

{(i = j ⇒ T [j] = 1
∧
i 6= j ⇒ T [i] = 1)[T [j]/1]}

{i = j ⇒ 1 = 1
∧
i 6= j ⇒ T [i] = 1} ≡(4)

{i = j
∧
i 6= j ⇒ T [i] = 1} ≡(5)

{(i = j)[i/j]} i:=j {i = j}

{j = j} ≡(6) {}

Formulæ with explicit alias are automatically simplified by the means of propositional simplifications such as:
(1) A ⇒ false ≡ ¬A and (2) A ∧ (A ⇒ B) ≡ A ∧ (¬A ∨ B) ≡ (A ∧ ¬A) ∨ (A ∧ B) ≡ A ∧ B and
(3) false ∧A ≡ false and (4) A⇒ true ≡ A and (5) A ∧ (¬A⇒ B) ≡ A ∧ (A ∨B) ≡ A and (6) x = x ≡ true .

Figure 5: The alias problem with Hoare’s rule for assignment
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It is worth noticing that the dependencies between ENKIDU and its instrumented version are very lim-
ited since the instrumentation almost consists in the creation of certifying functions that call the original
ones. Hence, the instrumentation is not sensitive to minor modifications of the analyzer. The justifications
of the verdicts required some extra developments for the definition of proof patterns, the weakest precon-
dition calculus, and the translation of proofs into the COQ syntax. These developments are independent of
ENKIDU and can be reused for the instrumentation of other tools.

5 Conclusion and future work
There are several ways to increase the level of confidence we can place in a validation tool. In increasing
level of trustability, one can (1) prove the correction of the tool principle by pencil and paper, or (2)
establish the correction of the tool algorithm in a prover, or (3) generate a certificate for each particular
run of the tool. The last degree, (4) formally proving the correctness of the implementation, does not seem
achievable.

In our opinion, justification of validation tools by instrumentation provides the following advantages:
Accuracy, it provides a proof of the actual implementation with all its undocumented extensions and opti-
mizations. Easiness, the algorithm and its implementation need not to be proved for every possible entries,
but only on distinct runs. Robustness, if the implementation of the tool changes slightly there is often no
need to adapt certificate generation. Privacy, there is no need to give access to the tool and its algorithms
to guarantee its verdict.

In this report, we explained how a static analyzer can be instrumented to automatically produce cer-
tificates of its verdicts in the form of foundational proofs. The principle is illustrated on ENKIDU which
discovers properties of array-processing programs [16]. By instrumenting only the comparison operators of
the abstract domains and combining their proofs in the three main functions (Analyzer, Step and Stability)
the analyzer is able to produce a COQ proof of the inductiveness of the program properties using the Floyd-
Hoare proof technique. The generated proofs are a large combination of simple steps produced by the
instrumented functions during the last iteration of the fixpoint computations.

We did not re-implement the analysis in a prover as tactics but rather we followed the tool compu-
tations as a proof strategy in order to take advantage of the know-how of the developer. In contrast to
previous work on certification of static analyzers, we achieve three challenges: (1) We produce founda-
tional proofs (each minor step must be explicitly justified) for a trusted proof-checker – this provides a
very high level of confidence in the certificate; (2) Using proof patterns we can guarantee completeness
of the proof generation in the following sense: if the property discovered by the analyzer is valid then the
instrumentation returns a valid proof assessing the property; (3) We reduce and factored out the specific
instrumentation of the analyzer to the comparison operators of its abstract domains, especially we avoid
the complex instrumentation of the abstract transfer function.

As mentioned before, the use of tactics reduces the proof size but decreases the proof-checking per-
formance by postponing the proof-search to the verification phase. Future work will focus on reconciling
the two contradictory goals: reducing the size of proofs and increasing efficiency of the proof-checking.
This can be achieved following [5, 9] by designing specialized proof-checkers themselves certified in COQ.
Then, applying our instrumentation methodology to a more sophisticated tool (e.g. the industrial C pro-
grams analyzer ASTRÉE [11]) should conclude the feasibility of this certification approach.
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