
A Generic Structure for Modeling
Time and Energy Consumption in

Abstract Virtual Prototypes of
Embedded Systems

Florence Maraninch and Catherine Parent-Vigouroux and
Karel Heurtefeux and Pascal Raymond

Verimag Research Report no TR-2011-17

November 2011

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr

A Generic Structure for Modeling Time and Energy Consumption in
Abstract Virtual Prototypes of Embedded Systems

Florence Maraninch and Catherine Parent-Vigouroux and Karel Heurtefeux and Pascal
Raymond

November 2011

Abstract

A virtual prototype is an executable model of the hardware platform on which the software can
be developed. This allows an early evaluation of the functional correctness and performances
of the whole system. Among virtual prototypes, emulators, or cycle-accurate hardware mod-
els, are close to the real hardware; their design requires a significant amount of work. There is
a need for higher-level models. We propose a generic structure for the modeling of time and
energy consumption at abstract levels, for sensor networks. We use an existing MAC protocol
to show that our model is far simpler than cycle-accurate emulators, yet retaining the essential
aspects of time and energy consumption.

Keywords: virtual prototyping, simulation, formal models, embedded software, energy consumption, sen-
sor networks

Reviewers: Laurent Mounier

Notes: This work has been partially supported by the French ANR Project ARESA2 (ANR-09-VERS-017).

How to cite this report:

@techreport {TR-2011-17,
title = {A Generic Structure for Modeling Time and Energy Consumption in Abstract

Virtual Prototypes of Embedded Systems},
author = {Florence Maraninch and Catherine Parent-Vigouroux and Karel Heurtefeux and

Pascal Raymond },
institution = {{Verimag} Research Report},
number = {TR-2011-17},
year = {}

}

A Generic Structure...Florence Maraninch and Catherine Parent-Vigouroux and Karel Heurtefeux and Pascal Raymond

A Generic Structure for Modeling Time and Energy Consumption in
Abstract Virtual Prototypes of Embedded Systems

Florence Maraninch and Catherine Parent-Vigouroux and Karel Heurtefeux and Pascal Raymond

November 2011

Abstract: A virtual prototype is an executable model of the hardware platform on which the software
can be developed. This allows an early evaluation of the functional correctness and performances of the
whole system. Among virtual prototypes, emulators, or cycle-accurate hardware models, are close to
the real hardware; their design requires a significant amount of work. There is a need for higher-level
models. We propose a generic structure for the modeling of time and energy consumption at abstract
levels, for sensor networks. We use an existing MAC protocol to show that our model is far simpler than
cycle-accurate emulators, yet retaining the essential aspects of time and energy consumption.

1 Introduction
The design of modern embedded systems, and of networks of embedded systems, has to face the increas-
ing complexity and unpredictability of the hardware execution platforms, the need to take non-functional
properties (e.g., energy consumption) into account as an additional optimization criterion, the complexity
of the software, from the low level operating system to the application. The design of an optimal solution
is often out of reach.

Design methods therefore rely on virtual prototypes (VPs). A VP is an executable model of the hard-
ware, which can be used in order to simulate the software and evaluate the functionality and performances
of the whole system early in the design cycle (before the real hardware is available).

A first example is the notion of a virtual platforms for systems-on-a-chip, often written in SystemC [20],
at a level of abstraction called transaction-level-modeling (TLM) [11].

Another example is taken from the domain of telecommunication networks, where new protocols are
designed, and their properties evaluated, by executing them with network simulation tools. A network sim-
ulator (e.g., Omnet++ [1]) implements a VP. An interesting sub-domain is that of wireless sensor networks
(WSNs), where energy consumption plays a crucial role; in this case one can use a network of emulators
as a VP (e.g., in WSNET/WSIM [9] or COOJA [8]).

For digital systems connected to some physical environment, the VP may include a model of this
physical environment. This is the case when a control algorithm is designed in Simulink. This is also the
case when a protocol in a wireless sensor network is designed and simulated with a model of the radio
channel. In the sequel, we will not distinguish between a hardware VP, and a hardware+physics VP. Both
are meant to behave as the execution environment of the software.

1.1 Main Issues for the Development of VPs
Timing: The VP should not be more synchronized than what the real hardware+physics can provide.
A model of a distributed system in which the hardware clocks are considered as synchronized is overly
optimistic. But a model where the clocks are considered to be fully asynchronous is not usable: the VP
exposes too many behaviors to the software, among which very unrealistic ones. The appropriate VP in this
case is a model in which the physical drift between hardware clocks is modeled. Most network simulators
allow to specify different birth dates for the nodes, but offer no specific support for modeling clock drift.

Energy Consumption: There are essentially two categories of models. Direct models are based on
so-called power-states models, i.e., a representation of the various operating modes of a hardware device,
associated with an instantaneous consumption. For instance, the radio device in a sensor node has at least
three modes: Sleep, Transmit, Receive. In Sleep mode the consumption per unit of time is far less than

Verimag Research Report no TR-2011-17 1/13

Florence Maraninch and Catherine Parent-Vigouroux and Karel Heurtefeux and Pascal RaymondA Generic Structure...

in the two other modes. This is the same for a processor with dynamic voltage and frequency scaling
(DVFS). Using such direct models requires a precise modeling of the hardware/software interface: another
part of the model has to “drive” the power-state automaton, depending on the functional behavior. Indirect
models can be used in more abstract settings, where the hardware and the hardware/software interface are
not detailed. For instance, a lot of network models are based on the following abstraction: “sending one bit
costs k units of energy”. Validating the constant k can be quite hard.

Abstraction Level: Cycle-accurate models mimick the behavior of the hardware, and are usually
considered faithful. However, developing a cycle-accurate model of the hardware platform takes a lot
time. There is a need for models that are more abstract than full emulators or cycle-accurate models,
yet retaining the essential timing properties of the hardware/software interface and the associated energy
consumption properties.

Assessment of Accuracy: The predictions of a virtual prototype have to be compared with measures
on some real platform. In the case of sensor networks, this is not easy, because measures are intrusive. The
development of the SensLab platform (see www.senslab.info) addresses this problem, real sensor
nodes being coupled with “spy” nodes.

Simulation Speed: Abstract models are likely to simulate faster than full emulators. However, most
network simulators are based on a discrete-event simulation engine, with a single notion of time. Building
a realistic VP with clock drift can be done by specifying “clocks” as sequences of events. But then, there
are many such events to be trated by the simulation engine, which degrades the performances.

1.2 Contributions and Structure of the paper
The contribution of the paper is a generic structure for virtual prototypes that: (i) are detailed on the
hardware/software interface, modeling time and energy consumption directly; (ii) are far simpler than full
emulators; (iii) allow simulations in reasonable time. The main application is the modeling of sensor
networks.

We describe the proposed generic structure, and its implementation in a synchronous language (there
exist earlier experiments with synchronous languages as modeling languages for WSNs [22, 17], but they
do not detail the influence of hardware clocks. We choose the language Lustre [5] because it allows an easy
componentization of the model, and there are available compilers that produce efficient code for simulation.
The protocols can also be written into Lustre quite easily.

This contribution is the first compulsory step to build a framework in which the accuracy of the abstract
model can be assessed by comparing its predictions to actual measures. Indeed, the same specification of
the protocol in Lustre can be: (i) compiled together with the hardware and channel models, for the simula-
tion framework; (ii) or compiled into C and linked with the drivers to be deployed on the SensLab platform.
By logging all the events that are non-deterministic (e.g., which nodes received a particular message, which
link failed), a real scenario will be replayed on the Lustre model, for meaningful comparisons.

Section 2 lists related work; Section 3 describes the case-study; Section 4 is a short introduction to syn-
chronous programming in Lustre, necessary for the presentation of our generic model; Section 5 presents
our Lustre model of the case-study, insisting on its generic traits. Section 6 describes the experiments done
with the case-study. Section 7 concludes.

2 Related Work

2.1 Synchronous Modeling of Asynchrony
Using a synchronous formalism to model asynchronous systems dates back to Milner [19]. It has been
applied a lot using synchronous languages [14, 10]. In a synchronous model, time is nothing but an addi-
tional input, and there may be several such inputs to model various notions of time (e.g., non synchronized
clocks). This also has the advantage that these “time” inputs need not be completely uncorrelated. For
instance, in some embedded systems that use several processors for fault-tolerance, the design and imple-
mentation of control systems heavily exploits a constraint on the clock drift between the processors’ clocks

2/13 Verimag Research Report no TR-2011-17

A Generic Structure...Florence Maraninch and Catherine Parent-Vigouroux and Karel Heurtefeux and Pascal Raymond

called quasi-synchrony [6]. To summarize, when modeling asynchrony with a synchronous formalism, it is
possible to cover the full range of systems, between purely synchronous systems and purely asynchronous
systems, just be expressing a constraint on several inputs.

2.2 Transaction-Level Modeling
Transaction-level modeling (TLM) [11] has emerged for the virtual prototyping of systems-on-a-chip. TL
models are far simpler than cycle-accurate ones; they allow very fast simulations of the embedded software,
and they can be made available very early in the design cycle. Yet, the hardware/software interface is
precise in TL models. This is the same goal we are pursuing for sensor networks.

The standard of the domain is SystemC/TLM [20] which provides threads, simulated time, and a
discrete-event execution engine. There is a single notion of time and an instruction wait(t), mean-
ing “wait t units of simulated time”. Using wait(...); in several parallel processes has very strong
synchronization effects. This has been recognized as a problem. As a solution, TL models can be approx-
imately timed models [7] with the instruction wait ([d1, d2]), meaning that a random delay in the
interval [d1, d2] will be chosen during simulation. This makes the model non-deterministic, and is
a way of avoiding spurious synchronizations between parts of the model that represent non-synchronized
physical entities.

2.3 Models for energy consumption
Power-state models (see, for instance [3]) are commonly used to model energy consumption. They indicate
how many units of energy are spent per unit of time, in each functioning mode of a device (e.g., for a radio
component, emitting, receiving, or idle modes). The providers of hardware for sensor networks, like radio
components, provide such power-states models (e.g., page 42 of [24]). Formally, power-state models
are automata whose states are labeled by instantaneous energy consumptions of the form: de/dt = k,
where k is a constant. The transition labels represent inputs. For a given sequence of such inputs, the
automaton goes through a sequence of states X0X1...Xn. The total energy consumed is computed as:∑

(time spent in Xi × kXi
). Power-state models are also very similar to the linear-priced timed automata

(LPTA) used in, e.g., [2].
For sensor networks, a less precise model is often used. The idea is to evaluate the energy consumption

by counting the bits transmitted, using a Joule-per-bit estimation [12]. The consumption of the devices
other than the radio is not taken into account. Moreover, the radio devices usually have a sleep mode that
consumes less than the receive mode. A lot of MAC protocols are designed to minimize the periods of
overhearing (when a node is in receive mode, while it could be in sleep mode). With the Joule-per-bit
models, overhearing is not modeled; these models cannot be used to evaluate MAC protocols that try and
reduce overhearing.

2.4 Network simulation tools vs sensor node emulators
For a review of network simulators, and their specialization for sensor networks, see [18]. If the model-
ing of energy consumption uses the Joule-per-bit abstraction mentioned in section 2.3, ordinary network
simulators can be used to count messages and obtain energy consumption.

Otherwise, dedicated simulation tools have to be developed. In TOSSIM [16], Avrora [25], or
WSIM [9], the models of the hardware are cycle-accurate. They may include an instruction-set-simulator
for a particular micro-controller, and a precise emulator of the rest of the hardware (bus, memory, radio
chip). In WSIM/WSNET, for instance, simulating a network can be done by running several WSIM node
emulators in parallel, playing the real software, together with a model of the radio channel. The WSNET
simulator allows to have different birth dates for nodes, but does not model clock drift.

The choice is between: (i) high-level models, with the Joule-per-bit abstraction, and a simple model of
the hardware; (ii) networks of node emulators, modeling all the details of a particular hardware. In both
cases, the models do not provide support for modeling clock drift.

Verimag Research Report no TR-2011-17 3/13

Florence Maraninch and Catherine Parent-Vigouroux and Karel Heurtefeux and Pascal RaymondA Generic Structure...

2.5 Formal models applied to WSNs
A lot of formal frameworks have been applied to the validation of protocols for sensor networks, like PVS
in [4], or timed Petri nets in [15]. Only a few consider energy consumption. The work published in [23] is
very close to ours. It describes a formal model for the analysis of clock synchronization in a MAC protocol.
The model is a set of timed automata, and the analysis is performed using Uppaal [21]. The model for one
node of the network is made of 5 timed automata. One of them is the hardware clock of the node. It is a
one-state automaton, which produces tick events. The real time between two ticks is in an interval [m,M],
to model clock drift. The explicit wait instructions in the software are modeled by counting ticks. We
will use a very similar structure. Our model in Lustre is executable and mainly used for simulations via the
efficient compilation into C; but it is also formal, and could be used for formal verification.

3 Case Study
The case study is a MAC (Medium-Access-Control) protocol for wireless sensor networks (WSNs) called
AreaCast [13], implemented on WSN430 nodes (see www.senslab.info). The radio component of
a WSN430 node is the TI CC1100 [24]. For sake of simplicity, we represent three states only, instead of
four: SLEEP, RX (receive), and TX (Transmit). The power-state model is given below.

When the radio is in state SLEEP, and command toRX occurs, it goes to state RX, but this will take
S2RX units of time. This is represented by an intermediate (square-shaped) timed state with delay S2RX
with a time-out transition (the arrow with a semicircle). The consumption per unit of time, in each of the
modes and intermediate states, is denoted by γ. The values from the documentation are: γ(SLEEP)=2 mA;
γ(RX)=15 mA; γ(TX)=16 mA; γ(S2TX)=γ(S2RX)=γ(RX2S)=γ(RX2TX)=γ(TX2RX)= γ(TX2S)=8
mA. The delays are: RX2S=TX2S=0.1 µs; S2RX=S2TX=88.4 µs; TX2RX=21.5 µs; RX2TX=9.6 µs.

SLEEP

RXTX

γ(TX2S)

γ(RX)γ(TX)

TX2S RX2S
S2RXS2TX

TX2RX

RX2TX

toTX

toSLEEP
toSLEEP

toTX

toRX

γ(S2TX) γ(S2RX)
γ(RX2S)

γ(TX2RX)

γ(RX2TX)

toRX
γ(SLEEP)

Figure 1: Power-State Automaton for the Radio

3.1 The AreaCast protocol
The protocol uses typical principles for sensor networks: nodes are put in sleep mode most of the time, and
their cooperation is heavily based on timing.

When a node i wants to sends a message to a node j (as required by the routing level), and either the
link i −→ j, or the node j, is faulty, some other nodes (say k1, k2, ...) that are situated in the same area as
j can play the role of j, in a way that is transparent for i, the routing level, and the rest of the path to which
the arc i −→ j belongs. The protocol requires an estimation of the distance between nodes and each node
has to be aware of its 2-hop neighborhood. See [13] for details, and Figure 6.

A normal transfer from i to j is made of four steps: i sends a RTS control packet (request-to-send),
j sends back a CTS packet (clear-to-send), i sends the data packet, j sends an ACK packet (acknowledg-
ment). When i initiates a message transfer to j with an RTS, and j does not answer correctly with a CTS,
the nodes k are aware of the problem because they have received the RTS, and have seen no CTS from

4/13 Verimag Research Report no TR-2011-17

A Generic Structure...Florence Maraninch and Catherine Parent-Vigouroux and Karel Heurtefeux and Pascal Raymond

j. Then, they have to decide together which k node will play the role of j. This is made possible by a
ranking principle based on a distributed notion of distance, and requires no additional messages between
the k nodes. Each k node waits its turn, according to its rank, which can be determined locally. If j does
not answer during a delay ∆, the k node with the highest rank, say k1, will decide to play its role; if k1
is also faulty, k2 will wait 2 ×∆ until it decides to play the role of j; if k1 and k2 are faulty, k3 will wait
3×∆, etc. The number of nodes that can decide to replace j is 3.

3.2 Using the Existing WSNET Model
The execution platform is made of: the hardware of the nodes, plus the radio channel. A VP should allow
to play with the protocol so as to obtain energy consumption evaluations, and to find functional and timing
bugs.

In [13], the protocol is implemented in pure C, and the simulations performed with WSNET [9], without
using the WSIM emulator (section 2.4 for details). Recall the WSNET simulator does not model clock drift.
Moreover, a simulation with WSNET only is based on the Joule-per-bit consumption model which ignores
overhearing (section 2.3). In [13], a trick is mentioned: to get a realistic model of energy consumption,
all the mode changes of the radio are supposed to be explicit in the MAC protocol. This is not entirely
satisfactory: the knowledge on the state of the radio cannot always be determined entirely by looking at the
state of the MAC software. Some devices have spontaneous behaviors (e.g., loss of calibration, depending
on time, not on explicit commands).

4 Synchronous Programming in a nutshell: Lustre
A Lustre program takes flows of inputs, produces flows of outputs, and has internal memory. The following
program takes a flow of int values (e.g. 1, 2, 3, ...), and outputs the flow of cumulated values (1,
3, 6, ...):

node cumul (i : int) returns (o: int) ;
let o = i -> pre (o) + i ; tel

The body of the program is a set of equations, defining the outputs and the internal variables. o is
defined by: at the first instant (left-hand-side of the ->), the value is that of i; then, forever (right-hand-
side of ->), the value is the previous one (pre(o)) plus the current value of the input i. The right part of
equations can use: the -> operator; all the ordinary operators (like +), interpreted point-wise; a conditional
structure if cond then e1 else e2. A program can be called in another program, as a function.
The following code describes the connection of two cumul programs:

node twocumul (i: int)
returns (o: int) ;
var x: int ;
let o = cumul (x) ;

x = cumul (i) ;
tel

cumul cumul
xi o

twocumul

Ordinary Lustre programs are deterministic but we can make explicit calls to a random function im-
plemented in C. The code below gives an example: the Lustre program imports the alea function as an
unsafe function, i.e., a function that has side-effects. The Lustre program loss will be used to simulate
losses on the links of the network. It calls the alea function to obtain a random number in the range [0, 9].

// C implementation
static inline int alea(int i){ return (rand()%i); }
// Usage in a Lustre program
unsafe function alea(max: int) returns (a:int);
node loss(i: bool) returns (o: bool)
let o = if alea(10) < 3 then false else i; tel

Verimag Research Report no TR-2011-17 5/13

Florence Maraninch and Catherine Parent-Vigouroux and Karel Heurtefeux and Pascal RaymondA Generic Structure...

5 Model of the Case-Study
The complete Lustre model, and the results of the experiments, are available on-line (omitted for blind
review). For sake of simplicity, we model energy consumption for the radio only.

Fig. 2 shows the structure of the Lustre model. The Channel, Radio, CK constraints components
constitute the hardware+physics virtual prototype. To play a given MAC protocol on this VP, we need a
Lustre version of it, to be compiled with the other components in order to obtain the simulation code. This
is obtained by encoding the automaton of Figure 6 into Lustre (section 5.1).

The model is made of: several nodes, and the radio channel. Since we do not represent the application
level, we do not need a model of the physical environment of the sensors. Each node model is made of:
the model of the radio (section 3) and the MAC automaton (Fig. 6). To abstract the routing and application
levels, we expose a global input ToSend (there is a message to send) for each node. Each part of the model
has an explicit notion of time (a Ck input). There is a global specification of the constraints between all
these time notions (subprogram CK constraints).

The radio model in each node i outputs the energy consumed so far (ei). The other wires are as follows:
(2) the radio transmits messages on the channel; (3) the radio informs the MAC that the messages have been
sent correctly; (4) the radio transmits the “channel is clear” information to the MAC; (5) the radio transmits
to the MAC the messages it receives from the channel; (6) the MAC issues mode-change commands to the
radio device; (7) the MAC gives the radio the messages to be transmitted on the channel; (8) the radio
receives the messages from the channel; (1) the radio receives the “channel is clear” information.

Node1

Radio

2

ToSend2

3

5
7

6

4 MAC

ToSendn

e1

ToSend1

CKM1

CKR2

CKM2

1,8

CKR1

Node2

CKRn

CKMn

Noden

Channel

C
K

co
ns

tra
in

ts

Figure 2: Structure of the Lustre Program

The block CK constraints of Fig. 2 works on the implicit base clock of the synchronous program,
and produces each derived clock in the form of a sequence of Boolean values, with some degree of non-
determinism. The code below generates one clock, according to the classical model of clock drift: the
interval between two ticks is in [n − p, n + p]. It is exactly the discrete version of the clock generator
described by a timed-graph in [23]:

node gen (n, p : int) returns (ck: bool);
var c, b : int;
let c = 0 -> if pre(ck) then 0 else pre(c)+1;

ck = (c=b) ;
b = n+alea(2*p+1)-p ->

if pre(ck) then n+alea(2*p+1)-p else pre(b);
tel
The various clocks of the model are the following: (i) the base clock of the Lustre program represents

real time; it is used for the parts of the model that represent physical phenomena: the channel, and the radio
model which outputs the energy consumed so far; (ii) each node i receives two clocks, one for the CPU
noted CKMi

, and one for the radio component (CKRi
), for cases in which they are not the same.

6/13 Verimag Research Report no TR-2011-17

A Generic Structure...Florence Maraninch and Catherine Parent-Vigouroux and Karel Heurtefeux and Pascal Raymond

5.1 Encoding Automata into Lustre
The Mealy machine of Fig. 3 illustrates the modeling needs: A, C are ordinary states; B is a “timed” state:
when it is entered, the automaton will exit to C and emit y if x happens before 5 time units have occurred;
otherwise, it will exit to A when the fifth time unit occurs, emitting end. Each state has an associated
energy consumption per unit of (real) time, denoted by eeA, eeB, eeC.

A B [5] Cx/y

z

/end

eeC

eeA

eeBstart

Figure 3: Example automaton with a timer and energy consumption

const eeA = 5 ; const eeB = 7 ; const eeC = 10 ;

node expaper (ck, start, x, z : bool)
returns (end, y : bool ; -- outputs

ee,sumee : int) ; -- energy
var A, B, C : bool ; -- states

cpt : int; -- timer for B
let

A = true -> pre (A and not (start and ck) or
C and (z and ck) or
B and cpt=0 and ck);

B = false -> pre (A and start and ck or
B and not ((x and ck) or

(cpt=0 and ck)));
C = false -> pre (B and x and ck or

C and not (z and ck)) ;
cpt = 0 -> if pre (not B) then 5

else if pre B and ck then pre cpt - 1
else pre cpt ;

end = B and cpt=0 and ck ;
y = B and x and ck ;
ee = if A then eeA else if B then eeB else eeC ;
sumee = ee -> pre (sumee) + ee ;

tel.

Figure 4: Encoding Automata

Fig. 4 is the encoding into Lustre. The program is explicitly clocked by the input ck. The state
variables A, B, C can change only when the clock input ck is true; the Mealy-style outputs end, y
can be produced only when ck is true. Energy consumption, conversely, is counted on the base clock of
the Lustre program, which represents real time.

The MAC protocol given in Fig. 6 can be encoded into Lustre following the same principle. The com-
plete encoding is available on-line (reference omitted for the blind review). All the timed states representing
explicit wait instructions of the MAC software are modeled by counting occurrences of the explicit clock
of the node.

5.2 The MAC protocol
The automaton of Fig. 6 implements the full logic of the protocol, except the exchange of “Hello” packets
and the distance estimation. It is made of two automata in parallel. The first one is a timer, which can be

Verimag Research Report no TR-2011-17 7/13

Florence Maraninch and Catherine Parent-Vigouroux and Karel Heurtefeux and Pascal RaymondA Generic Structure...

started with input startA and generates the output endA when the timer expires. The main automaton is
the algorithm itself. The variable me stands for the identifier of the node. There are alternating periods of
activity and sleep. Typically, each node is sleeping during 5s, and then alive during 500ms. Before emitting
a message, a node waits for a random back-off time, to avoid collisions (as in the WIFI 802.11 protocol).

State SLEEP is the sleeping period. When its timer expires, the automaton enters state 1, where it
becomes sensitive to the arrival of a message to send from the routing level (toSend(dest)), or to the start
of incoming radio packets (sRTS, sCTS, sDATA). It also starts the timer by issuing startA. In all other
states, the occurrence of endA means that the period in which the node is alive has expired. If it is engaged
in a message exchange (a RTS-CTS-DATA-ACK) sequence), it will finish it (endA is ignored on the path
between states 2 and 6). Conversely, if the sender is in the state Random backoff, endA puts it to sleep,
canceling the message transfer.

The path from 1 to 6 is the normal behavior of the sender: sending a RTS, waiting for the corresponding
CTS, sending the data, waiting for the ACK. The path from 1 to 10 is the behavior of the node when it starts
receiving a RTS which is for it (condition [me=D]); the path from 1 to 11 and then 13, 14 is the behavior
of the node when it receives a RTS which is sent to a node to which it is an implicit relay. All other parts
of the automaton deal with abnormal cases, e.g., a node x has sent a RTS to a node y, and received a CTS
from y, but when it sends the DATA to y, y does not answer and, either an implicit node of y does the job,
or the transfer has to be re-tried (maximum is Max=7).

5.3 Modeling the channel
The channel model “knows” that, if a node i has started sending a message at time t then some nodes
j1, j2, ..., jn will start hearing it at time t + ∆. We neglect ∆, but not the fact that transmitting a packet
takes a time which is proportional to the size of the packet: the connection between a node and the channel
is represented by two signals; for instance, receiving a RTS is split into sRTS (start) and eRTS (end).
There is a probability p for a link to be faulty. Each time the channel has to distribute a message, and for
each potential receiver x, it calls a random function to decide whether to distribute to x or not.

The geographical information is encoded into C, and we model only perfect channels, with the “unit
disk” principle: two nodes that lie within distance ≤ D of each other hear each other. The “channel”
component of Fig. 2 is a Lustre wrapper of this C implementation. The model is ready for a connection to
more realistic channel models taken from, e.g., the WSNET library.

0 72 5

1 4

3 6

Relation between
nodes
and their implicit
relays:
impl(2)={1,3} ;
impl(5)={4,6}

Figure 5: The Network

The connection graph (see example in Fig. 5) is encoded by a static matrix, which is used in the
Channel model only. Maintaining the 2-hop neighborhood information and computing the fact that a node
x is a potential implicit node of a node y, is supposed to be done, but not modeled here. We therefore
encode the associated information in the C code of the channel, and make it available for the sotware.

6 Experiments
The goal is to show that our model of the software/hardware interface is sufficient to observe timing prob-
lems and energy consumption penalties. We use a small network of 8 nodes (see Fig. 5) with a perfect

8/13 Verimag Research Report no TR-2011-17

A Generic Structure...Florence Maraninch and Catherine Parent-Vigouroux and Karel Heurtefeux and Pascal Raymond

toS
end(dest)/

[N
:=0;D

:=dest]

TX
2R

X

R
andom

backoff

/C
S

clear/toTX

clear

R
X

2TX/R
TS

(m
e,D

)[N
++]

endT/toR
X

[x=m
e

&
y=D

]
sC

TS
(x,y)

[x=m
e

&
y=D

]
eC

TS
(x,y)/toTX

R
X

2TX
/data(m

e,D
)

eA
C

K
(x,y)

[x=m
e

&
y=D

]
eA

C
K

(x,y)
[else]

[else]
sA

C
K

(x,y)

[x=m
e

&
y=D

]
sA

C
K

(x,y)

[N
=M

ax]

endA
/toS

LE
E

P

[m
e!=D

&
m

e6∈
im

pl(D
)]

/toS
LE

E
P

/toR
XsR

TS
(x,y)

/[S
:=x]

/[D
:=y]

eR
TS

(x,y)/toTX
[x=S

&
y=D

]
[m

e=D
]

R
X

2TX/C
TS

(S
,D

)
endT/toR

X

/A
C

K
(S

,D
)

endT/toR
X

sD
ATA

(x,y)
[else]

R
X

2TX
eD

ATA
(x,y)/toTX

[x=S
&

y=D
]

R
X

2TX/C
TS

(S
,D

)

/toTX

endT/toR
X

sD
ATA

(x,y)/
[S

:=x;D
:=y][m

e∈
im

pl(D
)]

toS
LE

E
P

/toR
X

[m
e∈

im
pl(D

)]

12

startA
/toR

X
,

endA
/toS

LE
E

P

0
/toS

LE
E

P
-S

2R
X

S
LE

E
P

[m
e=D

]

[S
:=x;D

:=y]
sC

TS
(x,y)/

[N
<

M
ax]

3

S
IFS

+3×
∆

-S
2R

X
N

AV-R
TS

S
IFS

[m
e!=D

&
m

e6∈
im

pl(D
)]/

-S
2R

X
N

AV-C
TS

[m
e=D

]

endT/toR
X

S
IFS

+3×
∆

[else]
sC

TS
(x,y)

A
LIV

E

/endA

S
tartA

+
∆
×

k

4
[else]
eC

TS
(x,y)

5

6

7
[else]

eR
TS

(x,y)

8

9

[x=S
&

y=D
]

sD
ATA

(x,y)
[else]

eD
ATA

(x,y)

10

[m
e∈

im
pl(D

)]
11

[x=S
&

y=D
]

eR
TS

(x,y)

S
IFS

12

S
IFS

sD
ATA

(x,y)
[else]

+
∆
×

k
S

IFS

/toTX [x=S
&

m
e∈

im
pl(y)]

eD
ATA

(x,y)

[x=S
&

y=D
]

sA
C

K
(x,y)

sD
ATA

(x,y)
13

sC
TS

(x,y)
[x=S

&
y=D

]

14

sA
C

K
(x,y)

[else]

[x=S
&

y=D
]

eC
TS

(x,y)
[x=S

&
m

e∈
im

pl(y)]

Figure 6: The Automaton for the MAC Protocol. SLEEP=5s; ALIVE=5ms; SIFS=10µs; DELTA = 25 µs; BACK-
OFF=random([SIFS, SIFS + 2(N+3)])*20 µs; NAV_CTS = 161 µs; NAV_RTS = 174 µs; Max = 7. The syntax
is that of Mealy machines with timed states and time-out transitions (as in section 3), augmented by variables; the in-
puts and outputs can have parameters (e.g., sRTS(x,y)); each transition can have a condition (e.g., [me=D]) and an
assignment (e.g., S:=x). There are forked transitions: the trunk is labeled by some parametrized input associated with
an assignment to local variables (e.g., sDATA(x,y)/[S:=x;D:=y], and the subsequent branches are labeled by conditions
on the local variables (e.g., [me=D]).

Verimag Research Report no TR-2011-17 9/13

Florence Maraninch and Catherine Parent-Vigouroux and Karel Heurtefeux and Pascal RaymondA Generic Structure...

channel. We always take the same clock for the radio and the MAC part of a node. The simulator is made
of 1300 lines of Lustre, and 300 lines of manually-written C code for the channel.

6.1 Choosing the Granularity
The granularityG is the duration of one tick of the base clock. The constants of section 3 are approximated
according to G. For G = 10µs: RX2S=TX2S=0 (instead of 0.1 µs); S2RX=S2TX=9G (instead of 88.4
µs); TX2RX=2G (instead of 21.5 µs); RX2TX=G (instead of 9.6 µs).

The granularity impacts the simulation speed. The time needed for executing one step of the Lustre
program is 59 µs in our experiments; it is independent of G. If G = 10µs (resp. 100 νs), the time need to
simulate 1s of real time is 5.92s (resp. 5963.77s). Granularities less than 1 µs are not practicable for long
simulations. However, they are not really necessary. A coarser granularity implies a coarser approximation
of the constants, but the correctness of the protocol should not depend on precise relationships between
those constants, otherwise it would not be robust. The approximation also impacts the evaluation of energy
consumption, but this is the price to pay for non cycle-accurate models.

With the WSNET network simulator, for 50 nodes, without the details on the hardware/software inter-
face, and with only one clock, simulating 40s of real time already takes 30 to 50s of machine time. To get
a precise view of energy consumption, one needs to use a network of WSIM emulators, and the simulation
speed is lower. With G = 10µs, and our detailed multi-clock model of 8 nodes, simulating 40s takes 240s
of machine time. We think the cost is reasonable.

6.2 Observing the Effect of Faults
The model can be used to observe implicit nodes playing the role of nodes that can not be accessed due to
faulty links.

In the following table, the path requested by the routing level is 0 → 2 → 5 → 7. The granularity is
10µs, all the clocks are equal to the base clock.

p = 0 p = 0.15 p = 0.15
0→ 2→ 5→ 7 0→ 1

2→ 6→ 7 0
2→ 2→ 5

5→ 7

e0 2019 2274 5189
e1 1831 2248 4436
e2 1981 2332 4548
e3 1831 2332 5452
e4 1857 2145 4626
e5 2007 2139 5136
e6 1857 2081 4275
e7 2032 2107 5227

When p = 0 (no faults), the path is indeed 0 → 2 → 5 → 7, with the energy consumption listed
per node. When p = 0.15, various cases can occur. We show two of them. In the first one, the path
is 0 → 1 → 6 → 7, and there were two tries for the link 1 → 6. In the second one, the path is
0→ 2→ 5→ 7, there were two tries for the link 0→ 2, and five for the link 5→ 7.

This kind of detailed result is needed for the evaluation of the trade-off implemented in the protocol
(implicit nodes induce an over-cost in energy consumption, but since a message can take an alternative
route, the number of retries and the delivery rate are better).

6.3 Playing with Time in the Protocol
Our model allows to observe the behavior of the protocol when two communicating nodes do not count
time in the same way, because of clock drift. On the timing diagrams of Figs. 7, 8, 9, the dashed rectangles
represent periods in which the software of a node executes an explicit wait instruction, counting on its
own clock. The black rectangle represents the time it takes for the receiver to process the RTS message

10/13 Verimag Research Report no TR-2011-17

A Generic Structure...Florence Maraninch and Catherine Parent-Vigouroux and Karel Heurtefeux and Pascal Raymond

and to prepare the CTS message. On Fig. 7, all nodes have the same deterministic clock (one tick every 10
ticks of the base clock). On Fig. 8 (resp. 9), the 1st implicit node (resp. the sender) has a faster clock (one
tick every 5, resp. one tick every 3).

fig. 7: 0→ 2 fig. 8: 0→ 1 fig. 9:lost
e0 7937 7922 19822
e1 8212 8738 19222
e2 7934 7926 18804
e3 8212 8197 19222

���������
���������
���������
���������

������������������������

C
TS

my turn to CTS

Sender

Receiver
1st Implicit

RT
S

resend RTS

Figure 7: Ideal behavior of the RTS/CTS part

����

������������������������

C
TS

C
TS

my turn to CTS

Sender

Receiver

1st Implicit

RT
S

resend RTS

Figure 8: 1st implicit node faster than others

���������
���������
���������
���������

������������

C
TS

my turn to CTS

Sender

Receiver

1st Implicit

RT
S

resend RTS

Figure 9: Sender faster than others

Experiments have been done for the requested path 0 → 2, the granularity being 10µs. On Fig. 8,
the first implicit node plays the role of the legitimate node, because it does not wait long enough for its
turn. It consumes a bit more, while the emitter consumes a bit less (it receives the CTS earlier). The others
consume a bit less because the entire sequence RTS/CTS/DATA/ACK is shorter. On Fig. 9, the sender does
not wait long enough to see the CTS: it re-emits the RTS 5 times, everybody is listening, hence an increase
of energy. Even if the AreaCast protocol is somewhat resilient to the type of behaviors that occur when
clocks get desynchronized, there is a penalty in energy consumption. Playing with clocks is compulsory
to simulate this type of protocols that heavily rely on nodes counting time locally and trying to maintain a
consistent view of the world around them. The kind of phenomena observed here cannot be observed with
event-driven network simulators in which there is a single notion of time.

7 Conclusion
We have presented a generic structure for a virtual prototype of embedded systems, implemented in a
synchronous language. The essential points are: (i) constraints between the various notions of time; (ii) an
explicit description of the hardware/software interface with power-states models; (iii) the ability to take a

Verimag Research Report no TR-2011-17 11/13

Florence Maraninch and Catherine Parent-Vigouroux and Karel Heurtefeux and Pascal RaymondA Generic Structure...

full description of the protocol into account (the same description by an automaton can be compiled for the
simulation framework, or for the deployment on real sensors).

Our model is much more precise on time aspects than the models obtained with general-purpose net-
work simulation tools, because we are able to observe what happens when the clocks differ; we can control
how much they differ thanks to the constraint on clocks, to produce interesting cases. This is crucial for
the type of protocols used in sensor networks, and is not provided in most network simulators.

We are also more precise on energy consumption than the usual network models without a full emulator
of a dedicated platform, because we do model overhearing and devices with spontaneous behavior. The
model is much simpler than a full emulator, which means that the observations are also easier to analyze
when debugging. Finally, the simulation time is reasonable.

The next step is the implementation on the SensLab platform (see www.senslab.info), to compare
the predictions of the model with actual measures.

References
[1] Omnet++. www.omnetpp.org. 1

[2] G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn, and F. Vaandrager. Minimum-
cost reachability for priced time automata. Hybrid Systems: Computation and Control, pages 147–
161, 2001. 2.3

[3] L. Benini, R. Hodgson, and P. Siegel. System-level power estimation and optimization. In Pro-
ceedings of the International Symposium on Low Power Electronics and Design (ISLPED-98), pages
173–178, New York, aug 10–12 1998. ACM Press. 2.3

[4] C. Bernardeschi, P. Masci, and H. Pfeifer. Early prototyping of wireless sensor network algorithms
in PVS. In Computer Safety, Reliability, and Security, volume 5219 of LNCS, pages 346–359. 2008.
2.5

[5] P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice. Lustre, a declarative language for programming
synchronous systems. In 14th POPL, Jan. 1987. 1.2

[6] P. Caspi, C. Mazuet, and N. Reynaud-Parigot. About the design of distributed control systems: the
quasi-synchronous approach. In Proc. Safecomp’01, volume 2187 of LNCS. Springer Verlag, Sept.
2001. 2.1

[7] J. Cornet, F. Maraninchi, and L. Maillet-Contoz. A method for the efficient development of timed
and untimed transaction-level models of systems-on-chip. In Design Automation and Test in Europe
(DATE), pages 9–14, Munich, Germany, Mar. 2008. 2.2

[8] J. Eriksson, F. Österlind, N. Finne, A. Dunkels, N. Tsiftes, and T. Voigt. Accurate network-scale
power profiling for sensor network simulators. In Wireless Sensor Networks, volume 5432 of Lecture
Notes in Computer Science, pages 312–326. 2009. 1

[9] A. Fraboulet, G. Chelius, and E. Fleury. Worldsens: development and prototyping tools for appli-
cation specific wireless sensors networks. In Proceedings of the 6th international conference on
Information processing in sensor networks, IPSN ’07, pages 176–185, New York, NY, USA, 2007.
ACM. 1, 2.4, 3.2

[10] A. Gamatié and T. Gautier. Synchronous modeling of avionics applications using the SIGNAL lan-
guage. In IEEE Real-Time and Embedded Technology and Applications Symposium, pages 144–151.
IEEE Computer Society, 2003. 2.1

[11] F. Ghenassia. Transaction Level Modeling With SystemC: TLM Concepts And Applications for Em-
bedded Systems. Springer-Verlag, 2005. 1, 2.2

12/13 Verimag Research Report no TR-2011-17

A Generic Structure...Florence Maraninch and Catherine Parent-Vigouroux and Karel Heurtefeux and Pascal Raymond

[12] W. R. Heinzelman, A. Ch, and H. Balakrishnan. Energy-efficient communication protocol for wireless
microsensor networks. In 33rd Annual Hawaï International Conference on System Sciences, pages
3005–3014, 2000. 2.3

[13] K. Heurtefeux, F. Maraninchi, and F. Valois. Areacast: a cross-layer approach for a communication
by area in wireless sensor networks. In 17th IEEE International Conference on networks (ICON’11).
IEEE, dec 2011. 3, 3.1, 3.2

[14] E. Jahier, N. Halbwachs, P. Raymond, X. Nicollin, and D. Lesens. Virtual execution of AADL models
via a translation into synchronous programs. In ACM Conference on Embedded Systems Software,
EMSOFT 2007, Salzburg, Austria, oct 2007. 2.1

[15] B. Kechar and L. Sekhri. Formal modelling and validation of a novel energy efficient cross-layer mac
protocol in wireless multi hop sensor networks using time Petri nets. In New Technologies, Mobility
and Security, 2008. NTMS ’08., pages 1 –5, Nov. 2008. 2.5

[16] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: accurate and scalable simulation of entire tinyos
applications. In Proceedings of the 1st international conference on Embedded networked sensor
systems, SenSys ’03, pages 126–137, New York, NY, USA, 2003. ACM. 2.4

[17] F. Maraninchi, L. Samper, K. Baradon, and A. Vasseur. Lustre as a system modeling language:
Lussensor, a case-study with sensor networks. In SLA++P’07, ETAPS’07 Satellite Workshop on
Model-driven High-level Programming of Embedded Systems, Braga, Portugal, Mar. 2007. ENTCS.
1.2

[18] G. Merrett, N. White, N. Harris, and B. Al-Hashimi. Energy-aware simulation for wireless sensor
networks. In IEEE SECON’09, Rome, Italy, June 2009. 2.4

[19] R. Milner. Communication and concurrency. In International Series in Computer Science. Prentice
Hall, 1989. 2.1

[20] Open SystemC Initiative. SystemC v2.1 Language Reference Manual (IEEE Std 1666-2005), 2005.
www.systemc.org. 1, 2.2

[21] P. Pettersson and K. G. Larsen. UPPAAL2K. Bulletin of the European Association for Theoretical
Computer Science (EATCS), 70:40–44, 2000. 2.5

[22] L. Samper, F. Maraninchi, L. Mounier, and L. Mandel. Glonemo: global and accurate formal models
for the analysis of ad-hoc sensor networks. In Proceedings of the first international conference on
Integrated internet ad hoc and sensor networks, InterSense ’06, New York, NY, USA, 2006. ACM.
1.2

[23] M. Schuts, F. Zhu, F. Heidarian, and F. Vaandrager. Modelling clock synchronization in the chess
gMAC WSN protocol. In Proc. of the Workshop on Quantitative Formal Methods: Theory and Ap-
plications (QFM’09), volume 13 of Electronic Proceedings in Theoretical Computer Science, 2009.
2.5, 5

[24] Texas Instruments. CC1100, Low-Cost Low-Power Sub- 1 GHz RF Transceiver, May 2009. 2.3, 3

[25] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: scalable sensor network simulation with precise
timing. In Proceedings of the 4th international symposium on Information processing in sensor
networks, IPSN ’05, Piscataway, NJ, USA, 2005. IEEE Press. 2.4

Verimag Research Report no TR-2011-17 13/13

	Introduction
	Main Issues for the Development of VPs
	Contributions and Structure of the paper

	Related Work
	Synchronous Modeling of Asynchrony
	Transaction-Level Modeling
	Models for energy consumption
	Network simulation tools vs sensor node emulators
	Formal models applied to WSNs

	Case Study
	The AreaCast protocol
	Using the Existing WSNET Model

	Synchronous Programming in a nutshell: Lustre
	Model of the Case-Study
	Encoding Automata into Lustre
	The MAC protocol
	Modeling the channel

	Experiments
	Choosing the Granularity
	Observing the Effect of Faults
	Playing with Time in the Protocol

	Conclusion

