
Causality Closure for a New
Class of Curves

in Real-Time Calculus
Full version

Matthieu Moy and Karine Altisen

Verimag Research Report no TR-2011-13

November 2, 2011

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Causality Closure for a New Class of Curves
in Real-Time Calculus

Full version
Matthieu Moy and Karine Altisen

Verimag (UMR CNRS 5104), Grenoble INP
Grenoble, F-38041, France

E-mail: Matthieu.Moy@imag.fr, Karine.Altisen@imag.fr

November 2, 2011

Abstract

Real-Time Calculus (RTC) [14] is a framework to analyze heterogeneous real-time
systems that process event streams of data. The streams are characterized by arrival
curves which express upper and lower bounds on the number of events that may
arrive over any specified time interval. System properties may then be computed using
algebraic techniques in a compositional way.
The property of causality on arrival curves essentially characterizes the absence of
deadlock in the corresponding generator. A mathematical operation called causality
closure transforms arbitrary curves into causal ones.
In this paper, we extend the existing theory on causality to the class Upac of infinite
curves represented by a finite set of points plus piecewise affine functions, where existing
algorithms did not apply. We show how to apply the causality closure on this class of
curves, prove that this causal representative is still in the class and give algorithms to
compute it. This provides the tightest pair of curves among the curves which accept
the same sets of streams.

Keywords: Real-Time Calculus, Arrival Curve, Causality, Forbidden Regions, ac2lus, Upac

Reviewers: Claire Maiza

How to cite this report:

@techreport {verimag-TR-2011-13,
title = {Causality Closure for a New Class of Curves

in Real-Time Calculus
Full version},

author = {Matthieu Moy and Karine Altisen},
institution = {{Verimag} Research Report},
number = {TR-2011-13},
year = {2011}

}

Matthieu Moy and Karine Altisen

This is a long version of the paper submitted to WCTT 2011. It includes the complete proofs
(and additional lemmas). Additions are marked with margin bars like this text.

1 Introduction
Modern embedded system design must deal with more and more constraints in several domains:
an ever increasing size, deeply interdependent softwares and hardwares, timing constraints, low
power constraints with power management mechanisms included. Furthermore, they have to be
manufactured at low cost, and with an increasingly short life-cycle. In this context, it is no longer
possible to wait for the physical prototypes to validate the decisions on the design of a system:
hardware dimensioning (e.g. buffer size) and timing performance should be evaluated at an early
stage of the development.

In this work, we focus on the performance evaluation of embedded systems using the Real-Time
Calculus framework (RTC) [14]. It uses abstract models to analyze heterogeneous systems in
a compositional manner. It allows the characterization of streams of events to be treated by a
component with curves called arrival curves: they provide the worst and best cases on the number
of events that may arrive in any window of time of a given length. RTC also uses the notion of
service curves, which count available resources instead of events in a similar manner. A given
component’s interface is described with curves for its input stream and available resources, and
some other curves for the outputs. The huge advantage of RTC is its ability, for already-modeled
components, to give exact bounds (i.e. both conservative and as tight as possible) on the output
stream of a component as a function of its input stream. Unfortunately, complex components can
not be modeled in RTC. In particular, RTC models cannot handle state-based components such as
power managed systems.

Some works proposed RTC extensions using Event Count Automata [13], Timed Automata
[10, 11, 15, 1], and Synchronous Programs [2]; all of those approaches perform the analysis using
some formal verification tool (model-checking, abstract interpretation) and they all face the causality
problem [3] in a way or another. They express the input arrival curves as a non-deterministic
generator, or an observer of events that encodes the constraints of the curves. Arrival curves are
functions of relative time that constrains the number of events that can occur in an interval of time:
for any sliding window of time, the functions explicitly express the maximum and minimum number
of events. But, arrival curves may also contain implicit constraints deduced from explicit ones.
It may happen that the corresponding generator of events deadlocks, due to conflicting implicit
constraints. Curves exhibiting such contradictions are called non-causal. They can thus lead to
deadlocks in generators, but also to spurious counter-examples in formal verification, or simply to
suboptimal results. Conversely, they can also be produced by non-exact computations: e.g. when
a curve is computed after abstracting the system [1], using abstract interpretation [2], or using a
non-complete model-checking algorithm [13]. It is therefore useful in some cases, mandatory in
others, to solve this issue by transforming non-causal curves into causal ones.

This causality problem has been studied theoretically in [3]: this work provides an algebraic
characterization of a causal pair of curves and defines the causality closure which makes the implicit
constraints explicit. This operation, as a free side effect, results in the best pair of curves among
the equivalent ones.

The present paper provides algorithms that extend and apply the results in [3]; it computes
the causality closure on infinite curves with a particular shape. We focus on so-called Upac curves
defined by a finite set of points followed by a piecewise convex/concave affine part. This class of
curves is interesting since it enables to have a finite and simple computational encoding for the
curves whereas curves are infinite. They may include a precise description for short windows of
time, description with affine pieces for larger windows and then the long term rate curve. The Upac
class includes (but is strictly larger than) the class of curves used in [10], which cannot express
non convex/concave curves. It is the one used in [2] which computes the performance (given as
arrival curves) of a system modeled as a synchronous program and uses bounded model-checking
and abstract interpretation. In [2], the causality closure is used to prevent the tool from computing

Verimag Research Report no TR-2011-13 1/18

Matthieu Moy and Karine Altisen

spurious counter-examples in the proofs and to increase the precision of the result, but the actual
algorithm and the underlying theory that handles causality for Upac curves were never published.
This paper fills this gap with the following contributions:

• We identify a normal form on Upac curves, on which the causality closure can be computed
easily; we prove that the causal representatives of such curves are still in the class;

• We provide an algorithm that transforms a pair of curves of the class into normal form and
then computes the causality closure, i.e. the causal representative of the curves.

The algorithms are all in polynomial time (quadratic) and have been implemented in ac2lus. This
is the extended version of [4] in which some details of proofs were omitted. Furthermore, although
all along the paper we talk about arrival curves, the reader should be convinced that the results
and the algorithms also apply to service curves in Real-Time Calculus, and strict service curves in
network calculus [5], which behave the same.

The outline of this paper is as follows: Section 2 summarizes the Real-Time Calculus background
and recalls the notion of causality from [3]; Section 3 defines the above class of curves and provides
the first contribution of this paper: a normal form and a normalization algorithm. Section 4 gives
the second contribution: an algorithm for the causality closure on those curves.

2 Causality in Real-Time Calculus: Motivation and Formal-
ization

2.1 Real-Time Calculus Curves
The Real-Time Calculus focuses on components that process events; it uses curves to characterize
the streams of events a component may compute. Event streams are abstracted with cumulative
curves that represent the number of events that occurred since the origin of time t = 0. Arrival
curves characterize the timing properties of a set of event streams using their cumulative curves. A
pair of lower and upper arrival curves defines lower and upper bounds on the number of events
allowed in a sliding window of ∆ unit of time. Since the goal of the paper is to define algorithms,
we need the curves to be machine-representable. We consider the discrete-time fluid-event model
where the time is discrete, but the event counters are rational-numbers. Notice that the definitions
and characterization of the causality are nevertheless model-independent.

Formally, the cumulative curves and the arrival curves are functions from N (time) to Q+

(number of events) where N is the set of naturals and Q+ is the set of non-negative rationals. We
note C the set of wide-sense increasing curves c from N to Q+ = Q+∪{∞} and such that c(0) = 0;
C is the set of such curves from N to Q+ (no infinity value). The order on curves is point-wise.

Definition 1 (Cumulative Curves, Arrival Curves). Functions R ∈ C are called cumulative curves:
R(t) represents the (finite) amount of events that occurred in the interval of time [0, t]. A pair of
arrival curves is a pair of functions (αu, αl) in C×C, such that αl ≤ αu.

Let R be a cumulative curve and (αu, αl) be a pair of arrival curves. R is said to satisfy (αu, αl)
noted R |= (αu, αl) iff ∀x ∈ N ,∀∆ ∈ N , R(x + ∆) − R(x) ∈ [αl(∆), αu(∆)]. We say that
a pair of arrival curves (αu, αl) is satisfiable iff there exists a cumulative curve R that satisfies
(αu, αl).

The fact that arrival curves are defined on relative time (windows of size ∆) involves many
implicit constraints. Among those constraints, some may be tighter than the constraints explicitly
given by the curves. In [3], two kinds of implicit constraints were informally distinguished (see
Figure 1). The first ones (as in the above explanation) remove regions called unreachable regions
(see Figure 1(a)): no (finite nor infinite) cumulative curve can cross through those regions. The
removal is done using the sub and super additive closures of the curves which are briefly recalled
here, but this result is well-known and detailed in e.g. [12]. For example, splitting a window
of size ∆ into two windows of size ∆1 and ∆2 (s.t. ∆1 + ∆2 = ∆) may reveal a greater bound
αl(∆1) + αl(∆2) for αl(∆). This removes some regions from the curve and leads to an equivalent
but tighter pair of arrival curves.

Verimag Research Report no TR-2011-13 2/18

Matthieu Moy and Karine Altisen

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

0 1 2 3 4 5 6
∆

7

events

1
2
3
4
5
6
7

0

αl

αu

��
��
��
��

�������
�������
�������
�������

����

0 1 2 3 4 5 6

αl

αu

∆
7

events

0
1
2
3
4
5
6
7

(a) Unreachable Regions (b) Forbidden regions

Figure 1: Implicit constraints on arrival curves

Definition 2 (Sub and Super Additive Closures). Let α ∈ C. α is said to be sub-additive (resp.
super-additive) iff ∀s, t ∈ N . α(t+ s) ≤ α(t) + α(s) (resp α(t+ s) ≥ α(t) + α(s)). Among all the
sub-additive (resp. super-additive) curves that are smaller (resp. greater) than α there exists an
upper (resp. lower) bound called the sub-additive (resp. super-additive) closure of α and denoted
by α (resp. α).

A pair of arrival curves (αu, αl) is sub-additive and super-additive (denoted SA-SA for short)
iff αu is sub-additive and αl is super-additive. We note (αu, αl) the SA-SA closure of (αu, αl).

The SA-SA closure makes explicit the unreachable regions of the curves: they are the regions
between αl and its super-additive closure αl in the one side, between αu and its sub-additive
closure αu on the other.

2.2 Causality and the Causality Closure
The second kind of constraints removes the forbidden regions: no execution can cross a forbidden
region without being blocked some time latter by some contradiction between lower and upper
constraints (for example, being forced to emit more than 2 events but less than 1 which is not
possible). In other words, there cannot exist an infinite cumulative curve that crosses through such
a region (see Figure 1(b)). It may occur due to the forbidden regions of some implicit constraints
that an event stream (represented by a cumulative curve) satisfies a pair of arrival curves up to a
certain time T , but then deadlocks since no time can elapse and no event can be emitted without
violating the arrival curves. A pair of arrival curves for which this problem cannot happen is called
causal.

Issues and Solutions with Non-Causal Curves The causality problem has received surprisingly
little attention in the Real-Time Calculus community, although many of the existing approaches
which connect Real-Time Calculus to other formalisms (e.g. [10, 9, 13]) did produce, or have
problems with non-causal pairs of curves.

Indeed, non-causal curves can be produced by non-exact algorithms, that is, whenever a conser-
vative approximation is performed in a computation. This is the case when using techniques like
abstract interpretation, model-checking algorithms with a timeout like in [2], or when abstractions
are performed on the model before the computation [1]. It can also happen when an algorithm
computes only part of the points of an arrival curve, like done in [13].

When an algorithm produces non-causal curves, the causality closure provides another pair of
curve which is equivalent and tighter, somehow increasing the precision of the result. See [1] for an
example where such a post-treatment of the curve leads to a better precision.

In addition to their sub-optimality, non-causal curves can be a real issue if used as input of some
algorithms. Most model-checking algorithms may produce spurious counter-examples if fed with
non-causal hypothesis. It is possible to solve the non-causality during the state-space exploration
either in the tool itself (see for example the -causal option of Lesar [7]) or with an appropriate
temporal logic formula as proposed in [11], but this leads to costly algorithms, and is not applicable

Verimag Research Report no TR-2011-13 3/18

Matthieu Moy and Karine Altisen

with any tool (for example, Nbac, used in [2] cannot do it). As opposed to this, the causality
closure can be applied a priori on the curves regardless of the tool being used for the analysis, and
with much cheaper algorithms.

Non-causal curves would also greatly complexify the design of an event generator for simulation-
based approaches [8]: the usual implementations generate event streams that satisfy the constraints
up to the current point in time, but doing so may result in deadlocks in the future (contradiction
between the upper-bound and the lower-bound). A generator for non-causal curves would therefore
have to explore the reachable state-space in the future to make sure a deadlock will not occur.
Again, it is much simpler, and cheaper algorithmically, to make the curves causal a priori.

In summary, 1) when computing output curves as functions of input curves, applying the
causality closure on inputs allows to get rid of the causality problem and therefore to use any
method, even if it is not robust to non-causal inputs. And 2) applying the causality closure on the
output may increase the precision of the result, providing the best equivalent output curves.

Characterization of Causality The following paragraph recalls the formal definition of causal-
ity and the main results from [3] which are used in this paper.

Definition 3 (Causal Arrival Curves). Let (αu, αl) be a pair of arrival curves. (αu, αl) is said to
be causal iff for any T ∈ N , any cumulative curve R that satisfies (αu, αl) up to T can be extended
forever into a cumulative curve R′ that also satisfies (αu, αl). In other words, (αu, αl) is causal iff
∀T ≥ 0,∀R, (

R |=≤T (αu, αl)
)

=⇒
(
∃R′ | R′ |= (αu, αl) and ∀t ≤ T,R(t) = R′(t)

)
where the fact that R satisfies (αu, αl) up to T is defined by: R |=≤T (αu, αl) iff ∀t ≤ T, ∀∆ ≤
t, R(t)−R(t−∆) ∈ [αl(∆), αu(∆)].

We now give an algebraic characterization of causality. Intuitively, let us consider some
pair of curves (αu, αl), and a cumulative curve R such that R(T) = αl(T). We now look at
an extension of R for x units of time after T . The number of events to emit between T and
T + x (i.e. R(T + x) − R(T)) has to be lower than αu(x), but the total number of event
since the beginning (i.e. R(T + x)) has to be greater than αl(T + x). Since we have chosen
R(T) = αl(T), this means that the number of events emitted between T and T + x has to be at
least αl(T + x) − αl(T). Combining the constraints on αu and αl, we deduce that for (αu, αl)
to be causal, we must have ∀x ≥ 0, αu(x) ≥ R(T + x) − R(T) ≥ αl(T + x) − αl(T), hence
αl(T) ≥ supx≥0

{
αl(T + x)− αu(x)

}
=
(
αl � αu

)
(T). This example is far from being a proof, but

gives a part of the intuition, and exhibits a formula using the deconvolution operator �. Following
this intuition, it was shown in [3] a necessary and sufficient condition for the causality, based on this
formula: a pair of curves is causal iff its SA-SA closure is stable when applying some deconvolutions
on it. We use the classical (min,+) (resp. (max,+)) deconvolution operators [12] � and � : for c
and d in C, for x ≥ 0, (c�d)(x) def= supt≥0{c(x+ t)−d(t)} and (c� d)(x) def= inft≥0{c(x+ t)−d(t)}.

Theorem 1 (Characterization of Causality). Let (αu, αl) be a pair of arrival curves:

(αu, αl) is causal⇐⇒ αl = αl � αu and αu = αu�αl

Notice that the causality, unlike SA-SA properties, is a property on a pair of curves; it does
not make sense to say that αu alone, or αl alone, is causal since the impossibility to extend a
cumulative curve can come only from a contradiction between an upper bound and a lower bound.

Given a pair of arrival curves, the removal of its forbidden regions is achieved using deconvolution
operators, as a direct consequence of the characterization.

Definition 4 (The C operator). A pair (αu, αl) of arrival curves has been defined as functions in
C×C such that αu ≥ αl (see Definition 1). We note ⊥AC the set of pairs of functions in C×C

Verimag Research Report no TR-2011-13 4/18

Matthieu Moy and Karine Altisen

such that the former constraint is false; ⊥AC will be considered as a single element, for simplicity,
even if it represents an infinite set of objects. Let AC be the set of all pairs of arrival curves plus
⊥AC. The operator C, is defined from AC to AC as:

C (⊥AC) def= ⊥AC

C
(
αu, αl

) def=

 let Cu = αu�αl,Cl = αl � αu
if Cu ≥ Cl then (Cu,Cl)
else ⊥AC

The operator C makes explicit some implicit constraints of the curves and removes some
forbidden regions. In some cases, it may occur that the lower and the upper curve cross over: this
means that the curves were not satisfiable (i.e. no cumulative curve satisfies it); this is denoted
with the ⊥AC value. As opposed to this, when the curves were satisfiable, the operator computes a
causal pair of curves equivalent to the original ones.

Theorem 2. For any pair of arrival curves (αu, αl),
• C(αu, αl) = ⊥AC ⇐⇒ (αu, αl) is non-satisfiable;
• C(αu, αl) is causal, SA-SA and equivalent to (αu, αl), otherwise.

When (αu, αl) is satisfiable, C(αu, αl) is the tightest pair of curves equivalent to (αu, αl). Con-
versely, if (αu, αl) is the tightest pair of curves representing a set of cumulative curves, then (αu, αl)
is causal.

By tightest, we mean the smallest (resp. the greatest) curve for the upper (resp. lower) part
among the set of equivalent pairs of arrival curves. Given a pair of curves, one can compute the
causality closure C(αu, αl), and get either the information that the curves are not satisfiable, or
the tightest causal representative of the original arrival curves.

3 Ultimately Piecewise Affine Curves

We now study the set of Upac curves comprising both a finite prefix given by a set of points and a
long-term rate given by a piecewise-affine, convex/concave pairs of curves. This class of curves is
the one used in the tool ac2lus [2]. It was chosen to be both expressive and adapted to interfacing
with other formalisms.

A wider class is the one of ultimately periodic curves, widely used in analytical models (like the
MPA-RTC toolbox [16]). This class is expressive, but hard to use in the interfacing with state-based
formalisms. Most interfacing approaches restrict to a much stricter class. For example, [10] use
convex/concave piecewise affine curves. An extension to non-convex/concave curves is proposed
in [11], but involves more complex synchronization of automata, hence a greater algorithmic
complexity. [1] and [15] use discrete, finite curves, which are not able to express precisely the
long-term rate of the streams. [13] can use any ultimately periodic curve to model the input of a
component, but the output computed has a periodic part limited to a single entry (a long term
period), hence, the generality of the model is not exploited.

The Upac class is basically a combination of the finite, discrete curves from [15], with the
convex/concave curves of [10]. It allows a precise and possibly non-convex/concave description of
the initial portion of the curves, as well as a set of constraints on the long-term rate of the event
stream; it may be easily machine-representable: the finite portion is basically an array and each
affine piece is encoded with its slope and its Y -intercept.

We first define this class of curves. The goal is to obtain an algorithm that computes the
causality closure on Upac. In order to do that, we define a normal form and we propose an algorithm
to compute for each curve in Upac its normal form. This is the first step for the computation of the
causality closure: the normal form is SA-SA and the C operator will be easily (in a computational
manner) applicable on the normal form of the curve.

Verimag Research Report no TR-2011-13 5/18

Matthieu Moy and Karine Altisen

3.1 Upac: Formal Definitions
Definition 5 (Upac). We define the class of Upac curves as the set of pairs of curves (αu, αl)
such that there exists

• P (αu), P (αl) ∈ N : size of the finite prefix (i.e. abscissa of the last point explicitly given in
the representation);

• N(αu), N(αl) ∈ N : number of pieces of the piecewise affine part of the curves;
• a set of values pui ∈ N , i ∈ [0, P (αu)], and a set of rational values auj , buj , j ∈ [1, N(αu)]:

representation of the curve αu;
• a set of values pli ∈ N , i ∈ [0, P (αl)], and a set of rational values alj , blj, j ∈ [1, N(αl)]:

representation of the curve αl;
such that, ∀∆ ≥ 0:

Fu(∆) = if ∆ ∈ [0, P (αu)] then pu∆ else +∞;
F l(∆) = if ∆ ∈ [0, P (αl)] then pl∆ else plP (αl);

Iu(∆) =

if N(αu) > 0
then minj∈[1,N(αu)]

{
auj∆ + buj

}
else +∞;

I l(∆) =

if N(αl) > 0
then maxj∈[1,N(αl)]

{
alj∆ + blj

}
else 0;

with αu(∆) = min {Fu(∆), Iu(∆)}
and αl(∆) = max

{
F l(∆), I l(∆)

}
.

The tuple
(
P (αu), P (αl), N(αu), N(αl), {pui }i∈[0,P (αu)], {auj , buj }j∈[1,N(αu)], {pli}i∈[0,P (αl)], {alj , blj}i∈[1,P (αl)]

)
is called the representation of the pair (αu, αl). It corresponds to the data-structure to be used in
algorithms. We call the set of points pui and pli the finite prefix and each line aj∆ + bj the affine
pieces of (αu, αl).

For simplicity of the notations, we identify the abscissa of the points of the finite prefix with their
index, but this is not a limitation. Note that we require the individual points to be integers (this
will be necessary to ensure the convergence of the algorithms later), but remain in the fluid-event
model. Figure 2 shows an example: the upper part is made of 3 points and two affine pieces; the
lower part, 3 points, one affine piece.

10

9

8

αu(∆)

affine piece:
(∆− 2)/2

affine piece:
(∆ + 12)/2

affine piece:
∆ + 3

αl(∆)

109876543210

7
6
5
4
3
2
1
0

#events

∆

Figure 2: Example of a Upac curve

3.2 Normal form in Upac
To compute the causality closure on Upac curves, the difficulty comes from the points of αu and αl,
which can interact together, or with the affine pieces of the other curve. In particular, arbitrary

Verimag Research Report no TR-2011-13 6/18

Matthieu Moy and Karine Altisen

curves with points and affine pieces are not necessarily SA-SA. We will first transform the curves
to ones that obey a few well-formedness properties, which we call the normal form.

The causality closure is trivial if the curves have only affine pieces, as expressed later in
Theorem 5. Curves comprising only points are not SA-SA, and could not be made so algorithmically
(since their SA-SA closure has an infinite number of points). This difficulty can be eliminated
thanks to the piecewise affine part of the curves: we can apply the SA-SA closure to the points
of the curves, and only a finite number of points will remain under or above the affine pieces. If
this is not the case, then it means the affine pieces add no information and can be removed. This
transformation is called the normalization, and is presented in Algorithm 1; it leads to a SA-SA
curve (Theorem 4) made of points and affine pieces. This allows to apply the C operator on it to
get a causal pair of curves. The computation of C is made easier by Theorem 6, which reduces the
computation of C to a version where all the operators are bounded.

3.2.1 Properties of SA-SA Closure of Finite Prefix

We first focus on the finite prefix (i.e. the points) of Upac curves, in order to introduce two
intermediate results that will be useful in the computation of the normal form and of the causality
closure.

We first need to define properly the notion of “finite curves” and the associated operators. We
define “finite curves” as restriction of infinite ones: the restriction of (αu, αl) to [0, T] is defined as:

∀t ≤ T, αu
∣∣
T

(t) def= αu(t) and αl∣∣
T

(t) def= αl(t)

∀t > T, αu
∣∣
T

(t) def= +∞ and αl∣∣
T

(t) def= αl(T)

This way, αu∣∣
T
and αl∣∣

T
match the intuition of finite curves, can be easily represented with a finite

set of points, but are still infinite objects on which the usual theorems apply. This notion matches
the Upac subset of curves with no affine pieces (N(αl) = N(αu) = 0).

The SA-SA closure
(
αu
∣∣
T
, αl
∣∣
T

)
represent the same set of cumulative curves as (αu∣∣

T
, αl
∣∣
T

).

The situation is illustrated on Figure 3, representing an upper curve defined explicitly up to ∆ = 3,
and its sub-additive closure.

It should be noted that, in this case, (αu, αl) is no longer a Upac curve, since it has an infinite
number of points (as far as ∃t > 0.αu(t) < +∞). However, one can define the property SA-SA up
to P and the associated closure (see [3] for details): the SA-SA closure up to P and (αu, αl) will be
identical on [0, P]. Additionally, [6] (page 7), provides an efficient way to compute the sub-additive
closure in discrete events. It can easily be adapted to compute the SA-SA closure over [0, P] leading
to a simple, quadratic algorithm. The SA-SA closure up to P (αl) (resp. P (αu)) can be applied
to the finite prefix of any pair of curves in Upac. The finite prefix of αu (resp. αl) allows us to
compute the slope SP (αu) (resp. SP (αl)) of the curve, the point of maximal influence ∆P (αu)
(resp. ∆P (αl)), and the maximal drift dPm(αu) (resp. dPm(αl)) defined as follows and illustrated in
Figure 3.

Definition 6. Let (αu, αl) be a pair of arrival curves, and P > 0. We define the following:

SP (αu) def= min
∆≤P
{αu(∆)/∆} (slope of αu∣∣

P
)

∆P (αu) def= min{∆ ∈ [0, P] | SP (αu)×∆ = αu(∆)}
(point of maximal influence of αu ∣∣

P
)

dPm(αu) def= sup
∆≤∆P (αu)

{αu(∆)− SP (αu)×∆}

(maximal drift of αu∣∣
P
)

Verimag Research Report no TR-2011-13 7/18

Matthieu Moy and Karine Altisen

SP (αl), ∆P (αl) and dPm(αl) are defined in a symmetrical way:

SP (αl) def= max
∆≤P
{αl(∆)/∆} (slope of αl∣∣

P
)

∆P (αl) def= min{∆ ∈ [0, P] | SP (αl)×∆ = αl(∆)}
(point of maximal influence of αl∣∣

P
)

dPm(αl) def= sup
∆≤∆P (αl)

{SP (αl)×∆− αl(∆)}

(maximal drift of αl∣∣
P
)

Since we work here in discrete time, the min and max are over finite sets and are well-defined.
Interesting properties of the definitions are given by the following lemma. The sub-additive

closure of the curve remains above the line SP (αu) ×∆ defined by the slope (Lemma 2). The
distance of the curve to this line remains bounded, and the bound dPm(αu) depends only on the
finite prefix (Lemma 3). Also, αu will actually have contact with the line SP (αu) ×∆ at least
periodically, with a period of ∆P (αu) which is smaller than the size of the finite prefix (Lemma 1).

Lemma 1. Let (αu, αl) be a pair of arrival curves and T > 0. Then:

∀k ∈ N , αu
∣∣
T

(k ×∆P (αu)) = k ×∆P (αu)× SP (αu)

αl
∣∣
T

(k ×∆P (αl)) = k ×∆P (αl)× SP (αl)

10

9

8

αu

7654310

7
6
5
4
3
2
1
0

#events

∆
SP (αu)

2

αu
SP (αu)×∆

∆P (αu)
dPm(αu)

Figure 3: Point of maximal influence of αu. The curve αu remains in the greyed area and has
contact with SP (αu)×∆ at least with period ∆P (αu).

Lemma 2. Let (αu, αl) be a pair of arrival curves and T > 0. Then:

∀∆, αu(∆) ≥ αu∣∣
T

(∆) ≥ SP (αu)×∆

αl(∆) ≤ αl∣∣
T

(∆) ≤ SP (αl)×∆

Lemma 3. Let (αu, αl) be a pair of arrival curves. Then:

∀∆ ≥ 0, αu(∆)− SP (αu)×∆ ≤ dPm(αu)
SP (αl)×∆− αl(∆) ≤ dPm(αl)

As a consequence, affine pieces a∆ + b with a slope steeper than SP (αu) × ∆ do not add
information to the curve (provided the explicit points of αu are below the affine piece), and can be
removed.

Verimag Research Report no TR-2011-13 8/18

Matthieu Moy and Karine Altisen

Theorem 3. Let (αu, αl) be a pair of arrival curves in Upac, different from ⊥AC, and J ∈
[1, N(αu)] such that these two conditions are satisfied:

∀i ∈ [0, P (αu)],∀j ∈ [1, N(αu)], pui ≤ auj × i+ buj

auJ ≥ SP (αu)

Then, removing the affine piece auJ + buJ from (αu, αl) yields an equivalent curve. In this case, we
say that the affine piece auJ + buJ is not relevant.

Similarly for αl, if

∀i ∈ [0, P (αl)],∀j ∈ [1, N(αl)], pli ≤ alj × i+ blj

alJ ≥ SP (αl)

Then, removing the affine piece alJ + blJ from (αu, αl) yields an equivalent curve.

Proof for Lemma 2. We prove by induction that ∀n ≥ 1,⊗n
(
αu
∣∣
T

)
≥ SP (αu)×∆. The base case

is obvious by definition of SP (αu). Assuming ⊗n
(
αu
∣∣
T

)
≥ SP (αu)×∆, we have:

⊗n+1(αu∣∣
T

)
(∆) =

((
⊗n
(
αu
∣∣
T

))
⊗
(
αu
∣∣
T

))
(∆)

= inf
t∈[0,∆]

{(
⊗n
(
αu
∣∣
T

))
(∆− t)︸ ︷︷ ︸

≥SP (αu)×(∆−t)

+
(
αu
∣∣
T

)
(t)︸ ︷︷ ︸

≥SP (αu)×t︸ ︷︷ ︸
≥SP (αu)×∆

}

≥ SP (αu)×∆

which concludes the induction proof. By definition of αu, this proves the first equation of the
lemma. The proof for the αl equation is the same.

Proof for Lemma 1. This lemma is also proved by a simple induction on k. The base cases for
k = 0 and k = 1 follow from the definition. Assuming αu∣∣

T
(k ×∆P (αu)) = k ×∆P (αu)× SP (αu),

we have:

αu
∣∣
T

((k + 1)×∆P (αu))

≤ αu∣∣
T

(1×∆P (αu)) + αu
∣∣
T

(k ×∆P (αu))

(by sub-additivity of αu∣∣
T
)

≤ αu∣∣
T

(∆P (αu)) + k × αu∣∣
T

(∆P (αu))

(by induction hypothesis)
≤ (k + 1)× αu∣∣

T
(∆P (αu))

Since Lemma 2 gives αu∣∣
T

((k + 1)×∆P (αu)) ≥ (k + 1)× αu∣∣
T

(∆P (αu)), this implies

αu
∣∣
T

((k + 1)×∆P (αu)) = (k + 1)× αu∣∣
T

(∆P (αu))

The proof for the second equation is the same.

Proof for Lemma 3. The definition of dPm states the inequality for ∆ ∈ [0,∆m(αu)]. We need to
prove that the inequality also holds for ∆ ≥ ∆m(αu). We consider such ∆, and define X, difference
between ∆ and the abscissa of the last point of contact between αu and SP (αu)×∆ before ∆, by:

X = ∆−
⌊

∆
∆P (αu)

⌋
×∆P (αu)

Verimag Research Report no TR-2011-13 9/18

Matthieu Moy and Karine Altisen

By construction, ∆−X is a multiple of ∆P (αu), hence αu∣∣
T

(∆−X) = ∆P (αu)× (∆−X) (by
Lemma 1).

Also, 0 ≤ X ≤ ∆P (αu) ≤ P (αu), hence, by definition of dPm(αu), we have dPm(αu) ≥ αu(X)−
SP (αu)×X (i.e. αu(X) ≤ dPm(αu) + SP (αu)×X). Then, we can write:

αu(∆) = αu(∆−X +X)
≤ αu(∆−X) + αu(X)

(sub-additivity of αu)
≤ SP (αu)× (∆−X)+

(dPm(αu) + SP (αu)×X)
≤ SP (αu)×∆ + dPm(αu)

αu(∆)− SP (αu)×∆ ≤ dPm(αu)

Proof for Theorem 3. We denote by α′u the curve obtained by removing the J-th affine piece to
αu.

The first hypothesis implies that we can compute SP (αu), dPm(αu) and ∆P (αu) based only on
the explicit points pui , hence, SP (αu) = SP (α′u), dPm(αu) = dPm(α′u) and ∆P (αu) = ∆P (α′u).

The second hypothesis implies that (auJ∆ + bu)− (SP (αu)×∆) is a non-decreasing function,
hence ∀∆ ≥ ∆m(αu),

(auJ∆ + bu)− (SP (αu)×∆)
≥ sup
t≤∆P (αu)

{(auJ t+ bu)− SP (αu)× t}

≥ sup
t≤∆P (αu)

{αu(t)− SP (αu)× t}

(first hypothesis)
≥ dPm(αu) = dPm(α′u) (definition of dPm(αu))
≥ α′u(∆)− SP (α′u)×∆ (Lemma 3)

(auJ∆ + bu) ≥ α′u(∆)

In other words, the affine piece auJ∆ + bu remains above α′u, hence the conclusion.

3.2.2 Normal Form: Definition and Algorithm

We now have the necessary background to introduce the normal form, on which the causality
closure will be computed:

Definition 7 (Normal form of curves in Upac). A pair of arrival curves (αu, αl) in Upac is said
to be in normal form if P (αu) = P (αl) = P and at least one of the following conditions is satisfied:

1. (αu, αl) = ⊥AC
2. N(αu) = N(αl) = 0 and (αu, αl) is SA-SA up to P
3. N(αu) = 0, αu is sub-additive up to P and αl is super-additive.
4. N(αl) = 0, αl is super-additive up to P and αu is sub-additive.
5. (αu, αl) is SA-SA
Case 2 corresponds to the case of finite curves [3]. In this case, we say that (αu, αl) has no

relevant affine pieces. Cases 3 and 4 correspond to asymmetric cases where only one of αu and
αl has relevant affine pieces. In these cases, we consider the SA-SA curves in theory, but the
representation is restricted to the SA-SA set of points on the prefix.

Verimag Research Report no TR-2011-13 10/18

Matthieu Moy and Karine Altisen

Converting an arbitrary pair of curves into a normal-form is straightforward using the properties
stated in Section 3.2.1; the algorithm is given below. For the common case where both curves have
relevant affine pieces (case 5), the transformation of a pair of curves into normal form is illustrated
by Figure 4. It essentially consists in adding explicit points to the curve until one can be sure all
the points are above the affine pieces. In the general case, the transformation is as follows.

10

9

8

876543210

7
6
5
4
3
2
1
0

#events

αu(∆)

∆

αl(∆)

(a) Original curve.

10

9

8

876543210

7
6
5
4
3
2
1
0

#events

αl(∆)

αu(∆)

∆
(b) After step 1: pu1 pulled

below the affine piece.

10

9

8

876543210

7
6
5
4
3
2
1
0

#events

αu(∆)

αl(∆)

∆
(c) After step 2: one
affine piece removed.

10

9

8

876543210

7
6
5
4
3
2
1
0

#events

αu(∆)Mu

M l

∆

αl(∆)

(d) After steps 3-6: Curve in normal form.

Figure 4: Step by step transformation into normal form

Algorithm 1 (Normalization of curves in Upac). For any curve in Upac, we apply the steps:
1. Make sure all the explicit points pui (resp. pli) are under (resp. above) all affine pieces; if

not, modify pui (resp. pli), keeping integer abscissa; add points on αu or αl until P (αu) =
P (αl) = P . See Figure 4.(b).

2. Eliminate affine pieces of αu (resp. αl) which have a slope greater or equal (resp. lower or
equal) to SP (αu) (resp. SP (αl)). It can be proved that this does not change the curve. See
Figure 4.(c).

Then, multiple cases can occur:
If N(αu) = N(αl) = 0 then

3. Apply the SA-SA closure up to P .
If N(αu) 6= 0 and N(αl) 6= 0 then

Verimag Research Report no TR-2011-13 11/18

Matthieu Moy and Karine Altisen

3. Compute the abscissa Mu
j of the intersection between SP (αu) × ∆ and the affine

piece j of αu (and similarly M l for αl). Set Mu = minj{Mu
j }, M l = minj{M l

j},
M = max{Mu,M l}.

4. Add explicit points pu and pl to the curves, so that P (αu) = P (αl) = M .
5. Apply the SA-SA closure up to M to (αu, αl). See Figure 4.(d).

If N(αu) 6= 0 and N(αl) = 0 then
3. Compute the abscissa Mu

j of the intersection between SP (αu)×∆ and the affine piece j
of αu. Set M = minj{Mu

j }.
4. Add explicit points pu and pl to the curves, so that P (αu) = P (αl) = M .
5. Apply the SA-SA closure up to M to (αu, αl).

If N(αu) = 0 and N(αl) 6= 0 then apply the same transformation as above, replacing αl by αu
and vice-versa in the text.

The normalization trivially implies SA-SA closure up to M . The SA-SA property is actually
true for the whole curve, when it has some relevant affine pieces:

Theorem 4. Let (αu, αl) be a pair of curves obtained by applying the normalization (Algorithm 1)
on a pair of curves in Upac. Then (αu, αl) is in Upac and in normal form. In particular, if αl
(resp. αu) has at least one relevant affine piece, then αl is super-additive (resp. sub-additive).

For theorem 4. We prove the first case (αu is sub-additive), the second being similar, that is:

∀∆1,∆2 ≥ 0, αu(∆1) + αu(∆2) ≥ αu(∆1 + ∆2)

If αu has no relevant affine piece, then by definition of the normal form, αu is sub-additive
(although its representation, αu∣∣

M
, is not).

In the case where αu has at least one affine piece, we consider several cases, depending on the
values of ∆1 and ∆2:

∆1 ≤M and ∆2 ≤M :

αu(∆1) + αu(∆2) = αu
∣∣
M

(∆1) + αu
∣∣
M

(∆2)

(Since ∆1 ≤M , ∆2 ≤M and
αu is sub-additive up to M)

≥ αu∣∣
M

(∆1 + ∆2)

(Sub-additivity of αu∣∣
M
)

≥ αu(∆1 + ∆2)
(Because (αu, αl) is in normal form)

∆1 > M or ∆2 > M : Without loss of generality, we assume ∆1 > M , i.e. ∆1 is in the piecewise
affine part of the curve. In other words, αu(∆1) = ai∆1 + bi where ai∆ + bi is one of the
affine piece of αu.

αu(∆1 + ∆2) ≤ ai(∆1 + ∆2) + bi

(Since ∆1 + ∆2 ≥ ∆1)
≤ ai∆1 + bi + ai∆2

≤ αu(∆1) + ai∆2

≤ αu(∆1) + αu(∆2)
(See proof of Theorem 5)

Verimag Research Report no TR-2011-13 12/18

Matthieu Moy and Karine Altisen

4 Causality Closure in Upac
First, the algorithm for the causality closure applies the normalization on the curves. Then, the
idea is to apply Theorem 2 with the operator C (see Definition 4) on the curves: the theorem
states that C

(
αu, αl

)
is the causality closure of (αu, αl). This step is divided into 2 parts. The

part where the curves have no relevant affine pieces at all was treated in [3] and is quickly recalled
in Section 4.1; it requires a fix-point computation. The other part of the algorithm factorizes the
three other cases where curves have at least one affine piece (no affine pieces on αl, no affine pieces
on αu, both curves with affine pieces) and is provided in Section 4.2.

4.1 Curves With No Affine Pieces
For curves in normal form in Upac with no relevant affine pieces at all (case 2 of the normal form),
the algorithm has been proposed in [3] and is briefly summarized here. The major difficulty for
the curves with only a finite prefix is that their SA-SA closure is not representable with a finite
number of points; so we cannot directly use the result of Theorem 2. Instead, we use the fact that
any fix-point of C is causal. Therefore, the algorithm iterates the computation of C on the finite
prefix of the curves; the termination is ensured by the fact that the points of the prefix are natural
numbers. The iteration either reaches the ⊥AC value (the curves were not satisfiable) or a causal
curve equivalent to the original one. Computing the finite SA-SA closure on the resulting curves
provides the expected result.

4.2 C for Curves With at Least One Affine Piece
As a first remark, let us consider the particular case of convex/concave affine piecewise curves.
This is an interesting class of curves in Upac, used for example in [10, 11]. It corresponds to the
particular case where the finite prefix uniquely contains (0, 0). An interesting property is that αu
(resp αl) can be expressed as the minimum (resp. maximum) of a set of affine functions. When
reasoning about these curves, the minimum and maximum are naturally translated in conjunction
of conditions. Those curves are always causal:

Theorem 5. Let (αu, αl) 6= ⊥AC be a pair of piecewise affine, concave/convex curves. Then
(αu, αl) is causal.

We now focus on the general case, i.e. curves in normal form in Upac, with either αl, αu or both
having affine pieces: N(αu) > 0 or N(αl) > 0. We show that we can directly apply the operator C
on the curves and that its computation can be done in quadratic time.

Theorem 6. Let (αu, αl) be a pair of curves in Upac, in normal form, such that (αu, αl) 6= ⊥AC,
with either αu or αl having relevant affine pieces. Let M = P (αl) = P (αu) be the index of the last
point of (αu, αl) given explicitly (as it was computed in Algorithm 1). Let C∣∣

M
=
(
C
∣∣
M
u ,C

∣∣
M
l
)
be

the following operator: ∀∆ ≥ 0,
C
∣∣
M
u
(
αu, αl

)
(∆) = inft∈[0,M]{αu(∆ + t)− αl(t)} and

C
∣∣
M
l
(
αu, αl

)
(∆) = supt∈[0,M]{αl(∆ + t)− αu(t)}

1. ∀∆ ≥ 0,C
(
αu, αl

)
(∆) = C

∣∣
M

(
αu, αl

)
(∆)

2. If N(αu) 6= 0
then ∀∆ > M , Cu

(
αu, αl

)
(∆) = αu(∆)

3. If N(αl) 6= 0
then ∀∆ > M , Cl

(
αu, αl

)
(∆) = αl(∆)

We give the intuition of the proof with an affine piece of αl, and consider its interaction with
the finite prefix of αu. We consider the slope SP (αu) of the finite prefix and the slope a of the
affine piece. If SP (αu) ≥ a, then according to the results of Section 3.2.1, the curve αu will remain
above SP (αu)×∆ and it cannot create any forbidden region with the affine piece. If SP (αu) is

Verimag Research Report no TR-2011-13 13/18

Matthieu Moy and Karine Altisen

lower than a, then we know that αu will “touch” periodically SP (αu)×∆ and will eventually end
up below the affine piece. This implies that the curves are not satisfiable.

As a consequence, the C operator can easily be computed algorithmically: for each point to
compute, the inf{} and the sup{} can be computed with a simple for loop iterating from 0 to M .
The expression of C∣∣

M

(
αu, αl

)
includes a SA-SA closure. When the curve has affine pieces, it is

already SA-SA, hence no SA-SA closure needs to be applied. However, for curve with no affine
pieces, since we only use the values of the SA-SA curves for ∆ ≤ 2M , it is sufficient to compute
the SA-SA closure up to 2M . Furthermore, when the curve has at least one affine piece, this
computation has to be done for the points of abscissa from 0 to M , the other points are given by
the original curve itself.

Proof for theorem 6, point 1. We prove only the equation for C∣∣
M
u
(
αu, αl

)
, the other proof would

be similar.
Denoting by M the last relevant point of the curve, we have:

Cu
(
αu, αl

)
(∆) = inf

t≥0
{αu(∆ + t)− αl(t)} (1)

= min

inf

t∈[0,M]

{
αu(∆ + t)− αl(t)

}
,

inf
t∈]M,+∞[

{
αu(∆ + t)− αl(t)

}
 (2)

The theorem basically states that the second part of the min{} in equation 2 can be omitted.
We perform the proof by contradiction. Let us assume that

inf
t∈[0,M]

{αu(∆ + t)− αl(t)} > inf
t∈]M,+∞[

{αu(∆ + t)− αl(t)}

This implies that there is a value of T in]M,+∞[for which:

αu(∆ + T)− αl(T) < inf
t∈[0,M]

{αu(∆ + t)− αl(t)}

αu(∆ + T)− αl(T) < αu(∆ + t)− αl(t), ∀t ∈ [0,M]

We distinguish two cases, depending on whether αu has relevant affine pieces (i.e. whether
N(αu) = 0 or not):

•If αu has no relevant affine pieces (N(αu) = 0): In this case, since (αu, αl) has at least
one affine piece (hypothesis of theorem), then N(αl) 6= 0 and αl = αl (by definition of the normal
form). Hence,

∀t ∈ [0,M], αu(∆ + T)− αl(T) < αu(∆ + t)− αl(t)

We define X, difference between ∆ and the abscissa of the first point of contact between αu and
the line SP (αu)× δ following ∆, by: X =

⌈
∆

∆P (αu)

⌉
×∆P (αu)−∆

By construction, X + ∆ is a multiple of ∆P (αu), hence αu(X + ∆) = ∆P (αu)× (X + ∆) (by
lemma 1). Also, 0 ≤ X ≤ ∆P (αu) ≤M ≤ T .

We set t = X in the above equation and get:

αu(∆ + T)− αl(T) < αu(∆ +X)− αl(X)
αu(∆ + T)− αl(T) < SP (αu)× (∆ +X)− αl(X)

By definition of αl, and since T > M , αl(T) is in the piecewise affine part of αl, which means there

Verimag Research Report no TR-2011-13 14/18

Matthieu Moy and Karine Altisen

is a n such that αl(T) = (alnT + bln), i.e. αl(T) is in the n-th affine piece:
αu(∆ + T) − (al

nT + bl
n) < SP (αu)×(∆ +X) − αl(X)

αl(X) − (al
nT + bl

n) < SP (αu)×(∆ +X) − αu(∆ + T)

(al
nX + bl

n) − (al
nT + bl

n) < SP (αu)×(∆ +X) − αu(∆ + T)

(by definition, al
nX + bl

n ≤ αl(X))

al
n(X − T) < SP (αu)×(∆ +X) − αu(∆ + T)

al
n(X − T) < SP (αu)×(∆ +X)

− SP (αu)×(∆ + T)
(lemma 2)

al
n(X − T) < SP (αu)×(X − T)

al
n > SP (αu)
(since X − T < 0)

In other words, the slope of one of the affine pieces of αl is steeper than the one of αu. This is
a contradiction since it implies that SP (αu) ×∆ will ultimately be strictly below αl, and since
lemma 1 implies that αu will also become strictly smaller than αl, i.e. (αu, αl) = ⊥AC.

•If αu has relevant affine pieces (N(αu) 6= 0): in this case, αu = αu and ∀t ∈ [0,M],

αu(∆ + T)− αl(T) < αu(∆ + t)− αl(t)
αu(∆ + T)− αl(T) < αu(∆)

(setting t = 0)
aun(∆ + T) + bun − αl(T) < αu(∆)

(∆ + T is in the n-th affine piece of αu)
aun(∆ + T) + bun − αl(T) < aun∆ + bun

(αu(x) ≥ aun(x) + bun by definition)
aun(T) < αl(T) (simple reordering)
aun(T) < SP (αl)× T

(by definition of SP (αl))
aun < SP (αl)

Hence the slope of αl is greater than the one of the affine piece of αu, which implies that
(αu, αl) = ⊥AC.

Proof for theorem 6, point 2. The proof is similar to the second case in the above proof. Basically,
if αu has relevant affine piece, then the slope of αl has to be lower than the slope of the affine piece
aun∆ + bun of αu with lowest slope. In other words:

∀t ≥ 0,∆ ≥ 0, αl(t) ≤ SP (αl)× t
≤ aunt
≤ αu(∆ + t)− αu(∆)

αu(∆) ≤ αu(∆ + t)− αl(t)
(since αu = αu)

αu(∆) ≤ inf
t≥0
{αu(∆ + t)− αl(t)}

αu(∆) ≤ Cu
(
αu, αl

)
Since by construction, Cu

(
αu, αl

)
≤ αu(∆), we get the result.

The symmetrical proof applies for theorem 6, case 3.

Verimag Research Report no TR-2011-13 15/18

Matthieu Moy and Karine Altisen

6
4
3

0
0 3 5 10 15

∆

αu

P (αl) = 5
P (αu) = 3
Finite prefix

αl

events

Affine piece
αl(∆) = ∆− 3

(a) Original curve

��
��
��
��

��������������

9

6
4
3

0
0 3 5 10 15

∆
αl

events

αu

Forbidden region
not found

at iteration 1

(b) One C-iteration,
no normalization

12

9

6
4
3

0
0 3 5 10 15

αu

αl

SP (αl)×∆

∆

events
M

=
15

(c) Normalization

��
��
��
��

����

����

������

���
���
���
���

����

����������

����

12

9

6
4
3

0
0 3 5 10 15

∆

αu

αl

events

(d) Result of Algorithm 2

Figure 5: Causality Closure on a Upac Curve With One Affine Piece

Based on these remarks, the causality closure algorithm for Upac curves with at least one
relevant affine piece follows:

Algorithm 2. Given a pair of curves (αu, αl) in Upac in normal form represented by pui , auj , buj ,
pli, alk, blk (i ∈ [0,M], j ∈ [1, N(αu)], k ∈ [1, N(αl)]), we denote by pu∗i , au∗j , bu∗j , pl∗i , al∗k , bl∗k the
representation of the causality closure C

(
αu, αl

)
. This representation is computed as follows:

• In all cases, the affine pieces do not change (this is ensured by cases 2 and 3 of theorem 6):

au∗j = auj , bu∗j = buj , al∗k = alk, bl∗k = blk

• To compute the points p∗i of the finite prefix, define (αu2M , α
l
2M), a pair of curves: if

N(αu) 6= 0 then αu2M = αu else the finite prefix of αu2M is the subadditive closure of αu up to
2M and it has no affine pieces (likewise for αl2M). Then:

pu∗i = C
∣∣
M
u (αu2M , αu2M) (i), pl∗i = C

∣∣
M
l (αu2M , αu2M) (i)

Figure 5 illustrates the whole causality closure algorithm on an example. The pair of curves is
given in Figure 5.(a): αu has no affine piece, and αl has one. Figure 5.(b) shows an attempt to
use the C operator on the curves without performing a normalization. Since the curves are not
SA-SA, C is able to remove some forbidden regions but misses one (the point αl(4) = 2). On the
other hand, the normalization algorithm (5.(c)) adds some points to the prefix of the curves, and
applying C∣∣

M
on the result yields a causal pair of curves, without further iteration (5.(d)).

5 Conclusion
This paper provides an algorithm to compute the causality closure on an interesting class of
curves, already used in several tools [10, 2]: curves with a finite prefix made of points, followed by
convex/concave affine pieces. This class enables the precise modeling of the beginning of the curves

Verimag Research Report no TR-2011-13 16/18

Matthieu Moy and Karine Altisen

together with the long term rate information. For this class of curves, the operators which compute
the causality closure cannot be straightforwardly deduced from the initial work on causality closure
[3]. This new algorithm can handle all the cases of curves in the class; it is efficient, quadratic in
complexity (with reasonably-sized curves, this means the computation is almost instantaneous).

Furthermore, while the problem appeared to be relatively simple, the algorithm relies on several
theorems, whose proofs were indeed non-trivial.

This work completes the theoretical and computational foundations for the connection of Real-
Time Calculus to synchronous languages, implemented in the tool ac2lus [2]. Further works include
to apply it to larger and more realistic case studies. This may involve using other verification tools
and may require changes in the abstractions used to represent the set of streams.

References
[1] K. Altisen, Y. Liu, and M. Moy. Performance evaluation of components using a granularity-

based interface between real-time calculus and timed automata. In QAPL, 2010. 1, 2.2,
3

[2] K. Altisen and M. Moy. ac2lus: Bringing SMT-solving and abstract interpretation techniques
to real-time calculus through the synchronous language Lustre. In ECRTS, Brussels, Belgium,
Jully 2010. 1, 2.2, 3, 5

[3] K. Altisen and M. Moy. Arrival curves for real-time calculus: the causality problem and its
solutions. In TACAS, March 2010. 1, 2.1, 2.2, 2.2, 3.2.1, 7, 4, 4.1, 5

[4] K. Altisen and M. Moy. Causality closure for a new class of curves in real-time calculus. In
First International Workshop on Worst-case Traversal Time (WCTT), 2011. 1

[5] A. Bouillard, L. Jouhet, and E. Thierry. Service curves in Network Calculus: dos and don’ts.
Technical report. 1

[6] A. Bouillard and É. Thierry. An algorithmic toolbox for network calculus. Discrete Event
Dynamic Systems, 18(1):3–49, 2008. 3.2.1

[7] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying critical systems by
means of the synchronous data-flow programming language lustre. Transactions on Software
Engineering, 1992. 2.2

[8] S. Künzli, F. Poletti, L. Benini, and L. Thiele. Combining simulation and formal methods for
system-level performance analysis. In DATE, pages 236–241, 3001 Leuven, Belgium, Belgium,
2006. 2.2

[9] S. Künzli and L. Thiele. Generating event traces based on arrival curves. In MMB, 2006. 2.2

[10] K. Lampka, S. Perathoner, and L. Thiele. Analytic real-time analysis and timed automata: A
hybrid method for analyzing embedded real-time systems. In EMSOFT, 2009. 1, 2.2, 3, 4.2, 5

[11] K. Lampka, S. Perathoner, and L. Thiele. Analytic real-time analysis and timed automata:
a hybrid methodology for the performance analysis of embedded real-time systems. Design
Automation for Embedded Systems, pages 1–35, June 2010. 1, 2.2, 3, 4.2

[12] J.-Y. Le Boudec and P. Thiran. Network Calculus. Springer Verlag, 2001. 2.1, 2.2

[13] L. T. Phan, S. Chakraborty, P. Thiagarajan, and L. Thiele. Composing functional and
state-based performance models for analyzing heterogeneous real-time systems. In RTSS, 2007.
1, 2.2, 3

[14] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard real-time
systems. In ISCAS, 2000. (document), 1

Verimag Research Report no TR-2011-13 17/18

Matthieu Moy and Karine Altisen

[15] Uppsala University. Cats tool, 2007. http://www.timestool.com/cats. 1, 3

[16] E. Wandeler. Modular Performance Analysis and Interface-Based Design for Embedded
Real-Time Systems. PhD thesis, PhD Thesis ETH Zurich, 2006. 3

Verimag Research Report no TR-2011-13 18/18

	Introduction
	Causality in Real-Time Calculus: Motivation and Formalization
	Real-Time Calculus Curves
	Causality and the Causality Closure

	Ultimately Piecewise Affine Curves
	Upac: Formal Definitions
	Normal form in Upac
	Properties of SA-SA Closure of Finite Prefix
	Normal Form: Definition and Algorithm

	Causality Closure in Upac
	Curves With No Affine Pieces
	C for Curves With at Least One Affine Piece

	Conclusion

