
Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

PinaVM: a SystemC Front-End Based on an Executable
Intermediate Representation

Kevin Marquet and Matthieu Moy

Verimag
Centre quation - 2, avenue de Vignate 38610 Gires - FRANCE

April 12, 2010

Abstract:

PinaVM: a SystemC Front-End Based
on an Executable Intermediate

Representation

Kevin Marquet and Matthieu Moy

Verimag Research Report no TR-2010-8

April 12, 2010

Reports are downloadable at the following address
http://www-verimag.imag.fr

http://www-verimag.imag.fr

PinaVM: a SystemC Front-End Based on an Executable
Intermediate Representation

Kevin Marquet and Matthieu Moy

Verimag
Centre quation - 2, avenue de Vignate 38610 Gires - FRANCE

April 12, 2010

Abstract

SystemC is the de facto standard for modeling embedded systems. It allows system design
at various levels of abstractions, provides typical object-orientation features and incorporates
timing and concurrency concepts. A SystemC program is typically processed by a SystemC
front-end in order to verify, debug and/or optimize the architecture. Designing a SystemC
front-end is a difficult task and existing approaches suffer from limitations. In this paper, we
present a new approach that addresses most of these limitations. We detail this approach, based
on an executable intermediate representation. We introduce PinaVM, a new, open-source Sys-
temC front-end and implementation of our contributions. We give experimental results on this
tool.

Keywords: SystemC, front-end, parser

Reviewers: Florence Maraninchi

Notes:

How to cite this report:

@techreport { verimag-TR-2010-8,
title = { PinaVM: a SystemC Front-End Based on an Executable Intermediate Representa-
tion},
author = { Kevin Marquet and Matthieu Moy},
institution = { Verimag Research Report },
number = {TR-2010-8},
year = { 2010},
note = { }
}

Kevin Marquet and Matthieu Moy

1 Introduction
SystemC is a C++ class library which facilitates modeling of systems at many different levels of abstrac-
tions ranging from functional description to cycle-accurate modeling. Ability to design at higher abstrac-
tion levels is valuable due to increasing complexity of system design. SystemC is a widely accepted system
description language and has been approved as a standard by the IEEE consortium [1]. Being a C++ library,
SystemC provides typical object-oriented features which make the task of system design easier and faster.
It also offers the concepts of timing and concurrency which are essential for hardware modeling.

SystemC is primarily used for simulation. A typical C++ compiler suffices to generate an executable
that performs simulation. However, during system design process, a SystemC program may have to be
processed for other purposes, e.g. for generating a graphical layout of the system. For such applications,
initial processing of SystemC program is done by front-end tools.

Writing a SystemC front-end is different from writing a front-end for a language. Traditional tech-
niques such as lex/yacc are not sufficient since SystemC is indeed a library, that builds an important part
of the program at run-time: a SystemC program describes a set of communicating modules, connected
together through communication channels, and the layout of the modules and channels is build after the
program is started, in a phase called the elaboration phase. After the elaboration phase is over, the pro-
gram calls the function st_start(), which starts the simulation. A SystemC front-end must therefore
consider the elaboration code in a particular way: the relevant information is not the code itself, but the
data-structure it builds, that is, the architecture.

There exists a myriad of SystemC front-ends, but we will see that none of them are really satisfactory.
Most have severe limitations, and the least limited are either unavailable or hard to install and use. Also,
none of the existing tools provide a Static Single Assignment (SSA) [7] form, which is gaining popularity
in the compiler’s community, and also proved its efficiency for formal verification [4, 11].

The contributions of this paper are the following:
• A novel approach for the development of SystemC front-ends, relying on a just-in-time compiler

(JIT) compiler to execute fragments of the program code on-the-fly during the analysis,
• The description of a tool called PinaVM applying this approach, that has strictly fewer limitations

than each of its predecessors,
• The first SystemC front-end providing a simple SSA form as output.

The tool itself is open-source, and available from http://gitorious.org/pinavm.
We first introduce SystemC in section 2. Then, we recall in section 3 the motivations and challenges

in the development of a SystemC front-end. Section 4 presents our approach, and our solution to these
challenges. Section 5 presents briefly the LLVM compiler infrastructure, on which is based our tool.
Section 6 details the technical aspect of our solution, and section 7 gives the experimental results.

2 SystemC
A SystemC program defines an architecture, i.e. a set of components and connections between them.
Components have a behavior defined by one or several processes. The SystemC library provides different
mechanisms allowing synchronization between processes.

Processes explicitly suspend themselves through two kinds of wait instructions: a process may wait
for some time to elapse, or for an event to occur. So, synchronization of processes is based on the following
SystemC specific constructs:
wait(int) Stops executing the current process, yields back the control to the scheduler and makes the

current process to wait the given duration.
wait(event) Stops executing the current process, yields back the control to the scheduler and makes the

current process to wait for the specified event to occur.
event.notify() Make processes waiting for the specified event eligible. This does not stop the execution of

the current process.
As an example, figure 1 shows a SystemC module containing one process waiting for an event, and another
notifying it.

Verimag Research Report no TR-2010-8 1/16

http://gitorious.org/pinavm

Kevin Marquet and Matthieu Moy

SC_MODULE(mytop) {
// SystemC event, instantiated
// as usual C++ object.
sc_event e;

// Process bodies
void myFctP() {

. . .
wait(e);
. . .

}
void myFctQ() {

. . .
e.notify();
. . .

}

// Constructor
SC_CTOR(mytop) {

SC_THREAD(myFctP);
SC_THREAD(myFctQ);

}
}

Figure 1: A basic SystemC module
Other primitives can be used such as delayed notification, but we do not consider them in this paper

as it does not change the complexity of designing a SystemC front-end: we are interested in the syntax of
constructs, and the way the syntax refers to the architecture of the platform, but the front-end does not need
to be aware of the purely run-time semantics.

Processes may also communicate shared variables through and through ports connected by channels,
thanks to the following primitives:
port.read() read in a port
port.write(data) write the given data to the port.
A module can therefore communicate with another by writing data to a port. The connection between ports
is made by a channel (i.e. a class inheriting from the sc_interface class defined by SystemC). The
SystemC library defines some channels like sc_signal (basically a buffer of one place), or sc_fifo (a
FIFO), but channels can be defined by the programmer. As an example, figure 2 shows two modules, each
one defining a process and a port. The two ports are bound together by a sc_signal holding an integer
value. The two processes communicate an integer value through these ports.

3 SystemC Front-ends

3.1 Motivations
Although a plain C++ compiler can be sufficient to run a program written in SystemC, many applications
other than simulation require a dedicated front-end.

These applications include hardware synthesis, which is possible on a restricted subset of SystemC; op-
timized compilation (for example, Scoot [5] shows great performance improvement by doing some static
scheduling, many virtual function calls can be statically resolved at the beginning of simulation, ...); sym-
bolic formal verification, which requires some reasoning about the source code of the program; source
code instrumentation (required by some run-time verification [9] and introspection [8] tools); advanced
debugging support, and visualization. See [15] for a more comprehensive discussion on the subject.

Our initial motivation for writing PinaVM was to be able to apply the algorithm described in [4, 11] to
translate a Static Single Assignment (SSA) intermediate code into a synchronous language for verification.

Verimag Research Report no TR-2010-8 2/16

Kevin Marquet and Matthieu Moy

SC_MODULE(reader) {
sc_in<int> in;

void read() {. . . int d = in.read(); . . . }

SC_CTOR(reader) { SC_THREAD(read); }
}

SC_MODULE(writer) {
sc_out<int> out;

void write() { . . . out.write(42); . . . }

SC_CTOR(writer) { SC_THREAD(write); }
}

int sc_main(int argc, char ** argv)
{

// Instantiate modules and signal
Reader readR; Writer writeR;
sc_signal<int> channel;

// connect them together through a signal
readR.in.bind(channel);
writR.out.bind(channel);

sc_start(); // start simulation
}

Figure 2: Communication between two modules
Indeed, the translation scheme proposed leads to very good performance in the proof engine, but has never
been applied to actual SystemC code by lack of a front-end (the implementation uses the SSA form of
GCC, but has no knowledge of the architecture, hence cannot really deal with SystemC code). Before
PinaVM, no SystemC front-end were based on SSA. Using LLVM was initially a way to get an SSA form
as output to the front-end, but revealed to be an excellent choice, since it lead us to a new approach, getting
rid of most of the limitations of its predecessors, without introducing new ones.

3.2 Issues In Developing SystemC Front-ends
Developing a frond-end for SystemC involves some non-trivial challenges. First, SystemC being a C++
library, all C++ features must be supported by the front-end. This can be achieved by either writing a parser
from scratch using the language grammar (but this is known to be require a tremendous effort), or by using
an existing C++ front-end such as GCC, LLVM, EDG etc.

Moreover, while traditional compiler front-ends consider static information to be the ones available at
compile-time (lexicography, syntax, typing, ...), a SystemC front-end has to consider the elaboration phase
as something static: it builds the architecture of the platform, which is an essential part of the role of a
SystemC front-end, and does not change during simulation. The semantics of a program depends on the
architecture, as it defines the links between modules and the communications between processes. Consider
a code fragment in Figure 2. A regular C++ parser can only parse the program and generate an intermediate
representation of the code. Modules readR and writeR are connected by signal channel. A C++ parser
does not derive this information: this necessitates the need for some extra processing to determine the in-
terconnections between modules. Some existing solutions use static analysis, but the architecture related
information may not be derivable from the static analysis of code, since some components and their inter-
connections may be generated using dynamic data. As an example, Figure 3 shows a SystemC program
where modules are instantiated in a loop.

Verimag Research Report no TR-2010-8 3/16

Kevin Marquet and Matthieu Moy

struct module1 : public sc_module {
. . .

}

int sc_main(int argc, char **argv) {
module1 * m[MAX];
for(i = 0; i < n; ++i) {

m[i] = new module1();
}

}

Figure 3: Example illustrating architecture dependent on dynamic information
So, on one hand one has to set up solutions to build the architecture, on the other hand one has to detect

the communications between processes in their behaviors. And most difficult part, the link has to be done,
in order to establish who is talking to whom in a communication.

Communications through channels provided by the SystemC library are quite easy to detect, as they are
mainly performed through a set of functions given in the LRM [1]. In the case of user-defined channels,
it is much more difficult, and no existing work is able to handle this case. Even in the simplest case, the
hard point is not to detect that a communication happens, but to know which module or process is talking
to which; and possibly which data. Those issues are more detailed in [15].

3.3 Related works
The idea of a SystemC front-end is not new: [15] lists 13 existing front-ends, and can serve as a reference
for an in-depth comparison.

Several front-ends (including sc2v, KaSCPar, ParSyC, SystemPerl) are based on traditional compilation
techniques like lex/yacc, with a dedicated grammar for SystemC. KaSCPar [2] is the most widely used,
but our experience with it is discouraging: it crashes on the examples provided in its own distribution,
and our questions to the authors remained unanswered. Given the complexity of the C++ language, it is
not surprising to see that these tools have considerable limitations with respect to C++ constructs. Other
tools reuse an existing C++ front-end (Scoot, SystemCXML are based on limited C++ front-ends, and
commercial tools like CoCentric compiler and Semantec Design’s front-ends usually use EDG, which is
a very complete C++ front-end), but most of them extract the architecture of the platform by doing some
static analysis on the elaboration code, and fail as soon as the elaboration code is non-trivial.

Pinapa [18] is our main source of inspiration. One of the key idea is to execute the elaboration code,
and consider the state of memory at the end of elaboration as the architecture of the platform. The result
is a tool developed with little effort, still having very few limitations. It was initially written as part of the
LusSy [17] verification chain.

PinaVM is a new tool, borrowing ideas to Pinapa, and introducing new ones, which make it more
general and easier to use. In particular, we show the benefit of relying on the LLVM infrastructure and its
JIT compiler for the development of a SystemC front-end.

4 PinaVM: Goals and Key Ideas
Our primary motivation for writing PinaVM was to provide means to perform efficient formal and symbolic
verification of SystemC programs. We’ve seen that designing a complete SystemC front-end is a difficult
task and existing works suffer from different limitations. PinaVM is our attempt to address these limita-
tions. Another goal is to provide a SystemC-specific optimizing compiler, although we did not experiment
in this field yet. We are not concerned by debug and visualization purposes, although PinaVM can serve as
a basis for such works.

Basically, PinaVM is SystemC front-end and therefore allows to obtain an abstract representation from
a SystemC program. It differs from previous works in the approach (and therefore the subset of SystemC
accepted as input), and the intermediate representation provided as output.

Verimag Research Report no TR-2010-8 4/16

Kevin Marquet and Matthieu Moy

We reviewed the limitations of existing SystemC front-ends in [15]. The two main sources of limitations
are the complexity of the C++ language, and the difficulty to extract the architecture information. Pinapa
was a first attempt to tackle these difficulties, by using a real C++ compiler (GCC), and executing the
elaboration phase to retrieve the architecture information. PinaVM keeps what we think are the good ideas
behind Pinapa: reuse a C++ front-end, end execute the elaboration, which gives the interesting properties
of Pinapa: very good support for C++ advanced features, and support for arbitrarily complex code in the
elaboration phase (including code depending on a configuration file, command-line arguments, ...). These
two points alone makes the subset of SystemC managed by PinaVM out of the reach of grammar-based
front-end like KaSCPar, and of other tools supporting only basic elaboration code. Hence, we focus our
comparison on Pinapa, which is the only existing work having a comparable support for complex SystemC
code. Still, Pinapa had a number of drawback relative to GCC internal, the way it represents control flow
(GCC CFG) and most of all its limited approach to retrieve information into this CFG.

4.1 GCC internals
In particular, it uses the internal API of GCC, which wasn’t designed to be modular and reusable as a
front-end. Hence, the installation and use of Pinapa is difficult. For example, since a single instance of
GCC can’t parse two C++ files, Pinapa doesn’t manage separate compilation properly.

Using the LLVM [12] compiler infrastructure instead of the internal API of GCC removes the main
technical drawback of Pinapa: LLVM is designed to be usable as a library, and we use it as such. Although
its API is not fully stable, it is clean, and the migration from a version of LLVM to another is a painless
task (we already did it for the migration from version 2.5 to 2.6, and then to 2.7 easily). LLVM provides
us many tools that can be used by PinaVM, or together with PinaVM, to perform various tasks in a simple
way. Users of SystemC front-ends written from scratch usually have to stick to what the front-end provides,
while we keep the convenience of a complete and modern compiler infrastructure available to the user. For
example, separate compilation was an open problem with Pinapa, but it’s made trivial by the command
llvm-link. Using a public API also has an interesting consequence: PinaVM does not need to patch
LLVM (while Pinapa relied on a patched version of GCC). The user can install LLVM as any other library
(with his favorite package manager for example).

4.2 A low-level representation
Also, Pinapa’s output format was mostly GCC’s abstract syntax tree (AST) decorated with SystemC-
specific information. One issue with this is that this AST contains all C++ syntactic sugars. For example, a
user of Pinapa would get different ASTs for x = x + 1;, x++; and ++x; (GCC 3.4.6 used by Pinapa has
224 different kinds of nodes for C++ ...). A lower-level representation, converting these syntactic sugars
into canonical forms is desired. Additionally, experiments have shown the benefits of the Static Single
Assignment (SSA) form for the translation to synchronous languages [4, 11]. The intermediate format of
LLVM (LLVM bitcode) has all these properties: it is SSA, doesn’t have more constructs than needed, and
the available constructs are as simple as they can be, while retaining the basic typing information. Techni-
cally, it has other advantages like having a human-readable form, a binary file format, and a data-structure
representation, with the tools to convert one of these three forms into another.

4.3 The key point: retrieving information in the AST
Unfortunately, the benefits of LLVM and its SSA bitcode also come with a number of challenges. The algo-
rithm of Pinapa to link the architecture information and the AST is not applicable on LLVM’s bitcode, and
the approach has to be re-thought completely. For example, the statement port.write(42);, translated
into an AST, is a node of type CALL_EXPR in GCC’s AST. It is easy to find the value 42 in the children of
this node, and Pinapa knows where to find the information to compute a pointer to port in the tree. This
is a limitation of Pinapa as it only allows to retrieve information stored in trees of that particular shape.

However, in LLVM’s bitcode, the computation of the arguments is done with a sequence of statements,
prior to the call expression. The approach of Pinapa, relying on a fixed form of tree, doesn’t apply here.

Verimag Research Report no TR-2010-8 5/16

Kevin Marquet and Matthieu Moy

Bitcode
Front
ends

Back
ends

C

C++

...

Optimizer

JIT
compilation

Code
Generation

Figure 4: The LLVM Infrastructure
Indeed, during the early stages of development of Pinapa, experiments were made with the SSA branch

of GCC (which became GCC 4.0 later), that provides an intermediate representation similar to the one of
LLVM. The conclusion was that the SSA form had a lot of benefits, but that its low-level nature made the
treatment of SystemC constructs too hard, if at all possible, and the experiment was abandoned.

This paper proposes a solution to this problem. Our proposal is to push the idea of “execution” one
step further. We do not only execute the elaboration phase, but also small portions of code that are used to
build the arguments of functions. In the example above, port.write(42);, the piece of code to build the
implicit argument port computes a pointer to port using a pointer to the current module, this. Since the
later is known after the elaboration phase, we can execute this piece of code with the actual value of this
as input, and get a pointer to the port involved in the port.write(42); statement. The key point here is
the executability of the bitcode. Technically, we rely on the JIT (Just In Time compilation) capabilities of
LLVM for this task.

This bidirectional link between the representation of the source code and the dynamic data-structure
can be seen as adding some reflexivity to SystemC: the code of PinaVM, and of its back-end, runs after the
elaboration, hence, during the execution of the program it analyzes. The functionality provided by PinaVM
are essentially “given a process handle, which contains a pointer to a compiled function, get a pointer to
the intermediate representation of this function”, and “given a reference to an object in the intermediate
representation, get a pointer to the actual object”. Indeed, tools targeting the addition of reflexivity features
to SystemC use a similar approach [8]. Our solution is partly based on LLVM.

5 LLVM: Low Level Virtual Machine

5.1 The LLVM infrastructure

LLVM [12] is a compiler infrastructure. Its central point is an language-independent Intermediate Repre-
sentation (the LLVM bitcode, or LLVM IR), generated by front-ends from source languages. The bitcode
can be modified by optimization passes, and can be used by various back-ends to either generate code stati-
cally, or perform Just-In-Time compilation, or even bitcode interpretation (See Figure 4 for an illustration).
Among the qualities of LLVM, we can cite:
• The language-independant intermediate representation is a bitcode in Static Single Assignment (SSA)

form.
• The LLVM IR is not an internal format devoted to change with each new version of LLVM. It is

a well-documented format that can be exploited by different tools of the LLVM infrastructure (for
example, loading a bitcode file is trivial using the LLVM library).

• It is Open Source and supported by Apple, two points which guarantee the durability of this compiler.
• Its license is very permissive, and does not impact the user’s code (as opposed to the GPL, used by

GCC, used by Pinapa).
C++ can be compiled to LLVM bitcode by two means. First, the LLVM front-end C++, called clang,

can be used. However, CLang’s support for C++ is still incomplete, and is not able to parse complicated
programs such as SystemC libraries. Second, a GCC back-end for LLVM bitcode exists: llvm-gcc.
llvm-gcc can compile any C or C++ program supported by GCC to LLVM bitcode.

Verimag Research Report no TR-2010-8 6/16

Kevin Marquet and Matthieu Moy

5.2 The LLVM bitcode
The LLVM representation is an SSA based bitcodes format (including about 50 different bitcodes).

It is rather low-level, but is completely typed: type of variables, functions’ parameters, functions’ return
are directly available. Pointer types exist and allow to represent C pointers very simply. However, the
representation keeps no information related to objects at all. It has no notion of inheritance for instance. It
is not a blocking problem, although it complicates things a bit.

struct Component : public sc_module {
int example(int x) {

int res = x + 42;
return res;

}
};

(a) Source code in C++

define linkonce_odr i32
@_ZN9Component7exampleEi
(%struct.Component* %this, i32 %x) nounwind
{

entry:
%"alloca point" = bitcast i32 0 to i32
%0 = add nsw i32 %x, 42
br label %return

return:
ret i32 %0

}

(b) corresponding human-readable bitcode file

Figure 5: A small example of LLVM representation
An LLVM bitcode is a set of basic-blocks, starting with a label (like entry:), and ending with a

possibly conditional jump (like br label %return). Basic-block contain a sequence of instructions.
Instruction usually define registers (like %0, %x, ...) as a function of previously defined registers. Each SSA
register is defined once, before being used, and is never reassigned. LLVM keeps the link between uses of
a register and its definition (use-def chain). An LLVM instruction contains arguments, and the definition of
each argument is directly pointed to. That means that, in the sequence %23 = expr; call fct (%23),
by parsing the parameters of fct, we obtain a direct pointer to the instruction defining it (in the case of a
register, the instruction pointed to is the instruction allocating it).

There does not exist a single LLVM representation for a given program, and some optimizations can be
made on it.

We notably use an LLVM pass (mem2reg) that maximizes the use of registers instead of memory
locations, allowing to reduce the use load/store instructions which complicates static analysis of bitcodes.

6 Dynamic compilation to retrieve static information
We now detail our solution for writing a SystemC front-end. Three difficult parts have to be addressed
in this approach. First, how to execute the elaboration phase? Second, how to recognize SystemC con-
structs in the LLVM IR? Last, how to link them together? These questions are dealt with respectively in
sections 6.1, 6.2 and 6.3 below. The solution makes intensive use of just-in-time compilation, which is the
main novelty of our approach. Last, section 6.5 describes our own representation.

Verimag Research Report no TR-2010-8 7/16

Kevin Marquet and Matthieu Moy

SystemC

Compilation
(llvm-g++,llvm-link)

LLVM bitcode

Execute
elaboration

Architecture

Identify
SC constructs

bitcode++

Execute
dependencies

Internal format

...
%port = expr1
%data = expr2
call write %port, %data
...

...
%port = expr1
%data = expr2
SCWrite
- data ??
- port ??

...

Thread 0 → (data d0,
port m0)

Thread i → (data di,
port mi)

Figure 6: PinaVM: Architecture and Data-Flow
6.1 Executing the Elaboration Phase
The tool PinaVM itself takes an LLVM bitcode file as input. To obtain this file, the user can compile
the SystemC program, replacing the usual C++ compiler by llvm-g++ (in the future, clang++ should
become a viable alternative), and the linker with llvm-link.

This bitcode file is loaded by PinaVM, and an execution engine (based on JIT-compilation) executes the
elaboration code, hence creating new modules, process handles, ... which are registered in global variables
of the SystemC library. We use a slightly modified version of SystemC, in which we inserted a call to
a function pinavm_callback() within the function sc_start(), which normally starts the simulation.
Instead of starting simulation, this function comes back in the code of PinaVM, which will then analyze the
processes before calling the back-end functions. Figure 6 illustrates the data-flow and the different stages.

In order for this to work, when the user compiles and link his SystemC program (with llvm-g++
and llvm-link), the SystemC library should not be linked with this bitcode file, leaving the SystemC
symbols and pinavm_callback undefined. Then, during loading, the unresolved symbols it contains are
resolved with the defined ones of PinaVM, which contains the complete SystemC library. This way, the
global variables of the SystemC library (typically, the list of processes, the list of SC_MODULEs, ...) are
shared between PinaVM and the loaded program: the list of processes, for example, is filled-in by the
program, and later read by PinaVM. When the JIT-ed code calls pinavm_callback(), the function is
resolved to the function defined in the compiled code of PinaVM.

A consequence of this is that the compiler used to generate the bitcode (i.e. llvm-g++ currently) has
to be ABI compatible with the compiler used to compile PinaVM. Currently, this is not a problem, since
llvm-g++ is based on GCC 4.2, and there have been no ABI change in GCC since version 4.0. In the
future, llvm-g++ will be implemented as a GCC plugin [3], hence, it will be easy to use the same g++
executable to compile PinaVM and to generate the bitcode. Future changes in the ABI of GCC are therefore
not likely to cause any problem (this was indeed a limitation of Pinapa, which can not be compiled with a
version of GCC greater or equal to 4.0).

Verimag Research Report no TR-2010-8 8/16

Kevin Marquet and Matthieu Moy

% "alloca point" = bitcast i32 0 to i32
% 0 = getelementptr inbounds %"struct.sc_core::sc_inout<int>"* %this, i32 0, i32 0
% 1 = getelementptr inbounds
% "struct.sc_core::sc_port<sc_core::sc_signal_inout_if<int>,1,SC_ONE_OR_MORE_BOUND>"*
% 0, i32 0, i32 0
% 2 = call %"struct.sc_core::sc_signal_inout_if<int>"*

@_ZN7sc_core9sc_port_bINS_18sc_signal_inout_ifIiEEEptEv
(%"struct.sc_core::sc_port_b<sc_core::sc_signal_inout_if<int> >"* %1)

% 3 = getelementptr inbounds %"struct.sc_core::sc_signal_inout_if<int>"* %2, i32 0, i32 1
% 4 = getelementptr inbounds %"struct.sc_core::sc_signal_in_if<bool>"* %3, i32 0, i32 0
% 5 = getelementptr inbounds %"struct.sc_core::sc_interface"* %4, i32 0, i32 0
% 6 = load i32 (...)*** %5, align 4
% 7 = getelementptr inbounds i32 (...)** %6, i32 4
% 8 = load i32 (...)** %7, align 1
% 9 = bitcast i32 (...)* %8 to void (%"struct.sc_core::sc_signal_in_if<bool>"*, i32*)*
call void %9(%"struct.sc_core::sc_signal_in_if<bool>"* %3, i32* %value_)

Figure 7: SSA code for sc in::write(int data)
Another option would be to execute the elaboration phase natively (i.e. compile it with the usual

compiler, and link it against PinaVM or load it dynamically, as Pinapa does). Loading a bitcode file and
using the JIT compiler have the advantage of requiring only one input file, which is used by PinaVM both
to get the architecture and the body of processes. But more importantly, the JIT compiler maintains a
bidirectional map between native code and the source bitcode, which allows one to get a bitcode structure
from a pointer to function.

One technical difficulty is that the elaboration phase may build objects on the stack, while it is desirable
to wrap the front-end into a function call, so that the user of the front-end can call the front-end, and then
call the back-end. Currently, objects allocated on the stack are destroyed when the front-end returns, but
an alternative would be to launch the elaboration in a separate thread, so that it is launched with its own
stack.

6.2 Finding SystemC constructs in LLVM IR
So, on one hand we have an architecture, given by the execution of the elaboration phase. On the other,
we have the behavior of processes, given by the compilation of the SystemC program. These behaviors are
composed of any C++ code in which some statements correspond to SystemC specific constructs, allowing
processes to communicate. In order to establish precisely communications between processes, one first
step is to detect these constructs in processes’ behavior. These constructs are briefly described in section 2
and are basically synchronization (wait for time, wait for event, notify an event) and communication means
(write data to a port, read in a port).

The difficult part here is that a simple line of code in the SystemC program can be compiled to dozens of
low-level lines of SSA code in the LLVM IR. Table 7 presents the code generated for a port.write(int).
Inlined, such pieces of llvm bitcodes can be hard to isolate. The first thing we do is to compile without
inlining, so that the use of SystemC constructs are isolated in a limited set of functions representing.
Therefore, the code corresponding to those constructs is compiled once, in the body of a function, and
detecting a communication only means to detect calls to these functions.

The LLVM IR includes call and invoke bitcodes that can be easily found. In addition, although
LLVM bitcodes are low-level, all type information remains as well as the (mangled) name of functions.
Therefore, constructs are easily found. Constructs currently managed by PinaVM are summed up in table
1, which also gives the name, mangled by GCC, of the corresponding C++ functions. For communication
primitives, although one different function exist for each kind of channel and each type of data held by the
channel, only the example of accesses to a sc_signal<int> is given.

Thereafter, the goal is to detect the calls to that “API”. For a wait(int:t), it is rather easy to parse
the code and identify a call to function whose mangled name is
" ZN7sc core9sc module4waitEi".

Verimag Research Report no TR-2010-8 9/16

Kevin Marquet and Matthieu Moy

Synchronization
Wait on time ZN7sc core9sc module4waitEi
Wait on event ZN7sc core9sc module4waitERKNS 8sc eventE
Notify event ZN7sc core8sc event6notifyEv

Communication Write into port ZN7sc core8sc inoutIiE5writeERKi
Read into port ZNK7sc core5sc inIiE4readEv

Table 1: Main SystemC constructs handled by PinaVM

%port = expr
%data = expr
call myfct %port, %data

Figure 8: Getting the value of arguments
However, finding functions calls is not enough, we also need to compute the values given as parameters

to functions calls. Indeed, let us consider the instruction port.write(42). Identifying the module called
through this instruction requires to know which port is written to. Afterwards, the correspondence between
this port and the target is known thanks to the information retrieved at the end of the elaboration (see
previous section).

In the instruction port.write(42), the compiled code is equivalent to a function call write(port, 42).
The value written is not important but in order to identify precisely the communication, it is necessary to
identify the port parameter. However, obtaining values given as parameters is difficult, as they can be the
result of any arbitrary computations. Figure 8 gives a simple example to illustrate this difficulty. Consider-
ing that expr can be computed in an arbitrarily complex manner, constant propagation made by compilers
does not help to figure it out in the general case. We distinguish port between the following cases:
• constant if the parameter is a constant, it is quite easy to retrieve it.
• depends on dynamic data In the general case, it is impossible to obtain the information needed

precisely, as values could depend on dynamic content. Different executions of the same piece of
code can actually refer to different value of the parameter.

• only dependant on architecture If the data we need to know is only dependant on the architecture, it
might be possible to get it. Typically, port.write(42); is equivalent to this->port.write(42);
in C++, port depends on the value of this, which isn’t known at compile time, but corresponds
to the address of a module, which is known after the elaboration phase. However, this might not be
easy, as data can be stored in structures, or accessed through complex control flow. We now detail
the algorithm used to retrieve parameters in such a case.

6.3 Linking architecture and CFG
The objective is to retrieve the address of ports and events in SystemC constructs. These are parameters
given as parameters to the SystemC function. In the LLVM IR, they are computed, before that call, by a
sequence of bitcodes. The key idea of this paper is to analyse these instructions, determine which ones are
useful to compute these addresses, and build a new LLVM function containing only these instructions and
returning the target value. Once built, this function can be executed.

The algorithm used to retrieve parameters’ values is given by function buildFct(), in figure 9. The
principle of this algorithm is detailed below:
• basic blocks are cloned and the association (original block → cloned block) is kept in ValueMap.

The new blocks are added to the new function when they are created.
• all basic blocks and instructions necessary to compute the target parameter are marked by function
markUsefulInstructions(). This is done recursively this way:

– initially, the target instruction is pushed onto the stack, and while the stack is not empty, the
first instruction is popped.

– the uses of this value are pushed onto the stack and added to the usedInstructions as well
as the associated basic block to usedBlocks. This is done by function mark() and only if
the instruction is used before the call using the target value (because instructions after this one
have no impact on the computation of the target value.

Verimag Research Report no TR-2010-8 10/16

Kevin Marquet and Matthieu Moy

– the same is done for the arguments of the current instruction
• at last, useful instructions are cloned and added to cloned basic blocks. The link between instructions

in the cloned blocks is done by function RemapInstructionswhich use for this task the association
between original and cloned values stored in the ValueMap.

The uses of instructions are directly available in the LLVM representation as it contains use-def chains
between them.

The result of this algorithm is therefore a function which takes as parameter a SystemC module and re-
turn the value wanted. This function can be natively compiled by the Just-In-Time compiler (JIT) provided
by the LLVM, then executed. Or it can be directly interpreted by LLVM. The result of this execution gives
the value of the parameter we want (typically the port involved in a port.write(...)) or the event in a
wait or notify statement).

As we said earlier, this approach only works for static data. In the case where the result of the function
depends on dynamic information, it is not possible to execute the function built. However, this is a more
general problem and not a limitation of our approach.

Our implementation in PinaVM suffers from a limitation: our analysis is limited to function bounds.
We do not handle the case where data on which depends the computation of the address of a port are given
as parameters. In the case, where these data are decidable, an inter-procedural analysis could be used to
improve things. Or we could inline the called function. However, this case is rare and existing works have
no solution either for such cases.

Although the functioning described above is well-suited to get basic types such as integers involved
in a call wait(t:int) for instance, this is not enough considering other constructs. Indeed, in a call to
event.notify(), applying the algorithm will get us the pointer to the event. We need, from this address,
to get the module notified through this call. In this goal, we need to access the information about the
architecture, computed during the elaboration phase.

6.4 User-defined communication channels
When channels connecting two ports are defined by the program itself and not provided by the SystemC
library, things are more complicated. In this case, the function called cannot be detected statically because
it is not known in advance. A solution would be to let the user define the name of the function, but it is not
working: a user-defined channel inherits from the sc_interface class and the defined virtual methods
appear as pointer to functions in the LLVM representation. Our approach allows to solve this problem. The
idea is as follows:

1. When a call to a function pointer is encountered, we get the type of the first argument, which is the
type of the object called.

2. If this is not a subtype of sc_interface, do nothing.
3. Else, we build and execute a function giving the address of the function called. This is done exactly

the same way as described in previous section.
4. From this address, we get the corresponding compiled code, thanks to the just-in-time compiler

which has a map associating LLVM representation of functions (Function*) and compiled code.
5. From the representation obtained, we see if it is a read/write communication.

6.5 Intermediate representation
Once SystemC constructs have been identified and linked to the architecture, we build an intermediate
representation that is largely based on the LLVM representation. It is composed, as in the LLVM represen-
tation, of the CFG, with basic-blocks comprising SSA instructions, but also comprises SystemC constructs.
Figure 10 illustrates the representation given by PinaVM on a 1-bit adder. One can see the normal basic
blocks in white squares. The circles represent SystemC constructs and contains all information that have
been retrieved from the architecture, notably the source ports, channels and target ports for communication.

As the same function can be used by several different processes, a construct contains in fact a set of
tuples (process→ communication).

Verimag Research Report no TR-2010-8 11/16

Kevin Marquet and Matthieu Moy

7 Experimental results
In order to evaluate our approach, we experimented PinaVM on real SystemC examples. We give three
types of experimental results. First, and most important point, we expose the ability of PinaVM to handle
real SystemC code (and not a subset) compared to existing works. Then, we briefly give experimental
results related to resource consumption. At last, we give preliminary results on verification back-ends.

7.1 Capabilities of PinaVM
One of our main goals with PinaVM is to address the limitations of existing solutions concerning the
subset of SystemC programs handled. In [15], we described a set of SystemC examples illustrating these
limitations and typical cases front-ends, available at [13] should ideally be able to take in charge. We
experimented on these examples and were able to handle almost all cases, showing that our approach is
more powerful than existing solutions.

Table 2 shows the ability of PinaVM to extract an intermediate formal representation from the given
examples, compared to Pinapa. We only compare to Pinapa in this table because, amongst the tools we
experimented, it presented the best results, thanks to the execution of the elaboration. For each tool and
each example, this table indicates 3 if the example could be analyzed, - if the example could be ana-
lyzed but with (small) adaptation of the test-case, ≈ if it works partially. The concerned case is detailed
below, Easily if the example could not be analyzed, but could be managed with a small implementation
work, Doable if the example could not be analyzed, if this is not a theoretical limitation of the approach,
but requires a huge implementation to work. And 8 if the example could not be analyzed and if it is a
fundamental limitation of the approach.

Pinapa PinaVM
elab-only 3 3

elab-easy 3 3

elab-easy-int 3 3

elab-easy-uint 3 3

elab-easy-array 3 3

elab-easy-sc stop 3 3

elab-port-bool 3 3

elab-pointer ≈ ≈
elab-instances - 3

elab-clock Easily 3

signal - 3

event 3 3

fifo 8 Easily
RAM Doable 3

Table 2: Capabilities of PinaVM compared
In this table, we can see that PinaVM is clearly able to handle a larger subset of SystemC programs than

others. The bigger difference is illustrated by the ”fifo” example. In this example, sc_interfaces used
by modules to communicate are defined by the user and can not be detected statically because functions
called are pointers, as detailed in section 6.4.

In the “elab pointer”, write() statements are performed in a loop, and the written module depends
on an index. This kind of communications depending on dynamic data are not determinable in the general
case. In this case, Pinapa and PinaVM back-ends generate the code computing the recipient of the com-
munication, introducing a potential loss of precision. In PinaVM, we use LLVM features to unroll loops.
This improves a bit the solution, but this problem is a more general one, since arbitrary loops cannot be
unrolled statically. A lot of work is done around this in the field of real-time systems, especially concerning
computation of worst case execution time [19].

In the ”RAM” example, Pinapa experience experimental problems that would require a huge work to
solve, although theoretically feasible.

Verimag Research Report no TR-2010-8 12/16

Kevin Marquet and Matthieu Moy

7.2 Existing back-ends
A SystemC front-end should provide a usable intermediate format; In our case, as we mainly target verifi-
cation tools, we were able to write back-ends to different verification back-ends. A first one to Promela, the
input language for the SPIN model-checker; there was no problems implementing this and the translation
was shown to be particularly efficient [14] . A second one is being implementing to the abstract interpreter
of B. Jeannet et al. [10] and we are automating the work described in [6].

7.3 Resources consumption
At last, we evaluate PinaVM experimentally in terms of resources’ consumption. We measured the time
and memory necessary to analyze examples presented in section 2. Table 3 gives the time needed to
compile the example “RAM” with LLVM compared to the time needed by GCC, showing that compiling
with LLVM take about the same time as compiling with GCC. The time needed by PinaVM is also given
and corrrespond to the time needed to compile. We do not report the values for other examples as they are
very similar.

GCC LLVM PinaVM
1.9s 1.8s +1.7s

Table 3: Time needed by our approach
Although those examples are not significant, in terms of complexity, our results shows that the resources

needed are very low. In addition, it is to be considered that the complexity in time is linear with the size of
the code. In addition, in the benchmark used in our translation to Promela, the time needed to translate to
Promela is negligible compared to the time needed by Spin to verify the program.

8 Conclusion
We presented a new approach to the design of SystemC front-ends, allowing to address most of the limi-
tations of existing works, therefore facilitating the construction of formal validation tools of Systems on a
Chip. This approach is mainly based on the use of a SSA-based and executable representation.

The proposal has been implemented in an available, open-source tool called PinaVM, based on the
compilation framework LLVM. Our experimental results show that PinaVM has a more powerful approach
than existing works, allowing a large subset to be processed. They also show that PinaVM’S resources
consumption is low and that PinaVM is usable for verification purpose.

We still do not manage all SystemC constructs, and in particular, we did not implement recognition of
SystemC/TLM (Transaction Level Modeling constructs as of now. However, their syntax is similar to the
constructs we already manage, therefore, supporting them is only a matter of implementation now.

Direct perspectives to this work include the design of validation back-ends benefiting from our interme-
diate representation. Actual verification back-ends of our tool show that our representation is well-suited
for verification but does not benefit from its SSA nature. Perspectives include the connection of our in-
termediate representation to verification tools based on synchronous language (like SMV [16]), as it has
already been showed that they are naturally and efficiently translated from SSA code. A second perspective
we consider is to connect to simulators, pushing the idea of “execution” one step even further. The idea
is to optimize the program thanks to information retrieved by PinaVM, notably concerning inter-processes
communications. This is possible, since our intermediate representation is executable.

References
[1] IEEE std 1666 - 2005 IEEE standard SystemC language reference manual. IEEE Std 1666-2005. 1,

3.2

[2] KaSCPar - Karlsruhe SystemC parser suite. http://www.fzi.de/
index.php/de/component/content/article/238-ispe-sim/
4350-sim-tools-kascpar-examples. 3.3

Verimag Research Report no TR-2010-8 13/16

http://www.fzi.de/index.php/de/component/content/article/238-ispe-sim/4350-sim-tools-kascpar-examples
http://www.fzi.de/index.php/de/component/content/article/238-ispe-sim/4350-sim-tools-kascpar-examples
http://www.fzi.de/index.php/de/component/content/article/238-ispe-sim/4350-sim-tools-kascpar-examples

Kevin Marquet and Matthieu Moy

[3] DragonEgg - using LLVM as a GCC backend, 2010. http://dragonegg.llvm.org/. 6.1

[4] L. Besnard, T. Gautier, M. Moy, J.-P. Talpin, K. Johnson, and F. Maraninchi. Automatic transla-
tion of C/C++ parallel code into synchronous formalism using an SSA intermediate form. In Ninth
International Workshop on Automated Verification of Critical Systems (AVOCS’09). Electronic Com-
munications of the EASST, September 2009. 1, 3.1, 4.2

[5] N. Blanc, D. Kroening, and N. Sharygina. Scoot: A tool for the analysis of SystemC models. In
TACAS, pages 467–470, 2008. 3.1

[6] T. Bouhadiba, F. Maraninchi, and G. Funchal. Formal and executable contracts for transaction-
level modeling in systemc. In ACM International Conference on Embedded Sofware (EMSOFT’09),
Grenoble, France, Oct. 2009. 7.2

[7] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck. Efficiently computing static single
assignment form and the control dependence graph. ACM Transactions on Programming Languages
and Systems (TOPLAS), 13(4):451–490, 1991. 1

[8] C. Genz and R. Drechsler. Overcoming limitations of the SystemC data introspection. In DATE,
2009. 3.1, 4.3

[9] C. Helmstetter, F. Maraninchi, and L. Maillet Contoz. Full simulation coverage for SystemC
transaction-level models of systems-on-a-chip. Formal Methods in System Design, 35(Number
2):pages 152–189, 06 2009. 3.1

[10] B. Jeannet. Relational interprocedural verification of concurrent programs. In Software Engineering
and Formal Methods, SEFM’09. IEEE, Nov. 2009. 7.2

[11] H. Kalla, J.-P. Talpin, D. Berner, and L. Besnard. Automated translation of c/c++ models into a syn-
chronous formalism. In ECBS ’06: Proceedings of the 13th Annual IEEE International Symposium
and Workshop on Engineering of Computer Based Systems, pages 426–436, Washington, DC, USA,
2006. IEEE Computer Society. 1, 3.1, 4.2

[12] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis & transfor-
mation. In CGO ’04: Proceedings of the international symposium on Code generation and optimiza-
tion, page 75, Washington, DC, USA, 2004. IEEE Computer Society. 4.1, 5

[13] K. Marquet and M. Moy. http://greensocs.sourceforge.net/pinapa/download
/files/frontends-testcases.tar.gz. 7.1

[14] K. Marquet, M. Moy, and B. Jeannet. An asynchronous semantics of systemc in promela. Technical
Report TR-2010-7, Verimag Research Report, 2010. 7.2

[15] K. Marquet, M. Moy, and B. Karkare. A theoretical and experimental review of SystemC front-ends.
Technical Report TR-2010-4, Verimag Research Report, 2010. 3.1, 3.2, 3.3, 4, 7.1

[16] K. L. McMillan. The SMV system, Nov. 06 1992. 8

[17] M. Moy, F. Maraninchi, and L. Maillet-Contoz. Lussy: A toolbox for the analysis of systems-on-
a-chip at the transactional level. In ACSD ’05: Proceedings of the Fifth International Conference
on Application of Concurrency to System Design, pages 26–35, Washington, DC, USA, 2005. IEEE
Computer Society. 3.3

[18] M. Moy, F. Maraninchi, and L. Maillet-Contoz. Pinapa: an extraction tool for SystemC descriptions
of systems-on-a-chip. In EMSOFT ’05: Proceedings of the 5th ACM international conference on
Embedded software, pages 317–324. ACM, 2005. 3.3

[19] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström. The worst-
case execution-time problem—overview of methods and survey of tools. ACM Trans. Embed. Com-
put. Syst., 7(3):1–53, 2008. 7.1

Verimag Research Report no TR-2010-8 14/16

http://dragonegg.llvm.org/

Kevin Marquet and Matthieu Moy

Stack stack;
Set usedInstructions, usedBlocks;

bool mark(Value* v) {
if (! usedInstructions.contains(v)) {

usedInstructions.push(argAsInst);
stack.push(argAsInst);

}
block = v->getparent();
if (usedBlocks.contains(block))

used_bb.push(block);
}

void markUsefulInstructions() {
while (! stack.empty()) {

Value* value = stack.pop();
foreach Use use in value->getUses() {

if (isDefinedBeforeTargetInst(use))
mark(use);

}
foreach Arg arg in value->getUses() {

if (isDefinedBeforeTargetInst(use))
mark(use);

}
}

}

void cloneBlocks() {
foreach BasicBlock bb in origFct.getBlocks() {

if (usedBlocks.contains(bb)) {
BasicBlock *NewBB = createBasicBlock();
valueMap.insert(bb, NewBB);

}
}

}

void buildFct(Value* targetValue) {
clones = cloneBlocks();
Stack.push(targetValue);
markUsefulInstructions();

foreach BasicBlock bb in origFct.getBlocks() {
if (usedBlocks.contains(bb)) {

foreach Instruction inst in bb {
if (used_instructions.contains(inst)) {

clonedInst = inst.clone();
RemapInstruction(clonedInst, valueMap);
valueMap.insert(inst, clonedInst);

}
}

}
createRet();

}
}

Figure 9: Algorithm to retrieve parameters’ values

Verimag Research Report no TR-2010-8 15/16

Kevin Marquet and Matthieu Moy

sc_event end;
int x = 0, y = 0;
sc_in<bool> xPort, yPort;
sc_out<bool> carry;

bool carry;

do {
x = xPort.read();
wait(42);

} while (x == 0) {

do {
y = yPort.read();
wait(42);

} while (y == 0);
carry = x | y;
if (carry == 0)

carry.write(false);
else

carry.write(true);
end.notify();

x = xPort.read()

icmp...
br...

wait(42)

y = yPort.read()

icmp... br...

wait(42)

carry = ...

carry.write
(true)

carry.write
(false)

end.notify()

Figure 10: PinaVM intermediate representation

Verimag Research Report no TR-2010-8 16/16

	Introduction
	SystemC
	SystemC Front-ends
	Motivations
	Issues In Developing SystemC Front-ends
	Related works

	PinaVM: Goals and Key Ideas
	GCC internals
	A low-level representation
	The key point: retrieving information in the AST

	LLVM: Low Level Virtual Machine
	The LLVM infrastructure
	The LLVM bitcode

	Dynamic compilation to retrieve static information
	Executing the Elaboration Phase
	Finding SystemC constructs in LLVM IR
	Linking architecture and CFG
	User-defined communication channels
	Intermediate representation

	Experimental results
	Capabilities of PinaVM
	Existing back-ends
	Resources consumption

	Conclusion

