
Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

What can You Verify and Enforce at
Runtime?

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

Verimag Research Report no TR-2010-5

January 09, 2010

Reports are downloadable at the following address
http://www-verimag.imag.fr

http://www-verimag.imag.fr

What can You Verify and Enforce at Runtime?

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

January 09, 2010

Abstract

The underlying property, its definition and representation play a major role when monitoring
a system. Having a suitable and convenient framework to express properties is thus a concern
for runtime analysis. It is desirable to delineate in this framework the spaces of properties
for which runtime analysis approaches can be applied to. This paper presents a unified view
of runtime verification and enforcement of properties in the Safety-Progress classification.
Firstly, we extend the Safety-Progress classification of properties in a runtime context. Sec-
ondly, we characterize the set of properties which can be verified (monitorable properties) and
enforced (enforceable properties) at runtime. We propose in particular an alternative definition
of “property monitoring” to the one classically used in this context. Finally, for the delineated
spaces of properties, we obtain specialized verification and enforcement monitors.

Keywords: runtime verfication, runtime enforcement, monitor, property, r-property, safety-progress,
finitary property, infinitary property, synthesis, Streett, enforcement monitor

Reviewers: Howard, Barringer, Klaus Havelund, Thierry Jéron, Hervé Marchand

Notes: First version January 09, 2010 - Updated December 20, 2010 (typos, design of pictures, adding
Theorem 8)

How to cite this report:

@techreport { ,
title = {What can You Verify and Enforce at Runtime?},
authors = { Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier},
institution = { Verimag Research Report },
number = {TR-2010-5},
year = { 2010},
note = { }
}

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

Contents
1 Introduction 2

2 Preliminaries and notations 4
2.1 Sequences and execution sequences . 4
2.2 Properties . 5

3 Related Work 5
3.1 Runtime verification . 6
3.2 Runtime enforcement . 7
3.3 Synthesis of monitors . 8

4 The SP classification in a runtime context 8
4.1 Informal description . 8
4.2 The language-theoretic view of r-properties . 9

4.2.1 Construction of r-properties . 9
4.2.2 Some useful facts about the language view . 11

4.3 The automata view of r-properties . 11
4.3.1 Streett automata . 12
4.3.2 The hierarchy of automata. 12
4.3.3 From a DFA to a Streett automaton . 14

4.4 Characterizing states of Streett automata . 17
4.5 Summary . 17

5 Monitorability wrt. the SP classification 19
5.1 Monitorable properties according to the classical definition of monitorability 19

5.1.1 The classical definition of monitorability . 19
5.1.2 Characterization of monitorable properties according to the classical definition . . 20

5.2 Considering other truth domains ? . 21
5.3 Monitorable properties according to an alternative definition of monitorability 22

5.3.1 Property evaluation in a truth-domain. 22
5.3.2 An alternative definition of monitorability . 23
5.3.3 Characterization of monitorable properties . 23

5.4 Characterizations in the automata view . 24
5.5 Summary . 26

6 Enforceability wrt. the SP classification 27
6.1 Enforcement criteria . 27
6.2 Enforceable properties . 28

7 Monitor synthesis 30
7.1 Monitor: A general definition . 30
7.2 Synthesizing monitors for runtime verification . 30
7.3 Synthesizing monitors for runtime enforcement . 32
7.4 Discussion . 34

8 Conclusion and future works 34

A Proofs 37
A.1 Proofs for Section 4 . 37

A.1.1 Proof of Property 4.2: Closure of r-properties . 37
A.1.2 Proof of Theorem 4.1: Soundness of the transformations of DFAs to Streett automata 38

A.2 Proofs for Section 5 . 42
A.2.1 Proof of Lemma 5.1: Closure of monitorable properties under boolean operations . 42

Verimag Research Report no TR-2010-5 1/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

A.2.2 Proof of Theorem 5.1: Obligation(Σ) ⊂ MPc 42
A.2.3 Proof of Lemma 5.2: MP∗(B3), safety, and guarantee properties 43
A.2.4 Proof of Theorem 5.2: Multi-valued characterization of alternative monitorability . 43
A.2.5 Proof of Property 5.1: Correspondence between Streett automata states and B4 . . 44

A.3 Proofs for Section 6 . 45
A.3.1 Proof of Property 6.1: Equivalence between enforcement criteria 45
A.3.2 Proof of Theorem 6.3: Enforceable m-reactivity properties are response properties 46

1 Introduction
In the past decades, we have seen the emergence of a world in which information systems are ubiquitous.
System dissemination entails a growing need of confidence. System failures in history showed limits of
existing engineering methodologies and enabled the emergence of formal methods [CW96]. Ideally, one
would like to validate a program prior to its execution. However, static validation methods such as model-
checking [EC80] suffer from limits preventing their use in real large-scale applications. For instance, those
techniques are often bound to the design stage of a system and hence they are not shaped to face-off speci-
fication evolution. Even when those techniques (e.g., static analysis [CC92]) do scale well, they are limited
by the properties they can check, and may not be able to check interesting behavioral properties. Thus, the
verification of some properties, and elimination of some faults, have to be complemented using methods
relying on dynamic analysis. In this paper, we are interested in runtime verification and runtime enforce-
ment. These methods, said to be incomplete, operate on one execution of the system. Acknowledging the
loss of completeness enables to face-off the limitations of static validation methods.

Runtime-verification [Run10, PZ06, BLS10, BLS07, HG08] is an effective technique to ensure at exe-
cution time that a system meets a desirable behavior. It can be used in numerous application domains,
and more particularly when integrating together untrusted software components. A possible approach for
runtime verification consists in analyzing a run of the system under scrutiny in an incremental way using a
decision procedure called a monitor. This monitor may be generated from a user-provided high level spec-
ification (consisting in e.g., a property expressed by temporal logic formula or an automaton). The primary
goal of this monitor is to detect violation or satisfaction with respect to the given specification. It can be
viewed as a state machine (with an output function) processing an execution sequence (step by step) of the
monitored program, and producing a sequence of verdicts (truth values taken from a truth-domain) indicat-
ing specification satisfaction or violation. The major part of research endeavor was done on the monitoring
of safety properties (stating that something bad can never happen), as seen for example in [RCB08, HR02].
Moreover, it has been shown by Viswanathan and Kim [VK04] that some computability constraints apply
to runtime monitors. Considering the monitoring of safety properties, the violation detection mechanism
used in the runtime device needs to be effective. Thus, for a safety property to be monitorable it has to
be co-recursively enumerable. However, the authors of [dR05] show that, when monitoring is purposed to
detect violations of a property, safety properties are not the only monitorable properties. Recently, a new
definition of monitorability, where monitoring is not only purposed to detect violations but also to detect
satisfactions, was given by Pnueli in [PZ06] and it has been proven in [BLS07] that safety and co-safety
properties represent only a proper subset of the set of the monitorable properties.

Runtime enforcement is an extension of runtime verification aiming to circumvent property violations.
It was initiated by the work of Schneider [Sch00] on the so-called security automata. In this work the
enforcement monitor watches the current execution sequence and halts the underlying program whenever
it deviates from the desired property. Schneider announced that security automata are able to enforce
the whole class of safety properties. The aforementioned results from Viswanathan on the computability
constraints of monitors benefit to security automata as well. Thus the known class of enforceable properties
with security automata was refined into the class of co-recursively enumerable properties. Later, Hamlen
et al. [HMS06] addressed the question of determining, in general, the class of properties enforceable on
programs seen as Turing machines. The authors showed that enforcement at runtime can be addressed for
co-recursively enumerable properties.

2/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

More recently, Ligatti et al. [LBW09] showed that it is possible to enforce at runtime more than safety
properties. Using more powerful enforcement mechanisms called edit-automata, it is possible to enforce
the larger class of infinite renewal properties. Within the classical safety-liveness dichotomy, the renewal
class is a super set of the safety class which contains some liveness properties (but not all). More than
simply halting an underlying program, edit-automata can also suppress (i.e., freeze) and insert (frozen)
actions in the current execution sequence.

Several tools have been proposed in this context, and in practice there is not always a clear distinction
between runtime-verification and runtime-enforcement. For instance a verification monitor may execute an
exception handler when detecting an error, hence modifying the initial program execution.

Motivations and contributions. Based on the amount of works published and existing tools now avail-
able within the runtime-validation community, it appears that this technique progressed a lot in the last
decade and seems now mature enough to address concrete industrial challenges. However, some interest-
ing questions remain about its expressiveness. More precisely, the main questions we consider in this work
are the following: what are the classes of properties that can be handled at runtime, and is there a distinct
answer for runtime verification and runtime enforcement? These questions are not original in themselves,
but we propose here to address them within a unified framework: the Safety-Progress (SP) classification of
properties [MP90, CMP92b]. The contributions of the paper are then the following:

1. to propose a suitable framework for specifying and reasoning about properties in a runtime context;

2. to integrate and improve within this framework some existing expressiveness results related to run-
time monitoring [PZ06, BLS10, BLS07], and to propose an alternative definition of the notion of
monitorability, leveraging the semantics of finite execution sequences;

3. and to improve some recent results related to property enforcement [FFM08, FFM09a], giving a
more accurate classification of enforceable properties;

4. to get a generic monitor synthesis technique, allowing to produce either a verification or an enforce-
ment monitor from the same property description.

Let us illustrate a bit more the second motivation. Consider a system on which it is possible to evaluate
two atomic propositions called p and q. At system runtime, system events are fed to a monitor. Each event
is a pair containing the truth-values of p and q. Now let us consider the following requirement: “Either p
is always true or q is eventually true”. This means that, for the observed sequence of events, either p is
evaluated to true on every event, or there exists an event on which q is evaluated to true. Now consider the
two following possible executions of the system, represented by their sequences of events of length 2:

• {p, q} · {p, q}: on both events p is true, q is false;

• {p, q} · {p, q}: on the first event p is true and q is false, on the second event p and q are false.

After observation of the first sequence of events, one can reasonably state that the property is “currently”
true. Thus, if the program execution stops after this observation, the requirement is satisfied. Indeed, p
has been always true during the program execution. Conversely, after observing the second sequence of
events, one can reasonably state that the property is “currently” false. Indeed, the last observed event does
not fulfill the requirement (neither p nor q evaluate to true).

We will see in Section 5 that this kind of property is monitorable according to the classical definition
of monitorability. Moreover, a monitor built following this definition of monitorability would produce the
same verdict for those two sequences, namely a don’t know verdict. This situation is undesirable from our
point of view. Thus, we will propose an alternative definition of monitorability able to better cope with
these kinds of properties, and to give more precise verdicts.

This paper is a revised and extended version of [FFM09b] which appeared in the 9th international
workshop on Runtime Verification. This new version brings the following additional contributions. First,
it contains a more comprehensive theoretical basis by revisiting and extending results about the Safety-
Progress classification of properties. Moreover, we provide additional results on monitorability. Further-
more, the synthesis of verification and enforcement monitors is given with full details (it was previously

Verimag Research Report no TR-2010-5 3/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

sketched). Finally, the presentation has been improved by means of additional examples, corrected results,
and complete proofs.

Paper Organization. The remainder of this article is organized as follows. First, Section 2 introduces
some preliminary notations used throughout this paper and Section 3 overviews related work on the issues
we address. In Section 4, we propose an extension of the Safety-Progress classification of properties in a
runtime verification context. Section 5 is dedicated to runtime monitoring, whereas Section 6 is dedicated
to runtime enforcement. In both sections we provide some characterizations of the classes of properties
that can be handled by these techniques, with respect to the Safety-Progress framework. Then, in Section 7,
we show how to obtain runtime verification and enforcement monitors for the delineated sets of properties.
Finally, we give some concluding remarks and future work in Section 8.

In order to facilitate the reading of this article, some of the proofs have been sketched. Complete proofs
can be found in Appendix.

2 Preliminaries and notations

This section introduces some background, namely the notions of program execution sequences and program
properties.

2.1 Sequences and execution sequences

Considering a finite set of elements E, we define notations about sequences of elements belonging to E. A
sequence σ containing elements ofE is formally defined by a total function σ : I → E where I is either the
integer interval [0, n] for some n ∈ N, or N itself (the set of natural numbers). We denote by E∗ the set of
finite sequences over E (partial function from N), by E+ the set of non-empty finite sequences over E, and
by Eω the set of infinite sequences over E. The set E∞ def

= E∗∪Eω is the set of all sequences over E. The
empty sequence of E is denoted by εE or ε when clear from context. The length (number of elements) of a
finite sequence σ is noted |σ| and the (i+1)-th element of σ is denoted by σi. For a finite sequence σ ∈ E∗,
we may use last(σ) to denote the last element of σ, i.e., σ|σ|−1. For two sequences σ ∈ E∗, σ′ ∈ E∞, we
denote by σ · σ′ the concatenation of σ and σ′, and by σ ≺ σ′ the fact that σ is a strict prefix of σ′. The
sequence σ is said to be a strict prefix of σ′ ∈ E∞ when ∀i ∈ [0, |σ| − 1], σi = σ′i and |σ| < |σ′|. When
σ′ ∈ E∗, we note σ � σ′ def

= σ ≺ σ′∨σ = σ′. For σ ∈ E∞ and n ∈ N, σ···n is the sub-sequence containing
the n + 1 first elements of σ. Also, when |σ| > n, the subsequence σn··· is the sequence containing all
elements of σ but the n first ones. The set of prefixes pref (σ) of a sequence σ ∈ E∞ is defined as follows.
If σ ∈ E∗, then pref (σ)

def
= {σ′ ∈ E∗ | σ′ � σ}. If σ ∈ Eω , then pref (σ)

def
= {σ′ ∈ E∗ | σ′ ≺ σ}.

The set Pref (X) of prefixes of a set of sequences X is the union of the sets of prefixes of X-sequences:
Pref (X)

def
=
⋃
σ∈X pref (σ). The set Pref (X,σ) of prefixes of a set of sequences X which are also strict

prefixes of a sequence σ ∈ Σ∞ is: Pref ≺(X,σ)
def
= Pref (X) ∩ pref (σ) \ {σ}. The σ-continuations, i.e.,

the continuations of a sequence σ, are the finite and infinite sequences belonging to the set {σ′ ∈ E∞ |
σ ≺ σ′}. For σ′ ∈ E∞ a σ-continuation, if σ′ = σ · σ′′, then σ′′ ∈ E∞ is called an extension of σ.

A program P is considered as a generator of execution sequences. We are interested in a restricted
set of operations the program can perform. These operations influence the truth-value of properties the
program is supposed to fulfill. Such execution sequences can be made of access events on a secure system
to its resources, or kernel operations on an operating system. In a software context, these events may
be abstractions of relevant instructions such as variable modifications or procedure calls. These events
may also be fed from the underlying program and contain the evaluation of some propositions of the
system under scrutiny. We abstract these operations by a finite set of events, namely an alphabet Σ. We
denote by PΣ a program for which the alphabet is Σ. The set of execution sequences of PΣ is denoted by
Exec(PΣ) ⊆ Σ∞. This set is prefix-closed, i.e., ∀σ ∈ Exec(PΣ),∀σ′ ∈ Σ∗, σ′ � σ ⇒ σ′ ∈ Exec(PΣ).
In the remainder of this article, we use an alphabet Σ.

4/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

2.2 Properties

Properties as sets of execution sequences. A finitary property (resp. an infinitary property, a property)
is a subset of execution sequences of Σ∗ (resp. Σω , Σ∞). Considering a given finite (resp. infinite, finite
or infinite) execution sequence σ and a property φ (resp. ϕ, θ), when σ ∈ φ, noted φ(σ) (resp. σ ∈ ϕ,
noted ϕ(σ), σ ∈ θ, noted θ(σ)), we say that σ satisfies φ (resp. ϕ, θ). A consequence of this definition is
that properties we will consider are restricted to single execution sequences1, excluding specific properties
defined on power-sets of execution sequences (like fairness, for instance).

Runtime properties. In this paper we will focus on properties to be evaluated at runtime. As stated in
the introduction, this means that we would have to consider finite and infinite execution sequences (that
a program may produce). A runtime verification technique should address both kinds of sequences in a
uniform way. As so, we introduce a notion of “runtime property” (r-property) as a pair of finite/infinite
execution sequence sets2:

DEFINITION 2.1 (RUNTIME PROPERTIES) An r-property is a pair (φ, ϕ) ⊆ Σ∗ × Σω . The property φ is
called the finitary part of the r-property, whereas ϕ is called the infinitary part of the r-property.

Intuitively, the finitary property φ represents the desirable property that finite execution sequences should
fulfill, whereas the infinitary property ϕ is the expected property for infinite execution sequences. Notations
for r-properties follow from the notations for finitary and infinitary properties. For an r-property (φ, ϕ), its
negation, noted (φ, ϕ), is defined as (Σ∗ \ φ,Σω \ϕ). Boolean combinations of r-properties are defined in
a natural way: (φ1, ϕ1) ∨ (φ2, ϕ2) = (φ1 ∪ φ2, ϕ1 ∪ ϕ2), and (φ1, ϕ1) ∧ (φ2, ϕ2) = (φ1 ∩ φ2, ϕ1 ∩ ϕ2).
Considering an execution sequence σ ∈ Exec(PΣ), we say that σ satisfies (φ, ϕ) when σ ∈ Σ∗ ∧ φ(σ) ∨
σ ∈ Σω ∧ ϕ(σ). For an r-property Π = (φ, ϕ), we note Π(σ) (resp. ¬Π(σ)) when σ satisfies (resp.
does not satisfy) (φ, ϕ). The set of prefixes of an r-property Π = (φ, ϕ) is defined as: Pref (Π) =
Pref (φ) ∪ Pref (ϕ). Intersection between finitary, infinitary properties and r-properties is straightforward
and denoted using operator u, e.g., Σ∗ u (φ, ϕ) = φ.

Evaluation of r-properties. Monitorability, enforceability, and monitor synthesis are based on the eval-
uation of r-properties by a monitor. Evaluating an execution sequence σ wrt. an r-property consists in
producing a verdict regarding the current property-satisfaction of σ or future satisfactions of the possible
σ-continuations. As a matter of facts, the verdicts produced by monitors are not necessarily usual Boolean
values: they are truth-values taken from a truth-domain. A truth-domain is a lattice, i.e., a partially ordered
set with an upper-bound and a lower-bound. Examples of truth-domains are the classical Boolean domain
{true, false} or the real-number interval [0, 1], or any relevant set of values used for evaluating properties.
Considering a truth-domain B, an r-property Π and a finite execution sequence σ, the evaluation of σ ∈ Σ∗

wrt. Π in B, noted [[Π]]B(σ), is an element of B depending on Π(σ) and satisfaction of σ-continuations wrt.
Π.

The sets of monitorable and enforceable properties (Sections 5 and 6) rely both upon the truth-domain
and evaluation function we consider.

3 Related Work

This section overviews some related work on the topics we will discuss in this paper3. In particular we
summarize the basic concepts used for runtime verification and runtime enforcement, and we recall the
existing results in terms of sets of properties that can be addressed by each of these techniques.

Verimag Research Report no TR-2010-5 5/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

events verdictsMonitor

σ |= Π? B

Verification

ω ∈ B∞Πσ ∈ Σ∞

(a) Principle of runtime verification

events events

memory

Monitor

(o � σ)

σ |= Π? o |= Π
Π

Enforcement

(b) Principle of runtime enforcement

3.1 Runtime verification
Basic concepts. As stated in the introduction, the notion of runtime verification can be formalized by a
verification monitor (see Fig. 1a) whose behavior consists in translating a sequence of events σ ∈ Σ∞ into
a sequence of verdicts ω ∈ B∞, where B is a given truth domain. This monitor is defined with respect to an
r-property Π, and the sequence of verdicts ω is expected to give some information on the evaluation of Π on
σ with respect to B. Thus, one of the problems to be addressed is that each evaluation [[Π]]B(σ···n) = ω···n
of a finite sequence should not only give some relevant information on Π(σ···n), but also possibly on Π(σ).
In this context several notions of monitorability were proposed in the past, and we review below the most
important results.

Monitorability in the sense of [VK04]. The first characterization of monitorable properties was given by
Viswanathan and Kim in [VK04]. Monitorable properties were characterized as a strict subset of safety pro-
perties defined over infinite sequences. The authors show that, due to the undecidability of some problems,
a verification monitor is limited by some computability constraints Moreover, this definition of monitora-
bility was specifically defined for the detection of errors. Thus, the mechanism used for the error detection
needs to be effective. Consequently, a property ϕ ⊆ Σω was defined to be monitorable if it is a safety
property and Σ∗ \ Pref (ϕ) is recursively enumerable. The authors establish the equality between this set
of properties and the class Π0

1 of the arithmetical hierarchy which is the class of co-recursively enumerable
properties.

Monitorability in the sense of [PZ06]: Pnueli et al. give a more general notion of monitorable properties
relying on the notion of verdict determinacy for an infinite sequence. More precisely, considering a finite
sequence σ ∈ Σ∗, a property θ ⊆ Σ∞ is negatively determined (resp. positively determined) by an
execution sequence σ if σ and each of its possible continuations does not satisfy (resp. does satisfy)
θ. Then, θ is σ-monitorable if σ has a continuation s.t. θ is negatively or positively determined by this
continuation. Finally, θ is monitorable, if it is σ-monitorable for every σ ∈ Σ∗. The idea is that it becomes
unnecessary to continue the execution of a θ-monitor after reading σ if θ is not σ-monitorable.

In Section 5, we give the corresponding formal definition in the context of r-properties.

Monitorability in the sense of [BLS07]: Bauer et al., inspired from Pnueli’s definition of monitorable
properties, proposed a slightly different one based on the notion of good and bad prefix introduced in
model-checking by Kupferman and Vardi [KYV01]. The intuitive idea is that with monitorable properties
it is possible to “detect” a violation or satisfaction of infinitary properties with finite sequences. More
precisely, the definition of monitorable properties comes in the following way. Considering an infinitary
property ϕ ⊆ Σω , a prefix σ is said to be a bad prefix, noted bad prefix (σ, ϕ) (resp. good prefix, noted
good prefix (σ, ϕ)) of ϕ if ∀w ∈ Σω,¬ϕ(σ · w) (resp. ∀w ∈ Σω, ϕ(σ · w)). Then, a prefix σ is said to be
ugly if it does not have good nor bad continuation, i.e., ¬∃v ∈ Σω, bad prefix (σ · v, ϕ) ∨ good prefix (σ ·
v, ϕ). Finally, a property is said to be monitorable if it has no ugly prefix, formally: ∀σ ∈ Σ∗,∃v ∈
Σ∗, bad prefix (σ · v, ϕ) ∨ good prefix (σ · v, ϕ).

1This is the distinction, made by Schneider [Sch00], between properties and (general) policies. The set of properties (defined over
single execution sequences) is a subset of the set of policies (defined over sets of execution sequences).

2Using a pair of sets makes the distinction between the finitary and infinitary parts of the property more explicit.
3The interested reader may consult [HG08] (resp. [Fal10]) for more information on runtime verification (resp. runtime enforce-

ment).

6/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

About previous characterizations of monitorable properties: The first characterization of monitorable
properties given in [VK04] may seem arbitrary. It characterizes the class of monitorable properties directly
as a class of properties. However, let us remark that, in this definition a monitor is dedicated to the detection
of “bad behaviors” from finite observations. It seems reasonable that a verification monitor is used to detect
“good” behaviors as well, e.g., the satisfaction of a desired property. This is actually the idea behind the
definition given in [PZ06]. The last definition, given in [BLS07], is equivalent to the previous one on Σω .
We will refer to the definition given in [PZ06] as the classical definition as it was enunciated before the
definition in [BLS07]. Furthermore, Bauer et al. have shown that, according to this definition, the set of
monitorable properties is a strict superset of safety and co-safety properties. These classes of properties
are taken from the classical Safety-Liveness classification of properties [Lam77, AS85]. They also gave an
example of request/acknowledge property which is not monitorable. Such a property can be framed in the
set of response properties (see Section 4) wrt. the SP classification (see Example 5.2 in Section 5).

3.2 Runtime enforcement
Basic concepts. In runtime enforcement, the purpose of an enforcement monitor (see Fig. 1b) used at
runtime is to transform an input sequence σ ∈ Σ∞ into an output sequence o ∈ Σ∞ with respect to an
r-property Π. The expected constraints on o are (usually) the following:

soundness: o should be a correct execution sequence, i.e., Π should evaluate to true on o ;

transparency: the enforcement operation should preserve as much as possible the initial program behavior
by modifying the input sequence in a minimal way. A possible interpretation is that when σ does not
satisfy Π then o should be the longest correct prefix of σ.

According to this definition, the set of properties that can be enforced at runtime clearly depends on the
capabilities of the enforcement mechanism. To this purpose, the authors of [HMS06] proposed a very gen-
eral classification of enforceable properties: a program is viewed as a Turing machine and the enforcement
mechanisms they considered were based respectively on static analysis, program rewriting and runtime
enforcement monitors. Other works [Sch00, VK04, LBW09, LBW05, FFM09a] focused more specifically
on runtime enforcement monitors and proposed a characterization of enforceable properties in this context.
We summarize these results below.

Security automata and co-recursively enumerable safety properties: Schneider introduced security
automata (a variant of Büchi automata) as the first runtime mechanism for enforcing properties in [Sch00].
The announced set of enforceable properties with this kind of security automata is the set of safety pro-
perties. Then, Schneider, Hamlen, and Morrisett refined the set of enforceable properties and showed that
these security automata were actually restrained by the computational limits exhibited by Viswanathan and
Kim in [VK04]. Hence, Schneider, Hamlen, and Morrisett showed that the set of co-recursively enumer-
able safety properties is a strict upper limit of the power of (execution) enforcement monitors defined as
security automata [HMS06].

Edit-automata and infinite renewal properties: Ligatti et al. [LBW09, LBW05] introduced edit-automata
as runtime monitors. Depending on the current input and its control state, an edit-automaton can either in-
sert a new action by replacing the current input, or suppress it. The properties enforced by edit-automata
are called infinite renewal properties: it is a superset of safety properties and contains some liveness pro-
perties (but not all). More precisely, a property θ is said to be an infinite renewal property if each valid
infinite sequence σ has an infinite number of valid prefixes:
∀σ ∈ Σ∞, θ(σ)⇒
∀σ′ ∈ Σ∗, σ′ ≺ σ ⇒ ∃σ′′ ∈ Σ∗, σ′ � σ′′ ≺ σ ∧ θ(σ′′).

Shallow History Automata and an information-based lattice of enforceable policies. Fong [Fon04]
studied the effect of restraining the capacity of the runtime execution monitor and the effect on the en-
forcement power. Shallow History Automata (SHA) keep as history a set of access events the underlying

Verimag Research Report no TR-2010-5 7/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

program made. Fong showed that these automata can enforce a set of properties strictly contained in the set
of properties enforceable by Schneider’s automata. The result has been generalized by using abstraction
mechanisms on an equivalent variant of Schneider’s automata. It raised up an information-based lattice
of enforceable policies. At the top of this lattice is the set of properties enforceable by security automata
(SHA keeps history of all events). At the bottom of this lattice is the set of policies prohibiting a set of
events (SHA does not distinguish between prefixes of execution sequences made of the same events).

Fong’s classification has a practical interest in the sense that it studies the effect of practical program-
ming constraint (limited memory). It also shows that some classical security policies remain enforceable
using such shallow automata.

Generic runtime enforcers and response properties: In previous work [FFM09a, FMFR10] we in-
troduced a generic notion of enforcement monitor encompassing previous mechanisms and gave a lower-
bound on the set of properties they can enforce in the Safety-Progress classification (see Section 4). In this
paper, we will show that this bound is tight. Furthermore, in [FMFR10], we have studied the question of
enforcement monitor composition.

3.3 Synthesis of monitors
We give a short overview of the works related to the synthesis of monitors. An exhaustive list of works on
monitor synthesis is far beyond the scope of this paper. We refer to [Run10, LS08, HG08] (resp. [Fal10])
for more information on this topic in runtime verification (resp. runtime enforcement).

For runtime verification: Generally, runtime verification monitors are generated from LTL-based spec-
ifications, as seen recently in [BLS07, CR07]. Alternatively, ω-regular expressions have been used as a
basis for generating monitors, as for example in [dR05].

For runtime enforcement: In [MM07] Martinelli and Matteucci tackle the synthesis of enforcement
mechanisms as defined by Ligatti. More generally, the authors consider security automata and edit-
automata. The monitor is modeled by an algebraic operator expressed in CCS. The program under scrutiny
is then a term Y BK X where X is the target program, Y the controller program and BK the operator
modeling the monitor, where K is the kind of monitor (truncation, insertion, suppression or edit). The
desired property for the underlying system is formalized using µ-calculus. In [Mat07] Matteucci extends
the approach in the context of real-time systems. In [FFM08, FMFR10] we defined transformations for
some classes of the safety-progress classification of properties. Those class-specific transformations take
as input a Streett automaton recognizing a property and produce an enforcement monitor for this property.
In this paper, we will provide a unified class-independent transformation.

4 The SP classification in a runtime context
This section recalls and extends some results about the Safety-Progress classification of properties [CMP92a,
CMP92b, MP90]. In the original papers this classification introduced a hierarchy between regular pro-
perties4 defined as sets of infinite execution sequences. We extend the classification with finite-length
execution sequences in a conservative way.

4.1 Informal description
The Safety-Progress classification is made of four basic classes over execution sequences. Informally, the
classes were defined as follows:

• safety properties are the properties for which whenever a sequence satisfies a property, all its prefixes
satisfy this property;

4In the following, the term property will stand for regular property.

8/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

• guarantee properties are the properties for which whenever a sequence satisfies a property, there are
some prefixes (at least one) satisfying this property;

• response properties are the properties for which whenever a sequence satisfies a property, an infinite
number of its prefixes satisfy this property;

• persistence properties are the properties for which whenever a sequence satisfies a property, all but
finitely many of its prefixes satisfy this property; i.e., a finite number of its prefixes does not satisfy the
property.

Furthermore, two extra classes can be defined as finite Boolean combinations (union and intersection) of
basic classes.

• The obligation class can be defined as the class obtained by Boolean combinations of safety and
guarantee properties.

• The reactivity class can be defined as the class obtained by Boolean combinations of response
and persistence properties. This is the most general class containing all linear temporal proper-
ties [CMP92a].

An r-property of a given class is said to be pure when it is a property of none of the other sub-classes.
The Safety-Progress classification is an alternative to the more classical Safety-Liveness dichotomy

(see [Lam77, AS85]). Unlike this later, the Safety-Progress classification is a hierarchy and not a partition.
It provides a finer-grain classification, and the properties of each class are characterized according to four
views [CMP92a]: a language-theoretic view, a topological view, a temporal logic view, and an automata-
based view. The language-theoretic view describes the hierarchy according to the way each class can
be constructed from sets of finite sequences. The topological view characterizes the classes as sets with
topological properties. The third vision links the classes to their expression in temporal logic. At last, the
automata view gives syntactic characterizations on automata recognizing properties of a given class. We
will consider here only the language-theoretic and the automata views dedicated to r-properties.

4.2 The language-theoretic view of r-properties
4.2.1 Construction of r-properties

The language-theoretic view of the Safety-Progress classification is based on the construction of infinitary
properties and finitary properties from finitary ones. It relies on the use of four operators A,E,R, P
(building infinitary properties) and four operators Af , Ef , Rf , Pf (building finitary properties) applying
to finitary properties. In the original classification of Manna and Pnueli, the operators A,E,R, P,Af , Ef
were introduced. In this paper, we add the operatorsRf and Pf and give a formal definition of all operators.
In these definitions ψ is a finitary property over Σ.

DEFINITION 4.1 (OPERATORS A,E,R, P) • A(ψ) = {σ ∈ Σω | ∀σ′ ∈ Σ∗, σ′ ≺ σ ⇒ ψ(σ′)}.

• E(ψ) = {σ ∈ Σω | ∃σ′ ∈ Σ∗, σ′ ≺ σ ∧ ψ(σ′)}.

• R(ψ) = {σ ∈ Σω | ∀σ′ ∈ Σ∗, σ′ ≺ σ ⇒ ∃σ′′ ∈ Σ∗, σ′ ≺ σ′′ ≺ σ ∧ ψ(σ′′)}.

• P (ψ) = {σ ∈ Σω | ∃σ′ ∈ Σ∗,∀σ′′ ∈ Σ∗, σ′ ≺ σ′′ ≺ σ ⇒ ψ(σ′′)}.

A(ψ) consists of all infinite words σ s.t. all prefixes of σ belong to ψ. E(ψ) consists of all infinite words
σ s.t. some prefixes of σ belong to ψ. R(ψ) consists of all infinite words σ s.t. infinitely many prefixes of
σ belong to ψ. P (ψ) consists of all infinite words σ s.t. all but finitely many prefixes of σ belong to ψ.

The operators Af , Ef , Rf , Pf build finitary properties from finitary ones.

DEFINITION 4.2 (OPERATORS Af , Ef , Rf , Pf) • Af (ψ) = {σ ∈ Σ∗ | ∀σ′ ∈ Σ∗, σ′ � σ ⇒
ψ(σ′)}.

• Ef (ψ) = {σ ∈ Σ∗ | ∃σ′ ∈ Σ∗, σ′ � σ ∧ ψ(σ′)}.

Verimag Research Report no TR-2010-5 9/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

• Rf (ψ) = {σ ∈ Σ∗ | ψ(σ) ∧ ∀n ∈ N,∃σ′ ∈ Σ∗, σ ≺ σ′ ∧ |σ′| ≥ n ∧ ψ(σ′)}.

• Pf (ψ) = {σ ∈ Σ∗ | ψ(σ) ∧ ∃σ′ ∈ Σ∗, σ � σ′ ∧ ∀n ∈ N,∃σ′′ ∈ Σ∗, |σ′′| = n ∧ ψ(σ′ · σ′′)}.

Af (ψ) consists of all finite words σ s.t. all prefixes of σ belong to ψ. One can observe that Af (ψ) is the
largest prefix-closed subset of ψ. Ef (ψ) consists of all finite words σ s.t. some prefixes of σ belong to ψ.
One can observe that Ef (ψ) = ψ · Σ∗. Rf (ψ) consists of all finite words σ s.t. ψ(σ) and there exists an
infinite number of continuations σ′ of σ also belonging to ψ. Pf (ψ) consists of all finite words σ belonging
to ψ s.t. there exists a continuation σ′ of σ s.t. σ′ persistently has continuations σ′′ staying in ψ (i.e., σ′ ·σ′′
belongs to ψ).

Based on these operators, each class can be seen from the language-theoretic view.

DEFINITION 4.3 Π = (φ, ϕ) is defined to be:

• A safety r-property if Π = (Af (ψ), A(ψ)) for some finitary property ψ. That is, all prefixes of a finite
word σ ∈ φ or of an infinite word σ ∈ ϕ belong to ψ.

• A guarantee r-property if Π = (Ef (ψ), E(ψ)) for some finitary property ψ. That is, each finite word
σ ∈ φ or infinite word σ ∈ ϕ is guaranteed to have some prefixes (at least one) belonging to ψ.

• A response r-property if Π = (Rf (ψ), R(ψ)) for some finitary property ψ. That is, each finite word
σ ∈ φ or infinite word σ ∈ ϕ recurrently has (infinitely many) prefixes belonging to ψ.

• A persistence r-property if Π = (Pf (ψ), P (ψ)) for some finitary property ψ. That is, each finite word
σ ∈ φ or infinite word σ ∈ ϕ persistently has (continuously from a certain point on) prefixes belonging
to ψ.

In all cases, we say that Π is built over ψ. Furthermore, obligation (resp. reactivity) r-properties are
obtained by Boolean combinations of safety and guarantee (resp. response and persistence) r-properties.

Given a set of events Σ, we note Safety(Σ) (resp. Guarantee(Σ), Obligation(Σ), Response(Σ), Persisten−
ce(Σ)) the set of safety (resp. guarantee, obligation, response, persistence) r-properties defined over Σ.

We illustrate in the following example the construction of infinitary properties from finitary ones (de-
scribed as regular expressions) for each of the four operators.

EXAMPLE 4.1 (CONSTRUCTION OF INFINITARY AND FINITARY PROPERTIES - r-PROPERTIES) We con-
sider a client-server application, with a set of observable events Σ ⊆ {r, g, d} where r denotes a client
request of a given resource and g (resp. d) denotes a corresponding grant (resp. deny) of this resource
provided by the server.

• For the finitary property ψ = ε + r+ · g∗, Af (ψ) = ε + r+ · g∗, A(ψ) = rω + r+ · gω , Π1 =
(Af (ψ), A(ψ)) is a safety r-property. This language contains all the words that have either only
occurrences of r or a finite number of occurrences of r (at least one) followed only by occurrences of
g. According to this property a resource should be requested at least once to be granted, and, when
granted once, it should not be requested anymore.

• For the finitary property ψ = r+ · g, Ef (ψ) = r+ · g ·Σ∗, E(ψ) = r+ · g ·Σω , Π2 = (Ef (ψ), E(ψ))
is a guarantee r-property. This property tells that the client will issue some requests and will receive
a positive answer later on.

• For the finitary property ψ = g+ (r · g)∗, Rf (ψ) = (r · g)∗, R(ψ) = (r · g)ω , Π3 = (Rf (ψ), R(ψ))
is a response r-property. This language contains all the words that have infinitely many occurrences
of r · g. This property tells that clients will repeatedly send requests and receive back a positive
answer (the pattern r · g can be seen here as a transaction).

• For the finitary property ψ = g+r ·g ·(r+r ·g)∗, Pf (ψ) = r ·g ·(r+r ·g)∗, P (ψ) = r ·g ·(r+r ·g)ω ,
Π4 = (Pf (ψ), P (ψ)) is a persistence r-property. This language contains all the words starting with
r · g · r and ending with occurrences of r + r · g. According to this property, after a first granted
resource, at some point this resource should be granted forever.

10/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

4.2.2 Some useful facts about the language view

Now, we give some useful facts about r-properties in the language view. Those facts will be used in the
remainder when characterizing the set of monitorable properties.

Basic classes were defined in a constructive fashion. It is sometimes interesting to have a direct cha-
racterization for the properties of those classes. The following property gives a characterization for safety
and guarantee r-properties. The proof is a direct adaptation of the proof given in [CMP92a].

PROPERTY 4.1 (CHARACTERIZATION OF SAFETY AND GUARANTEE r-PROPERTIES) An r-property Π =
(φ, ϕ) is

• a safety iff Π = (Af (Pref (φ)), A(Pref (ϕ))),

• a guarantee iff Π =
(
Ef (Pref (φ)), E(Pref (ϕ))

)
.

We expose the closure of safety and guarantee r-properties as a straightforward consequence of definitions
of safety and guarantee r-properties.

PROPERTY 4.2 (CLOSURE OF r-PROPERTIES) Considering an r-property Π = (φ, ϕ) defined over an
alphabet Σ built from a finitary property ψ, the following facts hold:

1 If Π is a safety r-property, all prefixes of a sequence belonging to Π also belong to Π. That is,
∀σ ∈ Σ∞,Π(σ)⇒ ∀σ′ ≺ σ,Π(σ′).

2 If Π is a guarantee r-property, all continuations of a finite sequence belonging to Π also belong to
Π. That is, ∀σ ∈ Σ∗,Π(σ)⇒ ∀σ′ ∈ Σ∞,Π(σ · σ′).

Proof The proof can be found in Appendix A.1.1, it uses the definitions of the operators Af , A,Ef , E.

The following lemma (inspired from [CMP92a]) provides a decomposition of each obligation properties in
a normal form.

LEMMA 4.1 Any obligation r-property can be represented as the intersection

k⋂
i=1

(Safetyi ∪Guaranteei)

for some k > 0, where Safetyi and Guaranteei are respectively safety and guarantee r-properties. We
refer to this presentation as the conjunctive normal form of obligation r-properties.

When an r-property Π is expressed as ∩ki=1(Safetyi ∪ Guaranteei), Π is said to be a k-obligation r-
property. The set of k-obligation r-properties (k ≥ 1) is denoted k−Obligation(Σ). Similar definitions and
properties hold for reactivity r-properties which are expressed by Boolean combinations of response and
persistence r-properties.

4.3 The automata view of r-properties

For the automata view of the Safety-Progress classification, we follow [CMP92a] and define r-properties
using Streett automata. Furthermore, for each class of the Safety-Progress classification it is possible to
syntactically characterize a recognizing finite-state automaton. Moreover, we introduce transformations
that take a deterministic finite-state automaton and a “modification pattern” so as to obtain a Streett auto-
maton. These transformations are the representatives in the automata view of the operators defined in the
language view.

Verimag Research Report no TR-2010-5 11/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

4.3.1 Streett automata

We define5 a variant of deterministic and complete Streett automata (introduced in [Str81]) for property
recognition. These automata process events and decide properties of interest. We add to original Streett
automata a finite-sequence recognizing criterion in such a way that these automata uniformly recognize
r-properties.

DEFINITION 4.4 (STREETT AUTOMATON) A deterministic finite-state Streett automaton is a tuple (Q, qinit,
Σ,−→, {(R1, P1), . . . , (Rm, Pm)}) defined relatively to a set of events Σ. The set Q is the set of auto-
maton states, qinit ∈ Q is the initial state. The function −→: Q × Σ → Q is the (complete) transition
function. In the following, for q, q′ ∈ Q, e ∈ Σ we abbreviate −→ (q, e) = q′ by q e−→ q′. The set
{(R1, P1), . . . , (Rm, Pm)} is the set of accepting pairs, for all i ≤ n, Ri ⊆ Q are the sets of recurrent
states, and Pi ⊆ Q are the sets of persistent states.

We refer to an automaton with m accepting pairs as an m-automaton. When m = 1, a 1-automaton is
also called a plain-automaton, and we refer to R1 and P1 as R and P . Moreover, for σ = σ0 · · ·σn−1 a
word of Σ of length n and q, q′ ∈ QA two states, we note q σ−→ q′ when ∃q1, . . . , qn−2 ∈ QA, q

σ0−→
q1∧ . . .∧qn−2

σn−1−→ q′. In the followingA = (QA, qAinit,Σ,−→A, {(R1, P1), . . . , (Rm, Pm)}) designates
a deterministic finite state Streett m-automaton.

For q ∈ QA, ReachA(q) is the set of reachable states from q with at least one transition in A (denoted
Reach(q) when clear from context), that is ReachA(q)

def
= {q′ ∈ QA | ∃σ ∈ Σ+, q

σ−→A q′}. For
σ ∈ Σ∞, the run of σ on A is the sequence of states involved by the execution of σ on A. It is formally
defined as run(σ,A) = q0 · q1 · · · where ∀i, (qi ∈ QA ∧ qi

σi−→A qi+1)∧ q0 = qAinit. The trace resulting in
the execution of σ on A is the unique sequence (finite or not) of tuples (q0, σ0, q1) · (q1, σ1, q2) · · · where
run(σ,A) = q0 · q1 · · · .

For an execution sequence σ ∈ Σω on a Streett automaton A, we define vinf (σ,A), as the set of states
appearing infinitely often in run(σ,A). It is formally defined as follows: vinf (σ,A)

def
= {q ∈ QA | ∀n ∈

N,∃m ∈ N,m > n ∧ q = qm with run(σ,A) = q0 · q1 · · · }.
For a Streett automaton, the notion of acceptance condition is defined using the accepting pairs.

DEFINITION 4.5 (ACCEPTANCE CONDITION FOR INFINITE SEQUENCES) For σ ∈ Σω , we say that A
accepts σ if ∀i ∈ [1,m], vinf (σ,A) ∩Ri 6= ∅ ∨ vinf (σ,A) ⊆ Pi.

To deal with r-properties we need to also define an acceptance criterion for finite sequences: a finite se-
quence is accepted by a Streett automaton if and only if it terminates on a distinguished state Ri or Pi for
each accepting pair i.

DEFINITION 4.6 (ACCEPTANCE CONDITION FOR FINITE SEQUENCES) For a finite-length execution se-
quence σ ∈ Σ∗ s.t. |σ| = n, we say that them-automatonA accepts σ if (∃q0, . . . , qn ∈ QA, run(σ,A) =
q0 · · · qn ∧ q0 = qAinit and ∀i ∈ [1,m], qn ∈ Pi ∪Ri).

4.3.2 The hierarchy of automata.

An interesting feature of Streett automata is that the class of properties they recognize can be easily cha-
racterized by some syntactic considerations.

• A safety automaton is a plain-automaton s.t. R = ∅ and there is no transition from a state q ∈ P to a
state q′ ∈ P .

• A guarantee automaton is a plain-automaton s.t. P = ∅ and there is no transition from a state q ∈ R to
a state q′ ∈ R.

• An m-obligation automaton is an m-automaton s.t. for each i in [1,m]:

5There exist several equivalent definitions of Streett automata dedicated to infinite sequences recognition. We choose here to
follow the definition used in [CMP92a].

12/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

1 2 3

4

r

g

r

g

r

g

Σ

1 2 3

4

r

g

r

g

Σ

Σ

1 2

3

r

g
g

r

Σ

1 2
3

4

5

6

r

g,d

d
g

r

r

g,d

g

r d r

d,g

Σ

AΠ1 for Π1, P =
{1, 2, 3}, R = ∅

AΠ2 for Π2,
R = {3}, P = ∅

AΠ3 for Π3,
R = {1}, P =

∅
AΠ4 for Π4, P = {3, 4}, R = ∅

Figure 1: Examples of Streett automata

P P

P
Safety

R

R R
Guarantee

R R

R R
Response

P P

P P
Persistence

Figure 2: Schematic illustrations of the shapes of Streett automata for basic classes

• there is no transition from q ∈ Pi to q′ ∈ Pi,

• there is no transition from q ∈ Ri to q′ ∈ Ri.

• A response automaton is a plain-automaton s.t. P = ∅.

• A persistence automaton is a plain-automaton s.t. R = ∅.

• A reactivity automaton is any unrestricted automaton.

The syntactic restrictions are illustrated in Fig. 2: shapes of Streett automata for basic classes are depicted.
One may remark that these syntactic restrictions hold for the automata represented in Fig. 1.

Automata and properties. We now link Streett automata to r-properties.

DEFINITION 4.7 (AUTOMATA AND r-PROPERTIES) We say that a Streett automatonA defines an r-property
(φ, ϕ) ∈ 2Σ∗×Σω if and only if the set of finite (resp. infinite) execution sequences accepted by A is equal
to φ (resp. ϕ), which is noted L(A) = (φ, ϕ). Conversely, an r-property (φ, ϕ) ∈ 2Σ∗×Σω is said to
be specifiable by an automaton A if the set of finite (resp. infinite) execution sequences accepted by the
automaton A is φ (resp. ϕ).

EXAMPLE 4.2 (STREETT AUTOMATA) In Fig. 1 are represented Streett plain-automata for the properties
presented in Example 4.1.

• AΠ1 is a safety automaton, its set of recurrent states is empty, its set of persistent states is P = {1, 2, 3}.
A finite sequence is accepted if its run ends in either states 1, 2 or 3, meaning that, if a grant happened
there was at least one request previously. An infinite sequence is accepted if the only states visited
infinitely often are states 1, 2 or 3, meaning that requests have been made and they were followed by
only grants.

• AΠ2 is a guarantee automaton, its set of persistent states is empty, its set of recurrent states isR = {3}.
A finite sequence is accepted if its run ends in state 3. An infinite sequence is accepted if the state 3 is
visited infinitely often. In both cases, it means that requests have been issued and then have been granted.

Verimag Research Report no TR-2010-5 13/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

• AΠ3 is a response automaton, its set of persistent states is empty, its set of recurrent states is R = {1}.
A finite sequence is accepted if its run ends in state 1, meaning that every request has been followed by a
grant (in this order). An infinite sequence is accepted if it visits the state 1 infinitely often, meaning that
this infinite sequence contains a succession of action sequences “one request followed by one grant”.

• AΠ4 is a persistence automaton, its set of recurrent states is empty, its set of persistent states is P =
{3, 4}. A finite sequence is accepted if its run ends in state 3 or 4, meaning that a first successful request
has been made and, after that, the user performs only successful requests (if he makes a requests, this
request is granted). An infinite sequence is accepted if it visits infinitely often only states 3 and 4,
meaning that after a first successful request all user’s requests have been granted.

In Section 4.5 we link the syntactic characterizations on the automata to the semantic characterization of
the properties they specify.

4.3.3 From a DFA to a Streett automaton

We now introduce four transformations allowing to obtain a Streett automaton, given a deterministic finite-
state automaton and a “pattern” for this underlying property. These patterns are inspired from the different
classes of the Safety-Progress hierarchy. These simple transformations correspond, in the automata view,
to the operators in the language view and the temporal modalities in the logical view6. We start by first
defining those transformations and then prove their soundness.

A deterministic finite-state automaton (DFA) [HU79], is given relatively to an alphabet Σ, and is here
formally defined as a tuple (Q, qinit,−→, F) where Q is a finite set of states, qinit ∈ Q is the initial state,
−→: Q× Σ→ Q is the transition function, and F ⊆ Q is the set of accepting states.

Definitions of the transformations. In the following definitions, Aψ = (QAψ , q
Aψ
init ,−→Aψ , FAψ) des-

ignates a complete DFA recognizing a finitary regular property ψ. We define a transformation for each
basic class of the hierarchy.

Synthesis of safety automata. For this class of r-properties, the transformation is defined as follows:

DEFINITION 4.8 (DFA TO STREETT SAFETY AUTOMATON) The transformation ofAψ into a Streett safety
automaton is DFA2S Saf(Aψ) = (QAΠ , qAΠ

init ,→AΠ
, {(∅, P)}) and defined by:

• QAΠ = FAψ ∪ {sink}, where sink /∈ QAψ ,

• qAΠ
init = q

Aψ
init if q

Aψ
init ∈ FAψ , and sink otherwise,

• →AΠ is defined as the smallest relation verifying:

• q e−→AΠ q′ if q ∈ FAψ ∧ q′ ∈ FAψ ∧ q e−→Aψ q
′ (TSAFE1)

• q e−→AΠ sink if ∃q′ ∈ QAψ , q′ /∈ FAψ ∧ q e−→Aψ q
′ (TSAFE2),

• ∀e ∈ Σ, sink
e−→AΠ sink (TSAFE3),

• P = ReachAΠ(qAΠ
init) \ {sink}, (m = 1).

One can remark that the resulting automaton is indeed a Streett safety automaton since R = ∅ and there
is no transition from the states in P to the states in P . This transformation adds a sink state and modifies
the transition function in order to redispatch the transitions outgoing from accepting states to the sink state.
Furthermore, the transitions outgoing from a non-accepting state have been removed. The set of persistent
states is the set of accepting states of the DFA.

Moreover, according to the syntactic restrictions of the obtained Streett safety automata, the following
property holds: for a sequence σ ∈ Σω and an automaton resulting of the transformation AΠ, if sink ∈
vinf (σ,AΠ), then vinf (σ,AΠ) = {sink}; else vinf (σ,AΠ) ⊆ P .

6i.e., operators A,E,R, P (and their finitary versions) of the language view and the temporal modalities � ,♦ ,� ♦ ,♦ � of
the logical view.

14/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

q = qo qi = ql qj

Figure 3: Principle for tagging recurrent states in DFA2S Res

Synthesis of Streett guarantee automata. For this class of r-properties, the transformation is defined as
follows:

DEFINITION 4.9 (DFA TO STREETT GUARANTEE AUTOMATON) The transformation ofAψ into a Streett
guarantee automaton is DFA2S Guar(Aψ) = (QAΠ , qAΠ

init ,→AΠ
, {(R, ∅)}) and defined by:

• QAΠ is the smallest subset of QAψ containing the reachable states from the initial state qAΠ
init with −→AΠ (defined

below),

• qAΠ
init = q

Aψ
init ,

• →AΠ is defined as the smallest relation verifying:

• q e−→AΠ q if ∃q′ ∈ QAψ , q e−→Aψ q
′ ∧ q ∈ FAψ (TGUAR1),

• q e−→AΠ q′ if q /∈ FAψ ∧ q e−→Aψ q
′ (TGUAR2),

• R = FAψ , (m = 1).

One may remark that the resulting automaton is indeed a Streett guarantee automaton since P = ∅ and
there is no transition from the R-states to the R-states. This automaton may not be minimal regarding the
number of R-states. They can be merged into one unique state since they are all equivalent wrt. property
recognition. This transformation modifies the transition function in the following manner: outgoing tran-
sitions from the accepting states (to an accepting state or not) are modified into a loop on the same state.
Indeed, when a run reaches a state in F , this suffix suffices in order to satisfy the guarantee property. The
initial state is not modified, and the set of states of the Streett automaton is defined as the smallest set of
reachable states from the initial state with the new transition function.

Synthesis of Streett response automata. For this class of r-properties, the transformation is defined as
follows:

DEFINITION 4.10 (DFA TO STREETT RESPONSE AUTOMATON) The transformation ofAψ into a Streett
response automaton is DFA2S Resp(Aψ) = (QAΠ , qAΠ

init ,→AΠ
, {(R, ∅)}) and defined by:

• QAΠ = QAψ ,

• qAΠ
init = q

Aψ
init ,

• →AΠ=→Aψ ,

• R = {q ∈ FAψ | ∃l > 0, ∃q0, . . . , ql ∈ QAψ , (1) ∧ (2) } ∪ {q ∈ FAψ | q −→Aψ q}, where

∀j ∈ [0, l − 1], qj −→Aψ qj+1 (1)

∃i ∈ [0, l],∃j ∈ [i, l − 1], qj ∈ FAψ ∧ qi = ql ∧ q0 = q (2)

The resulting automaton is indeed a Streett response automaton since P = ∅. This transformation does not
modify the set of states nor the transition function. It marks as recurrent states (cf. Fig. 3) every accepting
state of the DFA s.t. it is possible from this state to reach a cycle containing at least one accepting state.

Verimag Research Report no TR-2010-5 15/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

q = qo qi = ql qi+1

ql−1

Figure 4: Principle for tagging persistent states in DFA2S Per

Synthesis of Streett persistence automata. For this class of r-properties, the transformation is defined
as follows:

DEFINITION 4.11 (DFA TO STREETT PERSISTENCE AUTOMATON) The transformation ofAψ into a Streett
persistence automaton is DFA2S Per(Aψ) = (QAΠ , qAΠ

init ,→AΠ , {(∅, P)}) and defined by:

• QAΠ = QAψ ,

• qAΠ
init = q

Aψ
init ,

• →AΠ=→Aψ ,

• P = {q ∈ FAψ | ∃l > 0, ∃q0, . . . , ql ∈ QAψ , (1) ∧ (3) } ∪ {q ∈ FAψ | q −→Aψ q}, where

∃i ∈ [0, l], ∀j ∈ [i, l − 1], qj ∈ FAψ ∧ qi = ql ∧ q0 = q (3)

The resulting automation is indeed a Streett persistence automaton since R = ∅. This transformation
does not modify the set of states nor the transition function. It marks (cf. Fig. 4) as persistent state every
accepting state of the DFA from which it is possible to reach a cycle of accepting states.

Soundness of the transformations. Given a finitary property ψ, defining a regular language over an
alphabet Σ and specified by a DFA Aψ , the safety (resp. guarantee, response, persistence) r-property
(Xf (ψ), X(ψ)) where X ∈ {A,E,R, P} is specified by the Streett automaton obtained by the transfor-
mation DFA2S specific to safety (resp. guarantee, response, persistence) properties. This is stated formally
by the following theorem:

THEOREM 4.1 (Soundness of the transformations of DFAs to Streett automata) The transformation
DFA2S Saf (resp. DFA2S Guar , DFA2S Resp,
DFA2S Per) in the automata view “corresponds” to the operator Af and A (resp. Ef and E, Rf and R,
Pf and P) in the language view. Formally, when L(Aψ) = ψ,

AΠ = DFA2S Saf (Aψ)⇒ L(AΠ) = (Af (ψ), A(ψ))
AΠ = DFA2S Guar(Aψ)⇒ L(AΠ) = (Ef (ψ), E(ψ))
AΠ = DFA2S Resp(Aψ)⇒ L(AΠ) = (Rf (ψ), R(ψ))
AΠ = DFA2S Per(Aψ)⇒ L(AΠ) = (Pf (ψ), P (ψ))

Proof Proofs are conducted for each class of properties and the associated transformation by using the
acceptance criteria and examining runs of accepted sequences. The complete proof can be found in Ap-
pendix A.1.2.

REMARK 4.1 Let us remark that these transformations may entail a loss of information. It is in general
not possible to find again the finitary language from which a Streett automaton has been built. Consider for
example the Streett guarantee automaton represented on Fig. 1. There exists an infinite number of finitary
languages from which this automaton can be constructed. Indeed, to obtain them, it suffices to re-transform
this Streett automaton into a minimal DFA by forgetting accepting pairs and changing the R-state into an
accepting state. Then, from this accepting state, we can add arbitrary transitions. The automata produced
by doing so will always be transformed by DFA2S Guar into AΠ2.

16/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

P
Good

P
Goodc

P
Bad

R
Good

R
Bad

R
Badc

R
Good

R
Goodc

R
Bad

R
Badc

P
Good

P
Goodc

P
Bad

P
Badc

Safety Guarantee Response Persistence

Figure 5: Characterization of states for basic classes

4.4 Characterizing states of Streett automata
To better identify particular execution sequences on a Streett automaton we characterize some subsets of its
states in terms of reachability of distinguished states. More precisely, the set PA = {GoodA,GoodAc ,BadAc ,
BadA} is a partition of QA, s.t. GoodA, GoodAc , BadAc , BadA designate respectively the good (resp. cur-
rently good, currently bad, bad) states. The set PA is defined as follows:
• q is in GoodA iff it terminates an accepted sequence and every sequence starting from q is accepted:

GoodA
def
= {q ∈

⋂m
i=1(Ri ∪ Pi) | ReachA(q) ⊆

⋂m
i=1(Ri ∪ Pi)};

• q is in GoodAc iff it terminates an accepted sequence and there exist non accepted sequences starting from q:
GoodAc

def
= {q ∈

⋂m
i=1(Ri ∪ Pi) | ReachA(q) 6⊆

⋂m
i=1(Ri ∪ Pi)};

• q is in BadAc iff it terminates a non accepted sequence and there exist accepted sequences starting from q:
BadAc

def
= {q ∈

⋃m
i=1(Ri ∩ Pi) | ReachA(q) 6⊆

⋃m
i=1(Ri ∩ Pi)};

• q is in BadA iff it terminates a non accepted sequence and every sequence starting from q is not accepted:
BadA

def
= {q ∈

⋃m
i=1(Ri ∩ Pi) | ReachA(q) ⊆

⋃m
i=1(Ri ∩ Pi)}.

The subsets are illustrated for basic classes in Fig. 5.

EXAMPLE 4.3 (CHARACTERIZATION OF STREETT AUTOMATA STATES) We illustrate the characteriza-
tion on the states of the Streett automata presented in Example 4.2:

• BadAΠ1 = {4}, GoodAΠ1
c = {1, 2, 3},

• BadAΠ2 = {4}, BadAΠ2
c = {1, 2}, GoodAΠ2 = {3},

• BadAΠ3 = {3}, BadAΠ2
c = {2}, GoodAΠ3

c = {1},

• BadAΠ4 = {5}, BadAΠ4
c = {1, 2, 6}, GoodAΠ4

c = {3, 4}.

REMARK 4.2 For a Streett automaton AΠ, all states in BadAΠ (resp. GoodAΠ) are equivalent wrt.
property recognition; and can thus be merged into one single state.

This characterization of states will be useful in the following sections when characterizing monitorable
properties and when synthesizing monitors.

4.5 Summary
A graphical representation of the Safety-Progress hierarchy of properties is depicted in Fig. 6. A link
between two classes means that the higher class contains strictly the lower one. Furthermore, for each
class, we have recalled and uniformly extended the characterizations in the language-theoretic and automata
views.

In Table 1 is represented each “basic block”, i.e., the element used to build an r-property. In the
language view, r-properties are built from a finitary language ψ, and using operators Xf , and X , with
X ∈ {A,E,R, P}. In the automata view, a finite-state automaton is transformed, by one of the transfor-
mations DFA2S specific to a class of properties, into a Streett automaton which recognizes (Xf (ψ), X(ψ))
according to the class of properties.

REMARK 4.3 It is worth noticing that property interpretation of finite sequences extends to infinite se-
quences in a consistent way, depending on the class of properties under consideration:

Verimag Research Report no TR-2010-5 17/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

Safety

Safety Guarantee

Reactivity

Response Persistence

Obligation

unrestricted automata

Progress

R = ∅, P 9 P
(Af (ψ), A(ψ))

P = ∅, R9 R
(Ef (ψ), E(ψ))

(Rf (ψ), R(ψ)) (Pf (ψ), P (ψ))

Pi 9 Pi, Ri 9 Ri

⋂
i[Safety i ∪Guaranteei]

R = ∅

⋂
i[Responsei ∪ Persistencei]

P = ∅

Figure 6: The Safety-Progress classification of r-properties

Language view Automata view
“basic block” ψ ⊆ Σ∗ A (DFA)
r-property (Xf (ψ), X(ψ)) DFA2S X (A)

X ∈ {A,E,R, P} X ∈ {Saf .,Guar .,
Resp.,Persit .}

Table 1: Ways to specify properties according to the views

Language view Automata view
Finite seq ∈ Xf (ψ) Finite seq criterion

(Def. 4.1) (Def. 4.6)
Infinite seq ∈ X(ψ) Infinite seq criterion

(Def. 4.2) (Def. 4.5)

Table 2: Recognizing criteria according to the considered view

18/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

• for a safety property Π, ∀i ∈ N,Π(σ···i)⇒ Π(σ),

• for a guarantee property Π, ∃i ∈ N,Π(σ···i)⇒ ¬Π(σ),

• for a response property Π,
∞
∃ i ∈ N,Π(σ···i)⇒ Π(σ),

• for a persistence property Π, ¬(
∞
∃ i ∈ N,¬Π(σ···i))⇒ ¬Π(σ).

5 Monitorability wrt. the SP classification
As stated in the introduction, studying the question of monitorability amounts to studying the expressive-
ness of runtime verification, i.e., characterizing the classes of properties that can be verified at runtime. In
this section we first recall and extend existing monitorability results in the Safety-Progress classification
of properties. Second, we propose to parametrize the classical definition with a truth-domain. Third, we
propose an alternative definition of monitorability and characterize monitorable properties according to this
new definition.

In fact, characterizing the set of “monitorable” properties depends on several parameters: the property
semantics for finite sequence, the set of monitor verdicts we consider, and the exact definition of monitor-
ing.

5.1 Monitorable properties according to the classical definition of monitorability
We express the classical definition of monitorability given by Pnueli and Zaks in the SP framework intro-
duced in the previous section. Then, we characterize the set of monitorable properties according to this
classical definition.

5.1.1 The classical definition of monitorability

The main objective of monitoring, in its classical definition, is to evaluate an (infinitary) property ϕ on a
possibly infinite execution sequence from one of its finite prefix. Intuitively, the idea is to be able to detect
verdicts, i.e., find an evaluation, wrt. an infinitary property, from a finite observation of a system behavior.
This is formalized as follows for r-properties:

DEFINITION 5.1 (POSITIVE/NEGATIVE DETERMINACY OF AN r-PROPERTY [PZ06]) Let σ ∈ Σ∗, an r-
property Π ⊆ Σ∗ × Σω is said to be:

• negatively determined by σ if ∀µ ∈ Σ∞,¬Π(σ · µ);

• positively determined by σ if ∀µ ∈ Σ∞,Π(σ · µ).

An r-property is negatively (resp. positively) determined if every possible future continuation (finite or
infinite) does not (resp. does) satisfy the property. The practical meaning is the following: when a monitor
observes a system in order to check a property, if this property is negatively or positively determined, then
the observation of the system can be stopped. In this case, a monitor emits the verdict ⊥ (resp. >) after
reading σ if the property is negatively (resp. positively determined) by σ. The obtained verdict is definitive.
In others cases, a monitor issues the value “?”, meaning that no definitive verdict can be produced.

DEFINITION 5.2 (MONITORABLE r-PROPERTIES, “CLASSICAL” DEFINITION [PZ06]) An r-property Π
is:

• σ-monitorable, if there exists a (finite) µ ∈ Σ∗ s.t. Π is positively or negatively determined by σ · µ;

• monitorable, if it is σ-monitorable for every σ ∈ Σ∗.

The set of monitorable properties, according to the classical definition is noted MPc . An r-property is
monitorable if, for any execution sequence that can be observed, a possible continuation of this sequence
determines negatively or positively the property. Remark that this definition of monitorability is hard to
use in practice. So a characterization of monitorable properties is needed.

Verimag Research Report no TR-2010-5 19/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

5.1.2 Characterization of monitorable properties according to the classical definition

One of our first objectives is to characterize the subset of monitorable properties within the Safety-Progress
classification.

We first enunciate a lemma that will be used later on. This lemma states that the set of MPc-monitorable
properties is closed under Boolean operations.

LEMMA 5.1 (CLOSURE OF MONITORABLE PROPERTIES UNDER BOOLEAN OPERATIONS) Given two r-
properties Π1, Π2, we have:

Π1,Π2 ∈ MPc ⇒ Π1 ∧Π2 ∈ MPc ,
Π1,Π2 ∈ MPc ⇒ Π1 ∨Π2 ∈ MPc ,

Π1 ∈ MPc ⇒ ¬Π1 ∈ MPc .

Proof The complete proof is given in Appendix A.2.1. Let us consider two r-properties Π1,Π2 ∈ MPc .

• The proof of Π1 ∧ Π2 ∈ MPc consists in showing that Π1 ∧ Π2 is σ-monitorable for any sequence
σ ∈ Σ∗. Let σ ∈ Σ∗, let us exhibit an extension µ ∈ Σ∗ s.t. Π1 ∧ Π2 is negatively or positively
determined by σ · µ. As Π1 is monitorable, there exists a sequence µ1 s.t. Π1 is positively or
negatively determined by σ ·µ1. Then, as Π2 is monitorable, there exists a sequence µ2 s.t. Π1 ∧Π2

is negatively or positively determined by σ · µ1 · µ2. Then, one has to analyze the different Boolean
combinations to obtain the expected result.

• The proof of Π1 ∨Π2 ∈ MPc is similar.

• The proof of ¬Π1 ∈ MPc is straightforward by noticing that for any sequence σ ∈ Σ∗, if Π1 is
positively (resp. negatively) determined by σ, then ¬Π is negatively (resp. positively) determined by
σ.

We are now able to establish that the set of monitorable properties according to the classical definition
strictly contains the set of obligation properties.

THEOREM 5.1 (Obligation(Σ) ⊂ MPc) The obligation properties are strictly contained in the set of mo-
nitorable properties.

Proof The formal proof can be found in Appendix A.2.2 and uses the following facts:

• Safety and guarantee properties are monitorable.

• The set of obligation properties is union of the sets of k-obligation properties for k ≥ 1 (Lemma 4.1).

• Union and intersection of two monitorable properties are monitorable (Lemma 5.1).

• Example 5.3 shows that the inclusion is strict.

Thus, we have extended the previous bound established by Bauer et al. in [BLS07]7 stating that

Safety(Σ) ∪Guarantee(Σ) ⊂ MPc .

Indeed, the set of obligation properties is a strict super set of the union of safety and guarantee properties.

EXAMPLE 5.1 (CLASSICAL MONITORING OF AN OBLIGATION PROPERTY) We go back to the example
presented in the introduction, defined using two atomic propositions p or q, stating that p should always
hold or q should eventually hold. This is a 1-obligation r-property8, defined by the disjunction of a safety
r-property (“p should always hold”) and a guarantee r-property (“q should eventually hold”). According
to the classical definition of monitorability, this property is monitorable. Indeed, for any sequence σ, this
property can be positively determined by σ · {p, q} or by σ · {p, q}, i.e., by completing σ with an event in
which q is true.

7In [BLS07], guarantee properties are named co-safety properties.
8Seen in the logical view, this property can be defined by the temporal logic formula �p ∨ ♦q.

20/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

1 2

req
ack ,oth

ack

req ,oth

Figure 7: Non-monitorable response property - R = {1}, P = ∅

1 2 3

req
ack ,oth

ack

oth Σ

req

Figure 8: Monitorable response property - R = {1}, P = ∅

Beyond Obligation properties. Following the classical definition of monitorability, it is possible to show
that there exist non-monitorable and monitorable properties for super classes of the Obligation class. The
above two properties are pure response properties, one is not monitorable, the other one is.

EXAMPLE 5.2 (NON-MONITORABLE RESPONSE PROPERTY [BLS07]) The (response) property “Every
request is eventually followed by an acknowledgement”9 is not monitorable. This property is represented
by the Streett (response) automaton depicted in Fig. 7 with R = {1}. Its alphabet is Σ = {req , ack , oth}
where req (resp. ack, oth) denotes the request (resp. the acknowledgment, any other event). Using the
acceptance criteria for finite and infinite sequences, one can reasonably be convinced that this automaton
defines the considered property. Indeed, a finite sequence is accepted if and only if previous requests have
been acknowledged. An infinite sequence is accepted if and only if state 1 is visited infinitely often which
means for an infinite sequence that requests have been acknowledged.

For this property, there are two limitations for monitoring with the considered truth-domain and defi-
nition of monitorability. First, it is impossible to distinguish correct (ending in state 1) and incorrect finite
sequences (ending in state 2): both evaluate to “?”. Second, for all finite sequences, it is never possible to
decide > or ⊥ since every finite sequence can be extended to correct or incorrect infinite continuations. In
other words, it is never possible to satisfy or falsify this property with a finite observation.

EXAMPLE 5.3 (MONITORABLE RESPONSE PROPERTY) The (response) property “Every request should
be acknowledged, and it is forbidden to send two successive requests (without acknowledgment)” is moni-
torable. This property is represented by the Streett (response) automaton depicted in Fig. 8 with R = {1}
and the same alphabet Σ as in Example 5.2. Intuitively, given an execution sequence, this r-property can
always be negatively determined by one of its continuations. Indeed, for any σ ∈ Σ∗, the property is
negatively determined by σ · req · req , and is thus σ-monitorable.

Thus there exist monitorable (pure) response properties. Consequently, using Lemma 5.1, there exist also
monitorable pure persistence and reactivity properties. Indeed, monitorable properties are closed under
Boolean operations.

5.2 Considering other truth domains ?
As we will see, the characterization of monitorable properties may also depend on the truth domain B we
consider when evaluating an execution sequence. Thus we parametrize the classical definition of monito-
rable properties with a truth domain. For a truth-domain B, we will note MP(B) the set of monitorable
properties, according to the classical definition of monitorability.

The first truth domain we have studied is a 3-valued truth domain B3
def
= {⊥, ?,>}, i.e., MPc =

MP(B3). This truth-domain is inherent in the classical definition. The value “>” is used to express

9This property can be expressed in an event-based LTL as �(req ⇒ ♦ack).

Verimag Research Report no TR-2010-5 21/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

property satisfaction when the property is positively determined. The value “⊥” is used to express property
violation when the property is negatively determined. Whereas the value “?” is used to express that no
verdict can be produced. B3 can be viewed as a complete lattice, whose minimal value is ⊥ and maximal
value is >. Boolean operators ∨ and ∧ are then defined respectively as upper and lower bounds.

We now tackle the question of how the underlying considered truth-domain may influence the class of
monitorable properties.

Monitorability with B2. Restraining B3 to a truth-domain of cardinality 2 allows only either positive
or negative determinacy, and hence reduces the set of monitorable properties. Indeed, the purpose of the
monitor is then to only detect bad behaviors or good behaviors (but not both). In the sequel we consider
two subsets of B3, namely B⊥2

def
= {⊥, ?} and B>2

def
= {?,>}.

DEFINITION 5.3 (MONITORABLE r-PROPERTIES WITH B⊥2 AND B>2) An r-property Π is:

• σ-monitorable with B⊥2 , if there exists a (finite) µ ∈ Σ∗ s.t. Π is negatively determined by σ · µ;

• σ-monitorable with B>2 , if there exists a (finite) µ ∈ Σ∗ s.t. Π is positively determined by σ · µ;

• monitorable with B⊥2 (resp. B>2), if it is σ-monitorable with B⊥2 (resp. B>2) for every σ ∈ Σ∗.

However, there is no simple characterization of these properties in the Safety-Progress hierarchy. Intu-
itively one may think that with B⊥2 = {⊥, ?}, the set of monitorable properties would be the set of safety
properties. But in fact, there are numerous safety properties which can never be negatively determined.
For example, the r-property true = (Σ∗,Σω) = (Af (Σ∗), A(Σ∗)) cannot be negatively determined nor
falsified. Moreover all safety properties which are valid forever for execution sequences longer than a
given k are not σ − B⊥2 -monitorable when |σ| > k. For these kinds of properties a monitor would pro-
duce only verdict sequences containing “?” when evaluating an execution sequence. Similarly, there exist
many guarantee properties that cannot be positively determined, and therefore are not monitorable with
B>2 = {?,>}.

It appears that there is no simple characterization, in terms of classes of the Safety-Progress classifica-
tion, for monitorable properties. However, in Section 5.4, we will provide a syntactic criterion on Streett
automata in order to decide whether the r-property recognized by this automaton is monitorable according
to the mentioned truth-domains.

5.3 Monitorable properties according to an alternative definition of monitorability

The interest of previous definitions of monitorability is due to two facts: the underlying truth-domain is
2-valued or 3-valued and the aim is the detection of verdict of infinitary properties. Although it is possible
to give a semantics to all reactive properties with either a 2-valued or 3-valued truth-domain, the question
is whether those values make sense for some properties in a monitoring context.

As noticed in [BLS07, LS08], it seems interesting to investigate further the set of monitorable pro-
perties, and to answer more precisely questions like “what verdict to issue if the program execution stops
here”. This means a better distinction between finite sequences which evaluate to “?” in a 2-valued or
3-valued truth-domain.

Hence, the authors of [BLS07, LS08] proposed to consider a 4-valued truth-domain B4 = {⊥,⊥c,>c,>}.
The truth-value >c (resp. ⊥c) denotes “currently true” (resp. “currently false”) and it expresses “Π-
satisfaction (resp. Π-violation) if the program execution stops here”. Boolean operators ∨ and ∧ are de-
fined in [BLS07]. Using B4 leads to an alternative definition of monitoring. This new definition leverages
the evaluation of finite sequences in the Safety-Progress classification framework.

5.3.1 Property evaluation in a truth-domain.

We first introduce how, given an r-property, we evaluate an execution sequence in the truth-domains we
considered so far.

22/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

DEFINITION 5.4 (PROPERTY EVALUATION WRT. A TRUTH-DOMAIN) For each of the possible truth-domain
B, we define the evaluation functions [[·]]B(·) : 2Σ∗×Σω × Σ∗ → B as follows:

For B⊥2 :

[[Π]]B⊥2 (σ) = ⊥ if ∀µ ∈ Σ∞,¬Π(σ · µ);

[[Π]]B⊥2 (σ) = ? otherwise.

For B>2 :

[[Π]]B>2 (σ) = > if ∀µ ∈ Σ∞,Π(σ · µ);

[[Π]]B>2 (σ) = ? otherwise.

For B3:

[[Π]]B3(σ) = ⊥ if ¬Π(σ) ∧ ∀µ ∈ Σ∞,¬Π(σ · µ);

[[Π]]B3
(σ) = > if Π(σ) ∧ ∀µ ∈ Σ∞,Π(σ · µ);

[[Π]]B3(σ) = ? otherwise.

For B4:

[[Π]]B4
(σ) = [[Π]]B3

(σ) if [[Π]]B3
(σ) = ⊥ ∨ [[Π]]B3

(σ) = >,

[[Π]]B4
(σ) = >c if [[Π]]B3

(σ) = ? ∧Π(σ),

[[Π]]B4
(σ) = ⊥c if [[Π]]B3

(σ) = ? ∧ ¬Π(σ).

REMARK 5.1 The defined property evaluation wrt. B4 is similar to the semantics of the LTL variant
RV-LTL defined in [BLS10].

5.3.2 An alternative definition of monitorability

Intuitively, the monitorability notion we propose relies on the ability for a given monitor to distinguish
between good and bad finite execution sequences with respect to a property Π.

DEFINITION 5.5 (ALTERNATIVE MONITORABILITY) An r-property Π = (φ, ϕ) is said to be monitorable
with the truth-domain B, or B-monitorable if

∀σgood ∈ φ,∀σbad ∈ φ, [[Π]]B(σgood) 6= [[Π]]B(σbad).

We note MP∗(B), the set of monitorable properties with truth domain B according to this definition.

Thus, an r-property is monitorable with a given truth-domain B if and only if evaluations of good and
bad finite execution sequences lead to distinct values. Remark that this definition does not rely directly
on the infinitary part of the r-property (although this infinitary part is taken into account in the evaluation
function).

5.3.3 Characterization of monitorable properties

LEMMA 5.2 (MP∗(B3), SAFETY, AND GUARANTEE PROPERTIES) The set of monitorable properties (ac-
cording to Definition 5.5) with B3 is included in the union of safety and guarantee properties. Formally:

MP∗(B3) ⊆ Safety(Σ) ∪Guarantee(Σ).

Proof The formal proof can be found in Appendix A.2.3. It is done by reductio ad absurdum and supposing
the existence of an r-property Π = (φ, ϕ) defined on Σ which is neither a safety nor a guarantee r-property.
The proof shows the existence of two execution sequences, one good, the other one bad, for Π s.t. these
sequences are evaluated to “?”.

Verimag Research Report no TR-2010-5 23/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

THEOREM 5.2 (Multi-valued characterization of alternative monitorability) The sets of monitorable
properties according to the truth domains considered so far are the following:

(i) MP∗(B⊥2) = Safety(Σ),

(ii) MP∗(B>2) = Guarantee(Σ),

(iii) MP∗(B3) = Safety(Σ) ∪Guarantee(Σ),

(iv) MP∗(B4) = Reactivity(Σ).

The proof can be found in Appendix A.2.4.

EXAMPLE 5.4 (ALTERNATIVE MONITORING OF AN OBLIGATION PROPERTY) Let us go back again to
the property considered in the introduction, stating that “p should always hold or q should eventually
hold”. We examine again the execution sequences: σgood = {p, q} · {p, q} and σbad = {p, q} · {p, q}.
In B3, we have [[Π]]B3

(σgood) = [[Π]]B3
(σbad) =?. Thus, Π is not B3-monitorable. However, Π is B4-

monitorable and [[Π]]B4(σgood) = >c and [[Π]]B4(σbad) = ⊥c.

This example shows how the finite sequence semantics leverages the interest of monitoring. Furthermore,
it shows that under our definition of monitoring, ambiguous situations, such as those encountered with the
classical definition, are avoided.

Our definition of monitorability has the advantage of being able to identify the properties which should
not be monitored with a truth-domain “not fine enough”. Indeed the last property shows that if we build
a monitor for such a property with the truth-domain B3, this monitor would produce an evaluation “?” for
correct and incorrect execution sequences wrt. the property. This seems not desirable to us.

Furthermore, we have shown in Section 4.4 that, for a given finite sequence σ and an r-property Π,
[[Π]]B4

(σ) is easy to compute from the set of states of a Streett automaton recognizing Π.

5.4 Characterizations in the automata view
Although some sets of monitorable properties we considered cannot be precisely expressed in terms of
Safety-Progress classes, it is still possible to characterize them with some syntactic criteria on Streett
automata. It relies on the characterization of the states of Streett automata introduced in Section 4.4.

PROPERTY 5.1 (CORRESPONDENCE BETWEEN STREETT AUTOMATA STATES AND B4) Given a Streett
m-automaton recognizing an r-property Π and a sequence σ ∈ Σ∗ of length n s.t. run(σ,AΠ) = q0 · · · qn,
we have:

qn ∈ GoodAΠ ⇔ [[Π]]B4
(σ) = >,

qn ∈ GoodAΠ
c ⇔ [[Π]]B4(σ) = >c,

qn ∈ BadAΠ
c ⇔ [[Π]]B4

(σ) = ⊥c,
qn ∈ BadAΠ ⇔ [[Π]]B4(σ) = ⊥.

Proof The proof is given in Appendix A.2, it uses the acceptance criteria of Streett automata to establish
the correspondence.

REMARK 5.2 (Correspondance with B3, B⊥2 , and B>2) From Property 5.1 and Definition 5.4, one can
easily deduce a correspondence between the set of states and the evaluation in the truth-domain of a lower
cardinality:

• For B3:

• qn ∈ GoodAΠ ⇔ [[Π]]B3(σ) = >,

• qn ∈ GoodAΠ
c ∪ BadAΠ

c ⇔ [[Π]]B3
(σ) =?,

• qn ∈ BadAΠ ⇔ [[Π]]B3(σ) = ⊥.

• For B>2 :

24/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

• qn ∈ GoodAΠ ⇔ [[Π]]B>2 (σ) = >,

• qn ∈ GoodAΠ
c ∪ BadAΠ

c ∪ BadAΠ ⇔ [[Π]]B>2 (σ) = ?.

• For B⊥2 :

• qn ∈ BadAΠ ⇔ [[Π]]B⊥2 (σ) = ⊥,

• qn ∈ BadAΠ ∪GoodAΠ
c ∪ BadAΠ

c ⇔ [[Π]]B⊥2 (σ) = ?.

Now we are able to give an exact characterization of monitorable properties in the automata view.

THEOREM 5.3 (Automata view of classical monitorability) The r-property Π recognized by the Streett
m-automaton AΠ = (QAΠ , qAΠ

init ,→AΠ , {(R1, P1), . . . , (Rm, Pm)}) is
(i) MP(B⊥2)-monitorable iff

∀q ∈ Reach(qAΠ
init),Reach(q) ∩ BadAΠ 6= ∅;

(ii) MP(B>2)-monitorable iff
∀q ∈ Reach(qAΠ

init),Reach(q) ∩GoodAΠ 6= ∅;
(iii) MP(B3)-monitorable iff

∀q ∈ Reach(qAΠ
init),Reach(q) ∩ (BadAΠ ∪GoodAΠ) 6= ∅.

Proof This property is established by noticing first that it is a consequence of Property 5.1 and second
that we are considering deterministic and complete Streett automata. Thus, the two following facts are
equivalent:

• from every accessible state, a bad (resp. good, bad or good) is reachable;

• every finite sequence has a continuation that determines negatively (resp. positively, negatively or
positively) the underlying property.

EXAMPLE 5.5 (CLASSICAL MONITORABILITY IN THE AUTOMATA VIEW) We illustrate the use of the pre-
vious theorem to state whether the properties of Example 4.2 (Fig. 1), with their provided automata, are
monitorable according to the classical definition:

• The property Π1 specified byAΠ1 is B⊥2 -monitorable, and thus B3-monitorable; but not B>2 -monitorable.

• The property Π2 specified byAΠ2 is B>2 -monitorable and B⊥2 -monitorable, and thus B3-monitorable.

• The property Π3 specified byAΠ3 is B⊥2 -monitorable, and thus B3-monitorable, but not B>2 -monitorable.

• The property Π4 specified byAΠ4 is B⊥2 -monitorable, and thus B3-monitorable, but not B>2 -monitorable.

THEOREM 5.4 (Automata view of alternative monitorability) The r-property Π recognized by the Streett
m-automaton AΠ = (QAΠ , qAΠ

init ,→AΠ
, {(R1, P1), . . . , (Rm, Pm)}) is

(i) MP∗(B⊥2)-monitorable iff BadAΠ =
⋃m
i=1Ri ∩ Pi;

(ii) MP∗(B>2)-monitorable iff GoodAΠ =
⋂m
i=1Ri ∪ Pi;

(iii) MP∗(B3)-monitorable iff

@q ∈ Reach(qAΠ
init) ∩

⋂m
i=1Ri ∪ Pi,

@q′ ∈ Reach(qAΠ
init) ∩

⋃m
i=1Ri ∩ Pi,

q ∈ GoodAΠ
c ∧ q′ ∈ BadAΠ

c .

Proof The proof is conducted in three steps:

(i) The expressed condition generalizes the syntactic restriction of Streett safety automata and is also a
condition when a given not minimal Streett m-automaton is recognizing a safety property and can
be minimized so as to be represented as a Streett safety automaton.

Verimag Research Report no TR-2010-5 25/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

Response Persistence

Guarantee

Obligation

Safety

Progress

Safety

Reactivity

MP(B3) = MPc

MP(B⊥2) MP(B>2)

MP∗(B3)

MP∗(B⊥2) MP∗(B>2)

MP∗(B4)

Figure 9: Monitorable r-properties in the Safety-Progress classification

(ii) The expressed condition generalizes the syntactic restriction of Streett guarantee automata and is also
a condition when a given not minimal Streett m-automaton is recognizing a guarantee property and
can be minimized so as to be represented as a Streett safety automaton.

(iii) The third condition can be established using the two following facts:

• An r-property is not monitorable according to this theorem if and only if for two sequences, a
good and a bad sequences evaluate to “?”. Other evaluations are not simultaneously possible
for a bad and good sequences.

• We are considering deterministic and complete Streett automata.

5.5 Summary
We depict in Fig. 9 the main results obtained in this section, which can be summarized as follows:

• The classes of monitorable properties, according to the classical definition, are:

– MP(B>2), which can not be compared directly with any other class;

– MP(B⊥2), which can not be compared directly with any other class;

– and MP(B3) = MPc which contains strictly the class of obligation properties.

• The classes of monitorable properties, according to the new definition we introduced are:

– MP∗(B⊥2) is the set of safety r-properties;

– MP∗(B>2) is the set of guarantee r-properties;

– MP∗(B3), is strictly contained in the class of obligation r-properties;

– and MP∗(B4) is the set of reactivity r-properties.

Remark that using the truth-domain B4 does not add any expressiveness to the classical definition of moni-
torability (i.e., MP(B4) = MP(B3)). Indeed, this definition is bound to the notion of positive and negative
determinacy. However using this domain would permit to better distinguish execution sequences and to
avoid ambiguity exposed in Example 5.1. Note also that some obligation properties (between MP(B3) and
MP∗(B3)) should not be monitored unless with a truth-domain equipped with an interpretation of finite
sequences allowing to distinguish good and bad finite sequences (e.g., with truth-values ⊥c and >c).

REMARK 5.3 Remark that the monitorability results expressed in the automata view (i.e., Theorems 5.3
and 5.4) hold only for regular r-properties. Whereas the results that were not expressed in the automata
view (i.e., Lemma 5.1, Theorems 5.1 and 5.2) hold for all r-properties (e.g., regular, context-free, context-
sensitive, recursively enumerable), independently from any computability constraint on their recognizing
mechanisms.

26/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

6 Enforceability wrt. the SP classification
Now we address the question of the expressiveness of runtime enforcement, that is, we characterize the
class of enforceable properties. In Section 3, we have seen that the previous proposed classes were de-
lineated according to the mechanism used to enforce the properties. Such mechanisms should obey the
soundness and transparency constraints. We choose here to take an alternative approach. Indeed we believe
that the set of enforceable properties can be characterized independently from any enforcement mechanism
complying to these constraints, provided that this memory is unbounded but finite. This will give us an
upper-bound of the set of enforceable properties with any enforcement mechanism.

6.1 Enforcement criteria
The enforcement constraints exposed in Section 3, namely soundness and transparency, express a relation
between the input sequence (submitted to an enforcement monitor) and an output sequence (produced by
this monitor). We interpret these constraints in the following way: if the input sequence already verifies the
property, then it should remain unchanged (up to a given equivalence relation), otherwise its longest prefix
satisfying the property should be issued10.

A consequence is that an r-property (φ, ϕ) will be considered as enforceable only if each incorrect
infinite sequence has a longest correct prefix. This means that any infinite incorrect sequence should have
only a finite number of correct prefixes11. We give two enforcement criteria, in the language and automata
views.

DEFINITION 6.1 (ENFORCEMENT CRITERION IN THE LANGUAGE VIEW) An r-property (φ, ϕ) is said to
be enforceable if ∀σ ∈ Σω,

¬ϕ(σ)⇒ (4)
∃σ′ ∈ Σ∗, σ′ ≺ σ ∧ ∀σ′′ ∈ Σ∗, σ′ ≺ σ′′ ≺ σ ⇒ ¬φ(σ′′)

Alternatively, it is possible to express an enforcement criterion for an r-property Π on its recognizing Streett
m-automaton AΠ. This criterion uses the set S(AΠ) of (maximal and non-maximal) Strongly Connected
Components of AΠ. For an m-automaton AΠ and s an SCC of AΠ, we define Is

def
= {i ∈ [1,m] | s ⊆

Ri∧s∩Pi 6= ∅}. Intuitively, Is is the set of accepting pairs ofAΠ that leads the infinite sequences, visiting
infinitely often the SCC s, to be rejected. The criterion is formally expressed as follows:

DEFINITION 6.2 (ENFORCEMENT CRITERION IN THE AUTOMATA VIEW) The r-property Π recognized
by an m-automaton AΠ is said to be enforceable if

∀s ∈ S(AΠ), Is 6= ∅ ⇒ ∃i ∈ Is, s ⊆ Pi (5)

Intuitively, this later enforcement criterion states that for every non-accepting SCC s (s is non accepting
because it contains at least one pair in [1,m] for which the infinite acceptance criterion is not satisfied),
then, among these indexes, there is at least one index i s.t. all states in the SCC s are in Pi.

Enforcement criteria of Definitions 6.1 and 6.2 are equivalent, as stated below.

PROPERTY 6.1 (EQUIVALENCE BETWEEN ENFORCEMENT CRITERIA) Considering an r-property Π =
(φ, ϕ), recognized by a Streett m-automaton (QAΠ , qAΠ

init ,Σ,→AΠ , {(R1, P1), . . . , (Rm, Pm)}), we have:

(4)⇔ (5).

Proof We just give a sketch of the proof, the formal proof can be found in Appendix A.3.1. The proof
shows the implications in both ways and uses the definitions of the acceptance criteria of Streett automata
for finite and infinite sequences. Then one has to remark that:

10An alternative interpretation could consist in correcting an erroneous sequence by adding extra events.
11Note that those criteria differ from the existence of bad prefixes. Bad prefixes are sequences which cannot be extended to correct

(finite or infinite) ones, i.e., sequences that determine negatively the underlying property.

Verimag Research Report no TR-2010-5 27/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

1 2

Σ \ {a}
a Σ \ {a}

a

Figure 10: Non-enforceable persistence r-property

• (4) expresses a condition on the set of infinite sequences that do not satisfy the r-property;

• (5) expresses a condition on the set of SCC s that reject the sequences visiting s infinitely often.

As we are dealing with complete and deterministic automata, these conditions are equivalent.

The set of enforceable r-properties, equivalently defined by Definition 4 or Definition 5, is denoted EP .
We will now characterize EP wrt. the SP classification. We will prove that EP is exactly the class of
response properties. Note that the enforcement criterion in the automata view is still useful as it provides a
syntactic procedure to determine whether a property is enforceable or not.

6.2 Enforceable properties
We start first by proving that response properties are enforceable. Then, we give the intuition on the non-
enforceability of persistence properties by providing an illustrating example. Then, we prove that the set
of response properties is exactly the set EP .

THEOREM 6.1 (Response properties are enforceable) Response(Σ) ⊆ EP

Proof Indeed consider a response r-property Π = (φ, ϕ) and an execution sequence σ ∈ Σω . Π can be
expressed as (Rf (ψ), R(ψ)) for a given finitary language ψ. Let us suppose that ¬ϕ(σ). It means that
σ 6∈ R(ψ), i.e., σ has finitely many prefixes belonging to ψ. Consider the set S = {σ′ ∈ Σ∗ | ∀σ′′ ∈
Σ∗, σ′ ≺ σ′′ ≺ σ ∧ ¬ψ(σ′′)} of finite sequences from which all finite continuations do not satisfy ψ.
As ¬R(ψ)(σ), this set is not empty. Let us note σ0 the smallest element of S regarding ≺. We have
∀σ′ ∈ Σ∗, σ0 ≺ σ′ ≺ σ ⇒ ¬ψ(σ′). Since ∀ψ′ ⊆ Σ∗, Rf (ψ′) ⊆ ψ′ (cf. the definition of operators
building finitary properties), it implies that ∀σ′ ∈ Σ∗, σ0 ≺ σ′ ≺ σ ⇒ ¬φ(σ′). Thus, Π is enforceable
according to Definition 6.1.

A straightforward consequence is that safety, guarantee and obligation r-properties are enforceable. We
prove that, in fact, pure persistence properties are not enforceable. Let us first give the intuition on an
example.

For Σ ⊇ {a, b}, an example of pure persistence r-property is Π = (Σ∗ ·a+,Σ∗ ·aω) stating that “it will
be eventually true that a always occurs”. One can notice that this property is neither a safety, guarantee
nor obligation property. Π is recognized by the Streett automaton AΠ depicted on Fig. 10 (with P = {1}).
One can understand the enforcement limitation intuitively with the following argument: if this property was
enforceable it would imply that an enforcement monitor can decide from a certain point that the underlying
program will always produce the event a. However such a decision can never be taken by a monitor
without memorizing the entire execution sequence beforehand. This is unrealistic for an infinite sequence.
More formally, as stated in Definition 6.1, an r-property (φ, ϕ) is enforceable if for all infinite execution
sequences σ when ¬ϕ(σ), the longest prefix of σ satisfying φ always exists. For the above automaton, the
execution sequence σ′bad = (a · b)ω does not satisfy the property whereas an infinite number of its prefixes
do (prefixes ending with a).

Applying enforcement criteria on persistence properties, it turns out that the enforceable persistence
properties are in fact response properties.

THEOREM 6.2 (Enforceable persistence properties are response properties)
Persistence(Σ) ∩ EP ⊆ Response(Σ)

28/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

Proof A persistence r-property Π becomes non enforceable as soon as there exists a SCC of R-states
containing a P -state and a P -state on its recognizing automaton AΠ (see Definition 6.2). Indeed, on a
Streett automaton it allows infinite invalid execution sequences with an infinite number of valid prefixes.
When removing this possibility on a Streett automaton, the constrained automaton can be easily translated
to a response automaton. Indeed, on this constrained automaton, the states visited infinitely often are either
all in P or P , that is: ∀σ ∈ Σω, vinf (σ,AΠ)∩P 6= ∅ ⇔ vinf (σ,AΠ) ⊆ P . On such automaton there is no
difference between R-states and P -states. Consequently by re-tagging P -states to R-states, this automaton
recognizes the same property. The re-tagged automaton is a response automaton.

COROLLARY 6.1 Pure persistence properties are not enforceable:

(Persistence(Σ) \ Response(Σ)) ∩ EP = ∅

Proof This is a direct consequence of Theorem 6.2.

THEOREM 6.3 (Enforceable m-reactivity properties are response properties)
Reactivity(Σ) ∩ EP ⊆ Response(Σ)

Proof The formal proof can be found in Appendix A.3.2. The proof shows that an m-reactivity automaton
which is constrained by the enforcement criterion (Definition 6.2) can be translated to an m-response
automaton accepting exactly the same sequences. Thus, the only enforceable reactivity properties are the
response ones.

COROLLARY 6.2 Pure reactivity properties are not enforceable:

Reactivity(Σ) 6⊆ EP
Reactivity(Σ) \ (Persistence(Σ) ∪ Response(Σ)) ∩ EP = ∅

Proof This is a direct consequence of Theorem 6.3.

COROLLARY 6.3 Enforceable properties are exactly response properties:

EP = Response(Σ)

Proof It remains to prove that the set of enforceable properties is included in the set of response properties.
Suppose that there exists an enforceable property which is not a response one. Then, according to the
definition of the Safety-Progress hierarchy, this property would be either a pure persistence or a pure
reactivity property. Consequently this property would not be enforceable.

EXAMPLE 6.1 (ENFORCEABLE AND NOT ENFORCEABLE PROPERTIES) We illustrate the enforcement cri-
terion on the properties introduced in Example 4.1 and represented by their Streett automata described in
Example 4.2 and depicted in Example 1.

• The properties Π1,Π2,Π3 are enforceable.

• The property Π4 is not enforceable; e.g., the infinite sequence r · g · (r · d · r · g)ω is not accepted
while this sequence has an infinite number of correct prefixes: e.g., all sequences belonging to r · g ·
(r · d · r · g)∗.

Being enforceable or not can be determined rather easily either by observing the automata and using the
acceptance criteria for finite and infinite sequences or by using the criterion in the automata view.

Verimag Research Report no TR-2010-5 29/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

DFA2Streett

Device

(DFA)

Property

X

Streett2EMStreett2VM

(Streett Automaton)

Aψ

AΠ

A?Π A↓Π

ψ

Π = (Xf (ψ), X(ψ))

(EM)

X ∈ {A,E,R, P}

(VM)

Figure 11: Automaton transformations

7 Monitor synthesis
Now we show how it is possible to obtain easily a monitor either for verifying or enforcing a property thanks
to the framework introduced in Section 4. Generally speaking, a monitor is a device processing an input
sequence of events or states in an incremental fashion. It is purposed to yield a property-specific decision
according to its goal. In (classic) runtime verification such a decision is a truth-value taken from a truth-
domain. This truth-value states an appraisal of property satisfaction or violation by the input sequence.
For runtime enforcement, the monitor produces a sequence of enforcement operations. The monitor uses
an internal memory and applies enforcement operations to the input event and its current memory so as
to modify the input sequence and produce an output sequence. The relation between the input and output
sequences should follow enforcement monitoring constraints: soundness and transparency (Section 3.2).

In the following we consider a Streett m-automaton AΠ = (QAΠ , qAΠ
init ,→AΠ

, {(R1, P1), . . . , (Rm,
Pm)}) and Π the r-property recognized by AΠ. Moreover, we evaluate properties only in B4, and conse-
quently we abbreviate [[Π]]B4(·) by [[Π]](·).

The general monitor synthesis procedure is depicted in Fig. 11. From a “pattern” X corresponding
to one of the basic classes of the hierarchy and a DFA Aψ recognizing a finitary property ψ ⊆ Σ∗,
DFA2S X yields a Streett automaton recognizing the r-property (Xf (ψ),X(ψ)). Then using Streett2VM
(resp. Streett2EM) one is able to obtain a verification (resp. enforcement) monitor for the r-property
(Xf (ψ), X(ψ)).

7.1 Monitor: A general definition
A monitor is a procedure consuming events fed by an underlying program and producing an appraisal
in the current state depending on the sequence read so far. Considered monitors are deterministic finite-
state machines producing an output in a relevant domain. This domain will be refined for special-purpose
monitors (verification and enforcement). For verification monitors, this output function gives a truth-value
(a verdict) in B4 regarding the evaluation of the current sequence relatively to the desired property. For
enforcement monitors (EMs), this output function gives an enforcement operation inducing a modification
on the input sequence so as to enforce the desired property.

DEFINITION 7.1 (MONITOR) A monitor A is a 5-tuple (QA, qAinit,−→A, XA,ΓA) defined relatively to a
set of events Σ. The finite setQA denotes the control states and qAinit ∈ QA is the initial state. The complete
function−→A: QA×Σ→ QA is the transition function. In the following we abbreviate−→A (q, a) = q′

by q a−→A q′. The set of values XA depends on the purpose of the monitor (verification or enforcement).
The function ΓA : QA → XA is an output function, producing values in XA from states.

7.2 Synthesizing monitors for runtime verification
In the following12, we consider monitorable r-properties Π and (φ, ϕ) in MP∗(B4).

12The synthesis of Verification Monitors is presented for r-properties in MP∗(B4) and can be adapted in a straightforward manner
for other sets of monitorable properties using the results in Section 5.

30/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

>c >c >c

⊥

r

g

r

g

r

g

Σ

⊥c ⊥c >

⊥

r

g

r

g

Σ

Σ

>c ⊥c

⊥

r

g
g

r

Σ

⊥c ⊥c

>c

>c

⊥
⊥c

r

g,d

d
g

r

r

g,d

g

r d r

d,g

Σ

A?Π1 A?Π2 A?Π3 A?Π4

Figure 12: Examples of Verification Monitors

DEFINITION 7.2 (VERIFICATION MONITOR) A verification monitor (VM) A? is a monitor with XA =
B4.

Such monitors are independent from any specification formalism, and can be easily adapted to the specifi-
cation formalism from which they are generated. We define, the notion of verification sequence produced
by a monitor and what it means to verify a property for a monitor. It amounts to define the verification per-
formed by a VM A? while reading an input σ ∈ Σ∗ (produced by PΣ) and producing a sequence b ∈ B4

+.

DEFINITION 7.3 (SEQUENCE VERIFICATION) The verification function [[A?]](·) : Σ∗ → B4
+, defining

the verification performed by A?, produces a verification sequence while reading σ. This verification
sequence is defined as follows:

∀σ ∈ Σ∗, [[A?]](σ) = ΓA?(qA?
init) · · ·ΓA?(qn) (6)

with qA?
init

σ0−→A?
q1

σ1−→A?
· · · qn−1

σn−1−→A?
qn and |σ| = n.

DEFINITION 7.4 (MONITOR SOUNDNESS) A monitor A? is sound wrt. Π = (φ, ϕ) ∈ MP∗(B4) on PΣ,
noted Ver(A?,Π,PΣ), if

∀σ ∈ Exec(PΣ) ∩ Σ∗, last([[A?]](σ)) = [[Π]]B4
(σ).

where [[·]]B4
is defined in Definition 5.4.

This definition states that the verification sequence produced by A? matches the evaluation function of a
sequences wrt. an r-property.

Using the set PAΠ of a Streett automaton AΠ, we show how it is possible to obtain a verification
monitor for the r-property Π.

DEFINITION 7.5 (STREETT2VM TRANSFORMATION) Given a Streettm-automatonAΠ = (QAΠ , qAΠ
init ,Σ,

−→AΠ
, {(R1, P1), . . . , (Rm, Pm)}) recognizing Π ∈ MP∗(B4), we define the transformation Streett2VM

s.t. Streett2VM(AΠ) = (QAΠ , qAΠ
init ,→AΠ

,B4,Γ) s.t. Γ : QA? → B4 produces truth-values from states
depending on the set PAΠ : ∀q ∈ QAΠ ,

q ∈ GoodAΠ ⇒ Γ(q) = >, q ∈ GoodAΠ
c ⇒ Γ(q) = >c,

q ∈ BadAΠ
c ⇒ Γ(q) = ⊥c, q ∈ BadAΠ ⇒ Γ(q) = ⊥.

An r-property Π is verifiable on PΣ by a VM A?Π obtained by the application of Streett2VM on the
automaton recognizing Π.

EXAMPLE 7.1 (VERIFICATION MONITORS) In Fig. 12 are represented VMs for the properties introduced
in Example 4.1, specified by Streett automata of Fig. 1, and synthesized with the Streett2VM transformation.

THEOREM 7.1 (Correctness of Streett2VM) Given AΠ recognizing Π, we have:

(Π ∈ MP∗(B4) ∧ A?Π = Streett2VM(AΠ))
⇒ Ver(A?Π,Π,PΣ)

Proof The proof of this theorem relies on the correctness of the computation performed while obtaining
PAΠ for AΠ (Property 5.1).

Verimag Research Report no TR-2010-5 31/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

7.3 Synthesizing monitors for runtime enforcement

In the remainder, we consider enforceable r-properties (φ, ϕ) and Π ∈ EP , and a Streett m-automaton
AΠ = (QAΠ , qAΠ

init ,Σ,−→AΠ , {(R1, P1), . . . , (Rm, Pm)}) recognizing Π. An EM is producing enforce-
ment operations depending on its current state.

DEFINITION 7.6 (ENFORCEMENT MONITOR) An EM A! is a 5-tuple (QA! , qA!
init,−→A!

, Ops,Γ). En-
forcement operations of Ops performed by the EM are aimed to operate a modification of the internal me-
mory and potentially produce an output, i.e., each enforcement operation is a function: Σ×Σ∗ → Σ∗×Σ∗.
Then Γ : QA↓ → Ops is the output function, producing enforcement operations from states.

The considered enforcement operations allow enforcement monitors either to halt the target program (when
the current input sequence irreparably violates the property), or to store the current event in a memory device
(when a decision has to be postponed), or to dump the content of the memory device (when the target
program went back to a correct behavior), or to switch off the monitor when all possible continuations of
the current input sequence are correct wrt. the property under scrutiny13.

DEFINITION 7.7 (ENFORCEMENT OPERATIONS) We define a set of enforcement operations Ops = {halt ,
store, dump, off } as follows: ∀e ∈ Σ ∪ {εΣ},∀m ∈ Σ∗,

halt(e,m) = (εΣ,m), store(e,m) = (εΣ,m · e),
dump(e,m) = (m · e, εΣ), off (e,m) = (m · e, εΣ).

where e designates the input event of the monitor and m the memory device content.

Note that the off and dump operations have the same definitions. From a theoretical perspective, the off
is indeed not necessary. However, it has a practical interest. In order to limit the monitor’s impact on the
original program (performance wise), it is of interest to know when the monitor is not needed anymore.

We define the transformation performed by an EM A! while reading an input sequence σ ∈ Σ∗ and
producing an output sequence o ∈ Σ∗.

DEFINITION 7.8 (SEQUENCE TRANSFORMATION) The sequence transformation function [[A!]](·) : Σ∗ →
Σ∗ relies on the function [[A!]](·, ·, ·) : Σ∗ × QA! × Σ∗ → Σ∗ defining the transformation performed on
the current state and the internal memory content: [[A!]](σ, q,m) is the output sequence produced while
reading σ from state q and (initial) memory content m.

∀q ∈ QA! ,∀m ∈ Σ∗, [[A!]](εΣ, q,m) = εΣ (7)
[[A!]](e · σ, q,m) = o · [[A!]](σ, q

′,m′) (8)

with q e−→A!
q′ ∧ Γ(q′) = α ∈ Ops ∧ α(e,m) = (o,m′).

The empty sequence εΣ is transformed into itself by A!, this is the case when the underlying program does
not produce any event (7). An execution sequence e · σ is (incrementally) transformed according to the
transition fired by the input e: the current memory content and the input e are applied to the enforcement
operation of the arriving-state transition, it induces a new memory content and an output o (8).

We define now the notion of property-enforcement by an EM. The notion of enforcement relates the
input sequence produced by the program and given to the EM and the output sequence allowed by the EM
(correct wrt. the property under consideration)14.

DEFINITION 7.9 (PROPERTY-ENFORCEMENT) For Π = (φ, ϕ) ∈ EP , we say that A! enforces Π on PΣ,
noted Enf (A!,Π,PΣ), iff for any σ ∈ Exec(PΣ) ∩ Σ∗, there exists o ∈ Σ∞, s.t. the following constraints

13Although, dump and off have the same definition, distinguishing them is useful in practice. Indeed, the off operation is intended
to be produced when all continuations of the current execution sequence are correct wrt. the property. It allows to determine when
the EM is not needed anymore. Consequently, it helps reducing the performance impact on the underlying program

14In the general case, the comparison between input and output sequences is performed up to some equivalence relation ≈⊆
Σ∞ × Σ∞. Note that the considered equivalence relation should preserve the r-property under consideration.

32/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

dump dump dump

halt

r

g

r

g

r

g

Σ

dump dump off

halt

r

g

r

g

Σ

Σ

dump store

halt

r

g
g

r

Σ

store store
dump

dump

halt

store

r

g,d

d
g

r

r

g,d

g

r d r

d,g

Σ

A!Π1 A!Π2 A!Π3 A!Π4

Figure 13: Examples of Enforcement Monitors

hold:

[[A!]](σ, q
A!
init, ε) = o (9)

Π(σ)⇒ σ = o (10)

¬Π(σ) ∧ Pref ≺(φ, σ) = ∅ ⇒ o = ε (11)

¬Π(σ) ∧ Pref ≺(φ, σ) 6= ∅ ⇒ o = Max (Pref ≺(φ, σ)) (12)

(9), (10), (11), and (12) ensure soundness and transparency of A!: (9) stipulates that the sequence σ is
transformed by A! into a sequence o; (10) ensures that if σ already satisfy the property then it is not
transformed. (11) ensures that, when no prefix of σ satisfies the property, the EM outputs nothing (the
empty sequence εΣ). (12) ensures that, if some prefix of σ satisfies the property, o is the longest prefix of σ
satisfying the property.

Soundness comes from the fact that the produced sequence o, when different from εΣ, always satisfies
the property φ. Transparency is ensured by the fact that correct execution sequences are not changed, and
incorrect ones are restricted to their longest correct prefix.

One may remark that it would have been possible to set Max (Pref ≺(φ, σ)) to εΣ when Pref ≺(φ, σ) =
∅ and merge the two last constraints. However, we choose to distinguish explicitly the case in which
Pref ≺(φ, σ) = ∅ as it highlights some differences when an EM produces εΣ. Sometimes it corresponds
to the only correct prefix of the property. But it can also be an incorrect sequence wrt. the property. In
practice, when implementing an EM for a system, this sequence can be “tagged” as incorrect15.

Finally, since we have to deal with potentially infinite input sequences, the output sequence should
be produced in an incremental way16: for each current prefix σ of the input sequence read by the EM,
the current output o produced should be sound and transparent with respect to Π and σ. This means that
deciding whether a finite sequence σ verifies Π or not should be computable in a finite amount of time (and
reading only a finite continuation of σ).

We synthesize EMs from Streett automata in the framework of r-properties. This transformation was
previously introduced in [FFM08] in the form of several transformations specific to each class of enforce-
able properties. Here we generalize those transformations into a unique one.

DEFINITION 7.10 (STREETT2EM TRANSFORMATION) The transformation Streett2EM(AΠ) = (QAΠ ,
qAΠ

init ,−→AΠ
, Ops,Γ) is defined s.t. Γ : QA!Π → Ops produces enforcement operations: ∀q ∈ AΠ,

q ∈ GoodAΠ ⇒ Γ(q) = off ; q ∈ GoodAΠ
c ⇒ Γ(q) = dump;

q ∈ BadAΠ
c ⇒ Γ(q) = store ; q ∈ BadAΠ ⇒ Γ(q) = halt .

EXAMPLE 7.2 (ENFORCEMENT MONITORS) Fig. 13 represents EMs for the properties introduced in Ex-
ample 4.1, specified by Streett automata in Fig. 1, and synthesized with the Streett2EM transformation.

An r-property Π ∈ EP is enforceable on PΣ by an EM obtained by the application of Streett2EM on the
automaton recognizing Π.

15This latter case is avoided in [LBW09] by assuming that properties under consideration always contain εΣ.
16From a more general perspective, we can see this limitation from a runtime verification point of view. Verifying infinitary

properties at runtime on a produced execution sequence, in essence, should be done by checking finite prefixes of the current sequence.

Verimag Research Report no TR-2010-5 33/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

THEOREM 7.2 (Correctness of Streett2EM) Given AΠ recognizing Π ∈ EP , we have:

A!Π = Streett2EM(AΠ)⇒ Enf (A!Π,Π,PΣ).

Proof Correctness of the general transformation relies on the correctness (proved in [FFM08]) of the
transformations specific to each class of properties. Indeed, this general transformation reduces to the
specific transformation when applied to a specific class of properties.

Such a unified transformation is useful in practice (from an implementation point of view) as it can be
applied to any Streett automaton (regardless of the class of the recognized property).

7.4 Discussion
One of the important challenges in runtime verification is the practical interest of the specification formal-
ism. An ideal specification language should be easy to use by end-users. Moreover, a desirable feature,
advocated by this paper, is the need for addressing both infinite and finite execution sequences.

One could reproach the two following facts to the proposed synthesis approach:

• First, several mechanisms are needed: DFAs, Streett automata, and finally verification and enforce-
ment monitors.

• Second, one may question the usefulness of the DFA to Streett transformations. Arguably, it would
be possible to generate monitors directly for properties specified by Streett automata (written by hand
or generated from temporal logic formula).

In our point of view, using the DFA2Streett transformations in the synthesis process has the three following
advantages:

• The DFA2Streett transformations complete the picture of the Safety-Progress classification, by pro-
viding constructive tools in the automata view that are equivalent to the property-construction oper-
ators (A, E,R, P , Af , Ef , Rf , Pf) in the language view.

• The direct translation from a supposed ideal specification formalism to a Streett automaton would be
difficult. This formalism would have to address both finite and infinite behaviors, requiring a design
expertise. It is likely that such a translation would be error-prone or lead to ambiguous specifications.

• One of the underlying arguments for using our approach is that the end-user is only required to
specify a finite behavior and indicate the wished pattern (used with the finitary property). Thus, the
infinite behavior is comprehended by the user by only seeing patterns like “always”, “at least once”,
“regularly”, or “persistently”. The user is thus kept from specifying the infinite behavior with Streett
automata.

A complex translation is avoided, replaced by two simpler transformations, and the required work from the
user seems to be simpler.

8 Conclusion and future works
Conclusion. We have extended the Safety-Progress classification of properties in a runtime verification
context. This hierarchical organization of properties turned out to be a convenient framework for specifying
properties purposed to be used at runtime. We addressed the problem of monitorability and enforceabil-
ity of properties at runtime using this general framework. We characterized the sets of monitorable and
enforceable properties in a unified way. We introduced a new definition of monitorability based on dis-
tinguishability of good and bad execution sequences. This definition is based on positive and negative
determinacy as well. However, we believe that it better corresponds to practical needs and tool implemen-
tations and fits better in the hierarchy of properties. Moreover, this alternative definition is able to better
distinguish equivocal situations that a monitor would have to face off without a finite sequence interpreta-
tion. Furthermore, we have delineated the set of enforceable properties wrt. the SP classification. This set

34/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

of properties was characterized independently from any enforcement mechanism. It is thus an upper-bound
for the set of properties that could be addressed by any enforcement mechanism. Furthermore, we have
given general synthesis procedures to generate runtime and enforcement monitors in this framework.

Future works. The proposed approach raises new research perspectives and open questions. First, it
seems interesting to consider this approach in the testing perspective. A monitor (passively) observes the
execution of the program. Notably it has no control on the produced events and their sequencing. In a
testing context, the notion of controllable event is introduced. An interesting issue would be to characterize
the set of testable properties in the SP framework, as it was initiated in [FFJ+10]. Note that the definitions
of positive and negative determinacy is rather appropriate in this context. Indeed, in a test campaign one is
concerned with the set of all execution sequences that can be produced by the underlying program. Notions
of positive and negative determinacy seem to be a first approximation of the set of possible future execution
sequences of a program.

An additional issue to take into consideration is to deal with a reduced observability on the system
under scrutiny. In practical situations, the desired property may refer to events out of the observation scope
of a monitor. Similarly, it seems interesting to see how it is possible to characterize the set of properties for
which other runtime-verification derived techniques can be applied (e.g., runtime reflection [LS08]).

Furthermore, an interesting question would be to investigate how the automata-view of the SP classifi-
cation transposes to other sets of properties such as context-free languages. The classification used in this
paper focuses on regular properties. In the quest of expressiveness for specification languages, relying on
a classification appears as a good way to delineate monitorable and enforceable properties.

Finally, the question of expressiveness is somehow also related to parametric properties, i.e., the
properties depending on events with parameters whose values depend on the program execution. Re-
cently [CR09], a framework has been proposed to reason about parametric properties and monitor them
efficiently. The set of considered properties is the set of regular properties: monitors are expressed using
a FSM-like formalism. It is rather clear that being able to express parametric properties is an asset in
runtime verification and is surely desirable from a practical point of view. Now, as runtime verification
is always concerned with efficiency, the question is to balance between the gained expressiveness and the
induced overhead. Moreover, another question is to investigate whether it is more efficient to enhance
expressiveness by considering parametric properties or using a more expressive specification formalism.

Acknowledgement. The authors would like to gratefully thank Howard Barringer, Klaus Havelund,
Thierry Jéron, Hervé Marchand, and the anonymous reviewer of STTT for their helpful remarks.

References
[AS85] Bowen Alpern and Fred B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185,

1985. 3.1, 4.1

[BLS07] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification for LTL and
TLTL. Technical Report TUM-I0724, Institut für Informatik, Technische Universität München,
December 2007. 1, 2, 3.1, 3.1, 3.3, 5.1.2, 7, 5.2, 5.3

[BLS10] Andreas Bauer, Martin Leucker, and Christian Schallhart. Comparing ltl semantics for runtime
verification. Journal of Logic and Computation, 20(3):651–674, 2010. 1, 2, 5.1

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation and application to logic programs.
Journal of Logic Programing, 13(2-3):103–179, 1992. 1

[CMP92a] Edward Chang, Zohar Manna, and Amir Pnueli. The Safety-Progress Classification. Technical
report, Stanford University, Dept. of Computer Science, 1992. 4, 4.1, 4.2.2, 4.2.2, 4.3, 5

[CMP92b] Edward Y. Chang, Zohar Manna, and Amir Pnueli. Characterization of temporal property
classes. In Automata, Languages and Programming, pages 474–486, 1992. 1, 4

Verimag Research Report no TR-2010-5 35/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

[CR07] Feng Chen and Grigore Roşu. MOP: An Efficient and Generic Runtime Verification Frame-
work. In Object-Oriented Programming, Systems, Languages and Applications(OOPSLA’07),
pages 569–588. ACM press, 2007. 3.3

[CR09] Feng Chen and Grigore Roşu. Parametric trace slicing and monitoring. In Stefan Kowalewski
and Anna Philippou, editors, TACAS, volume 5505 of Lecture Notes in Computer Science,
pages 246–261. Springer, 2009. 8

[CW96] Edmund M. Clarke and Jeannette M. Wing. Formal methods: State of the art and future
directions. ACM Computing Surveys, 28:626–643, 1996. 1

[dR05] Marcelo d’Amorim and Grigore Roşu. Efficient monitoring of ω-languages. In Proceedings
of 17th International Conference on Computer-aided Verification (CAV’05), volume 3576 of
Lecture Notes in Computer Science, pages 364 – 378. Springer, 2005. 1, 3.3

[EC80] E. Allen Emerson and Edmund M. Clarke. Characterizing correctness properties of parallel
programs using fixpoints. In Proceedings of the 7th Colloquium on Automata, Languages and
Programming, pages 169–181. Springer-Verlag, 1980. 1

[Fal10] Yliès Falcone. You should better enforce than verify. In Howard Barringer, Yliès Falcone,
Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon J. Pace, Grigore Roşu, Oleg Sokolsky,
and Nikolai Tillmann, editors, RV, volume 6418 of Lecture Notes in Computer Science, pages
89–105. Springer, 2010. 3, 3.3

[FFJ+10] Yliès Falcone, Jean-Claude Fernandez, Thierry Jéron, Hervé Marchand, and Laurent Mounier.
More Testable Properties. In Alexandre Petrenko, Adenilso da Silva Simão, and José Carlos
Maldonado, editors, ICTSS, volume 6435 of Lecture Notes in Computer Science, pages 30–46.
Springer, 2010. 8

[FFM08] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. Synthesizing Enforcement Mo-
nitors wrt. the Safety-Progress Classification of Properties. In ICISS ’08: Proceedings of the
4th International Conference on Information Systems Security, pages 41–55. Springer-Verlag,
2008. 3, 3.3, 7.3, 7.3

[FFM09a] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. Enforcement Monitoring wrt.
the Safety-Progress Classification of Properties. In SAC ’09: Proceedings of the 2009 ACM
symposium on Applied Computing, pages 593–600, New York, NY, USA, 2009. ACM. 3, 3.2,
3.2

[FFM09b] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. Runtime verification of safety-
progress properties. In Saddek Bensalem and Doron Peled, editors, RV, volume 5779 of Lecture
Notes in Computer Science, pages 40–59. Springer, 2009. 1

[FMFR10] Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, and Jean-Luc Richier. Generic run-
time enforcement monitors: Composition, synthesis, and enforcement abilities, 2010. Under
revision at Formal Methods in System Design. 3.2, 3.3

[Fon04] Philip W. L. Fong. Access control by tracking shallow execution history. In Proceedings of the
2004 IEEE Symposium on Security and Privacy, pages 43–55. IEEE Computer Society Press,
2004. 3.2

[HG08] Klaus Havelund and Allen Goldberg. Verify your runs. In Verified Software: Theories, Tools,
Experiments: First IFIP TC 2/WG 2.3 Conference, VSTTE 2005, Zurich, Switzerland, October
10-13, 2005, Revised Selected Papers and Discussions, pages 374–383. Springer-Verlag, 2008.
1, 3, 3.3

[HMS06] Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Computability classes for enforce-
ment mechanisms. ACM Trans. Program. Lang. Syst., 28(1):175–205, 2006. 1, 3.2, 3.2

36/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

[HR02] Klaus Havelund and Grigore Roşu. Efficient monitoring of safety properties. Software Tools
and Technology Transfer, 2002. 1

[HU79] John E Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, Massachusetts, 1979. 4.3.3

[KYV01] Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties. Formal Methods
in System Design, 19(3):291–314, 2001. 3.1

[Lam77] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng.,
3(2):125–143, 1977. 3.1, 4.1

[LBW05] Jay Ligatti, Lujo Bauer, and David Walker. Enforcing Non-safety Security Policies with Pro-
gram Monitors. In ESORICS, pages 355–373, 2005. 3.2, 3.2

[LBW09] Jay Ligatti, Lujo Bauer, and David Walker. Run-time enforcement of nonsafety policies. ACM
Transactions on Information and System Security, 12(3):1–41, January 2009. 1, 3.2, 3.2, 15

[LS08] Martin Leucker and Christian Schallhart. A brief account of runtime verification. Journal of
Logic and Algebraic Programming, 78(5):293–303, may/june 2008. 3.3, 5.3, 8

[Mat07] Ilaria Matteucci. Automated synthesis of enforcing mechanisms for security properties in a
timed setting. Electron. Notes Theor. Comput. Sci., 186:101–120, 2007. 3.3

[MM07] Fabio Martinelli and Ilaria Matteucci. Through modeling to synthesis of security automata.
Electron. Notes Theor. Comput. Sci., 179:31–46, 2007. 3.3

[MP90] Zohar Manna and Amir Pnueli. A hierarchy of temporal properties (invited paper, 1989). In
PODC ’90: Proceedings of the ninth annual ACM symposium on Principles of distributed
computing, pages 377–410, New York, NY, USA, 1990. ACM. 1, 4

[PZ06] Amir Pnueli and Aleksandr Zaks. PSL model checking and run-time verification via testers.
In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, FM, volume 4085 of Lecture
Notes in Computer Science, pages 573–586. Springer, 2006. 1, 2, 3.1, 3.1, 5.1, 5.2

[RCB08] Grigore Roşu, Feng Chen, and Thomas Ball. Synthesizing monitors for safety properties – this
time with calls and returns –. In Workshop on Runtime Verification (RV’08), volume 5289 of
Lecture Notes in Computer Science, pages 51–68. Springer, 2008. 1

[Run10] Runtime Verification. http://www.runtime-verification.org, 2001-2010. 1, 3.3

[Sch00] Fred B. Schneider. Enforceable security policies. ACM Transaction in Information System
Security, 3(1):30–50, 2000. 1, 1, 3.2, 3.2

[Str81] Robert S. Streett. Propositional dynamic logic of looping and converse. In STOC ’81: Pro-
ceedings of the thirteenth annual ACM symposium on Theory of computing, pages 375–383.
ACM, 1981. 4.3.1

[VK04] Mahesh Viswanathan and Moonzoo Kim. Foundations for the run-time monitoring of reactive
systems - Fundamentals of the MaC language. In Zhiming Liu and Keijiro Araki, editors,
ICTAC, volume 3407 of Lecture Notes in Computer Science, pages 543–556. Springer, 2004.
1, 3.1, 3.1, 3.2, 3.2

A Proofs

A.1 Proofs for Section 4
A.1.1 Proof of Property 4.2: Closure of r-properties

We prove the two facts in order:

Verimag Research Report no TR-2010-5 37/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

1 We have either φ(σ) or ϕ(σ), i.e., all prefixes σ′ of σ belong to ψ. Necessarily, all prefixes σ′′ of σ′

also belong to ψ, that is ψ(σ′′). By definition, that means σ′ ∈ Af (ψ), i.e., φ(σ′) and Π(σ′).

2 Π(σ) implies that σ has at least one prefix σ0 � σ belonging to ψ: σ ∈ Ef (ψ). Then, any continua-
tion of σ built using any finite or infinite sequence σ′ has at least the same prefix belonging to ψ. If
σ′ ∈ Σ∗, we have σ0 � σ � σ · σ′ and σ · σ′ ∈ Ef (ψ). If σ′ ∈ Σω , we have σ0 � σ ≺ σ · σ′ and
σ · σ′ ∈ E(ψ).

A.1.2 Proof of Theorem 4.1: Soundness of the transformations of DFAs to Streett automata

Considering a DFA Aψ = (QAψ , q
Aψ
init ,→Aψ , F) (we omit the superscript of F for the sake of clarity), s.t.

L(Aψ) = ψ, we have to prove that:

AΠ = DFA2S Saf (Aψ)⇒ L(AΠ) = (Af (ψ), A(ψ))
AΠ = DFA2S Guar(Aψ)⇒ L(AΠ) = (Ef (ψ), E(ψ))
AΠ = DFA2S Resp(Aψ)⇒ L(AΠ) = (Rf (ψ), R(ψ))
AΠ = DFA2S Per(Aψ)⇒ L(AΠ) = (Pf (ψ), P (ψ))

In the following proofs, for a finite sequence σ of length n, we may use the notion of run of σ on Aψ or on
a Streett automaton AΠ obtained by the transformations. We note:

• run(σ,Aψ) = q0 · · · qn,

• run(σ,AΠ) = q′0 · · · q′n.

For Safety properties. We show that the r-property accepted by AΠ (obtained using DFA2S Saf) is
exactly (Af (ψ), A(ψ)).

Let σ ∈ Σ∞ s.t. (Af (ψ), A(ψ))(σ), let us prove that the sequence σ is accepted by AΠ. We have two
cases: σ is a finite sequence or not.

• Let us consider σ ∈ Σ∗ s.t. |σ| = n, then by definition of r-properties: σ ∈ Af (ψ), i.e., every prefix of σ
belongs to ψ. Let us examine run(σ,Aψ) = q0 · · · qn. As L(Aψ) = ψ, we have ∀i ∈ [0, n], qi ∈ F . By
definition of the transformation DFA2S Saf , we have ∀i ∈ [0, n], qi ∈ P . According to (TSAFE1), we have
run(σ,AΠ) = q0 · · · qn. Using the acceptance criterion for finite sequences, σ is accepted by AΠ.

• Let σ ∈ Σω , then by definition of r-properties: σ ∈ A(ψ), i.e., every finite prefix of σ belongs to
ψ. Let us suppose that σ is not accepted by AΠ. According to the acceptance criterion for infinite
sequences (Definition 4.5), we would have vinf (σ,AΠ) 6⊆ P (as AΠ is a safety automaton, R = ∅).
By definition of the transformation DFA2S Saf and the shape of the obtained automaton AΠ, we have
vinf (σ,AΠ) = {sink}. Using (TSAFE2), we know that there exists a smallest prefix σ′ of σ, s.t. the run of
σ′ on AΠ reaches the state sink . By the definition of DFA2S Saf , we can deduce that the run of σ′ on
Aψ ends in a state in F . As L(Aψ) = ψ, σ′ /∈ ψ. We obtain a contradiction with σ ∈ A(ψ), and σ is
actually accepted by AΠ.

Let σ be a sequence accepted by AΠ, let us prove that σ ∈ (Af (ψ), A(ψ)). We distinguish again two
cases: σ is a finite sequence or not.

• Let σ ∈ Σ∗ s.t. |σ| = n, then by definition of the acceptance criterion for finite sequences of Streett
automata (Definition 4.6), we have q′n ∈ P . As AΠ is a safety automaton, we can deduce that ∀i ∈
[0, n], q′i ∈ P . Following the definition of DFA2S Saf , we find that all the states visited during the run of
σ on Aψ are in F : ∀i ∈ [0, n], qi ∈ F (and qi = q′i). By definition of the acceptance criterion for DFAs,
we can deduce that every prefix of σ is accepted by Aψ . As L(Aψ) = ψ, we can deduce that all prefixes
of σ belong to ψ, i.e., σ ∈ Af (ψ).

38/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

• If σ ∈ Σω , then by definition of the acceptance criterion for infinite sequences (Definition 4.5), we know
that vinf (σ,AΠ) ⊆ P . Let us suppose that σ /∈ A(ψ), by definition of the operatorA (see Definition 4.1),
there exists a strict prefix σ′ of σ not belonging to ψ. Let n′ = |σ′|. As L(Aψ) = ψ, the run of σ′

on Aψ , run(σ′,Aψ) = q0 · · · qn′ , satisfies q0 = q
Aψ
init ∧ qn′ /∈ F . According to the definition of the

transformation DFA2S Saf and the rule (TSAFE2), we have q′n′ = sink /∈ P . Furthermore, using (TSAFE3),
every continuation of σ′ has its run ending in sink . We deduce that vinf (σ,AΠ) = {sink} 6⊆ P . Which
is a contradiction with the initial hypothesis, and gives us σ ∈ A(ψ).

For Guarantee properties. We show that the sets of sequences accepted byAΠ obtained by DFA2S Guar
are exactly (Ef (ψ), E(ψ)).

Let σ ∈ Σ∞ s.t. (Ef (ψ), E(ψ))(σ), let us prove that the sequence σ is accepted by AΠ. We have two
subcases: σ is a finite sequence or not.

• Let us consider σ ∈ Σ∗ s.t. |σ| = n, then by definition of r-properties: σ ∈ Ef (ψ), i.e., σ has at least
one prefix which belongs to ψ. Let us consider Ssat = {σ′ ∈ Σ∗ | σ′ � σ ∧ σ′ ∈ ψ}, the set of prefixes
of σ which belong to ψ. As σ ∈ Ef (ψ), we can deduce that Ssat 6= ∅, Ssat has thus a smallest element
σmin. Let n′ = |σmin|. We have, by definition of σmin, ∀σ′ ∈ Σ∗, σ′ ≺ σmin ⇒ σ′ /∈ ψ. Let us
examine run(σmin,Aψ) = q0 · · · qn′ . As L(Aψ) = ψ, we have ∀i ∈ [0, n′ − 1], qi /∈ F ∧ qn′ ∈ F .
According to (TGUAR2), we have run(σmin,AΠ) = q0 · · · qn′ with ∀i ∈ [0, n′ − 1], qi /∈ R ∧ qn′ ∈
R. Following (TGUAR1), we have ∀i ∈ [n′, n], qi ∈ R. According to the acceptance criterion for finite
sequences, σ is accepted by AΠ.

• Let σ ∈ Σω , then by definition of r-properties: σ ∈ E(ψ), i.e., (at least) one finite prefix of σ belongs
to ψ. Let us suppose that σ is not accepted by AΠ. According to the acceptance criterion for infinite
sequences (Definition 4.5), we have vinf (σ,AΠ) ∩ R = ∅ (as AΠ is a guarantee automaton, P = ∅). In
other words, we have vinf (σ,AΠ) ⊆ R. As AΠ is a guarantee automaton, every state visited by the run
of σ on AΠ is in R. Indeed, according to the shape of the transition function of guarantee automata, if a
state of R is visited, we have vinf (σ,AΠ)∩R 6= ∅. Let us consider now the prefixes of σ. During the run
of these prefixes on AΠ, none of them visits an R-state. It follows that, according to (TGUAR2), none of the
runs on AΠ of these prefixes visits a state in F . As L(Aψ) = ψ, we deduce that none of the prefixes of σ
belongs to ψ. We obtain a contradiction with σ ∈ E(ψ), and consequently σ is actually accepted by AΠ.

Let σ be a sequence accepted by AΠ, let us prove that σ ∈ (Ef (ψ), E(ψ)). We distinguish two cases: σ is
a finite sequence or not.

• Let σ ∈ Σ∗ s.t. |σ| = n, then by definition of the acceptance criterion for finite sequences (Definition 4.6),
we have qn ∈ R. Let us suppose that σ /∈ Ef (ψ), i.e., none of the prefixes of σ belongs to ψ. As
L(Aψ) = ψ, the run of σ on Aψ satisfies: ∀i ∈ [0, n], qi /∈ F . Starting from q

Aψ
init = qAΠ

init /∈ R, and
using (TGUAR2), we find that run(σ,AΠ) = q′0 · · · q′n with ∀i ∈ [0, n], q′i /∈ R. This is a contradiction with
q′n ∈ R, and thus σ ∈ Ef (ψ).

• Let σ ∈ Σω , then by definition of the acceptance criterion for infinite sequences (Definition 4.5), we have
vinf (σ, AΠ) ∩ R 6= ∅. As AΠ is a guarantee automaton, it means that vinf (σ,AΠ) ⊆ R. According to
the shape of the transition function for guarantee automata, it means that there is a prefix σ′ of σ on AΠ

for which the run switches from states in R to states in R. More formally, ∃σ′ ∈ Σ∗, σ′ ≺ σ ∧ |σ′| =
n′ ∧ ∀i ∈ [0, n′ − 1], q′i ∈ R ∧ ∀i ≥ n′, q′i ∈ R. Let us suppose that σ /∈ E(ψ), i.e., σ has no prefix
belonging to ψ. As L(Aψ) = ψ, the run of σ on Aψ satisfies: ∀i ∈ N, qi /∈ F . Similarly to the finitary
case, and according to the transformation DFA2S Guar (TGUAR2), it would question the existence of σ′.
We deduce that σ ∈ E(ψ).

For Response properties. We show that the r-property accepted by AΠ, obtained with DFA2S Resp is
exactly (Rf (ψ), R(ψ)).

Let σ ∈ Σ∞ s.t. (Rf (ψ), R(ψ))(σ), let us prove that the sequence σ is accepted by AΠ. We have two
subcases: σ is a finite sequence or not.

Verimag Research Report no TR-2010-5 39/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

• Let σ ∈ Σ∗, thus σ ∈ Rf (ψ). Proving that σ is accepted by AΠ amounts to show that the run of σ on
AΠ, i.e., run(σ,AΠ), ends in a R-state (i.e., q′n ∈ R). First of all, let us remark that σ ∈ Rf (ψ) gives us
ψ(σ). Furthermore, as L(Aψ) = ψ, we can deduce that qn ∈ F . As σ ∈ Rf (ψ), ∀n ∈ N,∃σ′ ∈ Σ∗, σ ≺
σ′ ∧ |σ′| ≥ n ∧ ψ(σ′) (cf. Definition 4.2).

Let n′ = |F | be the number of accepting states of Aψ . Now let us consider the set S = {σ” ∈ Σ∗ |
σ ≺ σ′′ ∧ |{σ′ ∈ Σ∗ | σ ≺ σ′ ≺ σ′′ ∧ σ′ ∈ ψ}| > n′}. This set contains the sequences which
are continuations of σ and have at least n′ prefixes longer than σ and belonging to ψ. As σ ∈ Rf (ψ),
we know that S 6= ∅, thus S has a smallest element σmin. Let us examine the run of σmin on Aψ:
run(σ,Aψ) = run(σ,AΠ) = q0 · · · q|σmin| = q0 · · · qn · · · q|σmin|. Between qn and q|σmin|, there are at
least n′ + 1 accepting states. As |F | = n′, two states between qn and q|σmin| are identical. Moreover, we
have ∀i ∈ [n, |σmin|−1], qi →Aψ qi+1. Which allows us to deduce, using the definition of DFA2S Resp
that qn = q′n is tagged as a R-state. According to the acceptance criterion for finite sequences, σ is
accepted by AΠ.

• Let σ ∈ Σω , thus σ ∈ R(ψ), i.e., ∀σ′ ∈ Σ∗,∃σ′′ ∈ Σ∗, σ′ ≺ σ′′ ≺ σ ∧ ψ(σ′′) holds for σ. Let us
examine the run of σ on AΠ, we will show that this run visits at least one R-state infinitely often. Indeed,
let us consider a prefix σ′ of σ, we can find an unbounded number of σ′-continuations σ′′, s.t. ψ(σ′′).
Furthermore, for each of these continuations, it is possible to find an unbounded number of continuations
σ′′′ s.t. ψ(σ′′′). Using L(Aψ) = Aψ , the runs of the sequences σ′′ and the sequences σ′′′ on the
automaton Aψ end on a F -state. Using the same reasoning as the one used for finite sequences, the state
on which the run of σ′′ on AΠ is a R-state. Thus we can build a series (σi)i∈N of σ-prefixes (of strictly
growing length) s.t. the run of each σi ends in a R-state. Thus an infinite number of prefixes of σ go
through a R-state. As |R| ∈ N, there exists a state in R visited infinitely often during the run of σ on AΠ.
According to the acceptance criterion for infinite sequences, σ is accepted by AΠ.

Let σ be a sequence accepted by AΠ, let us prove that σ ∈ (Rf (ψ), R(ψ)). We distinguish again two
cases: σ is a finite sequence or not.

• Let σ ∈ Σ∗ s.t. |σ| = n, then by definition of the acceptance criterion for finite sequences (Definition 4.6),
we have q′n ∈ R. According to the definition of the transformation DFA2S Resp, we deduce that qn ∈ F
and ∃q0, . . . , ql ∈ QAψ ,∃e0, . . . , el ∈ Σ,

∀j ∈ [0, l − 1], qj
ei−→Aψ qj+1 (13)

∃i ∈ [0, l],∃j ∈ [i, l − 1], qj ∈ F ∧ qi = ql ∧ q0 = q (14)

Thus we can build a series (σj)j∈N of σ-continuations s.t. ∀j ∈ N, ψ(σj) and σj is defined as σj =
σ · e0 · · · ei · (ei+1 · · · el−1 · e0 · · · ei)j . This series exhibits strictly growing continuations of σ belonging
to ψ. According to the definition of the operator Rf , we can deduce that σ ∈ Rf (ψ).

• Let σ ∈ Σω , then by definition of the acceptance criterion for infinite sequences (Definition 4.5), we have
vinf (σ, AΠ) ∩ R 6= ∅. Thus, σ has an infinite number of prefixes for which the run ends in a R-state.
Using the definition of DFA2S Resp, we know that all these prefixes are accepted byAψ (as by definition
the ending state of their run is a R-state). Using L(Aψ) = ψ, we know that all these prefixes belong to ψ
and have an unrestricted number of continuations belonging to ψ. We can deduce that σ ∈ R(ψ).

For Persistence properties. We show that the set of sequences accepted byAΠ, obtained with DFA2S Per
is exactly (Pf (ψ), P (ψ)). Let us remark that, according to the definition of the transformation (the tran-
sition function is not changed), we have ∀j ∈ [n − 1, n′ + n′′ − 1], q′j −→AΠ

q′j+1 ∧ qj −→Aψ qj+1.
Moreover, as QAΠ = QAψ , we can merge the states qj and q′j visited by the runs of σ on Aψ and AΠ.

Let σ ∈ Σ∞ s.t. (Pf (ψ), P (ψ))(σ), let us prove that the sequence σ is accepted by AΠ. We have two
subcases: σ is a finite sequence or not.

• Proving that σ is accepted by AΠ amounts to show that the run of σ on AΠ ends in a P -state (qn ∈ P).
First of all, let us remark that σ ∈ Pf (ψ) gives us ψ(σ). Furthermore, as L(Aψ) = ψ, we can deduce that
qn−1 ∈ F . As σ ∈ Pf (ψ), there exist σ′, µ ∈ Σ∗ s.t. (cf. Definition 4.2):

σ � σ′ ∧ (σ′ · µ∗ · pref (µ)) ⊆ ψ (15)

40/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

Let n′ = |σ′|, and n′′ = |µ|. Then, the runs of σ′ and σ′ · µ on AΠ can be expressed:

run(σ′,AΠ) = q0 · · · qn · · · qn′
run(σ′ · µ,AΠ) = q0 · · · qn · · · qn′ · qn′+1 · · · qn′+n′′

According to (15), we have qn′ ∈ F . We can show by induction that

run(σ · µ∗,AΠ) = q0 · · · qn′ · (qn′+1 · · · qn′+n′′)∗.

Moreover, we have ∀j ∈ [n′+1, n′+n′′], q′j ∈ F and qn′+n′′ −→AΠ
qn′+1. We can deduce, following the

definition of DFA2S Per , that qn ∈ P . Indeed, it is sufficient to take l = n′+n′′−n and i = n′+1−n.

• In order to prove vinf (σ,AΠ) ⊆ P , it is sufficient to see that σ can be expressed σ′ ·µω . From this, every
prefix of σ longer than σ′ satisfies ψ, and has its run which stops in a F -state on Aψ . Thus, we exhibit a
strongly connected component of F -states which are tagged as P -states by DFA2S Per. Thus, the states
visited infinitely often during the run of σ on AΠ are the states of this strongly connected component.
Which gives us the expected result.

Let σ be a sequence accepted by AΠ, let us prove that σ ∈ (Pf (ψ), P (ψ)). We distinguish two
subcases: σ is a finite sequence or not.

• Let σ ∈ Σ∗ s.t. |σ| = n, then by definition of the acceptance criterion for finite sequences of Streett
automata (Definition 4.6), we have qn ∈ P . Then, there exist two cases.

• In the first one, we have on one hand qn ∈ F , and on the other hand ∃n ∈ N \ {0},∃q0, . . . , qn ∈ QAψ
s.t.:

• ∀j ∈ [0, n− 1], qj −→Aψ qj+1, and
• ∃i ∈ [0, n− 1],∀j ∈ [i, n], qj ∈ F ∧ qi = qn ∧ q0 = qn

We have ψ(σ) since L(Aψ) = ψ. Moreover, there exist e0, . . . , en−1 ∈ Σ s.t. ∀j ∈ [0, n−1], qj
ej−→Aψ

qj+1. We can deduce that ψ(σ · e0 · · · ei), ψ(σ · e0 · · · ei · ei+1), . . . , ψ(σ · e0 · · · en−1). Let us note

Lp = σ′ ·
(

(e0 · · · en)∗ · e0 + (e0 · · · en)∗ · e0 · e1 + . . . + (e0 · · · en)∗ · e0 · · · en−1

)
. As qi = qn

({qi, . . . , qn} is a strongly connected component), we can prove by induction thatLp ⊆ ψ. Furthermore,
∀σ′ ∈ Σ∗ ∩ Lp, σ · e0 · · · ei � σ′ ⇒ ψ(σ′). Which proves that σ ∈ Pf (ψ). Indeed, it is sufficient to
take σ′ = σ · e0 · · · ei, and µ = ei+1 · · · en−1.

• In the second one, we have qn ∈ F and qn −→Aψ qn. Thus, ∃e ∈ Σ, qn
e−→Aψ qn. We deduce that

ψ(σ) and σ · e∗ ⊆ ψ, as L(Aψ) = ψ. Which allows us to deduce easily that σ ∈ Pf (ψ).

• Let σ ∈ Σω , then by definition of the acceptance criterion for infinite sequences of Streett automata
(Definition 4.5), we have vinf (σ,AΠ) ⊆ P . That is to say, all prefixes of σ from a certain point on
have their run which ends in a P -state. As the automaton AΠ has a finite number of states, it means
that there exists a strongly connected component C, s.t. the run of σ on AΠ “stays in”. More formally,
∃n,m ∈ N, C = {q′0, . . . , q′n} ⊆ QAΠ ∧ run(σ,AΠ) = q0 · · · qm · · · ∧ ∀i > m, qi ∈ C. Moreover, as
{q′0, . . . q′n} is a SCC, from every state of C it is possible to reach any state of C. Let us suppose, without
loss of generality, that q′0

e0−→AΠ q′1
e1−→AΠ · · ·

en−1−→AΠ q′n
en−→AΠ q′0, with e0, . . . , en ∈ Σ. According to

the definition of DFA2S Per , we have the same transitions on Aψ , i.e., q′0
e0−→Aψ q′1

e1−→Aψ · · ·
en−1−→Aψ

q′n
en−→Aψ q′0.

Let us note Lp = σ′ · (e0 · · · en)∗ · (e0 + e0 · e1 + . . .+ e0 · · · en−1) = σ′ · (e0 · · · en) · pref (e0 · · · en−1).
The sequence σ can be expressed σ′ · (e0 · · · en)ω with the fact that for every sequence σ′′ ∈ Lp which is
a continuation of σ′, the run of σ′′ ends in a P -state. Which implies that the runs of these same sequences
σ′′ on Aψ end in a F -state. As L(Aψ) = ψ, we deduce that ∀σ′′ ∈ Lp, σ′ � σ′′ ≺ σ ⇒ ψ(σ′′).

Which allows to deduce, using the definition of the operator P (see Section 4.2), that σ ∈ P (ψ).

Verimag Research Report no TR-2010-5 41/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

A.2 Proofs for Section 5

A.2.1 Proof of Lemma 5.1: Closure of monitorable properties under boolean operations

Let us consider two r-properties Π1,Π2 ∈ MPc .

• Proof of Π1∧Π2 ∈ MPc . It consists in showing that Π1∧Π2 is σ-monitorable for any sequence σ ∈ Σ∗.
Let σ ∈ Σ∗, let us exhibit an extension µ ∈ Σ∗ s.t. Π1 ∧ Π2 is negatively or positively determined by
σ · µ.

As Π1 is monitorable, there exists µ1 s.t. Π1 is negatively or positively determined by σ · µ1, that is we
have the two following subcases:

• ∃µ1 ∈ Σ∗,∀µ′1 ∈ Σ∞,¬Π1(σ · µ1 · µ′1), Π1 is negatively determined by σ · µ1, or,

• ∃µ1 ∈ Σ∗,∀µ′1 ∈ Σ∞,Π1(σ · µ1 · µ′1), Π1 is positively determined by σ · µ1.

As Π2 is also monitorable, it is σ · µ1-monitorable, there exists µ2 s.t. Π2 is negatively or positively
determined by σ · µ1 · µ2. That is we have the two following subcases :

• ∃µ2 ∈ Σ∗,∀µ′2 ∈ Σ∞,¬Π2(σ · µ1 · µ2 · µ′2), Π2 is negatively determined by σ · µ1 · µ2, or,

• ∃µ2 ∈ Σ∗,∀µ′2 ∈ Σ∞,Π2(σ · µ1 · µ2 · µ′2), Π2 is positively determined by σ · µ1 · µ2.

By combination, there exist four cases depending on the facts that Π1 is positively or negatively deter-
mined by σ · µ1 and Π2 is negatively or positively determined by σ · µ1 · µ2. We group them into two
cases:

• Let us distinguish the case where Π1 is positively determined by σ · µ1 and Π2 is positively deter-
mined by σ ·µ1 ·µ2. Then, by taking µ = σ ·µ1 ·µ2, we have that Π1∧Π2 is positively determined
by µ. This gives us the expected result.

• In the others cases, it suffices to take µ = σ ·µ1 ·µ2 to show that Π1 ∧Π2 is negatively determined
by µ.

• The proof of Π1 ∨Π2 ∈ MPc is similar.

• The proof of ¬Π1 ∈ MPc is straightforward by noticing that for any sequence σ ∈ Σ∗, if Π1 is positively
(resp. negatively) determined by σ, then ¬Π is negatively (resp. positively) determined by σ.

A.2.2 Proof of Theorem 5.1: Obligation(Σ) ⊂ MPc

The set of obligation r-properties is the set of all k-obligation r-properties for k ∈ N, where a k-obligation
is expressed as follows (Lemma 4.1):

k⋂
i=1

(Safetyi ∪Guaranteei),

where Safetyi and Guaranteei are safety and guarantee r-properties.
Let Π ∈ Obligation(Σ), there exists k ∈ N s.t. Π ∈ k−Obligation(Σ). The proof relies on an induction

on k and uses the following facts:

• Safety and guarantee properties are monitorable. Here is the proof17:

17The proof can also be done by examining the syntactic restriction applying to an automaton recognizing a safety or a guarantee
property: for all σ ∈ Σ∗, there exists a continuation µ s.t. this property is negatively or positively determined by σ · µ. For instance,
in a safety automaton, for each state there exists a path which leads either to a terminal strongly connected component of states in
which the property is satisfied or in a terminal strongly connected component in which the property is not satisfied.

42/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

• Let Π = (Af (ψ), A(ψ)) be a safety r-property, and σ ∈ Σ∗. The proof is done by distinguishing
two cases : either there exists a continuation σ′ ∈ Σ∗ of σ s.t. ¬Π(σ′), or there does not exist.
In the first case, we have ¬Af (ψ)(σ′), i.e., σ′ does not have all of its prefixes in ψ. Then, the
same holds for every continuation σ′′ of σ′: ∀σ′′ ∈ Σ∗, σ′ � σ′′ ⇒ ¬Af (ψ)(σ′′). It follows that
∀σ′′ ∈ Σ∗, σ � σ′ � σ′′ ⇒ ¬Π(σ′′). That is to say Π is negatively determined by σ′. In the second
case, every continuation of σ satisfies Π. That is Π is positively determined by σ · ε.

• Let Π = (Ef (ψ), E(ψ)) be a guarantee r-property, let us prove that Π is monitorable. The proof can
be similarly conducted. It suffices to consider σ ∈ Σ∗ and show that there exists a σ-continuation
which makes that Π is negatively or positively determined by this continuation. Similarly, two cases
can be distinguished whether there exists a σ-continuation which satisfies the property, or not.

• Union and intersection of two monitorable properties are monitorable (Lemma 5.1).

• Example 5.3 shows that the inclusion is strict.

A.2.3 Proof of Lemma 5.2: MP∗(B3), safety, and guarantee properties

We prove this property by reductio ad absurdum. Let suppose the existence of a reactivity r-property
Π = (φ, ϕ) defined on Σ which is neither a safety nor a guarantee: Π ∈ Reactivity(Σ) \ (Safety(Σ) ∪
Guarantee(Σ)), and which is monitorable according to Definition 5.5 with B3.
As Π ∈ MP∗(B3), by definition we have:

∀σgood ∈ φ, ∀σbad ∈ φ, [[Π]]B3(σgood) 6= [[Π]]B3(σbad)

Let us remark that φ 6= ∅ and φ 6= ∅ as Π is neither a safety nor a guarantee. Indeed, if φ = ∅, then Π
would be necessarily the r-property false, which is a safety. Likewise, if φ = ∅, i.e., φ = Σ∗, Π would be
the r-property true which is a safety as well.

Then, we consider two sequences σgood and σbad in Σ∞ :

• Let σgood ∈ φ s.t. there exists σ′g ∈ Σ∞ with ¬Π(σgood · σ′g). We know that such a sequence exists
since Π /∈ Guarantee(Σ). This is a consequence of Property 4.2.

• Let σbad ∈ φ s.t. there exists σ′b ∈ Σ∞ with Π(σbad ·σ′b). We know that such a sequence exists since
Π /∈ Safety(Σ). This is a consequence of Property 4.2.

According to the definition of the evaluation function for r-properties in a truth-domain (Definition 5.4),
we have:

[[Π]]B3(σgood) = [[Π]]B3(σbad) =?

This is a contradiction with Π ∈ MP∗(B3).

A.2.4 Proof of Theorem 5.2: Multi-valued characterization of alternative monitorability

We prove each of these facts successively. Let Π = (φ, ϕ) be an r-property.

Proof of (i).

• Let Π ∈ Safety(Σ), we show that Π ∈ MP∗(B⊥2). As Π ∈ Safety(Σ), there exists a finitary
property ψ ⊆ Σ∗, s.t. Π = (Af (ψ), A(ψ)). Let us consider σgood ∈ φ and σbad ∈ φ, we want to
prove that the evaluations in B⊥2 of these two sequences differ. On one hand, we have Π(σgood) (since
σgood ∈ φ) and thus [[Π]]B⊥2 (σgood) =?. On the other hand, we have ¬Π(σbad) and σbad /∈ Af (ψ)

(since σbad /∈ φ). Using Property 4.2, we have ∀µ ∈ Σ∞,¬Π(σbad · µ), i.e., [[Π]]B⊥2 (σbad) = ⊥.

• Let Π ∈ MP∗(B⊥2), we show that Π ∈ Safety(Σ). According to the characterization of safety
properties given in Property 4.1, showing that Π is a safety r-property amounts to show that it verifies
Π = (Af (Pref (φ)), A(Pref (ϕ))). This is what we do by showing the inclusion in both ways.

Verimag Research Report no TR-2010-5 43/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

– Π u Σ∗ ⊆ Af (Pref (φ)) is immediate as for every sequence σ ∈ Π u Σ∗ (i.e., σ ∈ φ), σ has
all of its prefixes in Pref (φ). The same holds for Π u Σω ⊆ A(Pref (ϕ)).

– Let us show that Af (Pref (φ)) ⊆ Π u Σ∗. Let σ ∈ Af (Pref (φ)), we prove that σ ∈ Π u Σ∗.
As σ ∈ Af (Pref (φ)), all prefixes of σ belong to Pref (φ). That is, all prefixes of σ are the
prefixes of a sequence in φ. Let σmin be the smallest word in φ which is an continuation of
σ. We distinguish two cases. If σmin = σ, then σ ∈ Π. Else (σ ≺ σmin), as σmin ∈ φ,
we have [[Π]]B⊥2 (σmin) =?; and consequently [[Π]]B⊥2 (σ) =? (otherwise, we could not have
[[Π]]B⊥2 (σmin) =?). Using Π ∈ MP∗(B⊥2), we obtain σ ∈ φ and consequently σ ∈ Π.

The same reasoning can be conducted to show that A(Pref (ϕ)) ⊆ Π u Σω .

Finally, according to the definition of r-properties (Definition 2.1), we know that Π = (φ, ϕ) can be
written Π = (Af (Pref (φ)), A(Pref (ϕ))), which gives us the expected result.

Proof of (ii).

• The reasoning used to prove that Guarantee(Σ) ⊆ MP∗(B>2) is similar to the reasoning used to
prove Safety(Σ) ⊆ MP∗(B⊥2). It suffices to show that all bad execution sequences are evaluated to
“?”. Furthermore, all good execution sequences are evaluated to>. Indeed, once a sequence satisfies
a guarantee r-property, all its continuations also satisfy it.

• Proving that MP∗(B>2) ⊆ Guarantee(Σ) can be done, following the reasoning used to prove
MP∗(B⊥2) ⊆ Safety(Σ), by showing that if Π ∈ MP∗(B>2), then Π verifies Π =

(
Ef (Pref (φ)), E(Pref (ϕ))

)
.

Proof of (iii)

• The proof of Safety(Σ) ∪Guarantee(Σ) ⊆ MP∗(B3) is straightforward by noticing that:

– MP∗(B⊥2) ⊂MP∗(B3),

– and MP∗(B>2) ⊂ MP∗(B3).

• The fact that MP∗(B3) ⊆ Safety(Σ) ∪Guarantee(Σ) is given by Lemma 5.2.

Proof of (iv). The proof is straightforward by noticing that every r-property can be evaluated by effec-
tively distinguishing good and bad sequences. In others words, any reactivity r-property can be evaluated
consistently with B4. Indeed, a good sequence σgood is evaluated to>c or> according to its continuations.
A bad sequence σbad is evaluated to ⊥c or ⊥ according to its continuations. As we can see here, the truth
values ⊥c and >c refine the verdict “?”.

A.2.5 Proof of Property 5.1: Correspondence between Streett automata states and B4

In this proof, [[Π]] stands for [[Π]]B4 . Let us consider an execution sequence σ ∈ Σ∗ of length n.

Proof of qn ∈ GoodAΠ ⇔ [[Π]](σ) = >

• Let us suppose that qn ∈ GoodAΠ . Using the acceptance criterion for finite sequences, we have that σ
is accepted by AΠ. Furthermore, as AΠ specifies Π, we have Π(σ). Now, let us consider µ ∈ Σ+ s.t.
|σ| + |µ| = n′ > n and run(σ · µ,AΠ) = q0 · · · qn′−1. As qn ∈ GoodAΠ , we deduce ∀k ∈ N, n ≤
k ≤ n′ − 1⇒ qk ∈

⋂m
i=1Ri ∪ Pi and consequently Π(σ · µ). Let us consider µ ∈ Σω , one may remark

that ∀i ∈ [1,m], vinf (σ · µ,AΠ) ∩ Ri 6= ∅ ∨ vinf (σ · µ,AΠ) ⊆ Pi, which implies Π(σ · µ). We have
Π(σ) ∧ ∀µ ∈ Σ∞,Π(σ · µ), i.e., [[Π]](σ) = >.

• Conversly, let us suppose that [[Π]](σ) = >. By definition, it means ∀µ ∈ Σ∞,Π(σ · µ). Accor-
ding to the acceptance criterion of Streett automata, we deduce ∀k ≥ n,∀µ ∈ Σ∗, run(σ · µ,AΠ) =
q0 · · · qn · · · qk ⇒ qk ∈

⋂m
i=0Ri∪Pi. That is to say ReachAΠ(qn) ⊆

⋂m
i=1(Ri∪Pi), i.e., qn ∈ GoodAΠ .

44/46 Verimag Research Report no TR-2010-5

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

Proof of qn ∈ GoodAΠ
c ⇔ [[Π]](σ) = >c. The proof is straightforward by examining the acceptance

criterion for finite sequences.

• Let us suppose that qn ∈ GoodAΠ
c . Using the acceptance criterion for finite sequences, we have that σ is

accepted byAΠ. Moreover, asAΠ specifies Π, we deduce Π(σ). Now, as ReachA(q) 6⊆
⋂m
i=1(Ri∪Pi),

there exists a state q′ ofAΠ reachable from q and belonging to
⋃m
i=1(Ri∩Pi). Consequently, there exists

µ ∈ Σ∗ s.t. run(σ · µ) = q0 · · · qn · · · q′. Still following the acceptance criterion we deduce ¬Π(σ · µ),
i.e., [[Π]](σ) = >c.

• Conversely, the same reasonning can be used to prove the seeked result.

Proof of qn ∈ BadAΠ
c ⇔ [[Π]](σ) = ⊥c. Similarly, the proof is straightforward by examining the

acceptance criterion for finite sequences of Streett automata.

• Let us suppose that qn ∈ BadAΠ
c . Using the acceptance criterion of finite sequences, we have that σ

is not accepted by AΠ. Furthermore, as AΠ specifies Π, we deduce ¬Π(σ). Now, as ReachA(q) 6⊆⋃m
i=1(Ri ∪ Pi), there exists a state q′ of AΠ reachable from q and belonging to

⋂m
i=1(Ri ∪ Pi). Conse-

quently, there exists µ ∈ Σ∗ s.t. run(σ · µ) = q0 · · · qn · · · q′. Still following the acceptance criterion,
we deduce Π(σ · µ), i.e., [[Π]](σ) = ⊥c.

• Conversely, the same reasonning can be conducted.

Proof of qn ∈ BadAΠ ⇔ [[Π]](σ) = ⊥. The proof can be done following the same proof principle that
the one used to prove qn ∈ GoodAΠ ⇔ [[Π]](σ) = >.

• Let us suppose that qn ∈ BadAΠ . Using the acceptance criterion on finite sequences, we have that
σ is not accepted by AΠ. Furthermore, as AΠ specifies Π, we deduce ¬Π(σ). Now, let us consider
µ ∈ Σ+ s.t. |σ| + |µ| = n′ > n and run(σ · µ,AΠ) = q0 · · · qn′−1. As qn ∈ BadAΠ , we have
∀k ∈ N, n ≤ k ≤ n′ − 1⇒ qk ∈

⋃m
i=1Ri ∩ Pi and consequently ¬Π(σ · µ). Let us consider µ ∈ Σω ,

one may remark that ∀i ∈ [1,m], vinf (σ · µ,AΠ) ∩ Ri = ∅ ∧ vinf (σ · µ,AΠ) 6⊆ Pi, which implies
¬Π(σ · µ). We have ¬Π(σ) ∧ ∀µ ∈ Σ∞,¬Π(σ · µ), i.e., [[Π]](σ) = ⊥.

• Conversely, let us suppose that [[Π]](σ) = ⊥. By definition, it means ∀µ ∈ Σ∞,¬Π(σ · µ). Accor-
ding to the acceptance criterion of Streett automata, we deduce ∀k ≥ n,∀µ ∈ Σ∗, run(σ · µ,AΠ) =
q0 · · · qn · · · qk⇒ qk ∈

⋃m
i=0Ri∩Pi. That is to say ReachAΠ(qn) ⊆

⋃m
i=1(Ri∩Pi), i.e., qn ∈ BadAΠ .

A.3 Proofs for Section 6
A.3.1 Proof of Property 6.1: Equivalence between enforcement criteria

Before proving the equivalence between enforcement criteria, we state and prove an intermediate lemma.

LEMMA A.1 Considering an m-automaton AΠ recognizing an r-property Π = (φ, ϕ) and s ∈ S(AΠ) a
strongly connected component of AΠ. We have:

Is 6= ∅ ⇔ ∀σ ∈ Σω, vinf (σ,AΠ) = s⇒ ¬ϕ(σ)

The proof is in two steps by proving implications in both ways.

• Suppose Is 6= ∅ and let us consider σ ∈ Σω s.t. vinf (σ,AΠ) = s. As Is 6= ∅, then ∃i ∈ Is(⊆ [1,m]),
vinf (σ,AΠ) ⊆ Ri ∧ vinf (σ,AΠ) ∩ Pi 6= ∅. Then, using the acceptance criterion for infinite
sequences, one can deduce that σ is not accepted by AΠ.

• The other direction is straightforward using the acceptance criterion for infinite sequences (Defini-
tion 4.5).

Verimag Research Report no TR-2010-5 45/46

Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

Now, let us prove Property 6.1. This proof relies on the computation of strongly connected components
of a Streett automaton (SCC), both maximal and non maximal ones. The proof is in two steps by proving
implications in both ways.

• (4) ⇒ (5). Let s be a SCC of AΠ s.t. Is 6= ∅. Then using the previous lemma, every sequence s.t.
vinf (σ, AΠ) = s is rejected by AΠ. As Π is enforceable and satisfies (4), necessarily all prefixes of
σ terminating in a state of s are not accepted. Otherwise, there would exist an accepting state (wrt.
the acceptance criterion of finite sequences) in s. It would then be possible to build σ′ ∈ Σω with an
infinite number of accepting prefixes, i.e., s.t. (4) is not satisfied.

• (5) ⇒ (4). Let us consider σ ∈ Σω s.t. ¬ϕ(σ). During its run on AΠ, σ visits an SCC s infinitely
often. As ¬ϕ(σ), using the previous lemma, we have Is 6= ∅. Using (5), ∃i ∈ Is, vinf (σ,AΠ) ⊆ Pi
(and we already know vinf (σ,AΠ) ⊆ Ri). Let us consider σ′ ∈ Σ∗ s.t. σ′ ≺ σ, the run of σ′ onAΠ

is s.t. ∃q1, . . . , qn ∈ QAΠ , run(σ′,AΠ) = qAΠ
init · q1 · · · qn · {q ∈ vinf (σ,AΠ)}∗. Consequently, we

have ∀σ′ ≺ σ, |σ′| ≥ n ⇒ run(σ,AΠ) = qAΠ
init · · · q, with q ∈ Ri ∧ q ∈ Pi. Using the acceptance

criterion for finite sequences, we have that σ′ is not accepted by AΠ.

A.3.2 Proof of Theorem 6.3: Enforceable m-reactivity properties are response properties

We show that any enforceable m-reactivity property Π is indeed a response property. The proof is based
on the automata view, showing that the (m-reactivity) automaton AΠ associated to Π can be transformed
into a response automaton AΠ

′ recognizing the same language.
Let us consider AΠ = (QAΠ , qAΠ

init ,Σ,−→AΠ
, {(R1, P1), . . . , (Rm, Pm)}) the Streett automaton associ-

ated to an enforceable property Π. We now consider the response automatonAΠ
′ = (QAΠ , qAΠ

init ,Σ,−→AΠ

, {(R′1, ∅), . . . , (R′m, ∅)}) with R′i = Ri ∪ Pi for i in [1,m].
We now show that a sequence σ of Σ∞ is accepted by AΠ if and only if it is accepted by AΠ

′. We
distinguish two cases according to whether σ is a finite or an infinite sequence.

• For a finite sequence σ, it is an accepting sequence of AΠ if and only if its run terminates either in a
Ri-state or in a Pi-state for i in [1,m]. Consequently its run also terminates in a R′i-state of AΠ

′ for
i in [1,m], and therefore it is an accepting sequence of AΠ

′.

• For an infinite sequence σ, note that the sets vinf (σ, AΠ) and vinf (σ,AΠ
′) coincide.

Let us assume first that σ is an accepting sequence of AΠ, namely

m∧
i=1

vinf (σ,AΠ) ∩Ri 6= ∅ ∨ vinf (σ,AΠ) ⊆ Pi.

Since R′i ⊆ Ri and R′i ⊆ Pi we have

m∧
i=1

vinf (σ,AΠ) ∩R′i 6= ∅.

Consequently, σ is an accepting sequence of AΠ
′.

Now, let us assume that σ is a non-accepting sequence ofAΠ. Since Π is enforceable, then, according
to Property 6.1, there exists i ∈ [1,m] such that vinf (σ,AΠ) ⊆ Ri and vinf (σ,AΠ) ⊆ Pi. Thus,
we can deduce vinf (σ,AΠ) ⊆ (Ri ∩ Pi) and, consequently, vinf (σ,AΠ

′) ⊆ R′i. Therefore, σ is a
non-accepting sequence of AΠ

′.

46/46 Verimag Research Report no TR-2010-5

	Introduction
	Preliminaries and notations
	Sequences and execution sequences
	Properties

	Related Work
	Runtime verification
	Runtime enforcement
	Synthesis of monitors

	The SP classification in a runtime context
	Informal description
	The language-theoretic view of r-properties
	Construction of r-properties
	Some useful facts about the language view

	The automata view of r-properties
	Streett automata
	The hierarchy of automata.
	From a DFA to a Streett automaton

	Characterizing states of Streett automata
	Summary

	Monitorability wrt. the SP classification
	Monitorable properties according to the classical definition of monitorability
	The classical definition of monitorability
	Characterization of monitorable properties according to the classical definition

	Considering other truth domains ?
	Monitorable properties according to an alternative definition of monitorability
	Property evaluation in a truth-domain.
	An alternative definition of monitorability
	Characterization of monitorable properties

	Characterizations in the automata view
	Summary

	Enforceability wrt. the SP classification
	Enforcement criteria
	Enforceable properties

	Monitor synthesis
	Monitor: A general definition
	Synthesizing monitors for runtime verification
	Synthesizing monitors for runtime enforcement
	Discussion

	Conclusion and future works
	Proofs
	Proofs for Section 4
	Proof of Property 4.2: Closure of r-properties
	Proof of Theorem 4.1: Soundness of the transformations of DFAs to Streett automata

	Proofs for Section 5
	Proof of Lemma 5.1: Closure of monitorable properties under boolean operations
	Proof of Theorem 5.1: Obligation()MPc
	Proof of Lemma 5.2: MP*(B3), safety, and guarantee properties
	Proof of Theorem 5.2: Multi-valued characterization of alternative monitorability
	Proof of Property 5.1: Correspondence between Streett automata states and B4

	Proofs for Section 6
	Proof of Property 6.1: Equivalence between enforcement criteria
	Proof of Theorem 6.3: Enforceable m-reactivity properties are response properties

