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Abstract

SystemC is a widely used tool for prototyping Systems-on-a-Chip. Being implemented as a
C++ library, a plain C++ compiler is sufficient to compile and simulate a SystemC program.
However, a SystemC program needs to be processed by a dedicated tool in order to visualize,
formally verify, debug and/or optimize the architecture. In this paper we focus on the tools
(called front-ends) used in the initial stages of processing SystemC programs. We describe
the challenges in developing SystemC front-ends and present a survey of existing solutions.
The limitations and capabilities of these tools are compared for various features of SystemC
and intended back-end applications. We present typical examples that front-ends should
ideally be able to process, and give theoretical limitations as well as experimental results of
existing tools.
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1 Introduction

SystemC is a C++ class library which facilitates modeling of systems at many different levels of abstrac-
tions ranging from functional description to cycle-accurate modeling. Ability to design at higher ab-
straction levels is valuable due to increasing complexity of system design. Being a C++ library, SystemC
provides typical high-level language features which make the task of system design easier and faster
than lower-level hardware description languages. It also offers the concepts of timing and concurrency
which are essential for hardware modeling. Therefore, it has become the de facto standard for modeling
embedded systems, and has been approved as a standard by the IEEE consortium [1].

Writing SystemC programs is mainly motivated by the need to obtain the hardware platform earlier,
allowing early software development. SystemC was primarily used for simulation, allowing validation
of platforms functionality, and embedded software development. A typical C++ compiler suffices to
generate an executable that performs simulation. However, as the complexity of embedded software
and model have grown, the need has appeared for various other applications (like formal verification,
visualization, ...), that require not only an execution of the platform, but also an access to its architec-
ture and an abstract representation of its source code like an Abstract Syntax Tree. Typical applications
of a SystemC front-end are visualization, introspection, optimization of simulation, verification and
synthesis, as detailed below. For such applications, initial processing of a SystemC program is done by
front-end tools. Depending on the target application, three issues have to be addressed by a SystemC
front-end. First, retrieving the architecture of the platform. In a SystemC simulation, this architecture
is obtained at run-time, by executing C++ statements that create and link SystemC components. This
phase is called the elaboration. In figure 1, the sc_main function gives an example of such statements.
Second, extracting the control structure of processes and recognizing SystemC specific constructs (the
process function in the example). At last, making the link between the two, recognizing communica-
tions between components in the control structure.

SC_MODULE(Component) {
sc_core::sc_out<bool> out;
sc_core::sc_in<bool> in;
bool isHead;

void process() {
/* Dynamic behavior of the process.

May use in.read(), out.write() and
arbitrary C++ statements ...*/

}
SC_CTOR(Component) { // constructor
SC_THREAD(process); // process declaration

}
};

int sc_main (int argc, char *argv[]) {
sc_signal<bool> s1("s1"), s2("s2"), s3("s3");
Component C1("C1"), C2("C2"), C3("C3");

C1.out(s1); C2.out(s2); C3.out(s3);
C1.in(s3); C2.in(s1); C3.in(s2);
C1.isHead = true;

sc_start(200, SC_NS); // start simulation
return 0;

}

Figure 1: Elab-only: a simple example
This paper recalls possible applications of SystemC front-ends (sections 2), and the challenges in

developing such tools (section 3). The main contribution is a theoretical (section 4) and experimental
(section 5) comparison of existing approaches and tools. We conclude in section 6.

The goal of this comparative study is twofold: first, a detailed survey should help future authors
of tools requiring a front-end to pick the right tool. We are mainly interested in tools usable to build
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research products, and therefore focus on front-ends which are distributed, with friendly licensing pol-
icy. Second, comparing the advantages and limitations of existing approaches should help building the
next generation of SystemC front-ends. Besides, part of the conclusion of our study is that all the tools
available today have drawbacks, and we are working on a new one which should overcome most of
them.

2 Applications of a SystemC front-end

The main possible uses of a SystemC front-end are:
Visualization: GUI tools for system design provide graphical visualization of the architecture and may

also provide a facility to edit the design. For graphical visualization, it is sufficient to run the
elaboration and display the architecture. A full front-end can be required for more advanced
features like source code browsing or graphical editing facility. For example, ViSyC, part of the
SyCE [2] tool, uses the front-end ParSyC to allow visualization.

Introspection (Probing): Data introspection is the process of extracting meta-data, i.e. the structural
and run-time characteristics of a system. Structural data may include the module names, hierar-
chy information etc, while the runtime data includes dynamic information such as the number
of process invocations, event generations etc. Using data introspection, a piece of code within
the platform can access information about the objects containing the platform during simula-
tion, which can ease design space exploration. Examples of tools for SystemC introspection in-
clude ReSP [3], which uses GCCXML to extract the structure of class and exports it to the platform
through a Python interface, and [4], which does some source-to-source transformation to instru-
ment the SystemC program and allow run-time monitoring of each variable of the platform.

Optimization of simulation: Once the elaboration phase completed, the architecture of the system is
known. This knowledge can be used to perform some optimization. For instance, speeding up
the simulation with static scheduling [5, 6], or parallelizing it [7]. In both cases, one needs to take
into account accesses to variables shared by several processes, hence to know which variable a
process may access after a given point of the simulation. RTL models can rely on the architecture
and consider that a process can only access fields of its own module, but this is not true with TLM,
where process can call directly functions of other modules.

Verification: Typically, verification of hardware systems is performed using dynamic validation tech-
niques such as simulation. In order to perform formal verification of the model using existing
tools (such as model checkers), the SystemC front-end is required to extract both a detailed rep-
resentation of process bodies, and the architecture (typically, one cannot reason formally about a
statement like port.write(...); unless knowing which interface the port is bound to). Most Sys-
temC formal verifiers read SystemC code with a front-end, and formalize its semantics to produce
the input language of a model-checker [8, 9, 10]. Note that a front-end is not strictly necessary to
perform model-checking: enumerative model-checking can be performed with a minor manual
modification of the source code and a plain C++ compiler, as shown in [11].

Synthesis: Some SystemC models can be synthesized into gate-level descriptions. A synthesizer for
SystemC works like a compiler, and obviously requires exhaustive information about the source
code. Examples of academic synthesizers are [12, 13].

3 Issues In Developing SystemC Front-ends

SystemC being a C++ library, a C++ front-end can parse a SystemC program, but for most applications
other than basic simulation, this is insufficient to build a front-end. We now detail the issues of design-
ing a SystemC front-end. First, retrieve the architecture of the system, second represent the C++ control
structure in an abstract way, and the most difficult part: link those two structures.
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3.1 Architecture

A SystemC system first defines an architecture, i.e. a set of components and connections between them.
Components have a behavior defined by one or several processes and communicate with each other
through ports. SystemC also provides synchronization mechanisms like events and signals.

A SystemC program describes all these concepts using C++ objects declared in the SystemC library,
and instantiated during the elaboration phase (i.e. at the beginning of execution). The first goal of a
SystemC front-end is to retrieve this architecture. A regular C++ parser can only parse the program and
generate an intermediate representation of the code. However, it cannot capture the meaning of the
program in terms of components and interconnections, since this information is built at runtime. Such
information is vital in some back-ends such as verification tools. Consider a code fragment in Figure 1,
where three modules form a circular chain through the use of boolean signals. A C++ parser can give a
representation of the elaboration code, but not does not compute this information directly.

There are mainly two approaches to get the architecture: either execute the elaboration phase, and
get the result of this execution, or parse it, and infer the result without executing it. The latter is usually
done with static analysis of the elaboration code to determine the interconnections between modules,
and would ideally require a full C++ interpreter.

Figure 2 illustrates a more complex case where components are instantiated in a loop and, conse-
quently, the number of processes depends on a variable.

int sc_main(int argc, char **argv) {
module1 *m[MAX];
for(i = 0; i < MAX; ++i) {

m[i] = new module1();
}

}

Figure 2: Architecture dependent on dynamic information

3.2 Dealing with C++

A SystemC program contain different processes; a front-end allows to build an Intermediate Represen-
tation (IR) from these processes. Various kinds of IR can be imagined depending on the goal of the tool,
but it needs to contain both SystemC-specific treatments and others. SystemC being a C++ library, all
C++ features must be supported by the front-end. This can be achieved by either writing a parser from
scratch using the language grammar (which is non-trivial in the case of C++), or by using an existing
C++ front-end such as GCC, LLVM, EDG etc. The IR representing SystemC programs can be of various
forms, typically an Abstract Syntax Tree or a Control Flow Graph. The choice of the IR can be important,
as it must contain enough information to serve the purpose of the back-end.

The SystemC library defines different functions allowing synchronization and communication be-
tween processes. Through these operation, SystemC processes can wait a given time (wait(t)), write
through communication channels (port.write(data)), wait and notify events (wait(e)/e.notify()).
A SystemC front-end must be able to detect these operations and mark them as special in the IR.

A SystemC front-end should be able to retrieve these SystemC constructs. As function calls, those
specific constructs are easy to detect. A harder task is to capture the semantics: the difficulty here is not
only to find those constructs but to establish which components are involved. This requires to make
the link between the control structure and the architecture.

3.3 Linking architecture and control

For instance, if a process performs a port.write(data), it is easy to analyze that a component
writes a data to someone. Determining the target component as well as the data is more difficult, de-
pending on the complexity of the code computing port and data. Consider the architecture described in
figure 2 where components are instantiated in a loop. If a process performsmodules[i].out.write(data),
an ideal SystemC front-end would be able to retrieve which module is concerned by the writing. This
requires that the architecture has been retrieved as well as the control structure (with SystemC special
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Tool Approach Target app Open C++ coverage

KaSCPar Static Verification Partially Limited
Visualization?

SystemCXML Static Visualization Yes Limited
ParSyc Static Synthesis Unavailable ?

Visualization
Verification

sc2v Static Synthesis Yes Weak
BSSC based Static Co-synthesis Unavailable Weak

Visualization
Synopsis Static No Excellent
Semantec design Static Code formatting etc. No Excellent
Quiny Dynamic Synthesis Yes Limited

Visualization
Analysis/Optim

Pinapa Hybrid Verification Yes Excellent
Visualization

Scoot Static Verification No Good
Dust Dynamic Visualization Yes N/A

Introspection
SystemPerl Static Netlist Extraction Yes Weak
SystemCASS Dynamic Simulation Yes N/A

Table 1: Comparing various SystemC front-ends
constructs), but also to make the link between them. In the current example, this means evaluating
modules[i].out which is difficult. In the same manner, the semantics of a wait(t) instruction
depends on t, which can be the result of an arbitrarily complex code.

4 A Comparative Study of Existing SystemC Front-ends

We now present existing front-ends, their capabilities with respect to their goals. Table 1 summarizes
the comparison of the front-ends.

4.1 Tools Using a Dedicated Grammar for SystemC

A first approach to parse SystemC programs is to consider SystemC as a language, therefore rely on a
specific grammar considering SystemC classes and methods as keywords. The first drawback of this
method is due to the complexity of the C++ grammar and typing rules. As seen in section 3.2, a SystemC
program may contain any arbitrary C++ code, therefore this approach requires to implement the whole
C++ grammar in addition of the SystemC constructs, which is known to require a huge effort. As a con-
sequence, the solutions based on this approach, presented below, are highly incomplete with respect to
C++, and require to re-write SystemC designs with given guidelines. Generally, this excludes some C++
specific features such as dynamic memory allocation, pointers, recursion, loops with variable bounds
etc.

A more fundamental issue is that a purely static analysis solution can only handle programs where
the architecture is built in a simple way (see section 3.1).

• ParSyC: Developed by University of Bremen, ParSyC [12] is a SystemC parser using PCCTS [14]
(Purdue Compiler Construction Tool Set); it is a part of an integrated environment for system
design called SyCE [2].
ParSyC generates an Abstract Syntax Tree (AST) which is then converted to an intermediate rep-
resentation. The intermediate representation is close to the Abstract Syntax Tree but is built using
classes corresponding to the constructs in the SystemC code. It acts as a starting point for other
tools in SyCE, such as ViSyC which is used for visualization and DeSyC which is used for automatic
debugging. The SyCE suite also contains CheckSyC [15] which is a verification tool for formal
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equivalence checking, property checking and generating checkers for simulation or synthesis. In
order to use the output of ParSyC for verification, the AST generated by ParSyC is converted to a
Finite State Machine (FSM). The FSM together with the property to be proved is then converted
to a Boolean decision problem which is solved using a SAT solver.

• KaSCPar: KaSCPar [16] stands for Karlsruhe SystemC Parser suite. There are two tools in this
suite: SC2AST and SC2XML. SC2AST is essentially a C++ front-end with dedicated grammar rules
for SystemC constructs. It generates the Abstract Syntax Tree for the given SystemC application.
SC2XML first generates the AST using SC2AST and then generates an elaborated description of the
application. This elaborated description contains two parts: functional and structural. The func-
tional part contains information about the threads, constructors etc (mainly the control struc-
ture). The structural part is obtained by parsing the AST and contains the hierarchically com-
posed system structure including connections between system elements. The suite uses the GNU
preprocessor to expand the SystemC macros.
KaSCPar is a partially open-source tool. The source code for SC2XML, which is the more interest-
ing component of the suite, is not available.

• sc2v: sc2v [13] is an open source tool for automatic translation of SystemC models to synthesiz-
able Verilog code. It is written using lex and yacc tools, and targets only an RTL subset of SystemC.

• A front-end [17] for the Behavioral Synthesizable SystemC subset (BSSC) has been developed with
the goal of providing an easily customizable and extendable SystemC parser. BSSC is closer to C
than to C++, and the parser supports only basic constructs of C++. Supporting full C++ would
require a major effort. Also, although the paper states that the tool is open-source, neither the
tool nor the source code is not available.

• SystemC-Perl, or SystemPerl [18] for short, is an extended version of SystemC language facilitating
automatic expansion of text to avoid needless repetitions in the code. The entire suite comes
with a preprocessor which expands the SystemPerl files into C++ code or stand-alone SystemC
code. The suite also contains a netlist extractor which describes the hierarchical interconnections
among SystemC modules.
In case of SystemPerl, the user is expected to provide hints in the program for the preprocessor
to identify the constructs to be expanded. This is useful in making the SystemC programs less
verbose. Netlist extraction does not involve processing of procedure bodies. Thus, SystemPerl is
not useful for typical back-end applications.

4.2 Tools Based on existing C++ front-end

Some works are based on a full, existing C++ front-end, addressing in this way the problem of the com-
plexity of C++ of grammar-based tools:

• Proprietary tools: Semantic Designs use a SystemC front-end which supports full C++ syntax,
builds Abstract Syntax Tree and provides facilities to process the syntax tree. Synopsys developed
a SystemC front-end which is used in the SystemC compiler CoCentric. It parses the constructors
and the main function, as well as the body of the modules with the EDG C++ front-end, and infers
the structure of the program from the syntax tree of the constructors. Unfortunately, the tool is
not available for download or for evaluation. To the best of our knowledge, the approach they use
has not been published.

• SCOOT: SCOOT [6] is a model extractor for SystemC based on a C++ front-end developed by the
authors. It includes static scheduling tools, allowing source-to-source optimizations, and inte-
grates verification back-ends to the CBMC model-checker and the SATABS tool. The intermedi-
ate format extracted from the SystemC program is basically a CFG annotated with information
related to the architecture. Static analysis techniques are used to determine the module hierar-
chy, sensitivity lists for processes and port bindings. The source code of this tool or the details of
the analysis techniques used in the front-end are not available.

• SystemCXML: SystemCXML [19] project aims at retrieving structural information of SystemC mod-
els. It uses Doxygen to interpret the SystemC source and generates an intermediate description in
XML. This intermediate description called ASLD (Abstract Syntax Language Definition) captures
SystemC structural information such as hierarchy, ports, signals, types etc. The tool also provides
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APIs to access the internal data structures in order to extract the structural information to be fed
to other back-end application such as graphical layout generator. SystemCXML also cannot not
derive the architecture information from SystemC programs. The SystemC coverage of this tool
is limited by the Doxygen markups used. The output of SystemCXML is useful in back-end ap-
plications such as visualization, but the IR used to represent the source code is inherited from
Doxygen, and includes only tags meant for pretty-printing the code, not for further analysis.

• Quiny: Unlike the above approaches, Quiny [20] uses an unmodified C++ compiler, but modi-
fies the SystemC library to use the operator overloading feature of C++ to return the expressions
instead of evaluating the operation at run-time. Thus, the intermediate code as well as the archi-
tecture information is produced by compiling and running the platform.
Since not all language constructs can be overloaded, this requires redefinition of keywords such
as if, else etc. in order to modify their execution-time behavior. Also some C++ operators
such as ?: are not and can not be handled. This limits the usefulness of this tool.

4.3 Hybrid (Static/Dynamic) Approaches

• Pinapa: Pinapa [21] uses a hybrid approach where on one hand the SystemC program is parsed
using GCC to get the Abstract Syntax Tree and on the other hand the elaboration phase is executed
to get the architecture information. Outputs of these two separate phases (i.e. the in-memory
data structures) are linked together so that a single output intermediate form can be produced
for the intended application such as verification or visualization.
Pinapa can parse any arbitrary SystemC program, but it cannot generate useful output for some
constructs such as pointers to SystemC objects or complex array index expressions.
While we think the approach of Pinapa is good, the tool is not easy to use because of technical
issues (lack of modularity of GCC in particular) and non-technical ones (license issues prevent
the distribution of Pinapa in a compiled form).

• In a recent work [22] by the authors of ParSyC projects, a hybrid technique is briefly presented
which uses a PCCTS based parser (supporting a subset of C++) to collect the static information
and a code generator to evaluate run time information.

4.4 Purely Dynamic Approaches

Some tools need only the architecture of the platform, and can use a purely dynamic approach (ex-
ecute the elaboration and get the result). The tools described below allows mainly allows to retrieve
information on the architecture but propose nothing to represent the behavior of processes.

• SystemCASS: SystemCASS is a SystemC simulator. During simulator initialization, SystemCASS
builds a signal dependency graph according to the architecture to simulate. The scheduler relies
on this graph to compute a fully statically scheduling. However, SysteCASS requires applications
to be re-written to include pre-defined kinds of functions.

• DUST: The DUST [23] framework uses simulation based approach to extract the design structure
and transaction recording information of TLM constructs. It does not involve a parser hence does
not perform any static processing of the SystemC program.

5 Experiments

We now present different test-cases illustrating the challenges SystemC front-end face on as well as the
importance of each one. Then we compare the theoretical capabilities of existing front-ends to their
effective capabilities. Last, we analyze the results and detail the difficulty, for each tool, to handle new
capabilities.
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5.1 Examples

The examples presented here are not supposed to represent an exhaustive set of complex benchmarks
for SystemC. They are rather small tests identifying each one a single problem we ideally want to be han-
dled by a front-end. We show here excerpts of the programs, and the complete source code is available
from the web [24].

The first example, and most simple, includes the same architecture as the one presented previously
in figure 1, without the SC_THREAD declaration. This code allows to test the behavior of front-ends on
very simple applications and serves as a basis for other examples.

The elab-easy uses the same simple architecture (explicit bindings between modules) and contains
simple process presented in Fig. 3. The elab-easy-int example (we do not show the code here), is the
same application except that data written through signals are integers instead of booleans, testing this
different construct. elab-easy-sc_stop is a simple example in which a process read data during a given
time then callssc_stop(). In order to test yet another constructs, elab-clock include a simple process
depending on an sc_clock to wake up.

void process() {
if (isHead == false) {
while (in.read() == false) {

sc_core::wait(5, SC_NS);
}

}
notified = true;
out.write(true);

}

Figure 3: Elab-easy: simple process
In the elab-easy-array (Fig. 4), components are stored in arrays; the architecture is built by iterating

through these arrays.

sc_core::sc_signal<bool> s[MAX];
Writer Cin[MAX];
Reader Cout[MAX];
for (i = 0 ; i < MAX ; i++) {

Cin[i].out(s[i]);
Cout[i].in(s[i]);

}

Figure 4: Elab-easy-array: use of arrays to build architecture
In the elab-port-bool example (Fig. 5), ports are stored into arrays rather than components. The

elab-pointer example (Fig. 6) accesses the array through indices depending on input values.

SC_MODULE(demultiplexer)
{

sc_core::sc_out<bool> output[4];
. . .

};

int sc_main (int argc , char *argv[])
{

. . .
dm.output[0](s1); dm.output[1](s2);
dm.output[2](s3); dm.output[3](s4);
. . .

}

Figure 5: Elab-port-bool: array of ports
In the elab-instances example, we access an array of pointer to components, filled in by a simple

loop.
The signal example (Fig. 8) tests the creation of modules from another module, rather than in the

sc_main function.
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int sc_main (int argc , char *argv[])
{

. . .
dm.output[first](C1.s);
dm.output[second](C2.s);
dm.output[third](C3.s);
dm.output[fourth](C4.s);
. . .

}

void process() {
for (int i = 1 ; i <= 4 ; i++) {

output[4 - i].write((i+1) * 2);
}

}

Figure 6: Elab-pointer: architecture depending on dynamic input

int sc_main(int argc, char* argv[])
{

sc_signal<bool> *x, *y;
sc_signal<bool> *cin;
sc_signal<bool> *coutSig;
BIT_ADDER *adder, *previous_adder;
. . .
for (int i = 1; i < N_BITS; i++) {

x = new sc_signal<bool>();
y = new sc_signal<bool>();
coutSig = new sc_signal<bool>();
adder = new BIT_ADDER(i);

previous_adder->carryout(*coutSig);
adder->cin(*coutSig);
adder->x(*x); vec.X[i](*x);
adder->y(*y); vec.Y[i](*y);

previous_adder = adder;
}

. . .
}

Figure 7: Array of components
The event exemple (Fig. 9) just tests the recognition of events.
At last, we test the RAM platform, a bigger example involving a CPU accessing a memory, with the

use of clocks, ports and signals.

5.2 Experimental Results

We experimented existing SystemC front-ends on examples described previously. Results are given in
table 2. For each tool and each example, this table indicates:

• 3 if the example could be analyzed.
• - if the example could be analyzed but with (small) adaptation of the test-case. Typically, this is

often necessary for grammar-based tools which do not recognize some syntaxes.
• ≈ if it works partially. The concerned case is detailed below.
• Easily if the example could not be analyzed, but could be managed with a small implementa-

tion work.
• Doable if the example could not be analyzed, if this is not a theoretical limitation of the ap-

proach, but requires a huge implementation to work. Typically, writing a SystemC front-end
handling all C++ and SystemC constructs is an approach that could work but is absolutely not
realistic.

• L if the example could not be analyzed, does not seem to be a limitation of the approach, but the
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SC_MODULE(nand) {. . .};

SC_MODULE(exor)
{

. . .
nand n1, n2, n3;

SC_CTOR(exor) :
n1("N1"), n2("N2"), n3("N3") {
. . .

}
};

Figure 8: Signal: creating modules from a module

SC_MODULE(mytop) {
sc_event e;

SC_CTOR(mytop) {
SC_THREAD(myFctP);
SC_THREAD(myFctQ);

}
void myFctP() {

. . .
wait(e);
. . .

}
void myFctQ() {

. . .
e.notify();
. . .

}
}

Figure 9: events: an example with events
case of the error could not be found (in other words, this seems to be a bug in the tool).

• 8 if the example could not be analyzed and if it is a fundamental limitation of the approach.
ParSyc is not freely available, so we couldn’t try it. In addition, the tools sc2v, SystemPerl require

to write applications from scratch and do not really handle the “SystemC language”. Those two tools
appear in grey in the table, with results corresponding to their theoretical capabilities.

5.3 Analysis of Results

The main result given by the table is that there does not exist a perfect front-end able to parse any
SystemC program, retrieve the architecture and build an intermediate format for that program.

SystemCXML experimental limitations correspond to theoretical ones. It does not give an interme-
diate representation, does not detect events, requires a strict syntax (use of struct module (X) :
struct sc_module instead of SC_MODULE(X) does not work for instance).

KaSCPar is the most cited tool amongst those presented, but it is not maintained anymore. We did
not receive any answer from the authors to our questions concerning errors we encountered on our
tests as well as on the examples they provide. In addition of these disappointing experimental results,
the limitations of the approach have been presented above.

Pinapa gives the best results, theoretically as well as experimentally. However, we required the help
of the authors to be able to install and execute examples correctly, so the comparison is not completely
fair. In the case of elab-pointer, Pinapa managed to detect the write construct, was unable to deter-
mine statically which module is targetted, but decorated the AST corresponding to this access with the
correct expression. A few more details:

• the authors corrected one bug in Pinapa to handle elab-port-bool;
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Pinapa SystemCXML KaSCPar Quiny Scoot SystemPerl sc2v
elab-only (Fig 1) 3 3 3 - 3 8 -

elab-easy (Fig 3) 3 3 L - 3 8 Doable
elab-easy-int (See [24]) 3 3 L Easily 3 8 Doable
elab-easy-uint (See [24]) 3 3 L Easily 3 8 Doable
elab-easy-array (Fig 4) 3 8 L Doable L 8 8

elab-easy-sc_stop (See [24]) 3 3 L Easily Easily 8 Easily
elab-port-bool (Fig 5) 3 8 L Doable Doable 8 8

elab-pointer (Fig 6) ≈ 8 8 Doable 8 8 8

elab-instances (Fig 7) - 8 L Doable Easily 8 8

elab-clock (See [24]) Easily 3 L Easily - 8 Easily
signal (Fig 8) - 8 8 8 - 8 8

event (See [24]) 3 3 L Doable 3 8 Doable
fifo (See [24]) 8 8 8 8 8 8 8

RAM (See [24]) Doable 3 8 8 Easily 8 8

Table 2: Capabilities of SystemC front-ends
• Pinapa doesn’t follow function calls, but decorate only SystemC constructs that appear directly in

the function registered as a process. Therefore, a write() into a function whose call is nested in an
other won’t be detected.

The hybrid approach followed by Pinapa is interesting as it allows to extract the architecture of any
program. However, analyzing the AST given by GCC is a limited approach, as it does not allow to retrieve
information in simple C++ constructs dependant on purely static data (an array indexed by an operation
on constants for instance).

Although knowing the target of each communication between two modules is undecidable in the
general case, we think it is possible to handle most of the cases. Indeed, as it is difficult to accomplish
using static analysis solutions, we could execute pieces of code computing those information.

Additionally, the intermediate representations given by all available solutions are more or less based
on the AST. However, it has been showed [25] that, for verification purpose, the SSA form could give good
results.

6 Conclusion

We presented the motivations and challenges for the design of SystemC front-ends. We detailed existing
solutions and their theoretical capabilities and limitations, and gave experimental results. We showed
that although the need to analyze SystemC designs is increasing with the complexity of embedded sys-
tems, available tools are not able to take as input any arbitrary SystemC models.

Three tools give better results than others. Scoot gives good results, but the source is not open and
does not provide its intermediate representation. In addition, the approach is limited because it is
completely static. Therefore, it is difficult to use it as a basis for a new tool although it represents an
interesting research work. For other purposes, KaSCPar is a good choice for small examples, although
it seems to be unmaintained and has, again, the limitations of static tools. It was notably used for
verification [26, 8]. Pinapa has the most powerful approach but experience technical difficulty which
would require a non neglectable engineering effort. It was initially written for verification [9], and recent
work [27] base upon Pinapa to emulate SystemC programs on a FPGA.

We also summarized good ideas in existing solutions and added new ones to overcome remaining
limitations of existing approaches. We are currently developing a tool incorporating these ideas, based
on the compiling infrastructure LLVM [28].
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