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1 Introduction

The verification of safety properties of infinite-state systems (such as device drivers, communi-
cation protocols, control software, etc.) requires the computation of the set of reachable states,
starting with an initial state from a given (possibly infinite) set. There are currently two ways of
doing this: (i) compute a finite representation of an over-approximation of the set of reachable
states, by applying a widening operator at each step, or (ii)attempt to compute precisely the
transitive closure of the transition relation; the set of reachable states is the image of the set of
initial states via the transitive closure. The first approach is guaranteed to terminate, but the ab-
straction usually introduces imprecision that may blur theverification result. On the other hand,
the second approach, although precise, is not guaranteed toterminate – the problem of verifying
safety properties being, in general, undecidable.

In practice, one usually tries to combine the two approachesand benefit from the advantages
of both. To this end, it is important to know for which classesof transition relations it is possible
to compute the transitive closure precisely and fast – the relations falling outside these classes
being dealt with using suitable abstractions. To the best ofour knowledge, the three main classes
of integer relations for which transitive closures can be computed precisely in finite time are: (1)
difference bounds constraints [8, 7], (2) octagons [11, 6], and (3) finite monoid affine transforma-
tions [5, 9]. For these three classes, the transitive closures can be moreover defined in Presburger
arithmetic.

The contributions of this paper are two-fold. On the theoretical side, we show that the three
classes of relations mentioned above are ultimately periodic, i.e. each relationR can be mapped
into an integer matrixMR such that the sequence{MRk}∞k=0 is periodic. The proof that a se-
quence of matrices is ultimately periodic relies on a resultfrom tropical semiring theory [12].
This provides shorter proofs to the fact that the transitiveclosures for these classes can be effec-
tivelly computed, and that they are Presburger definable.

On the practical side, the algorithm introduced in this paper computes the transitive closure of
difference bounds and octagonal relations up to four ordersof magnitude faster than the original
methods from [7, 6], and also scales much better in the number of variables. Theexperimental
comparison with the FAST tool [4] for difference bounds relations shows that large relations
(> 50 variables), causing FAST to run out of memory, can now be handled by our implementation
in less than 8 seconds, on average. We currently do not have a full implementation of the finite
monoid affine transformation class, which is needed in orderto compare our method with tools
like FAST [4], LASH [13], or TReX [2], for this class of relations.

1.0.1 Related Work

Early attempts to apply Model Checking techniques to the verification of infinite-state systems
consider the problem of accelerating transition relationsby successive under-approximations,
without any guarantee of termination. For systems with integer variables, the acceleration of
affine relations has been considered primarily in the works of Annichini et. al [1], Boigelot [5],
and Finkel and Leroux [9]. Finite monoid affine relations have been first studied by Boigelot [5],
who shows that the finite monoid property is decidable, and that the transitive closure is Pres-
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burger definable in this case. On what concerns non-deterministic transition relations, difference
bounds constraints appear in the context of timed automata verification. The transitive closure
of a difference bounds constraint is shown to be Presburger definable first by Comon and Jurski
[8]. Their proof was subsequently simplified and extended to parametric difference bounds con-
straints in [7]. We also showed that octagonal relations can be accelerated precisely, and that the
transitive closure is also Presburger definable [6]. The proofs of ultimate periodicity from this
paper are based on some of our previous results [7, 6]. For difference bounds constraints, the
proof from [7] was simplified using a result from tropical semiring theory[12].

Roadmap The paper is organized as follows: Section2 gives the definition of ultimately peri-
odic relations, Section3 describes the algorithm for computing transitive closuresof ultimately
periodic relations, in general, Section4 describes three instances of the algorithm, Section5
presents the experimental results, and Section6 concludes. All proofs are deferred to Appendix
??due to reasons of space.

2 Preliminaries

We denote byZ,N andN+ the sets of integers, positive (including zero) and strictly positive inte-
gers, respectivelly. The first order additive theory of integers is known as Presburger Arithmetic.
The tropical semiringis defined asT = (Z∞,min,+,∞, 0) [12], whereZ∞ = Z ∪ {∞}, with
the extended arithmetic operationsx+∞ = ∞, min(x,∞) = x, for all x ∈ Z, wheremin(x, y)
denotes the minimum between the valuesx andy. For two square matricesA,B ∈ Sm×m, we
define(A + B)ij = Aij + Bij and(A × B)ij = minm

k=1(aik + bkj), for all 1 ≤ i, j ≤ m. Let
I ∈ T

m×m be the identity matrix, i.e.Iii = 0 andIij = ∞, for all 1 ≤ i, j ≤ m, i 6= j.

Definition 1 [12] An infinite sequence{sk}∞k=0 ∈ T is calledultimately periodicif:

∃K ∃c > 0 ∃λ0, λ1, . . . , λc−1 ∈ T . s(k+1)c+i = λi + skc+i

for all k ≥ K and i = 0, 1, . . . , c − 1. The smallestc andλ0, λ1, . . . , λc−1 for which the above
holds are called theperiodandratesof {sk}∞k=0, respectivelly.

Example 1 The sequenceσk = {3k + 1 | k = 2l, l ≥ 2} ∪ {5k + 3 | k = 2l + 1, l ≥ 2} is
ultimately periodic, withK = 4, periodc = 2 and ratesλ0 = 3, λ1 = 5.

A sequence of matrices{Ak}
∞
k=0 ∈ T

m×m is said to be ultimately periodic if, for all1 ≤
i, j ≤ m, the sequence{(Ak)ij}

∞
k=0 is ultimately periodic. A matrixA ∈ T

m×m is called
ultimately periodic if the sequence{Ak}∞k=1 is ultimately periodic, whereA0 = I andAk =
A × Ak−1, for anyk > 0. It is known that, every matrix is ultimately periodic in thetropical
semiring [12].

If A ∈ T
m×m is a square matrix andn ∈ T, we define the matrix(n · A)ij = n · Aij,

for all 1 ≤ i, j ≤ m. If k is a parameter (typically interpreted overT), thenT[k] denotes the
set of all terms wherek may occur, built from the constants and operators ofT. For instance, if
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A,B ∈ T
m×m, thenk ·A+B ∈ T[k]m×m denotes the matrix of terms(k ·A+B)ij = k ·Aij+Bij,

for all 1 ≤ i, j ≤ m.
We have the following characterization of ultimately periodic sequences of matrices:

Lemma 1 A sequence of matrices{Ak}
∞
k=1 ∈ T

m×m is ultimately periodic if and only if:

∃K ∃c > 0 ∃Λ0,Λ1, . . . ,Λc−1 ∈ T
m×m . A(k+1)c+i = Λi + Akc+i

for all k ≥ K andi = 0, 1, . . . , c− 1.

Proof: According to the definition,{Ak}
∞
k=1 is ultimately periodic if and only if, for each1 ≤

i, j ≤ m there existKij, cij > 0 andλij
l ∈ T such that(A(k+1)cij+l)ij = λij

l + (Akcij+l)ij for all
l = 0, 1, . . . , cij − 1. Let c be the least common multiple of allcij, further letbij = cij ·Kij for

each1 ≤ i, j ≤ n, b be the maximum of allbij, b = c ·
⌈

b
c

⌉

and letΛt, t = 0, 1, . . . , c− 1 be the

matrix defined as:

(Λt)ij =
(

λij

(b−bij+t) mod cij

)
c

cij

The conditionA(k+1)c+i = Λi +Akc+i is verified for allk ≥ ⌈ b
c
⌉ andi = 0, 1, . . . , c− 1, with the

above definitions.
2

2.1 Ultimately Periodic Relations

Letx = {x1, x2, . . . , xN} be a set of variables,N > 0, and letx′ = {x′
1, x

′
2, . . . , x

′
N}. A relation

is an arithmetic formulaR(x,x′) with free variablesx ∪ x′. We say that two relationsR andR′

are equivalent, denotedR ⇔ R′ if under all valuations ofx andx′, R is true if and only ifR′ is
true. A relation is calledconsistentif and only if there exist valuations ofx andx′ under which
it holds. We denote a consistent relationR by writingR < false, and an inconsistent relation by
writing R ⇔ false.

The composition of two relations is defined asR ◦ R′ ≡ ∃y . R(x,y) ∧ R′(y,x′). Let I
be the identity relation

∧

x∈x x
′ = x. We defineR0 ≡ I andRn ≡ Rn−1 ◦ R, for anyn > 0.

With these notations,R∗ ≡
∨∞

i=0 R
i denotes thetransitive closureof R. A relationR is called

ω-consistentif Rn is consistent for alln > 0. For the rest of this section, letR be a class of
relations1.

Definition 2 A relationR(x,x′) ∈ R is calledultimately periodicif and only if either:

1. there existsi0 ≥ 0 such thatRi0 is inconsistent, or

2. for all i ≥ 0, Ri is consistent, and there exists two functions:

• σ : R → T
m×m
⊥ mapping eachconsistentrelation inR into am ×m matrix ofT,

for somem > 0, and each inconsistent relation into⊥.

1A class of relations is usually defined by syntactic conditions.

3



• ρ : T
m×m → R mapping eachm × m matrix ofT into a relation inR, such that

ρ(σ(R)) ⇔ R, for each consistent relationR ∈ R

such that the infinite sequence of matrices{σ(Ri)}∞i=0 ∈ T
m×m is ultimately periodic.

Notice that the first condition of the definition implies thatσ(Ri) = ⊥, for all i ≥ i0. If each
relationR ∈ R is ultimately periodic, thenR is called ultimately periodic as well. The following
lemma gives an alternative characterization ofω-consistent ultimately periodic relations.

Lemma 2 An ω-consistent relationR is ultimately periodic if and only if there existK ≥ 0,
b ≥ 0, c > 0 andΛ0,Λ1, . . . ,Λc−1 ∈ T

m×m such that the following hold:

1. σ(R(n+1)c+i) = Λi + σ(Rnc+i), for all n ≥ K.

2. Rnc+b+i ⇔ ρ(n · Λi + σ(Rb+i)), for all n ≥ 0.

for all i = 0, 1, . . . , c− 1, whereσ andρ are the functions from Def.2.

Proof: By Lemma1, if R is ω-consistent, then it is ultimately periodic if and only if

∃K ∃c > 0 ∃Λ0,Λ1, . . . ,Λc−1 ∈ T
N×N . σ(R(k+1)c+i) = Λi + σ(Rkc+i)

for all k ≥ K andi = 0, 1, . . . , c− 1. By induction onk ≥ K, one shows first that

Rkc+i ⇔ ρ(Λi
k−K + σ(RKc+i)), ∀k ≥ K

Let b = Kc. By replacingk −K with k, we obtain

Rkc+b+i ⇔ ρ(Λi
k + σ(Rb+i)), ∀k ≥ 0

2

For practical reasons related to the representation ofR∗, we are interested in finding the
symbolic expressionRk, wherek is a parameter (becauseR∗ ≡ ∃k . Rk). Notice that the second
point of lemma2 can be used to compute the expressionRk symbolically (as a formula over
x, x′ andk), assuming that we are given a function, call itπ : T[k]m×m → R(k), where
R(k) is the class of all parametric relations overx,x′ andk. Intuitivelly, π is the parametric
counterpart of theρ function from Def. 2, mapping a matrix of terms overk into a parametric
relationR(x,x′, k). Concrete definitions ofπ will be given in Section4.
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3 Computing Transitive Closures of Ultimately Periodic Re-
lations

In this section we give a generic algorithm that computes thetransitive closure of a given ul-
timately periodic relation. The algorithm needs to be instantiated for a specific classR of
ultimately periodic relations by providing the mappingsσ, ρ (Def. 2) andπ (the parametric
counterpart ofρ) as discussed in the previous. Next, in Section4, we show how this algorithm
can be used for accelerating three classes of relations: difference bounds, octagons, and finite
monoid affine transformations.

Fig. 1 shows the generic framework for computing transitive closures. The input to the
algorithm is a relationR, and the mappingsσ : R → T

m×m, ρ : T
m×m → R, and

π : T[k]m×m → R(k). The algorithm is guaranteed to terminate ifR is ultimately periodic, as
it will be explained in the following.

The main idea of the algorithm is to discover the prefixb and periodc of the sequence
{σ(Ri)}∞i=0 – cf. the second point of lemma2. If R is ultimately periodic, such values are
guaranteed to exist. The dove-tailing enumeration on lines1 and 2 is guaranteed to yield the
smallest values(b, c) for which the sequence is shown to be periodic.

Second, the algorithm attempts to compute the first rate of the sequence (line 6), by compar-
ing the matricesσ(Rb), σ(Rc+b) andσ(R2c+b). If the differenceΛ betweenσ(Rc+b) andσ(Rb)
equals the difference betweenσ(R2c+b) andσ(Rc+b), thenΛ is a valid candidate for the first rate
of the progression (see lemma2). Notice that the consistency check on line 4 is needed to ensure
that we applyσ to consistent relations – otherwise, the relation is notω-consistent, and the al-
gorithm returns directly the transitive closure, i.e. the finite disjunction

∨kc+b−1
i=0 Ri, 0 ≤ k ≤ 2

(line 4).
Once a candidateΛ for the initial rate was found, the testQ1 on line 7 is used to check that

R is ultimately periodic andω-consistent. Notice that the characterization of ultimately periodic
relations from lemma2 cannot be applied here, sinceRn is not known in general, for arbitrary
n ≥ 0. The condition used here is local, i.e. it needs only the relation Rb, for a typically small
constantb ≥ 0. The next lemma establishes the correctness of the criterion used byQ1:

Lemma 3 Anω-consistent relationR is ultimately periodic if and only if

∃b ∃c > 0 ∃Λ0,Λ1, . . . ,Λc−1 ∈ T
m×m . ρ(n · Λi + σ(Rb+i)) ◦Rc ⇔ ρ((n+ 1) · Λi + σ(Rb+i))

for all n ≥ 0 and i = 0, 1, . . . , c − 1, whereσ andρ are the functions from Def.2. Moreover,
Λ0,Λ1, . . . ,Λc−1 satisfy the equivalences of Lemma2.

Proof: “⇒” If R is ω-consistent and ultimately periodic, by Lemma2, there existb ≥ 0, c > 0
andΛ0,Λ1, . . . ,Λc−1 ∈ T

m×m such that

Rkc+b+i ⇔ ρ(Λi
k + σ(Rb+i))

for all k ≥ 0 andi = 0, 1, . . . , c− 1. We have:

R(k+1)c+b+i ⇔ Rkc+b+i ◦Rc

ρ(Λi
k+1 + σ(Rb+i)) ⇔ ρ(Λi

k + σ(Rb+i)) ◦Rc
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“⇐” We prove the equivalent condition of Lemma2 by induction onk ≥ 0. The base casek = 0
is immediate. The induction step is as follows:

R(k+1)c+b+i ⇔ Rkc+b+i ◦Rc

⇔ ρ(Λi
k + σ(Rb+i)) ◦Rc , by the induction hypothesis

⇔ ρ(Λi
k+1 + σ(Rb+i))

2

The universal queryQ1 on line 7 is in general handled by procedures that are specificto the
class of relationsR we work with. Notice furthermore thatQ1 can be handled symbolically by
checking the validity of the first order formula:∀k . π(k·Λ+σ(Rb))◦Rc ⇔ π((k+1)·Λ+σ(Rb)),
whereπ is the parametric counterpart ofρ. Next, in Section4, we detail two ways in which
this test can be performed efficiently (for difference bounds and octagonal relations), without
resorting to external proof engines, such as SMT or Presburger solvers.

1. foreachb := 0, 1, 2, . . . do
2. foreachc := 0, 1, . . . , b do
3. foreachk := 0, 1, 2 do
4. if Rkc+b ⇔ false thenreturnR∗ ≡

∨kc+b−1
i=0 Ri

5. endfor
6. if existsΛ ∈ T

m×m : σ(Rc+b) = Λ + σ(Rb) andσ(R2c+b) = Λ + σ(Rc+b) then
7. if forall n ≥ 0 : ρ(n · Λ + σ(Rb)) ◦Rc ⇔ ρ((n+ 1) · Λ + σ(Rb)) < false(Q1) then
8. returnR∗ ≡

∨b−1
i=0 R

i ∨ ∃k ≥ 0 .
∨c−1

i=0 π(k · Λ + σ(Rb)) ◦Ri

9. elseif existsn ≥ 0 : ρ(n · Λ + σ(Rb)) ◦Rc ⇔ false(Q2) then
10. letn0 = min{n | ρ(n · Λ + σ(Rb)) ◦Rc ⇔ false}
11. if forall n ∈ [0, n0 − 1] : ρ(n · Λ + σ(Rb)) ◦Rc ⇔ ρ((n+ 1) · Λ + σ(Rb)) then
12. returnR∗ ≡

∨b−1
i=0 R

i ∨
∨n0−1

n=0

∨c−1
i=0 ρ(n · Λ + σ(Rb)) ◦Ri

13. endif
14. endif
15. endfor
16. endfor

Figure 1: Transitive Closure Algorithm

If the universal query on line 7 holds, the rateΛ can be used now to express the transitive
closure (line 8) as a finite disjunction over the prefix (

∨b−1
i=0 R

i) followed by a formula defining
an arbitrary number of iterations (∃k .

∨c−1
i=0 π(k · Λ + σ(Rb)) ◦ Ri). Note that the formula

on line 8 defines indeed the transitive closure ofR, as a consequence of lemma2. Moreover,
this is a formula of Presburger arithmetic, provided that the classes of relationsR andR(k) are
Presburger definable.
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Otherwise, ifQ1 does not hold, there are two possibilities: either (i)Λ is actually not the first
rate of the sequence{σ(Ri)}∞i=0 for givenb ≥ 0 andc > 0, or (ii) the relation is notω-consistent.
In the first case, we need to reiterate with another prefix-period pair, which will give us another
candidateΛ.

In the second case,Rm becomes inconsistent, for somem > 0 – in this case the computation
of its transitive closure is possible, in principle, by taking the disjunction of all powers ofR up
to m. However, in practice this may take a long time, ifm is large. In order to speed up the
computation, we check whether:

• ρ(n ·Λ+σ(Rb)) ◦Rc is inconsistent (line 9); the existential queryQ2 (and namely finding
the smallest value for which it holds) is dealt with in Section 4, specifically for the classes
of difference bounds and octagonal relations.

• R is periodic with first rateΛ between0 andn0 − 1 (line 11), wheren0 is the smallestn
satisfying the first point (line 10).

If both conditions above hold, thenm = (n0+1)c+b is the smallest value for whichRm becomes
inconsistent, and moreover,R is periodic with rateΛ between0 andm. If this is the case, we
compute the transitive closure using the periodΛ and return (line 12). The following theorem
can be proved along the lines of the discussion above:

Theorem 1 If R is an ultimately periodic relation, the algorithm in Fig.1 eventually terminates
and returns the transitive closure ofR.

4 Some Ultimately Periodic Classes of Arithmetic Relations

This section is dedicated to the application of the transitive closure computation algorithm from
the previous section (Fig.1) to three classes of arithmetic relations, for which the transitive
closure is Presburger-definable: difference bounds relations [7], octagonal relations [6], and finite
monoid affine transformations [5].

In order to apply the transitive closure computation method, one needs to address two issues.
First, the class of relations considered needs to be proved ultimately periodic (for else, our al-
gorithm is not guaranteed to terminate). The proofs rely mostly on the fact that any matrixA is
ultimately periodic inT [12] (see Section2 for the definition of ultimately periodic matrices).

Second, the queriesQ1 andQ2 (Fig. 1) need to be answered efficiently, by avoiding excessive
calls to external decision procedures. In theory, all thesequeries can be expressed in Presburger
arithmetic, for the classes of difference constraints, octagons and affine transformations, yet in
practice we would like to avoid as much as possible using Presburger solvers, due to reasons
of high complexity. For the classes of difference bounds andoctagons, we give direct decision
methods for handling these queries. The class of affine transformations without guards can also
be dealt with by simply checking equivalence between Diophantine systems, whereas the general
case still needs to be handled by a Presburger solver.

7



4.1 Difference Constraints

Let x = {x1, x2, ..., xN} be a set of variables ranging overZ.

Definition 3 A formulaφ(x) is a difference bounds constraintif it is equivalent to a finite con-
junction of atomic propositions of the formxi − xj ≤ aij, 1 ≤ i, j ≤ N, i 6= j, whereaij ∈ Z.

For example,x = y + 5 is a difference bounds constraint, as it is equivalent tox − y ≤
5 ∧ y − x ≤ −5. Let Rdb denote the class of difference bound relations. Differencebounds
constraints are alternatively represented as matrices or,equivalently, weighted graphs.

Given a difference bounds constraintφ, adifference bounds matrix(DBM) representingφ is
a matrixMφ ∈ T

N×N such that(Mφ)ij = aij, if xi − xj ≤ aij is an atomic proposition inφ, and
∞, otherwise. Dually, ifM ∈ T

N×N is a DBM, the corresponding difference bounds constraint
is ∆M ≡

∧

Mij<∞ xi − xj ≤ Mij.
A DBM M is said to be consistent if and only if its corresponding constraintϕM is consistent.

An elementary pathin a DBMM is a sequence of indices1 ≤ i1, i2, . . . , ik ≤ N , wherei1,...,k−1

are pairwise distinct, such thatMijij+1
< ∞, for all 1 ≤ j < k. An elementary path is called

anelementary cycleif moreoveri1 = ik. An elementary cycle is said to bestrictly negativeif
∑k−1

j=1 Mijij+1
< 0. A DBM M is inconsistent if and only if it has a strictly negative elementary

cycle – a proof can be found in [11]. The next definition gives a canonical form for consistent
DBMs.

Definition 4 A consistent DBMM ∈ T
N×N is said to beclosedif and only ifMii = 0 and

Mij ≤ Mik +Mkj, for all 1 ≤ i, j, k ≤ N .

Given a consistent DBMM , we denote byM∗ the (unique) closed DBM such thatϕM ⇔
ϕM∗ . It is well-known that, ifM is consistent, thenM∗ is unique, and can be computed fromM
in timeO(N3), by the classical Floyd-Warshall algorithm. Moreover, ifM is a consistent DBM,
we have, for all1 ≤ i, j ≤ N :

M∗
ij = min

{

k−1
∑

l=0

Milil+1
i = i0 . . . ik−1 = j is an elementary path inM

}

(1)

The closed form of DBMs is needed for the elimination of existentially quantified variables –
if φ is a difference bounds constraint, then∃x . φ is also a difference bounds constraint [11].
Consequently, we have that the class of difference bounds relations is closed under relational
composition:R1(x,x

′) ◦R2(x,x
′) ≡ ∃y . R1(x,y) ∧R2(y,x

′).

4.1.1 Difference Bounds Relations are Ultimately Periodic

Given a consistent difference bounds relationR(x,x′) ∈ Rdb, let σ(R) = MR ∈ T
2N×2N be the

characteristic DBM ofR, and for anyM ∈ T
2N×2N , let ρ(M) = ∆M ∈ Rdb be the difference

bounds relation corresponding toR. Clearly,ρ(σ(R)) ⇔ R, as required by Def.2.
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With these definitions, the algorithm in Fig.1 will return the transitive closure of a difference
bounds relationR, provided that the sequence{σ(Ri)}∞i=0 is ultimately periodic. IfR is not
ω-consistent then, by Def.2, it is ultimately periodic. We consider henceforth thatR is ω-
consistent, i.e.σ(Ri) = MRi , for all i ≥ 0.

For a difference bounds relationR, we define the directed graphGR, whose set of vertices is
the setx ∪ x′, and in which there is an edge fromxi to xj labeledαij if and only if the atomic
propositionxi − xj ≤ αij occurs inR. Clearly,MR is the incidence matrix ofGR.

Next, we define the concatenation ofGR with itself as the disjoint union of two copies ofGR,
in which thex′ vertices of the second copy overlap with thex vertices of the first copy. ThenRm

corresponds to the graphGm
R , obtained by concatenating the graph ofR to itselfm > 0 times.

SinceRdb is closed under relational composition, thenRm ∈ Rdb, and moreover we have:
∧

1≤i,j≤N xi − xj ≤ min{x0
i −→ x0

j} ∧ x′
i − x′

j ≤ min{xm
i −→ xm

j } ∧

xi − x′
j ≤ min{x0

i −→ xm
j } ∧ x′

i − xj ≤ min{xm
i −→ x0

j}

wheremin{xp
i −→ xq

j} is the minimal weight of all paths between the extremal verticesxp
i and

xq
j in Gm

R , for p, q ∈ {0,m}. In other words, we have the equalities from Fig.2 (a), for all
1 ≤ i, j ≤ N .

(MRm)i,j = min{x0
i −→ x0

j}

(MRm)i+N,j+N = min{xm
i −→ xm

j }

(MRm)i,j+N = min{x0
i −→ xm

j }

(MRm)i+N,j = min{xm
i −→ x0

j}

(a)

min{x0
i −→ x0

j} = (Mm+2
R )Ief (xi),Fef (xj)

min{xm
i −→ xm

j } = (Mm+2
R )Ieb(xi),Feb(xj)

min{x0
i −→ xm

j } = (Mm+2
R )Iof (xi),Fof (xj)

min{xm
i −→ x0

j} = (Mm+2
R )Iob(xi),Fob(xj)

(b)

Figure 2

As proved in [7], the paths betweenxp
i andxq

j , for arbitrary1 ≤ i, j ≤ N andp, q ∈ {0,m},
can be seen as words (over a finite alphabet of subgraphs ofGm

R ) recognized by a finite weighted
automaton of size up to5N . For the sake of completeness, its definition follows.

Definition of Zigzag Automata Let x = {x1, . . . , xN} be a set of variables. In the following,
we will work with a more convenient (yet equivalent) form of difference bounds relations: all
constraints of the formx− y ≤ α are replaced byx− t′ ≤ α ∧ t′− y ≤ 0, and all constraints of
the formx′−y′ ≤ α are replaced byx′−t ≤ α ∧ t−y′ ≤ 0, by introducing fresh variablest 6∈ x.
In other words, we can assume without loss of generality thatthe constraint graph corresponding
toR (GR) is bipartite, i.e. it does only contain edges fromx andx′ and viceversa. We denote the
m-times composition ofGR with itself asGm

R , and thei-th step nodes ofGm
R , for 0 ≤ i ≤ m, with

xi.
Intuitively, a pathπ between, say,x0 andxm, with x, y ∈ x is represented by a wordw of

lengthm, as follows: thewi symbol representssimultaneouslyall edges ofπ that involve only
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nodes fromxi ∪ xi+1, 0 ≤ i < m. Since we assumed thatGm
R is bipartite, it is easy to see that,

for a path fromx0 to ym, coded by a wordw, the number of times thewi symbol is traversed by
the path is odd, whereas for a path fromx0 to y0, or fromxm to ym, this number is even. Hence
the names ofevenandodd automata.

Given a difference bound relationR, theeven alphabetof R, denoted asΣe
R, is the set of all

graphs satisfying the following conditions, for eachG ∈ Σe
R:

1. the set of nodes ofG is x ∪ x′,

2. for anyx, y ∈ x∪x′, there is an edge labeledα from x to y, only if x− y ≤ α occurs inϕ.

3. the in-degree and out-degree of each node are at most one.

4. the number of edges fromx to x′ equals the number of edges fromx′ to x.

Theodd alphabetof R, denoted byΣo
R, is defined in the same way, with the exception of the last

condition:

4. the difference between the number of edges fromx to x′ and the number of edges fromx′

to x is either 1 or−1.

LetΣR = Σe
R ∪Σo

R. Notice that, the number of edges in all symbols ofΣe
R is even, while the

number of edges in all symbols ofΣo
R is odd. The label ofG is the sum of the weights that occur

on its edges. Clearly, the weight of a path throughGm
R is the weight of the word it is represented

by. We denote byω(w) the weight of a wordw ∈ ΣR
∗.

We are now ready for the definition of automata recongizing words that represent encodings
of paths fromGm

R . Theeven automatonrecognizes paths that start and end on the same side of
Gm
R i.e., either paths fromx0

i to x0
j , or from xm

i to xm
j , for some1 ≤ i, j ≤ N , respectively.

We call the first type of automataforward even automata, and the second onebackwardeven
automata. Theodd automatarecognize paths from one side ofGm

R to another. The automata
recognizing paths fromx0

i to xm
j are calledforwardodd automata, whereas the ones recognizing

paths fromxm
i to x0

j are calledbackwardodd automata. The even and odd automata share the
same transition table, whereas the input alphabet isΣe

R for the former, andΣo
R for the latter.

More precisely, we define the common transition table asTR = 〈Q,∆〉, where:

Q = {l, r, lr, rl,⊥}N ∪ {I•(x) | x ∈ x} ∪ {F•(x) | x ∈ x}, • ∈ {of, ob, ef, eb}, and

∆ = ∆g ∪∆l

⋃

1≤i,j≤N

(∆ef
ij ∪∆eb

ij ∪∆of
ij ∪∆ob

ij )

We now define transition sets∆g,∆l,∆
ef
ij ,∆

eb
ij ,∆

of
ij ,∆

ob
ij . There is a transition〈q1 . . . qN〉

G
−→

〈q′1, . . . , q
′
N〉 in ∆g if and only if the following conditions hold, for all1 ≤ i ≤ N :

• qi = l iff G has one edge whose destination isxi, and no other edge involvingxi.

• q′i = l iff G has one edge whose source isx′
i, and no other edge involvingx′

i.

10



• qi = r iff G has one edge whose source isxi, and no other edge involvingxi.

• q′i = r iff G has one edge whose destination isx′
i, and no other edge involvingx′

i.

• qi = lr iff G has exactly two edges involvingxi, one havingxi as source, and another as
destination.

• q′i = rl iff G has exactly two edges involvingx′
i, one havingx′

i as source, and another as
destination.

• q′i ∈ {lr,⊥} iff G has no edge involvingx′
i.

• qi ∈ {rl,⊥} iff G has no edge involvingxi.

Let even be a function{l, r, lr, rl,⊥}N → {⊤,⊥} defined as follows

(q1, . . . , qN) 7→ ⊤ if |{i ∈ {1, . . . , N} | qi = l or qi = r}| mod 2 = 0
(q1, . . . , qN) 7→ ⊥ otherwise

Then we can define∆l

∆l = {q
RI−−→ q | q ∈ {l, r, lr, rl,⊥}N andeven(q) = ⊤}

Finally, we define∆ef
ij , ∆eb

ij , ∆of
ij , and∆ob

ij .

∆ef
ij =

{

{Ief (xi) −→ q | qi = r, qj = l andqh ∈ {lr,⊥}, 1 ≤ h ≤ N , h 6∈ {i, j}} if i 6= j

{Ief (xi) −→ q | qi = qj = lr andqh ∈ {lr,⊥}, 1 ≤ h ≤ N , h 6= i} otherwise

⋃

{q −→ Fef (xj) | q ∈ {rl,⊥}N}

∆eb
ij =

{

{q −→ Feb(xi) | qi = l, qj = r andqh ∈ {lr,⊥}, 1 ≤ h ≤ N , h 6∈ {i, j}} if i 6= j

{q −→ Feb(xi) | qi = qj = lr andqh ∈ {lr,⊥}, 1 ≤ h ≤ N , h 6= i} otherwise

⋃

{Ieb(xj) −→ q | q ∈ {rl,⊥}N}

∆of
ij = {Iof (xi) −→ q | qi = r andqh ∈ {lr,⊥}, 1 ≤ h ≤ N , h 6= i}

⋃

{q −→ Fof (xj) | qj = r andqh ∈ {rl,⊥}, 1 ≤ h ≤ N , h 6= j}

∆ob
ij = {Iob(xi) −→ q | qi = l andqh ∈ {lr,⊥}, 1 ≤ h ≤ N , h 6= i}

⋃

{q −→ Fob(xj) | qj = l andqh ∈ {rl,⊥}, 1 ≤ h ≤ N , h 6= j}

11



With the above definitions, we can define the even forward, even backward, odd forward, and
odd backward automata.

Aef
ij = 〈TR, Ief (xi), Fef (xj)〉

Aeb
ij = 〈TR, Ieb(xi), Feb(xj)〉

Aof
ij = 〈TR, Iof (xi), Fof (xj)〉

Aob
ij = 〈TR, Iob(xi), Fob(xj)〉

LetMR be the incidence matrix ofTR. By the construction ofMR, for each variablex ∈ x,
there are eight indices, denoted asIof (x), Iob(x), Ief (x), Ieb(x),
Fof (x), Fob(x), Fef (x), Feb(x) ∈ {1, . . . , 5N + 8N}, such that all relations from Fig.2 (b) hold,
for all 1 ≤ i, j ≤ N . Intuitivelly, all paths fromx0

i to x0
j are recognized by the automatonAef

ij ,

paths fromxm
i to xm

j by Aeb
ij , paths fromx0

i to xm
j by Aof

ij , and paths fromxm
i to x0

j by Aob
ij . It is

easy to see (as an immediate consequence of the interpretation of the matrix product inT) that, for
anym > 0, the matrixMm+2

R gives the minimal weight among all paths, of lengthm2, between
xp
i andxq

j , for any1 ≤ i, j ≤ N andp, q ∈ {0,m}. But the sequence{Mm
R}

∞
m=0 is ultimately

periodic, since every matrix is ultimately periodic inT [12]. By equating the relations from Fig.
2 (a) with the ones from Fig.2 (b), we obtain that the sequence{σ(Rm)}∞m=0 = {MRm}∞m=0 is
ultimately periodic as well.

In conclusion, the algorithm from Fig.1 will terminate on difference bounds relations. More-
over, the result is formula in Presburger arithmetic. This also simplifies the proof that transitive
closures of difference bounds relations are Presburger definable, from [7], since the minimal
paths of lengthm within the weighted automaton recognizing the paths ofGm

R correspond in fact
to elements of them-th power ofMR (the incidence matrix of the automaton) inT.

4.1.2 Checkingω-Consistency and Inconsistency of Difference Bounds Relations

For a difference bounds relationR(x,x′) ∈ Rdb and a matrixΛ ∈ T
2N×2N , we give methods to

decide the queriesQ1 andQ2 (lines 7 and 9 in Fig.1) efficiently. To this end, we consider the
class of parametric difference bounds relations. From now on, letk 6∈ x be a variable interpreted
overN+.

Definition 5 A formulaφ(x, k) is a parametric difference bounds constraintif it is equivalent
to a finite conjunction of atomic propositions of the formxi − xj ≤ aij · k + bij, for some
1 ≤ i, j ≤ N , i 6= j, whereaij, bij ∈ Z.

The class of parametric difference bounds relations with parameterk is denoted asRdb(k).
A parametric difference bounds constraintφ(k) can be represented by a matrixMφ[k] of linear
terms, where(Mφ[k])ij = aij ·k+bij if xi−xj ≤ aij ·k+bij occurs inφ, and∞ otherwise. Dually,
a matrixM [k] of linear terms corresponds to the formula∆M(k) ≡

∧

M [k]ij 6=∞ xi−xj ≤ M [k]ij.

2The offset of 2 is needed due to use of the special initial and final transitions.
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With these considerations, we defineπ(M [k]) = ∆M(k). Clearly, we haveπ(k · Λ + σ(Rb)) ∈
Rdb(k), for R ∈ Rdb, b ≥ 0 andΛ ∈ T

2N×2N .
Parametric DBMs do not have a closed form, since in general, the minimum of two linear

terms ink (for all valuations ofk) cannot be expressed again as a linear term. According to
(1), one can define the closed form of a parametric DBM as a matrix of terms of the form
min{ai · k + bi}

m
i=1, for someai, bi ∈ Z andm > 0. Then the queryQ1 can be written as a

conjunction of formulae of the form∀k > 0 . min{ai · k + bi}
m
i=1 = a0 · k + b0. The following

lemma gives a way to decide the validity of such formulae:

Lemma 4 Givenℓ, a0, a1, . . . , am, b0, b1, . . . , bm ∈ Z, the following are equivalent:

1. ∀k ≥ ℓ . min{ai · k + bi}
m
i=1 = a0 · k + b0

2.
∨m

i=1(ai = a0 ∧ bi = b0) ∧
∧m

j=1(a0 ≤ aj ∧ a0 · ℓ+ b0 ≤ aj · ℓ+ bj)

Proof: We assume w.l.o.g. that all termsai · k + bi, i = 1, . . . ,m are distinct.
“1 ⇒ 2” For infinitely manyk ≥ K we havemin{ai · k + bi}

m
i=1 = a0 · k + b0. Since the

set of terms{ai · k + bi}
m
i=1 is finite, there existsk1 < k2 and somei = 1, . . . ,m such that

ai · k1 + bi = a0 · k1 + b0 andai · k2 + bi = a0 · k2 + b0. Hence we have:

(ai − a0) · k1 = b0 − bi

(ai − a0) · k2 = b0 − bi

and the only possibility is whenai = a0 andbi = b0. For the second part, we havea0 · k + b0 ≤
ai · k + bi, for all k ≥ K, therefore:

• a0 ·K + b0 ≤ ai ·K + bi (the casek = K)

• b0 − bi ≤ (ai − a0) · k, for all k ≥ K, thereforeai − a0 ≥ 0 (the term(ai − a0) · k is
bounded from below, hence it cannot decrease infinitely often)

“2 ⇒ 1” Since
∨m

i=1 ai = a0 ∧ bi = b0, we havea0 · k + b0 ∈ {ai · k + bi}
m
i=1, for all k ≥ K. By

a0 ≤ ai ∧ a0 ·K + b0 ≤ ai ·K + bi we obtaina0 · k + b0 ≤ ai · k + bi, for all k ≥ K. Therefore
min{ai · k + bi}

m
i=1 = a0 · k + b0, for all k ≥ K.

2

In analogy to the non-parametric case, the inconsistency ofa parametric difference bounds
constraintφ(k) amounts to the existence of a strictly negative elementary cycle in Mφ[k], for
some valuationk ∈ N+. We are also interested in finding the smallest value for which such a
cycle exists. The following lemma gives this value.

Lemma 5 Letφ(x, k) be a parametric difference bounds constraint andMφ[k] be its associated
matrix. For someaij, bij ∈ Z, let {aij · k + bij}

mi

j=1, i = 1, . . . , 2N be the set of terms denoting
weights of elementary cycles going throughi. Thenφ is inconsistent for someℓ ∈ N andk ≥ ℓ
if and only if there exists1 ≤ i ≤ 2N and 1 ≤ j ≤ mi such that either (i)aij < 0 or
(ii) aij ≥ 0 ∧ aij · ℓ + bij < 0 holds. Moreover, the smallest value for whichφ becomes
inconsistent ismin2N

i=1{minmi

j=1 γij}, whereγij = max(ℓ, ⌊−
bij
aij

⌋ + 1), if aij < 0, γij = ℓ, if
aij ≥ 0 ∧ aij · ℓ+ bij < 0, andγij = ∞, otherwise.
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Proof: φ is inconsistent iff there existsk ≥ K such thataij · k + bij < 0, for some1 ≤ i ≤ 2n

and1 ≤ j ≤ mi. If aij < 0, thenk > −
bij
aij

, hencek ≥ ⌊−
bij
aij

⌋ + 1. Sincek ≥ K, we have

k0 = max(K, ⌊−
bij
aij

⌋+1). Else, ifaij ≥ 0 andaij ·K+ bij ≥ 0, we haveaij ·k+ bij ≥ 0, for all
k ≥ K, contradiction. The only remaining case isaij ≥ 0 ∧ aij ·K + bij < 0, where we chose
k0 = K.
2

4.2 Octagons

Let x = {x1, x2, ..., xN} be a set of variables ranging overZ.

Definition 6 A formulaφ(x) is anoctagonal constraintif it is equivalent to a finite conjunction
of terms of the form±xi ± xj ≤ aij, 2xi ≤ bi, or −2xi ≤ ci, whereaij, bi, ci ∈ Z and
1 ≤ i, j ≤ N, i 6= j.

The class of octagonal relations is denoted byRoct in the following. We represent octagons as
difference bounds constraints over the set of variablesy = {y1, y2, . . . , y2N}, with the convention
thaty2i−1 stands forxi andy2i for −xi, respectively. For example, the octagonal constraintx1 +
x2 = 3 is represented asy1−y4 ≤ 3∧y2−y3 ≤ −3. To handle they variables in the following, we
definēı = i−1, if i is even, and̄ı = i+1 if i is odd. Obviously, we havē̄ı = i, for all i ∈ Z, i ≥ 0.
We denote byφ the difference bounds formulaφ[y1/x1, y2/− x1, . . . , y2n−1/xn, y2n/− xn] over
y. The following equivalence relatesφ andφ :

φ(x) ⇔ (∃y2, y4, . . . , y2N . φ ∧
N
∧

i=1

y2i−1 + y2i = 0)[x1/y1, . . . , xn/y2N−1] (2)

An octagonal constraintφ is equivalently represented by the DBMMφ ∈ T
2N×2N , corresponding

to φ. We say that a DBMM ∈ T
2N×2N is coherentiff Mij = Mj̄ ı̄ for all 1 ≤ i, j ≤ 2N . This

property is needed since any atomic propositionxi − xj ≤ a, in φ can be represented as both
y2i−1 − y2j−1 ≤ a andy2j − y2i ≤ a, 1 ≤ i, j ≤ N . Dually, a coherent DBMM ∈ T

2N×2N

corresponds to the octagonal constraintΩM :
∧

1≤i,j≤N

(xi − xj ≤ M2i−1,2j−1 ∧ xi + xj ≤ M2i−1,2j ∧ −xi − xj ≤ M2i,2j−1) (3)

A coherent DBMM is said to beoctagonal-consistentif and only ifΩM is consistent.

Definition 7 An octagonal-consistent coherent DBMM ∈ T
2N×2N is said to betightly closedif

and only if the following hold:

1. Mii = 0, ∀1 ≤ i ≤ 2N 3. Mij ≤ Mik +Mkj, ∀1 ≤ i, j, k ≤ 2N

2. Mīı is even, ∀1 ≤ i ≤ 2N 4. Mij ≤ ⌊Miı̄

2
⌋+ ⌊

Mj̄j

2
⌋, ∀1 ≤ i, j ≤ 2N
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The following theorem from [3] provides an effective way of testing consistency and com-
puting the tight closure of a coherent DBM. Moreover, it showsthat the tight closure of a given
DBM is unique and can also be computed in timeO(N3).

Theorem 2 [3] Let M ∈ T
2N×2N be a coherent DBM. ThenM is octagonal-consistent if and

only if M is consistent and⌊Miı̄

2
⌋ + ⌊Mı̄i

2
⌋ ≥ 0, for all 1 ≤ i ≤ 2N . Moreover, the tight

closure ofM is the DBMM t ∈ T
2N×2N defined asM t

ij = min
{

M∗
ij ,

⌊

M∗

iı̄

2

⌋

+
⌊

M∗

j̄j

2

⌋}

, for all

1 ≤ i, j ≤ 2N , whereM∗ ∈ T
2N×2N is the closure ofM .

The tight closure of an octagonal constraint is needed for existential quantifier elimination,
and ultimately, for proving that the class of octagonal relations is closed under composition [6].

4.2.1 Octagonal Relations are Ultimately Periodic

Given a consistent octagonal relationR(x,x′) let σ(R) = MR. Dually, for any coherent DBM
M ∈ T

4N×4N , let ρ(M) = ΩM . Clearly,ρ(σ(R)) ⇔ R, as required by Def.2.
In order to prove that the classRoct of octagonal relations is ultimately periodic, we need to

prove that the sequence{σ(Rm)}∞m=0 is ultimately periodic, for an arbitrary relationR ∈ Roct.
It is sufficient to consider only the case whereR is ω-consistent, henceσ(Rm) = MRm , for
all m ≥ 0. We rely in the following on the main result of [6], which establishes a relation
betweenMRm (the octagonal DBM corresponding to them-th iteration ofR) andMR

m (the
DBM corresponding to them-th iteration ofR ∈ Rdb), for m > 0:

(MRm)ij = min
{

(MR
m)ij,

⌊

(M
R
m )iı̄
2

⌋

+
⌊

(M
R
m )j̄j
2

⌋}

, for all 1 ≤ i, j ≤ 4N (∗)

This relation is in fact a generalization of the tight closure expression from theorem2, from
m = 1 to anym > 0.

In Section4.1 it was shown that difference bounds relations are ultimately periodic. In par-
ticular, this means that the sequence{MR

m}∞m=0, corresponding to the iteration of the difference
bounds relationR, is ultimately periodic. To prove that the sequence{MRm}∞m=0 is also ulti-
mately periodic, it is sufficient to show that: the minimum and the sum of two ultimately peri-
odic sequences are ultimately periodic, and also that the integer half of an ultimately periodic
sequence is also ultimately periodic.

Lemma 6 Let{sm}∞m=0 and{tm}∞m=0 be two ultimately periodic sequences. Then the sequences
{min(sm, tm)}

∞
m=0, {sm + tm}

∞
m=0 and

{⌊

sm
2

⌋}∞

m=0
are ultimately periodic as well.

Proof: For the sequences{min(sm, tm)}
∞
m=0 and{sm + tm}

∞
m=0 we assume w.l.o.g. that the two

sequences{sm}∞m=0 and{tm}∞m=0 are ultimately periodic starting at the same indexK, have the
same periodc and ratesλ(s)

0 , ..., λ
(s)
c−1 respectivelyλ(t)

0 , ..., λ
(t)
c−1.

We can show that the sum sequence{sm + tm}
∞
m=0 is periodic as well starting atK, with

periodc and ratesλ(s)
0 + λ

(t)
0 , ..., λ

(s)
c−1 + λ

(t)
c−1. In fact, for everyk ≥ K andi = 0, ..., c − 1 we

have successively:
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(s+ t)(k+1)c+i = s(k+1)c+i + t(k+1)c+i (4)

= λ
(s)
i + skc+i + λ

(t)
i + tkc+i (5)

= λ
(s)
i + λ

(t)
i + skc+i + tkc+i (6)

= (λ
(s)
i + λ

(t)
i ) + (s+ t)kc+i (7)

Similarly, for the min sequence{min(sm, tm)}
∞
m=0 consider the points(bi)i=0,c−1 defined by

bi =







































⌈

sKc+i−tKc+i

λ
(t)
i −λ

(s)
i

⌉

if λ(s)
i < λ

(t)
i andtK+i < sK+i

⌈

tKc+i−sKc+i

λ
(s)
i −λ

(t)
i

⌉

if λ(t)
i < λ

(s)
i andsK+i < tK+i

0 otherwise

(8)

It can be shown that, for eachi = 0, ..., c− 1 precisely one of the following assertions hold:

1. (λ(s)
i < λ

(t)
i or λ(s)

i = λ
(t)
i andsKc+i < tKc+i) and∀k ≥ K + bi. skc+i ≤ tkc+i

2. (λ(t)
i < λ

(s)
i or λ(t)

i = λ
(s)
i andtKc+i ≤ sKc+i) and∀k ≥ K + bi. tkc+i ≤ skc+i

Intuitively, starting from the positionK + bi, on every periodc, the minimum amongst the
two sequences is always defined by the same sequence i.e., theone having the minimal rate on
indexi, or if the rates are equal, the one having the smaller starting value.

We can show now that the min sequence{min(sm, tm)}
∞
m=0 is periodic starting atK +

maxc−1
i=0 bi, with periodc and ratesmin(λ

(s)
0 , λ

(t)
0 ), ...,min(λ

(s)
c−1, λ

(t)
c−1). That is, we have succes-

sively, for everyk ≥ K +maxc−1
i=0 bi andi = 0, ..., c − 1, and wheneveri satisfies the condition

(1) above (the case wheni satisfies the condition (2) being similar):

min(s, t)(k+1)c+i = min(s(k+1)c+i, t(k+1)c+i)

= s(k+1)c+i

= λ
(s)
i + skc+i

= min(λ
(s)
i , λ

(t)
i ) + min(skc+i, tkc+i)

= min(λ
(s)
i , λ

(t)
i ) + min(s, t)kc+i

For the sequence
{⌊

sm
2

⌋}∞

m=0
, assume that the sequence{sm}

∞
m=0 is ultimately periodic start-

ing atK, with periodc and ratesλ0, ..., λc−1. It can be easily shown that the sequence⌊ sm
2
⌋ is

ultimately perdiodic as well starting atK, with period2c, and ratesλ0, ..., λc−1, λ0, ..., λc−1.
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We have successively for anyk ≥ K, and for anyi = 0, ..., c− 1:

⌊s(k+1)2c+i

2

⌋

=

⌊

2λi + sk·2c+i

2

⌋

= λi +
⌊sk·2c+i

2

⌋

Similarly, for anyk ≥ K and for anyi = 0, ..., c− 1 we have

⌊s(k+1)2c+c+i

2

⌋

=

⌊

2λi + sk·2c+c+i

2

⌋

= λi +
⌊sk·2c+c+i

2

⌋

2

Together with the above relation (∗), lemma6 proves thatRoct is ultimately periodic.

4.2.2 Checkingω-Consistency and Inconsistency of Octagonal Relations

This section describes an efficient method of deciding the queriesQ1 andQ2 (lines 7 and 9 in
Fig. 1) for the class of octagonal relations. In order to deal with these queries symbolically,we
need to consider first the classRoct(k) of octagonal relations with parameterk. In the rest of this
section, letk 6∈ x be a variable ranging overN+.

Definition 8 Then a formulaφ(x, z) is a parametric octagonal constraintif it is equivalent to a
finite conjunction of terms of the form±xi±xj ≤ aij ·k+bij, 2xi ≤ ci·k+di, or−2xi ≤ c′i·k+d′i,
whereaij, bij , ci, di, c′i, d

′
i ∈ Z and1 ≤ i, j ≤ N, i 6= j.

A parametric octagonφ(x, k) is represented by a matrixMφ[k]T[k]
2N×2N of linear terms

overk, and viceversa, a matrixM [k] ∈ T[k]2N×2N corresponds to a parametric octagonΩM(k).
We defineπ(M [k]) = ΩM(k). As in the case of difference bounds constraints, one notices that
π(k · Λ + σ(Rb)) ∈ Roct(k), for R ∈ Roct, b ≥ 0 andΛ ∈ T

4N×4N .
The composition of parametric octagonal relations (from e.g. Q1) requires the computation

of the tight closure in the presence of parameters. According to theorem2, the parametric tight
closure can be expressed as a matrix of elements of the formmin{ti(k)}

m
i=1, whereti(k) are

either: (i) linear terms, i.e.ti(k) = ai · k + bi, or (ii) sums of halved linear terms, i.e.ti(k) =
⌊ai·k+bi

2
⌋+ ⌊ ci·k+di

2
⌋.

The main idea is to split a halved linear term of the form⌊a·k+b
2

⌋, k > 0 into two linear terms
a ·k+⌊ b

2
⌋ anda ·k+⌊ b−a

2
⌋, corresponding to the cases ofk > 0 being even or odd, respectivelly.

This is justified by the following equivalence:

{⌊a·k+b
2

⌋ | k > 0} = {a · k + ⌊ b
2
⌋ | k > 0} ∪ {a · k + ⌊ b−a

2
⌋ | k > 0}

Hence, an expression of the formmin{ti(k)}
m
i=1 yields two expressionsmin{tei (k)}

m
i=1, for even

k, andmin{toi (k)}
m
i=1, for oddk, wheretei andtoi , 1 ≤ i ≤ m, are effectively computable linear

terms. With these considerations,Q1 (for octagonal relations) is equivalent to a conjunction of
equalities of the form∀k > 0 . min{t•i (k)}

m
i=1 = t•0(k), • ∈ {e, o}. Now we can apply lemma

4 to the right-hand sides of the equivalences above, to give efficient equivalent conditions for
decidingQ1.
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The queryQ2 is, according to theorem2, equivalent to finding either (i) a strictly negative
cycle in a parametric octagonal DBMM [k], or (ii) a pair of indices1 ≤ i, j ≤ 4N, i 6= j such

that ⌊M [k]iı̄
2

⌋ + ⌊
M [k]j̄j

2
⌋ < 0. Considering that the set of terms corresponding to the two cases

above isT = {ai · k + bi}
m
i=1 ∪ {⌊ ci·k+di

2
⌋ + ⌊ ei·k+fi

2
⌋}pi=1, we split each termt ∈ T into two

matching linear terms, and obtain, equivalently:

Te,o = {αe
i · k + βe

i }
m+p
i=1 ∪ {αo

i · k + βo
i }

m+p
i=1

Now we can apply lemma5, and compute the minimal value for which a termt ∈ Te,o becomes
negative, i.e.n0 = minm+p

i=1 min(2γe
i , 2γ

o
i − 1), whereγ•

i = max(1, ⌊−
β•

i

α•

i
⌋ + 1), if α•

i < 0, 1 if

α•
i ≥ 0 ∧ α•

i + β•
i < 0, and∞, otherwise, for• ∈ {e, o}.

4.3 Finite Monoid Affine Transformations

The class of affine transformations is one of the most generalclasses of deterministic transition
relations involving integer variables. Ifx = 〈x1, . . . , xN〉 is a vector of variables ranging overZ,
anaffine transformationis a relation of the form:

T ≡ x′ = A⊗ x+ b ∧ φ(x) (9)

whereA ∈ Z
N×N , b ∈ Z

N , φ is a Presburger formula, and⊗ stands for the standard matrix
multiplication inZ.

The affine transformation is said to have thefinite monoid property[5, 9] if the monoid
〈MA,⊗〉, whereMA = {A⊗i

| i ≥ 0} is finite. In this case, we also say thatA is finite monoid.
HereA⊗0

= IN andA⊗i
= A ⊗ A⊗i−1, for i > 0. Intuitivelly, the finite monoid property is

equivalent to the fact thatA has finitely many powers (for the standard integer multiplication)
that repeat periodically. It is easy to see thatA is finite monoid if and only if there existsp ≥ 0
andl > 0 such thatA⊗p

= A⊗p+l, i.e.MA = {A⊗0
, . . . , A⊗p

, . . . , A⊗p+l−1
}.

If A is finite monoid, it can be shown thatT ∗ can be defined in Presburger arithmetic [5, 9].
We achieve the same result below, by showing that finite monoid affine transformations are
ultimately periodic relations. As a byproduct, the transitive closure of such relations can also
be computed by the algorithm in Fig.1.

An affine tranformationT (9) can be equivalently written in the homogeneous form:

T ≡ x′
h = Ah ⊗ xh ∧ φh(xh) where Ah ≡

(

A b

0 . . . 0 1

)

wherexh = 〈x1, . . . xN , xN+1〉 with xN+1 6∈ x being a fresh variable andφh(xh) ≡ φ(x) ∧
xN+1 = 1. In general, thek-th iteration of an affine transformation can be expressed as:

T k ≡ x′
h = Ah

⊗k
⊗ xh ∧ ∀0 ≤ ℓ < k . φh(Ah

⊗ℓ
⊗ xh) (10)

Notice that, ifx(0)
h denotes the initial values ofxh, the values ofxh at theℓ-th iteration are

x
(ℓ)
h = Ah

⊗ℓ
⊗ x

(0)
h . Moreover, we need to ensure that all guards up to (and including) the

(k − 1)-th step are satisfied, i.e.φh(Ah
⊗ℓ

⊗ xh), for all 0 ≤ ℓ < k.

18



For the rest of the section we fixA andb, as in (9). The encoding of a consistent affine trans-
formationT is defined asσ(T ) = Ah ∈ T

(N+1)×(N+1). Dually, for someM ∈ T[k](N+1)×(N+1),
we define:

π(M) : ∃xN+1, x
′
N+1 . x

′
h = M ⊗ xh ∧ ∀0 ≤ ℓ < k . φh(M [ℓ/k]⊗ xh)

whereM [ℓ/k] denotes the matrixM in which each occurrence ofk is replaced byℓ. In contrast
with the previous cases (Section4.1and Section4.2), onlyM is not sufficient here to recover the
relationπ(M) – φ needs to be remembered as well3.

With these definitions, we haveσ(T k) = A⊗
h

k, for all k > 0 – as an immediate consequence
of (10). The next lemma proves that the class of finite monoid affine relations is ultimately
periodic.

Lemma 7 Given a finite monoid matrixA ∈ Z
N×N and a vectorb ∈ Z

N , the sequence
{A⊗

h

k
}∞k=0 is ultimately periodic.

Proof: LetA ∈ Z
N×N be a matrix,b ∈ Z

N be a vector, and

Ah ≡

(

A b

0 . . . 0 1

)

Then we have, for allk ≥ 0:

(Ah)
⊗k

=

(

A⊗k ∑k−1
i=0 A

⊗i
⊗ b

0 . . . 0 1

)

For i = N + 1, 1 ≤ j ≤ N + 1, {(A⊗
h

k
)ij}

∞
k=0 is trivially ultimately periodic. For1 ≤ i, j ≤ N ,

{(A⊗
h

k
)ij}

∞
k=0 is ultimately periodic due to the fact thatA is finite monoid. It remains to be proven

that, for all1 ≤ j ≤ N , the sequence{(
∑k−1

i=0 A⊗i
⊗ b)j}

∞
k=0 is ultimately periodic. W.l.o.g.

assume that the monoid ofA is MA = {M⊗0
,M⊗1

, . . . ,

M⊗p
, . . .M⊗p+l−1

}, whereM⊗p
= M⊗p+l. Then, fork ≥ p we have:

∑k−1
i=0 M

⊗i
=

∑p−1
i=0 M

⊗i
+ ⌊k−p+1

l
⌋ ·

∑p+l−1
i=p M⊗i

+
∑p+((k−p+1) mod l)

i=p M⊗i

Hence the sequence{
∑k−1

i=0 M
⊗i
}∞k=0 is ultimately periodic with periodl and rates

Λj =
∑p+l−1

i=p M⊗i

for all j = 0, 1, . . . , l − 1.
2

The queriesQ1 andQ2 (lines 7 and 9 in Fig.1) in the case of finite monoid affine trans-
formations, are expressible in Presburger arithmetic. These problems could be simplified in the
case of affine transformationswithout guards, i.eT ≡ x′ = Ax + b. The transformation is, in
this case,ω-consistent. Consequently,Q1 reduces to an equivalence between two homogeneous
systemsx′

h = A1h ⊗ xh andx′
h = A2h ⊗ xh. This is true if and only ifA1h = A2h. The query

Q2 becomes trivially false in this case.
3This incurs a slight modification of the algorithm presentedin Fig. 1.
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Relation new compact canonical
old speedup old speedup

d0 (x− x′ = −1) ∧ (x = y′) 0.18 0.7 3.89 38.77 215.39
d1 (x− x′ = −1) ∧ (x′ = y′) 0.18 18.18 101.0 38.77 215.39
d2 (x− x′ = −1) ∧ (x = y′) ∧ (x− z′ ≤ 5) ∧ (z = z′) 1.2 26.5 22.1 33431.2 27859.3
d3 (x− x′ = −1) ∧ (x = y′) ∧ (x− z ≤ 5) ∧ (z = z′) 0.6 32.7 54.5 33505.5 55841.7
d4 (x− x′ = −1) ∧ (x = y) ∧ (x− z ≤ 5) ∧ (z = z′) 0.5 702.3 1404.6 48913.8 97827.6
d5 (a = c) ∧ (b = a′) ∧ (b = b′) ∧ (c = c′) 1.8 5556.6 3087.0 > 106 ∞

d6

(a− b′ ≤ −1) ∧ (a− e′ ≤ −2) ∧ (b− a′ ≤ −2)

5.6 > 106 ∞ > 106 ∞

∧(b− c′ ≤ −1) ∧ (c− b′ ≤ −2) ∧ (c− d′ ≤ −1)
∧(d− c′ ≤ −2) ∧ (d− e′ ≤ −1 ∧ e− a′ ≤ −1)
∧(e− d′ ≤ −2) ∧ (a′ − b ≤ 4) ∧ (a′ − c ≤ 3)
∧(b′−c ≤ 4 ∧ b′−d ≤ 3) ∧ (c′−d ≤ 4) ∧ (c′−e ≤ 3)
∧(d′−a ≤ 3 ∧ d′−e ≤ 4) ∧ (e′−a ≤ 4) ∧ (e′−b ≤ 3)

o1 (x+ x′ = 1) 0.21 0.91 4.33 0.91 4.33
o2 (x+ y′ ≤ −1) ∧ (−y − x′ ≤ −2) 0.29 0.85 2.93 0.84 2.9
o3 (x ≤ x′) ∧ (x+ y′ ≤ −1) ∧ (−y − x′ ≤ −2) 0.32 0.93 2.91 0.94 2.94
o4 (x+ y ≤ 5) ∧ (−x+ x′ ≤ −2) ∧ (−y + y′ ≤ −3) 0.21 3.67 17.48 13.52 64.38
o5 (x+ y ≤ 1) ∧ (−x ≤ 0) ∧ (−y ≤ 0) 1.2 20050.9 16709.1 > 106 ∞

o6

(x ≥ 0) ∧ (y ≥ 0) ∧ (x′ ≥ 0) ∧ (y′ ≥ 0)
2.5 > 106 ∞ > 106 ∞∧(x+ y ≤ 1) ∧ (x′ + y′ ≤ 1) ∧ (x− 1 ≤ x′)

∧(x′ ≤ x+ 1) ∧ (y − 1 ≤ y′) ∧ (y′ ≤ y + 1)

Table 1: Comparison with older algorithms on difference bounds and octagons. Times are in
milliseconds.

5 Experimental Results

We have implemented the transitive closure algorithm from Fig. 1 within the FLATA toolset [10],
a framework we develop for the analysis of counter systems. We compared the performance of
this algorithm with our older transitive closure computation methods for difference bounds [7]
and octagonal relations [6]. We currently lack experimental data for finite monoid relations
(namely, a comparison with existing tools such as FAST [4], LASH [13] or TReX [2] on this
class), as our implementation of finite monoid affine transformation class is still underway.

Table1 shows the results of the comparison between the older algorithms described in [7, 6]
(denoted asold) and the algorithm in Fig.1 for difference bounds relationsd1,...,6 and octag-
onal relationso1,...,6. The tests have been performed on bothcompact (minimum number of
constraints) andcanonical (i.e. closed, for difference bounds and tightly closed, foroctagons)
relations. Thespeedupcolumn gives the ratio between theold andnew execution times. The
experiments were performed on a 2.53GHz machine with 2.9GB of memory.

As shown in Table1, the maximum observed speedup is almost105 for difference bounds (d4
in canonical form) and of the order of four for octagons. For the relationsd5 (canonical form),d6
ando6 the computation using older methods took longer than106 msec. It is also worth noticing
that the highest execution time with the new method was of 2.5msec.

Table2 compares FLATA with FAST [4] on counter systems with one self loop labeled with
a randomly generated deterministic difference bound relation. We generated 50 such relations
for each sizeN = 10, 15, 20, 25, 50, 100. Notice that FAST usually runs out of memory for
more than 25 variables, whereas FLATA can handle 100 variables in reasonable time (less than
8 seconds on average).

20



vars
FLATA FAST

done av. ET done av. ET EM EB

10 50 1.5 0 49 0.6 0 0 1
15 50 1.6 0 31 10.5 17 0 2
20 50 1.6 0 4 3.4 9 8 29
25 50 1.6 0 2 4.2 2 10 36
50 50 1.6 0 0 - 0 0 50
100 49 7.7 1 0 - 0 0 50

(a) – matrix density 3%

vars
FLATA FAST

done av. ET done av. ET EM EB

10 50 1.5 0 22 6.9 23 1 4
15 50 1.5 0 1 20.6 4 3 42
20 50 1.6 0 0 - 1 0 49
25 43 1.7 7 0 - 0 0 50
50 50 2.3 0 0 - 0 0 50
100 42 5.5 8 0 - 0 0 50

(b) – matrix density 10%

Table 2: Comparison with FAST (MONA plugin) on deterministicdifference bounds. Times are
in seconds.ET – timeout 30 s,EB – BDD too large,EM – out of memory

6 Conclusion

We presented a new, scalable algorithm for computing the transitive closure of ultimately peri-
odic relations. We show that this algorithm is applicable todifference bounds, octagonal and
finite monoid affine relations, as all three classes are shownto be ultimately periodic. Exper-
imental results show great improvement in the time needed tocompute transitive closures of
difference bounds and octagonal relations.
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